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ABSTRACT

A series hydraulic hybrid concept (SHHV) has been 
explored as a potential pathway to an ultra-efficient city 
vehicle.  Intended markets would be congested 
metropolitan areas, particularly in developing countries.  
The target fuel economy was ~100 mpg or 2.4 l/100km 
in city driving.  Such an ambitious target requires 
multiple measures, i.e. low mass, favorable 
aerodynamics and ultra-efficient powertrain.  The series 
hydraulic hybrid powertrain has been designed and 
analyzed for the selected light and aerodynamic platform 
with the expectation that (i) series configuration will 
maximize opportunities for regeneration and optimization 
of engine operation, (ii) inherent high power density of 
hydraulic propulsion and storage components will yield 
small, low-cost components, and (iii) high efficiency and 
high power limits for accumulator charging/discharging 
will enable very effective regeneration.  The simulation 
study focused on the SHHV supervisory control 
development, to address the challenge of the low 
storage capacity of the accumulator. Two approaches 
were pursued, i.e. the thermostatic SOC control, and 
Stochastic Dynamic Programming for horizon 
optimization. The stochastic dynamic programming was 
setup using a set of naturalistic driving schedules, 
recorded in normal traffic.  The analysis included 
additional degree of freedom, as the engine power 
demand was split into two variables, namely engine 
torque and speed.  The results represent a significant 
departure from the conventional wisdom of operating the 
engine near its “sweet spot” and indicate what is 
preferred from the system stand-point.  Predicted fuel 
economy over the EPA city schedule is ~93 mpg with 
engine idling, and ~110 mpg with engine shut-downs. 

INTRODUCTION

The energy security and climate change challenges 
provide strong impetus for pursuing ultra-efficient vehicle 
concepts.  The fuel economy of passenger vehicles 
shows very strong dependency on vehicle mass and 
aerodynamic drag, but hybridization enables departures 
from the trend and significant leaps in fuel economy 
improvements.  The mechanisms for improvements 
include possibility for engine downsizing, optimization of 
engine operation, regeneration and engine shut-downs 
when the vehicle is stopped.  The relative contribution of 
each depends on the architecture, e.g. parallel, power-
split or series, selection of component and the type of 
application.  In the context of a small passenger vehicle, 
the series configuration holds a promise of maximizing 
benefits through flexibility in controlling the engine and 
effective regeneration, since by default the traction 
motor will be sized generously.  However, larger sizes of 
components in the hybrid driveline create a cost 
challenge.  Hence, this study explores the potential of 
the hydraulic hybrid propulsion system, with the 
expectation that inherently high power density of 
hydraulic propulsion and storage components will yield 
compact, low-cost components [1]. While state-of-the art 
hydraulic pump/motor technology for mobile applications 
includes very advanced designs, manufacturing is 
mature and can easily be setup in any region of the 
world.   

The series hydraulic hybrid driveline comprises 
propulsion pump/motors coupled to front and rear 
differentials and a hydro-pneumatic accumulator for 
energy storage. Coupling another hydraulic pump to the 
engine creates a power generation sub-system. The 
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particular advantages of hydraulics relevant for series 
architectures are the high-efficiency of the hydraulic 
pump/motor and high power limits for accumulator 
charging/discharging.  They both contribute to very 
effective regeneration, and to some extent mitigate the 
effect of multiplying efficiencies in the propulsion chain. 
The comparatively low energy density of the hydraulic 
accumulator creates a special challenge and requires 
novel approaches to development of supervisory control. 

The features of the parallel and series hydraulic hybrid 
vehicle architectures have been investigated before, 
particularly in the context of heavier vehicles [2, 3, 4] 
and the optimization of the design and control strategies 
led to impressive fuel economy improvements.  
However, the application of a series hydraulic hybrid 
concept to a very small car has only recently caught 
attention [5, 6, 7].  It is our goal to utilize some of the 
advanced methodologies previously demonstrated in 
studies of heavy vehicles to maximize the fuel economy 
of the SHHV system for a small car.  The particular 
focus is on the supervisory control development.  This is 
of critical importance for SHHV analysis since the low 
storage capacity of the hydraulic accumulator creates a 
special challenge for controller development, very 
different than in the case of electric system.  The low-
cost objective requires keeping the component sizes as 
small as possible, therefore emphasizing the impact of 
power management.  

The aim of this paper is to demonstrate a hydraulic 
hybrid system for an ultra small city car. The target fuel 
economy is ~100 mpg or 2.4 l/100km in city driving.  
Hence, the baseline for the study is a first-generation 
Honda Insight IMA Hybrid Electric Vehicle, as its 
aluminum structure and aerodynamic body represent the 
state-of-the-art for a given category.  The series 
hydraulic hybrid powertrain is designed and analyzed for 
the selected platform using a simulation developed in 
SIMULINK.  

Two approaches for supervisory control development 
are pursued, i.e. the Thermostatic State-Of-Charge 
(SOC) control and Stochastic Dynamic Programming 
(SDP) for horizon optimization of the supervisory policy. 
In the case of Thermostatic control, we challenge the 
conventional wisdom of operating the engine at the 
“sweet spot” and search for optimal SOCthreshold and 
power threshold during charging.  In the SDP 
investigation, we take the notion that system effects 
dominate over the component-centric approach a step 
further.  Namely, the technique includes selection of 
engine torque and speed, rather than just the power 
level, thus allowing departures from the best BSFC line if 
it benefits the overall powertrain efficiency.  

The paper is organized in three major sections. First, we 
explain the modeling of the baseline Honda Insight HEV. 
This includes in-depth review of its control strategies and 
electrical system operation based on data available in 
literature [8]. The second section proposes the new 

series hydraulic hybrid vehicle configuration. Modeling of 
hydraulic components and integration of the complete 
SHHV system is included.  Detailed description of the 
two control approaches follows, i.e. the Thermostatic 
SOC management and SDP horizon-optimization. The 
stochastic dynamic programming is setup using a set of 
naturalistic driving schedules, recorded in normal traffic.  
Results of both supervisory control methodologies are 
discussed to uncover the mechanism of fuel economy 
improvements.  Finally, we discuss the findings and the 
compare the fuel economy results of the SHHV vehicle 
to the baseline IMA HEV.  The paper ends with 
conclusions. 

BASELINE ISA HYBRID CONFIGURATION 

A low cost city car with very high fuel economy will 
require a very light body with superb aerodynamics. 
Honda Insight (first generation) is used as a starting 
point for a light vehicle platform because it represents 
the state-of-the art in addressing both the light weight 
and aerodynamic drag. Honda Insight is a pre-
transmission parallel electric hybrid, as shown on the 
schematic in Figure 1.  The motor augments the engine 
torque under high load and hence is also called 
Integrated Motor Assist (IMA). Honda Insight does not 
have a conventional alternator and uses the IMA for 
other electrical needs.  

Honda Insight in North America has a 5 speed manual 
transmission. Manual transmission offers higher 
efficiencies at steady state speeds but forces the driver 
to choose the optimal gearing to keep engine operation 
near optimal. High fuel economy of Honda Insight is 
attributed to its small engine and attention to every 
source of vehicle losses.  The impact of hybridization, 
including the ability to regenerate will be highlighted later 
in the paper through comparisons with the SHHV. 

 

Honda Insight model is used as a baseline vehicle for 
performance and fuel consumption comparison. The 
model will be validated using the published results on 
Honda Insight, [8]. Table 1 gives the specifications of the 
baseline Honda Insight vehicle. 

Figure 1 : Hybrid electric vehicle architecture with 
Integrated Motor Alternator  
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ENGINE 

The engine model takes driver command and external 
load torque as input and calculates the engine speed 
and fuel consumption. The engine model is based on 
look-up table which outputs engine torque as a function 
of fuel input and engine speed. The look-up table is 
obtained from ADVISOR, [9] and is based on testing 
done by NREL and ANL. Figure 2 give the SIMULINK 
implementation of engine. 

 

TRANSMISSION AND VEHICLE 

Honda Insight has a 5 speed manual transmission. The 
gearbox is modeled as a finite state machine with 
different gear being the different states of the system. A 
blending function is added to simulate inertia and torque 
phase during gear shift. Blending function provides a 
fast and fairly accurate way of incorporating these 
phases. The gear shifting logic is based on vehicle 
speed, according to test procedures laid out by the EPA. 

The clutch is modeled based on the normal pressure 
theory. The maximum torque transmitted is proportional 
to the normal force applied. There are two distinct 
modes of operation in clutch: 1) slipping - the two plates 
have differing angular velocities and, 2) lockup - the two 
plates rotate together. Controller logic engages and 
disengages the clutch to reduce the torque discontinuity 
during clutch engagement/disengagement.  

 max

2

3
f k n kT RF ��  (1) 

 maxsgn( )d e v f kT T� �� �  (2) 

where �e and �v are the speeds across clutch, Tfmaxk is 
the clutch max torque capacity, R is clutch radius, Fn is 
the normal force on clutch and �k is the friction 
coefficient. 

The vehicle is modeled as point mass system and pitch 
plane dynamics are ignored. This is deemed sufficient 
for the fuel economy studies.  The resistive forces were 
modeled as rolling and drag resistance. The vehicle also 
contains a brake model, which acts as a coulombic 
friction device. 

ELECTRICAL SYSTEM 

Electrical sub-systems is composed of a Brushless 
Permanent Magnet DC motor, and a Nickel Metal 
Hydride battery. Their characteristics are described in 
the following. 

Battery - is modeled as an equivalent circuit comprising 
a perfect open circuit voltage source, VOC in series with 
an effective internal resistance, Rint based on ADVISOR 
data [9].   VOC and Rint are computed as piecewise linear 
functions of SOC. There are two such functions for 
computing Rint, one for discharge power and another for 
charge power. Equivalent circuit current is solved from 
the VOC, Rint and maximum power battery can deliver. 
The battery current is then used to update the effective 
SOC of the battery. The thermal model of the battery 
calculates the module temperature, which is fed back to 
be used in determining the performance parameters. 
 
Motor - is modeled as 2D lookup table [9] with efficiency 
of the motor as function of motor torque and motor 
speed. The motor dynamics are approximated by a first-
order lag. However, due to the battery power and motor 
torque limit, the final motor dynamics assume the 
following form 
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Table 1 : Honda Insight Specifications

Engine Description 1L VTEC 

Max. Power 49kW @ 6000 RPM 

Max. Torque 90 Nm @ 4600 RPM 

Motor Design 
Brushless Permanent 
Magnet DC 

Max Power 10 kW  

Battery Design 
Nickel Metal Hydride 
spiral wound cells  

Capacity 0.9 kWhr 

Vehicle Type Sedan  

Weight 962 kg 

Coeff. of Drag 0.25 

Frontal Area 1.9 m
2
 

Tire Radius 0.275 m 

Final Drive 
Ratio 

3.21 

Transmission Design 5 speed Manual 

Gear Ratio 3.46,1.75,1.1,0.86,0.71

 

T
o

rq
u

e
 (

N
m

)

0

10

20

30

40

50

60

70

80

90

100

Speed (RPM)

800 1300 1800 2300 2800 3300 3800 4300 4800 5300 5800

0.40
0.40

0.40
0.32

0.32

0.32

0.28

0.28

0.28

0.26

0.260.25

0.25

0.25

0.25

0.25

0.25

0.23

0.23

0.23

0.23

0.3
0.29

0.27
0.27

0.24

26

Honda Insight 1

Figure 2 : Engine model in SIMULINK 
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where Tm is the motor torque, Tm_req is the requested 
motor torque, Tm_max is the maximum torque motor can 
generate at given condition and Tm_bat is the max motor 
torque due to battery limitations. �m is the inverse of the 
motor time constant. 

SUPERVISORY CONTROLLER 

A rule based control strategy is developed for Insight 
based on data from testing done by Argonne National 
Laboratory (ANL) and National Renewable Energy 
Laboratory (NREL) [8]. Rule-based controller design 
relies on engineering intuition and is typically 
component-centric.  Our primarily goal here is to 
establish a representative baseline for comparison with 
the HHV, hence we relied on the published data to 
achieve behavior observed during testing of the 
production vehicle [8]. 

The vehicle power demands are managed through a 
supervisory controller. The strategy is influenced by the 
fact that the vehicle with IMA represents a very mild 
hybrid.  During acceleration, the engine is the prime 
mover and most of the propulsion torque comes from the 
engine. The motor supplements additional torque to 
keep the engine operation near the optimal except 
during 1st gear driving. This is done to keep motor from 
operating at low efficiency regions. The motor also acts 
as alternator for the vehicle and provides the energy for 
accessories. During braking event, the controller 
commands motor to act as an alternator for recharging 
the battery. Friction brakes are applied when the power 
demand exceeds either motor or battery capabilities, or 
if vehicle speed is below certain speed.  

 

Motor demand during acceleration and deceleration are 
based on ratio of total driveline torque required by the 
vehicle. The SOC of battery is maintained near 0.68 to 
increase battery life. Based on driver commands, the 

controller calculates the power demand by the vehicle. 
Positive power demand is fed to the driving logic which 
calculates the torque split between engine and motor. 
Motor torque is calculated based on gear number and 
total driveline torque required using the logic shown in 
Figure 3 [9].  

Based on the torque and rate of acceleration, the electric 
motor assists the IC Engine, producing around 10 Nm of 
torque.  

� There is no electric assist in the first gear. 

� In case SOC drops below a threshold value, engine 
provides all the torque.  

� If the power demand crosses a predefined value 
with SOC below threshold, the motor is operated as 
generator to trickle charge the battery until desired 
SOC is reached. 
 

In case of negative power demand, the braking logic 
calculates the ratio between motor braking and friction 
braking.  

� During regeneration, the electric motor provides a 
portion of the negative torque available to the 
driveline.  

� At low vehicle speeds, typically below 10 mph, the 
braking is primarily by the friction brakes as the 
amount of kinetic energy diminishes. 
 

For the Honda Insight, the engine remains on in most 
cases.  The following criteria define when the engine is 
allowed to shut off.  The engine in the Insight will only 
shut down if all of the following conditions are satisfied 

� Engine is warm. 

� Battery SOC is greater than the low SOC set point. 

� Vehicle is decelerating or stopped; no gear shifting 
 

RESULTS – BASELINE HYBRID ELECTRIC VEHICLE 
(IMA) 

The Honda Insight SIMULINK model was simulated over 
different EPA cycles. Figure 4 to Figure 6 show the 
engine and motor operation during FUDS cycle. The 
engine is operated at low speeds to allow higher BSFC 
region operation.  However, the dominant regimes are 
still characterized by low load, as a result of the 
relatively mild power requirements during FUDS and 
constraints imposed by the mechanical driveline.  The 
predicted traces of motor torque vs. driveline torque 
indicate success in implementing the blending strategy 
seen in the production IMA vehicle (see Figure 5).   The 
motor runs in a favorable speed range, but at relatively 
modest loads (see Figure 6). The overall low driveline 
power requirements, as well as management of a 
tradeoff between drivability and efficiency, prevents the 
motor from running at higher loads and closer to 
maximum efficiency.  The electrical machine is used 
very aggressively during regeneration.  
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Figure 3 : Honda Insight strategy for controlling motor 
torque based on total driveline torque [9].
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Figure 7 shows engine power, gear number and motor 
torque histories during part of the FUDS driving 
schedule.  Figure 7b indicates that engine operates 
relatively close to the load-following mode due to a mild 
assist from IMA (see Figure 7d).  The motor provides 
zero torque at launch (in 1

st
 gear), as intended by the 

controller designers. Figure 7d also illustrates capturing 
of the braking energy around the 180-second mark, and 
during deceleration down to stand still at the end of this 
vehicle speed profile.   

 

From Table 2, it can be seen that the model over 
predicts the fuel economy over the published EPA 
values. This is mostly due to the fact that the model 
ignores modifications of engine fueling strategies during 
and after cold start.  However, the same assumptions 
will be used in our subsequent study of the hydraulic 
hybrid powertrain, hence using the simulated values for 
IMA HEV fuel economy will ensure the fair comparison.  
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SERIES HYDRAULIC HYBRID 

A series hydraulic hybrid, Figure 8 is modeled in 
SIMULINK, using the in-house developed component 
models and the integration approach described by Kim 
et al. in [4]. A series system allows full flexibility in 
engine operation, as there is no mechanical connection 
between the engine and the wheels.  Hydraulic 
components offer very high power density and efficiency 
and hence are highly suitable for vehicular applications, 
in particular for a series system where full amount of 
power needs to be provided by the alternative propulsion 
component. 

 

 The greatest difference between the hydraulic and 
electrical system pertains to energy storage.  In contrast 
to the battery, the hydraulic accumulator is capable of 
accepting high rate of charging or discharging, but its 
energy storage capacity is lower.  The former is a 
significant advantage in a series system, while the latter 
creates a unique controls challenge.  As stated in the 
introduction, it is our objective to maximize the benefits 
through application of advanced controller design 
methodologies including the horizon-optimization.  

Table 3 gives the specifications of the series hydraulic 
hybrid vehicle proposed in this work. The engine for 
series hydraulic hybrid vehicle is basically the same as 
Honda Insight stock engine, and its SIMULINK model 
has been described in an earlier section of this paper.  
The vehicle specifications are the same as for the IMA 
HEV baseline except the vehicle mass.  In case of the 
series HHV, the complete mechanical driveline and 
electrical sub-system with the battery are removed and 

replaced with compact hydraulic pump/motors and the 
accumulators.  Assuming the advanced bladder 
accumulator design with the carbon-fiber shell, and 
relying on documented hydraulic pump/motor specific 
power [1], we estimate vehicle mass reduction shown in 
Table 3 (723 kg for SHHV compared to the 962 kg 
baseline).  Most of the results in this paper are obtained 
assuming the 723 kg vehicle mass.  However, in the 
very last step we consider the “skeptical” scenario, and 
repeat the fuel economy calculations for the SHHV using 
the same mass as in the case of IMA HEV.  This 
provides an indication of how much of the fuel economy 
improvement can be attributed to the hybrid powertrain 
only.  

 
 

HYDRAULIC PUMP/MOTOR 

The hydraulic pump/motor is an axial piston variable 
displacement type. The P/M model is an updated 
version of Wilson’s pump/motor theory [10]. The torque 
and flow are controlled by the displacement command to 
the P/M.  Details of the model are provided in Filipi et al. 
[2] and Kim et al. [4]. The theoretical flow and torque 
output are calculated first, and the losses are estimated 
based on physics-based expressions.  The flow losses 
encompass the laminar, compressibility and turbulent 
leakage (or “slip”), and the torque losses comprise 
viscous, hydrodynamic and mechanical.  The 
expressions include constants than need to be 
calibrated using available experimental data [1], but 
once that is accomplished the model is capable of 

�

Figure 8 : Series Hydraulic Hybrid Architecture

Table 2 : IMA HEV (Honda Insight) Fuel Economy

 Simulated EPA 

Urban Cycle (FUDS) 61.6 60 

Highway Cycle (HWFET) 73.38 66 

 

Table 3: Series Hydraulic Hybrid Specifications

Engine Description 1L VTEC 
Max. Power 49kW @ 6000 RPM 
Max. Torque 90 Nm @ 4600 RPM 

Pump Design Axial Piston Variable 
 Displacement 

Size 25 cc/rev 
Max Power 58.3 kW @ 350 bar    

@ 4000 RPM 

Motor Design Axial Piston Variable 
 Displacement 

Size 20 X 2 cc/rev 
Max Power 46.6 kW @ 350 bar    

@ 4000 RPM 

Accumulator Capacity (Max. 
Gas Volume) 

20 Liter  

Max Pressure 350 bar 
Min Pressure 120 bar 

Vehicle Type Sedan  
Weight 723 kg 
Coeff. of Drag 0.25 
Frontal Area 1.9 m

2
 

Tire Radius 0.275 m 
Final Drive Ratio 3.21 

Transmission Design 2 speed automatic 
1

st
 Gear Ratio 4 : 1 

2
nd

 Gear Ratio 1 : 1  
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capturing effects of all operating parameters.  Figures 9 
and 10 show trends of pump/motor torque and 
volumetric efficiencies with pressure, displacement and 
speed, and illustrate an important difference compared 
to electrical machines, namely an added dimension due 
to the pressure dependency.  The pressure difference 
across the machine will vary within a wide range during 
vehicle operation; hence both the absolute level of peak 
torque and the efficiencies will vary with it.  This creates 
an additional challenge in controller development and 
requires care in assessing performance constraints.   

 

ACCUMULATOR 

A hydro-pneumatic accumulator is used for energy 
storage. A positive fluid flow rate into the accumulator 
compresses the nitrogen gas stored in the bladder, thus 
storing energy. A low pressure reservoir is used in the 
system to prevent cavitation of hydraulic devices. The 

net head pressure on hydraulic devices is the difference 
between accumulator and reservoir pressure.  

Bladder keeps the gas separate from the oil and hence 
can be treated as closed system. In order to correctly 
predict the accumulator dynamic performance and 
efficiency, a full thermodynamic model is used.  It is 
derived from considerations of energy conservation [2, 
10, 11], and includes the effects of heat transfer and the 
real gas properties based on the BWR equation. 

The thermodynamic analysis clearly shows the 

significance of the thermal time constant, 
:  

 
g v

w

m c

hA

 �  (4) 

where mg is the mass of gas, cv is specific heat, h is the 
heat transfer coefficient and Aw is the area of the wall 
exposed to the gas.   The efficiency of charging-
discharging is a strong non-linear function of the thermal 
time-constant, therefore increasing the heat capacity 
(mgcv) and reducing the heat loss (hAw) is beneficial.  
This insight led to a now common practice of adding the 
elastomeric foam to the gas side in order to enhance the 
thermal capacity and elevate the conversion efficiencies 
to the mid-nineties.   

The SOC for a hydraulic device is defined as the ratio of 
instantaneous fluid volume to accumulator fluid capacity: 

 min

max min

V V
SOC

V V

�
�

�
 (5) 

In real application, pressure can be used as indicator of 
SOC, provided the temperature variations are kept low.  
This is tied to the accumulator design, e.g. the advanced 
carbon fiber accumulator with foam can minimize the 
temperature fluctuations significantly enough to satisfy 
this assumption.  The mass of gas is directly related to 
the pressure range for a given accumulator size. In this 
work, the mass of gas was chosen to provide a 
precharge pressure of 12.5 MPa and a maximum 
pressure of 35 MPa. 

The sizes of the hydraulic components were determined 
through systematic assessment of the performance 
criteria and study of the sensitivity to the accumulator 
size.  The vehicle performance depends solely on the 
motor output, hence the performance constraints 
dominate the sizing process.  The main goal was to 
match the performance of the baseline IMA HEV.  A two-
speed gearbox was integrated in the propulsion sub-
system to guarantee that the motor stays within the safe 
speed range during high-speed highway driving, and to 
maximize the average motor efficiency during both city 
and highway driving.  
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SUPERVISORY CONTROLLER 

The supervisory control has a profound impact on hybrid 
system behavior and its ultimate benefits.  Therefore, a 
number of methodologies have been proposed for 
development of control strategies, ranging from rule-
based [13], to Equivalent Consumption Minimization 
Strategy [14], fuzzy logic [15, 16], or horizon optimization 
[17, 18, 19, 20].  The nature of the series hybrid system, 
with the engine decoupled from the wheels, allows 
significant freedom in designing the supervisory control 
strategy.  This creates a special challenge when it 
comes to application of advanced algorithms, since the 
typical power-split problem is replaced with a decision 
about controlling the SOC.  Previous studies of series 
electric systems basically relied on thermostatic (on-off) 
engine power management according to the State-of-
Charge (SOC) in the battery [21, 22]. In this study we 
begin by analyzing the Thermostatic control of SOC, 
before moving on to horizon optimization using 
Stochastic Dynamic Programming.  Details are provided 
in the next section. 

The primary task is maximizing the fuel economy, while 
ensuring safe operation regardless of the driver demand 
and vehicle states.  The gains with the SHHV are 
expected from effective regenerative braking and 
optimization of engine operation.  Since the duration of 
zero-power intervals can be significant, engine shut-
downs are a third factor potentially contributing to the 
fuel savings.  However, the latter requires special 
measures to ensure continuous operation of accessories 
and safe vehicle operation [23]. 

Previous work on a series hydraulic hybrid [4] showed 
the advantage of the two motor design over single motor 
design for a 4X4 mid-size truck. It was shown that 
sequential operation can result in better fuel economy 
over simultaneous operation. The concept is to use only 
rear motor for propulsion and hence operate it at higher 
loads resulting in higher efficiency. Front motor 
augments the torque in extreme cases. While braking, 
front motor is used for regeneration. The choice between 
front and rear motor operation was based on weight 
transfer during acceleration and braking. All results 
shown in paper are obtained with sequential operation of 
motors. 

THERMOSTATIC STRATEGY 

The thermostatic strategy is designed around the SOC 
objective and an engine-centric charging strategy.  
Driver command is sent directly to propulsion motors 
and ensures that vehicle follows the desired velocity 
profile.  The SOC is a sole variable used to control 
engine. The particular challenge in controlling hydraulic 
hybrid stems from the lower energy density of 
accumulator. While the battery provides a large energy 
buffer in the HEV system [19], the accumulator charge 
undergoes rapid transients and can easily be depleted.  
In that case the control needs to ensure that the power-

generation sub-system directly fulfills the needs of the 
propulsion system and ensures safe operation.  On the 
other hand, the SOC during normal driving should be 
kept low in order to ensure enough capacity for storing 
the energy during the next braking event.   

 

Figure 11 shows the basics of SOC thermostatic control. 
When SOC is above a threshold value e.g 0.4, the 
engine power demand is 0. As the SOC falls below this 
threshold value, the engine is brought on-line and asked 
to charge the accumulator.  The dead band is 
implemented to prevent frequent switching between 
engine on/off states. Therefore, engine continues re-
charging until SOC crosses the upper limit, i.e. 
SOCthreshold + 0.15 .  In the extreme case of hard 
acceleration or hill climb, engine is operated at 
progressively higher power levels as the SOC keeps 
falling below the threshold.  The maximum engine power 
is requested before the SOC falls below the absolute 
minimum for a given system. 

An integral part of thermostatic controller design is a 
decision about engine operation during re-charging, i.e. 
about the threshold power (Pthreshold) and the combination 
of engine speed/torque for a given power demand.  The 
conventional wisdom suggests keeping the engine at the 
fuel efficient “sweet spot”.  The expectation is that 
running the engine at a most efficient point when 
charging the accumulator will be the best since the fuel 
energy conversion comes with smallest relative losses. 
This neglects the impact of pump efficiency.  In addition, 
this leads to relatively aggressive charging since the 
“sweet spot” is close to peak torque.  Keeping in mind a 
comparatively small accumulator storage capacity, the 
resulting system-level effects are short and frequent 
engine transients [4].  Very rapid engine accelerations 
consume energy, and engine trajectory passes through 
sub-optimal regions during dynamic operation.  At the 
same time, short and frequent recharging increases the 
engine idling time and magnifies the resulting penalty.  
In summary, the previous experience with a larger 
vehicle and a diesel engine indicates that the 
conventional wisdom has to be challenged [4].  Our 
vehicle is very small, it uses an SI engine, and the 
dynamic interactions may be very different than in a 
diesel-powered truck. Therefore, the tradeoffs will be 
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unique and a systematic analysis is required to 
determine the best Pthreshold and SOCthreshold values.   

Engine Operation Strategy in the Context of the 
Thermostatic Controller  

This sub-section addresses the choice of threshold 
power, threshold SOC and dead band. A series of 
parametric studies are carried out to find the best 
combination of these parameters for typical vehicle 
driving conditions.   

Results show that best threshold power from the system 
point of view does not correspond to the best BSFC 
point.  Instead, Figure 12 indicates that running the 
engine at much lower power of only 8 kW leads to best 
fuel economy.  Explanation requires exploring the 
interactions in the system. Figure 13 shows the engine 
operation for three different threshold power levels. 
Charging events become shorter and more frequent with 
increase in threshold power. Hence, engine spends 
more time in transients resulting in higher fuel 
consumption, and short charging leads to extended 
engine idling in between. 

The top line in Figure 12 is calculated for low 
SOCthreshold, while increased values result in inferior fuel 
economy.  Keeping the target SOC low allows enough 
capacity for regeneration and is preferred for this 
application.   

 

 

Results: Series Hydraulic Hybrid with Thermostatic SOC 
Control  

The proposed series hydraulic hybrid is simulated over 
both EPA urban and highway driving schedules. Figure 
14 shows the engine visitation points for FUDS cycle 
and indicates success in operating the engine along the 
best BSFC line.  While the most frequently visited region 
is not the true “sweet spot”, it is still in the zone of very 
low BSFC.  Obviously, the loss of engine BSFC is 
relatively small and thus far outweighed by the system-
level benefits.  The vehicle fuel economy over the FUDS 
is more than 93 mpg with engine idling and 113 mpg 
with engine shut-downs, Table 4.  While this is certainly 
impressive, even the most careful parametric studies do 
not guarantee the optimum. The system-level effects are 
too complex for intuitive reasoning, hence the motivation 
for investigating the horizon-based algorithm presented 
in the next section.  
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Figure 13 : Engine operation in the SHHV with 

thermostatic SOC control for different threshold power:
a) Vehicle Speed, b) Engine Power for Pthreshold = 5kW, 
c) Engine Power for Pthreshold = 8kW, and d) Engine 
Power for Pthreshold = 14kW, over section of FUDS cycle 
(150 to 560 sec). SOCthreshold = 0.3 in all cases.  
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STOCHASTIC DYNAMIC PROGRAMMING 

Previously published work has shown that application of 
deterministic dynamic programming (DDP) for controller 
design enables significant improvements beyond what 
can be achieved with simple intuitive rules [3, 17, 19, 
24]. However, the optimal benchmark obtained by the 
DDP process is not implementable and subsequent rule 
extraction sacrifices some of the fuel economy potential 
[2]. The Stochastic Dynamic Programming (SDP) 
eliminates the rule extractions step and allows direct 
development of an implementable control strategy for 
vehicle supervisory control. SDP is not based on a 
particular driving cycle (time signal), but rather the 
statistical characteristics of many driving cycles and 
hence it is non-cycle-beating. It was previously applied 
to a parallel hybrid electric vehicle by Lin et al [28] and 
Liu et al [30], and a first attempt at addressing the series 
configuration was pursued recently by Kim [29]. The 
essential part of the supervisory policy in any hybrid is a 
decision about splitting the vehicle power demand 
between the engine and the alternative power source.  A 
“soft” connection between the power-generation 
subsystem and a propulsion subsystem in a series 
hybrid presents a fundamentally new challenge in 
applying the SDP concept.  Therefore, we split the 
decision about the threshold power into two decisions, 
about the engine speed and torque, with the hope that 
the algorithm may uncover a possible hidden “reserve”.  
In addition, we replace the standard driving cycles for 
emissions certification with naturalistic driving patterns in 
an attempt to bring realistic conditions into the controller 
design process. 

 

Stochastic Modeling of Driver Demand 

Driver power demand is modeled as a discrete-time 
stochastic dynamic process, and a stationary Markov 
chain is used to generate the power demand from driver, 
Pdem. Driver power demand and wheel speed is 
discretized into finite values 

 � �1 2, ,..., pN

dem dem dem demP P P P�  (6) 

 � �1 2, ,...,
N

wh wh wh wh
�� � � ��  (7) 

The dynamics of driver power demand is assumed to be 

 , 1dem k kP w	 �  (8) 

where the probability distribution of wk is assumed to be 

 
� �, Pr | ,

, 1, 2,..., 1, 2,...,

j i l

ij l dem dem dem wh wh

p

p w P P P

i j N l N�

� �� � � �

� �
 (9) 

where pil,j represent the one-step transition probability. 

 

The transition probabilities are estimated using the 
information extracted from naturalistic driving cycles, 
[12] based on actual behavior of randomly selected 
drivers in South East Michigan. Figure 15 shows some 
of the driving cycles used for generating transition 
probability matrix given in Figure 16. 
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Figure 15 : Naturalistic Driving Cycles recorded during 
typical commutes in SE Michigan. 
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Problem Formulation 

The objective of the SDP control algorithm is to find the 
optimal control policy � that maps observed states xk, 
(consists of accumulator SOC and vehicle speed �wh) 
and disturbance, wk (the instantaneous power demand, 
Pdem) to the control decisions Te, the engine torque 
demand and �e, the engine speed demand. The control 
policy � is to minimize the expected total cost J�, (fuel 
consumption) over an infinite horizon. 

 � �
1

0

0

( ) lim , ( ),
k

N

k k k
N w

k

J x E g x x w�
� � �

�

��
�

� �
� 
 �

� �
�  (10) 

where g is the instantaneous cost incurred, 0<�<1 is the 
discount factor, and J�(x0) indicates the resulting 
expected cost when the system starts at state x0 and 
follows the policy � thereafter. Discount factor implies 
that the future costs are less important than the same 
cost incurred at the present time. 

The instantaneous cost is based on total vehicle system 
efficiency and the optimal engine operation is a function 
of SOC. 
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where FC is the fuel consumption of engine for an 
engine speed, �e, engine command, � and SOC. The 
latter term penalizes SOC deviation below a reference 
SOC, SOCref. This penalty factor is different from the one 
used by Lin et al [28] for HEV. In HEV, a penalty factor 
was added to cost function to satisfy charge sustaining 
constraint and limit the operation of SOC within a narrow 
window due to battery health and operating 
characteristics. Hydraulic accumulator does not suffer 
from similar constraints and SOC can vary over 
complete range. However, a lower bound on SOC is 

imposed to maintain vehicle drivable at all conditions. 
The above penalty function tries to maintain low SOC 
reference value, e.g. 0.2 in this study, to allow maximum 
energy regeneration during braking.  

The optimization is constrained by the following limits 
along with deterministic dynamic equations for vehicle, 
engine and hydraulic devices. 
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Approach 

Stochastic dynamic programming problems have been 
extensively studied in the literature for other applications 
[25, 26]. It has been shown that the algorithm can 
handle constrained nonlinear optimization problems 
under uncertainties. Value iteration is the principle 
method for calculating optimal cost-to-go vector. 
However, value iteration requires infinite iterations to 
obtain optimal policy. In this study, an approximate 
policy iteration algorithm is used as it is guaranteed to 
terminate finitely.  

The policy iteration algorithm iterates between a policy 
evaluation step and a policy improvement step until the 
optimal cost function converges. In the policy evaluation 
step, given a proper policy �, the corresponding cost 
function J�(x) is calculated by iteratively updating the 
Bellman equation 

  � �1( ) ( , ( ), ) ( ')s i i i i s

w
J x g x x w E J x� �� �	 � 	  (13) 

for all i, where s is the iteration number, and x’ is the new 
state, i.e., x’=f(x

i
, �(x

i
),w). In the policy improvement 

step, the improved policy is found through the following 
equation 

� �
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i

i i i i

w
u U x

x g x u w E J x�� �
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 !� 	
" #

 (14) 

for all i, where J� is the approximate cost function 
obtained from the policy evaluation step. A new proper 
policy, �' is calculated and the policy evaluation step is 
repeated with new policy to update the cost function. 
This iterative process is repeated, until J� converges 
within a selected tolerance level.  The resulting control 
policy, J� is stationary i.e. optimal rule does not change 
from one stage (time) to the next and can be 
implemented in controller as a lookup table.  
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Previous work on SDP based supervisory controller for 
hybrids treated engine power demand as the control 
decision. The engine was then asked to provide the 
power by operating in the best BSFC region. In this 
study, engine is not restricted to operate along the best 
BSFC line, since the insight from the thermostatic SOC 
study clearly indicates that system-level gains may offset 
a small loss of BSFC.  The intention is to provide an 
additional degree of freedom and allow the algorithm to 
discover the best way to run the power-generation sub-
system.  Hence, the controller produces desired set 
point for both engine speed and torque, based on given 
states of the vehicle, driver power demand, SOC and 
vehicle speed.  The results are captured in state-
feedback lookup tables shown in Figures 17 and 18. The 
set points guarantee optimal operation of the whole 
system, namely engine and pump, rather than just 
engine. This is a key distinction between this work and 
the previous attempt [29]. 

 

 

Results - Series Hydraulic Hybrid with SDP controller 

Figure 19 and Figure 20 show the engine operation over 
FUDS driving cycle. It can be seen that engine operation 
departs significantly from the best BSFC line. The SDP 
policy operates the engine to maximize the system 
efficiency rather than just engine operation (Figure 14). 
Pump efficiency is higher for lower speeds and high 
displacement command (see Figure 9), and hence 
optimal set points from SDP controller are shifted 
towards low speed and high torque region, Figure 19.  

 

It can be seen from Figure 20 that SDP based controller 
does a good job in maintaining low SOC throughout the 
driving cycle. The controller uses hydraulic power for 
vehicle propulsion at high SOC values (engine demand 
is zero, Figure 20). As SOC drops, engine is ramped up 
and produces enough power to maintain the desired 
value, 0.2 in this case. This allows maximum 
regeneration capability during braking events.  The 
engine operation resembles load-following mode, except 
the speeds are much lower than in the case of a 
mechanical transmission, hence pushing the loads up 
into the high-efficiency region. 

Table 4 shows the fuel economy of series hydraulic 
hybrid over EPA standard cycles for the urban and 
highway federal driving schedule along with percent 
improvement over the baseline IMA HE vehicle. It 
includes predictions obtained with both supervisory 
control strategies, i.e. the thermostatic and the SDP. The 
fuel economy of the SHHV under city driving conditions 
is much better than the baseline IMA HEV with either 
control strategy.  The improvements range from 52% to 
85% without and with engine shutdowns, respectively.  
The advantage of the SHHV over the highway cycle is 
smaller, but still tangible.  The mechanisms of 
improvement are explained in the subsequent section. 
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The SHHV fuel economy predictions without engine 
shutdowns are virtually the same for the Thermostatic 
and SDP control.  Apparently there was simply not much 
room for improvement with optimized tradeoffs, and the 
SDP results confirm the fuel economy potential of the 
SHH system applied to a small car.  However, the SDP 
strategy differs from the Thermostatic in a very important 
way that would give it an edge in a practical application.  
The engine operation is closer to load-following, but with 
higher load & lower speed operation than in the case of 
the vehicle with mechanical transmission. In other 
words, the transients are relatively mild, but related to 
vehicle performance.  This would result in a much better 
driver feel than occasional bursts of power experienced 
with the thermostatic controller.  In addition, the 
likelihood of demonstrating the same results with real 
hardware is higher in case of the SDP than thermostatic 
control.  Previous work on engine-in-the-loop testing by 
Filipi et al [27] has shown excellent agreement between 
predictions and experiments in case of milder engine 
operation, and tangible discrepancies in case of the 
bang-bang control.  The penalties associated with rapid 
transients (energy for acceleration, excursions of 
operating parameters) are obviously not fully captured 
with a system-level simulation.  Consequently, the 
comparison between thermostatic and SDP would likely 
swing in favor of SDP in practical implementations.  
This, together with the drivability considerations and 
easier management of the aftertreatment system makes 
the SDP a preferred option.  This would also be a very 
robust controller, since SDP produces directly 
implementable state-feedback lookup tables.  

 

As indicated in an earlier section, the SHHV car is lighter 
than the baseline IMA-HEV.  However, by simply 
changing the simulation input we can make masses of 
both vehicles equal in order to isolate the effects of 
hydraulic hybrid propulsion on fuel economy, Table 5. 

 

COMPARISON OF THE INTERACTIONS IN THE 

SERIES HYDRAULIC HYBRID AND THE 

BASELINE IMA-HEV

Figure 21 shows the operation of engine in baseline 
vehicle and proposed series hydraulic hybrid with SDP 
controller over same section of FUDS cycle. It can be 
seen that engine operation in a series hydraulic hybrid is 
independent of driving schedule and is a function of 
SOC only. This results in milder transients and better 
fuel economy. Also intermittent operation of engine 
allows engine shutdown opportunities for further 
reduction of fuel consumption.   

Baseline IMA vehicle is a mild hybrid and the torque 
contribution by electric motor is only a fraction of the 
total driveline torque. This is due to the characteristics of 
the electric motor and battery circuit. Battery imposes a 
limit on rate of charge and discharge, whereas 
accumulator does not suffer from such limitations. Figure 
22 shows the torque from the electric motor and the 
hydraulic motor for a section of the FUDS cycle. Clearly, 
the series hydraulic hybrid uses the motor more 

Table 5 : Series HHV Fuel Economy with Thermostatic 
controller with engine shutdowns 

  Vehicle Mass 
(723 kg) 

Vehicle Mass 
(962 kg) 

Urban
Cycle 
(FUDS)

MPG 113.03 91.3 

Improvement 84.2% 48.2% 

Highway 
Cycle 
(HWFET)

MPG 87.27 76.7 

Improvement 18.9% 4.5% 

Table 4 : Series Hydraulic Hybrid Fuel Economy 

 Series HHV 
Thermostatic

Control
w/o and w/ 

engine 
shutdown 

Series HHV 
SDP

Control
w/o and w/  

engine  
shutdown

Urban
Cycle 
(FUDS)

MPG 93.7 / 113.0 93.5 / 107.5 

Improvement 52% / 84.2% 51.8% / 74.5%

Highway 
Cycle 
(HWFET
)

MPG 85.8 / 87.3 86.4 / 87.3 

Improvement 
17% / 18.9% 17.8% / 19% 
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Figure 20 : SHHV results with SDP controller during a 
section of FUDS schedule. 
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aggressively during braking and hence regenerates 
more energy. 

 

 

Fuel economy benefits in series hydraulic hybrid over 
baseline can be attributed to regeneration, optimized 
engine operation, and engine shutdowns.  Analysis over 
the city driving schedule attributes ~64% of fuel savings 
to regeneration, approximately 34% to optimized engine 
operation and the rest to elimination of idling.  

 

CONCLUSION

A series hydraulic hybrid concept has been explored as 
a potential technology pathway to an ultra-efficient city 
car. The target fuel economy was ~100 mpg or 2.4 
l/100km in city driving.  Such an ambitious target 
requires multiple measures, i.e. relatively low mass, 
favorable aerodynamics and an ultra-efficient 

powertrain.  Hence, the baseline for the study is a first-
generation Honda Insight IMA Hybrid Electric Vehicle, as 
its aluminum structure and aerodynamic body represent 
the state-of-the-art for a given category.  The series 
hydraulic hybrid powertrain has been designed and 
analyzed for the selected platform with the expectations 
that: 

- Series configuration will maximize opportunities for 
regeneration and optimization of engine operation 

- Inherently high power density of hydraulic propulsion 
and storage components will yield small, low-cost 
components 

- High-efficiency of the hydraulic pump/motor and high 
power limits for accumulator charging/discharging 
will enable very effective regeneration 

Hybrid vehicle system simulation has been developed in 
SIMULINK for this study.  It incorporates physics-based 
models of energy conversion and storage components 
allowing full flexibility in considering alternative designs 
and scaling. The simulation was first configured to 
represent the Honda Insight HEV system with Integrated 
Motor Alternator and then validated using published 
data.  Then, the same vehicle platform has been utilized 
to create a series hydraulic hybrid vehicle, i.e. the 
mechanical transmission and electric sub-system have 
been replaced with a hydraulic driveline. 

The SHHV study focused on the supervisory control 
development.  This was deemed critical since the low 
storage capacity of the hydraulic accumulator creates a 
special challenge for controller development, very 
different than in the case of electric system.  The low-
cost objective required keeping the component sizes as 
small as possible, therefore also emphasizing the impact 
of power management.  Two approaches for supervisory 
control development were pursued, i.e.: 

- Thermostatic SOC control, with optimized threshold 
SOC and power levels, and engine operation on the 
best BSFC line 

- Stochastic dynamic programming for horizon 
optimization of the supervisory policy. The strategy 
includes selection of engine torque and speed, 
rather than just the power level.  This determines 
optimum engine operation based on system 
requirements rather than just BSFC. 

The analysis of thermostatic control indicated that 
operating the engine at very moderate Pthreshold during 
charging leads to much better fuel economy than 
running at the “sweet spot”.  Simply, the combination of 
engine and pump efficiency, as well as the transient 
events and interactions in the system play a significant 
role and override the engine-centric policy.  Low 
threshold SOC value is beneficial for regeneration, as it 
maximizes the storage capacity when needed.   

The stochastic dynamic programming was setup using a 
set of naturalistic driving schedules, recorded in normal 
traffic.  The analysis included additional degree of 
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Figure 21 : Engine torque histories for the baseline IMA 
HEV and the SHHV during a segment of the FUDS. 
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Figure 22 : Torque histories for the electric (top) vs. 
Hydraulic (bottom) motor operation during a segment of 
the FUDS.
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freedom compared to the traditional approach, as the 
engine power demand was split into two variables, 
namely engine torque and speed.  The algorithm moved 
engine torque/speed points away from the best BSFC 
line, in the direction of lower speed and higher load.  
This is a valuable lesson, indicating what is preferred 
from the system stand-point.  The engine operation 
resembles load-following mode, except the speeds are 
much lower than in the case of a mechanical 
transmission, hence pushing the loads up into the high-
efficiency region.   

The results of the simulation study of the SHH 
powertrain indicate that it is possible to attain the target 
fuel economy with the proposed system and supervisory 
control.  The fuel economy over the US EPA city driving 
schedule is 93 mpg with either control strategy and 
engine idling. Allowing the engine to shut-down during 
vehicle stops elevates the fuel economy to ~110 mpg.  
This represents improvements of 52%-84% over the 
baseline IMA HEV.  The SDP supervisory controller 
yields smoother engine operation, without sudden and 
dramatic increases of load seen with the thermostatic 
control.  Since rapid transient come with a price, the 
SDP results are expected to gain a relative advantage in 
hardware testing compared to the thermostatic.  
Therefore, competitive fuel economy, better driver feel 
and NVH, and easier management of emission control 
make the SDP controller a preferred option.   
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