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Abstract—With technology scaling, transient faults are be-
coming an increasing threat to hardware reliability. Commodity
systems must be made resilient to these in-field faults through
very low-cost resiliency solutions. Software-level symptom de-
tection techniques have emerged as promising low-cost and
effective solutions. While the current user-visible Silent Data
Corruption (SDC) rates for these techniques is relatively low,
eliminating or significantly lowering the SDC rate is crucial
for these solutions to become practically successful.

Identifying and understanding program sections that cause
SDCs is crucial to reducing (or eliminating) SDCs in a cost
effective manner. This paper provides a detailed analysis of
code sections that produce over 90% of SDCs for six applica-
tions we studied. This analysis facilitated the development of
program-level detectors that catch errors in quantities that are
either accumulated or active for a long duration, amortizing
the detection costs. These low-cost detectors significantly reduce
the dependency on redundancy-based techniques and provide
more practical and flexible choice points on the performance vs.
reliability trade-off curve. For example, for an average of 90%,
99%, or 100% reduction of the baseline SDC rate, the average
execution overheads of our approach versus redundancy alone
are respectively 12% vs. 30%, 19% vs. 43%, and 27% vs. 51%.

Keywords-Hardware reliability; Transient faults; Silent data
corruptions; Symptom-based fault detection; Application re-
siliency

I. INTRODUCTION

Preserving hardware reliability is becoming increasingly

challenging with technology scaling and increasing likeli-

hood of in-field device failures even in commodity sys-

tems [1], [2]. Traditional circuit-level [3] and redundancy-

based architecture-level [4], [5], [6] solutions have become

too expensive in area, power, and performance for such

systems, motivating very low-cost reliability solutions.

Symptom-based fault detection mechanisms [7], [8], [9],

[10], [11], [12], [13] provide one such low-cost solution.

These mechanisms treat anomalous software behavior as

symptoms of hardware faults and detect them by placing

very low-cost symptom monitors in hardware or software.

Researchers have shown that this approach is effective in

detecting both permanent and transient hardware faults [10],

[11], with only a small fraction of faults escaping detection

and producing silent data corruptions (SDCs). Faults result-

ing in SDCs produce corrupted application output without
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leaving any trace of failure behind, and represent the worst-

case scenario for a resiliency solution. Although the SDC

rate of symptom-based detectors is relatively small, it is

still non-negligible and hard to bound, hindering the broad

adoption of this approach in practice. This paper concerns

systematically reducing the SDC rate due to transient faults

in a cost-effective manner.

Whether a transient hardware fault will produce an SDC

is highly dependent on the application; therefore, it is likely

that the most cost-effective mechanism to reduce SDCs

will be application-specific. The focus of this paper is on

developing low-cost application-level checks (or detectors)

that can detect potential SDC-causing faults. As the first

step, we exploit recent work on identifying program sections

that are susceptible to SDCs [14], [15]. Specifically, we

use Relyzer [15], a technique capable of providing an

application’s complete instruction-level reliability profile.

Relyzer selects a small fraction of application fault sites

such that transient fault injections in these sites can estimate

the outcomes of transient faults in all application sites.

An application fault site refers to a combination of bit

location and register operand of an executing instruction. We

performed fault injections in the Relyzer-identified sites and

obtained a comprehensive list of SDC-causing instructions

in the entire application.

Investigating the SDC-causing fault sites revealed that

only a small fraction of static instructions cause most

SDCs. Figure 1(a) shows that virtually all the SDCs for the

studied applications were caused by just 20.6% of the static

instructions on average; 90% of the SDCs were caused by a

mere 5.4% of the static instructions (Section III provides

the detailed methodology for these results). This obser-

vation motivates using selective instruction-level detection

techniques. Prior work has made similar observations, but

has used selective instruction-level redundancy for detec-

tion [14], [16], [17].

Figure 1(b) shows the execution time (in number of

dynamic instructions) consumed by the static instructions

that cause SDCs. We find that the small fraction of SDC-

causing static instructions consume a much higher fraction

of the execution time. The figure shows that protecting

all SDC-causing instructions through instruction-level re-

dundancy may incur 50% overhead on average, assuming

a conservative one cycle overhead per covered instruction

(33% overhead on average for covering 90% of the SDCs).
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Figure 1. SDC-causing instructions and their impact on execution time. For
a given application and input, part (a) shows the percentage of (executed)
static instructions that cause a given percentage of silent data corruptions
(SDCs). Part (b) shows the fraction of execution time (on a 1 IPC machine)
taken by the static instructions in part (a) (for the given percentage of
SDCs). For example, in FFT, 2% of the static instructions cause 60% of
the SDCs and take 21% of the execution time. (The detailed methodology
is in Section III.)]

This high overhead is consistent with that reported for

previous selective instruction-based redundancy techniques,

and motivates selective detection techniques that are much

more cost effective than instruction-level redundancy.

Figure 1 clearly motivates the need for selective

instruction-level fault detection mechanisms, but without

(redundancy) checks on every SDC-causing static instruc-

tion. Thus, for effective low-cost detectors, we need to

answer two key questions: where to place the detectors

and what to detect. For placement, we use the insight that

detectors should be placed in program locations where errors

from many SDC-causing instructions propagate into a few

quantities (or variables). For detectors in these locations,

we exploit program-level properties that hold true for the

few (potentially) error carrying quantities. In our work, we

place our detectors at the end of loops and function calls

that contain SDC-causing instructions, and detect errors

by testing program-level properties on variables that are

live at these points (e.g., comparing the outcomes of sim-

ilar computations and known value equalities). Our results

show that the program-level detectors we developed pro-

vide significantly better SDC coverage (reduction in SDCs)

vs. performance tradeoffs than redundancy based detectors.

Overall, the contributions of our work are as follows:

• Understanding program properties that lead to

SDCs: We analyzed program instructions that cause

>90% of the SDCs in each application. For these SDC

hotspots, we identified a few program properties that

appear repeatedly within the same application and even

across different applications.

• Developing low-cost program-level detectors: Using

the above analysis, we developed detectors that are

placed at the end of loops and function calls. These

detectors invoke program-level property checks on a

few variables that potentially carry errors from a large

number of SDC causing instructions. We find that our

detectors provide an average SDC coverage of 84%

with an average execution overhead of 10%.

• Effective SDC coverage vs. execution overhead

trade-off curves: Using our low-cost detectors, we

present continuous SDC coverage vs. execution over-

head trade-off curves for our applications. These curves

fall back to instruction-level redundancy for the sites

that our program-level detectors cannot cover. Com-

pared to similar curves with instruction-level redun-

dancy alone, our approach yields much better execution

overheads for all SDC coverage targets of interest on

average; e.g., 12% vs. 30% overhead for 90% SDC

coverage, 19% vs. 43% for 99% coverage, and 27% vs.

51% for 100% coverage. The ability to quantify such

curves enables programmers and system designers to

effectively tune for resiliency vs. overhead, allowing

them to target any SDC coverage with the lowest cost

combination of our detectors.

II. ANALYZING SDC-CAUSING PROGRAM SECTIONS

AND DEVELOPING PROGRAM-LEVEL DETECTORS

With the goal of reducing and possibly eliminating the

reliance on instruction-level redundancy, we focus on finding

alternate low-cost program-level error detectors. Our ap-

proach is to move up from the instruction-level to understand

the program behaviors and properties that are responsible for

producing SDCs.

We start by identifying the SDC-causing fault sites by

performing fault injection experiments in sites selected by



Relyzer. Details of this fault injection campaign are dis-

cussed in Section III. This campaign allows us to obtain a list

of SDC-causing static instructions along with the number of

potential SDCs each of these instructions can produce. We

then sort these instructions in decreasing order of the number

of SDCs they can produce, and analyze them in that order.

For each instruction, we inspect the disassembled binary

code around it to associate an application code (C code)

section with it1. To our surprise, we observed a few code

properties appearing repeatedly across different locations in

the same application and even across different applications.

Given the SDC-causing sites, the next goal is to identify

where to place the detectors and what detectors to use.

For placement (where), the program locations should be

selected such that many faults propagate to these points in a

few variables. We used the end of loops and function calls

that contain the SDC-causing instructions. For the detectors

(what), we exploit a range of program-level properties:

(1) comparing similar computations, (2) checking value

equality, (3) range checks, and (4) performing mathematical

tests. While devising these program-level detectors, we also

ensure that they are low-cost.

Our approach of placing the detectors at the end of loops

and function calls can potentially increase detection latencies

because the errors are allowed to propagate until a detection

point. However, these latencies can be tolerated by the

state-of-the-art full-system checkpoint and rollback mech-

anisms [18], [19]. A further exploration of the relationship

between such detection latencies and recovery is part of our

future work.

The rest of this section describes the program code

sections that we identified as SDC prone with examples, and

explains the low-cost program-level detectors we devised

to detects SDCs in these code sections using the above

mentioned insights.

A. Incrementalization in loops

We observed that a significant fraction of SDC-causing

fault sites directly affect computations in loops. These ap-

plication sites often correspond to the loop index variables

and/or addresses referring to array elements that are accessed

in every loop iteration. For example, Figure 2(a) and (c)

give the source and compiled code respectively for a single

loop in the LU application from the SPLASH2 benchmark

suite. Almost all instructions operating on integer registers

in this code section were listed high in the sorted list of

SDC-causing fault sites2. In particular, these faults alone

produced over 50% of all the SDCs in LU. Faults in this

compiled code can result in SDCs in the following two ways:

1Compiler optimizations often make a direct association harder. However,
we were able to identify the section of application code that contains the
instruction of interest in most cases.
2Our fault model (explained in Section III) considers faults only in integer

architecture register operands of executing dynamic instructions.

(1) A fault affecting i can either terminate the loop early or

cause it to go back in the iteration space. Since there is no

loop-carried dependence, the latter effect will always result

in masking the fault. (2) Faults in addresses A and B can

result in detection if the faulty address is unallocated. If

the faulty address points to a valid but incorrect memory

location then the fault may be masked or result in an SDC.

In this scenario, we observed that faults in several low-order

bits in A and B resulted in SDCs because faulty addresses

pointed to incorrect locations in arrays a and b.

Analyzing this code further, we observe that it uses the

loop incrementalization optimization [20]. This optimization

is typically applied on programs that perform computations

on array elements in loops. Addresses to access these array

elements must be computed in every iteration. This can

be expensive if computed from scratch from the initial

value (involving a multiplication and an addition). Modern

compilers, therefore, apply the loop incrementalization op-

timization where the new value of the address is computed

from the value in the previous iteration, involving just an

addition. This optimization is shown to produce significant

performance benefits for array-based codes [20]. Figure 2(b)

and (c) show the assembly codes without and with the

incrementalization optimization respectively for the C code

shown in Figure 2(a).

Detecting errors in incrementalized loops: Incremental-

ization makes errors in index variables and addresses used

to access array elements propagate until the end of the

loop. Hence, a property check at this location on these

accumulated quantities can detect faults impacting these

variables across all the iterations of this loop. Often the in-

crementalization in a loop is performed on multiple variables

such that they all are incremented in every loop iteration

with a value that is constant across iterations. We utilize this

inherently similar computation to derive a property check at

the end of the loop.

Figure 2(d) shows such a detector for our LU example.

First, the initial values of A, B, and i are copied into

different registers (or predefined memory locations). If the

initial value of a register is predetermined as a constant

then we can skip this step. For example, we do not have

to collect the initial value of i because it is always 0. The

values A and B are incremented with the same constant

value in all the iterations. Hence the difference between their

final and initial values should be the same. This property

check can detect all single-event-upsets in these variables

in all iterations of the loops. A similar check for variable

i can also be performed by accounting for the different

amount of increments used for i and A or B (also shown

in Figure 2(d)). Since these detectors do not compromise

coverage, we call them “lossless.”

Codes that do not use the incrementalization optimization

may produce intermediate values (offset, A′, and B′) in

every loop iteration as shown in Figure 2(b). Since faults



for (i=0; i<n; i++) 

    a[i] = a[i] + (alpha * b[i]); 

(a) C code (c) Optimized code 

      A = base address of array a 

      B = base address of array b 

 

L1: Load  f1 8�[B] 

      Multiply f2 = alpha, f1 

      Load  I��8�>$@ 

      Fadd  f4 = f3 + f2 

      Store I��:�>$@ 

      Add  B = B + 0x8 

      Add  A = A + 0x8 

      Add  i = i + 1 

      Compare i, n 

      Branch less than L1 

      nop 

(b) Code without incrementalization 

      A = base address of array a 

      B = base address of array b 

 

L1: Multiply offset = i, 0x8 

      Add  B¶�= B + offset 

      Add  A¶�= A + offset 

      Load  f1 8�>%¶@ 

      Multiply f2 = alpha, f1 

      Load  f3 8�>$¶@ 

      Fadd  f4 = f3 + f2 

      Store I��:�>$¶@ 

      Add  i = i + 1 

      Compare i, n 

      Branch less than L1 

      nop 

A_init = A 

B_init = B 
i_init = i 

Assert (A-A_int == B-B_init) 
Assert ((B-B_init)/8 == i-i_int) 

 

Assembly equilvalent: 

   A1 = A - A_init 

   B1 = B - B_init 

   i = i - i_init 

   compare A1, B1 

   Branch.ne FaultDetected  

   B2 = B1 / 0x8 

   compare i, B2 

   Branch.ne FaultDetected 

(d) Extra code for detectors 

Figure 2. An “SDC-hot” code section with loop incrementalization in LU from the SPLASH2 benchmark suite: (a) C code, (b) unoptimized assembly
without loop incrementalization, (c) optimized assembly with loop incrementalization, and (d) detector for the optimized code. Faults in this (optimized)
loop alone produce >50% of all SDCs in LU. The extra code in part (d) detects errors affecting i, A, and B in the optimized code. Initial values of these
registers are collected at the beginning of the loop. These values are later used at the end of the loop to test the program-level properties.

affecting these intermediate values do not propagate to the

end of the loop in a few variables, deriving a low-cost error

detector is hard for non-incrementalized versions.

B. Registers with long life

We observed that a sizable chunk of SDCs were caused by

faults in registers with long life, with multiple uses through

this life. For example, we observed that the register holding

the value n in Figure 2(c) is SDC prone. This register stays

alive until the end of the loop and is used in every iteration

of the loop. Other prominent examples are the registers that

hold stack and frame pointers. These registers are typically

set at the beginning of a function call and stay alive until

the last instruction in the function body is executed.

Detecting errors in a register with long life: Errors in such

a register remain alive until the end of the life of the register.

Hence, the location to place a detector is, trivially, just after

the last use of this register. If the register is used in many

instructions through its life, then the cost of the detector is

amortized across all of those uses. For this detector, we first

attempt to identify another register or a constant such that its

value can be compared to our target register. If this attempt

fails, then we record the register’s initial value (created at

the definition of this register) in a different register (or a

predefined memory location). At the detection location, we

compare the initial value with the latest value in the register.

An example of this is detecting faults in the register that

stores the value of n in Figure 2(c). The value of n at the

end of the loop can be tested with its earlier recorded value

(from the beginning of the loop or its definition point). These

detectors, like the previous ones, are also “lossless.”

C. Application-specific behavior

For some applications, a large chunk of the SDC-causing

fault sites belong to a few procedures. These procedures

often do not have any side effects; i.e., the only output of

the procedure is the return value. The exponential function

from the math library, the BitReverse function from the FFT

application from the SPLASH2 benchmark suite, and the

RanUnif function (uniform random number generator) from

the Swaptions application from the Parsec benchmark suite

are few examples.

Detecting errors in the exponential function: A significant

fraction of SDC-causing sites in Blackscholes and Water

from Parsec and SPLASH2 benchmark suites respectively

belong to the exponential function. The output of this

function depends only on the input and no other previously

stored data. All the errors created by the static fault sites in

this function body, therefore, propagate through the output

at the end of this function. We therefore place our detector

at the end of the function.

Naively testing the output for correctness at this location

can be expensive due to the nature of the function. We

utilized a basic mathematical property of this function such

that the errors can propagate through accumulating quantities

over different invocations. This allows us to perform the

test infrequently and still cover all the fault sites in these

invocations.

From the definition of the exponential function, we know

that exp(i1 + i2) = exp(i1) × exp(i2) and exp(i1 − i2) =
exp(i1) ÷ exp(i2), where i1 and i2 are inputs and exp(i1)
and exp(i2) are outputs of two invocations respectively.



This property allows us to accumulate inputs using addition

or subtraction and outputs using multiplication or division

respectively. To detect errors, we re-execute this function

with the accumulated input and compare its result with the

accumulated output. The cost of this re-execution will be

amortized across several invocations of this function. To

detect errors in tolerable latencies, the frequency of the

invocation of this detector can be dictated by the recovery

solution (by specifying the tolerable detection latency).

Since a floating point operation on all hardware inherently

generates an error and the exponential function on large

or small inputs can exacerbate this error, we decided to

apply this test only on relatively smaller inputs; i.e., when

the absolute value of the input is < 25. For the remaining

inputs, we rely on redundancy. We observed that very few

invocations in our applications use inputs that are ≤ -25

and ≥ 25. Moreover, we use a combination of addition

and subtraction on input such that the absolute value of the

accumulated input is closer to zero and accordingly we use

multiplication or division to accumulate output. This detector

may show a loss in detection coverage if the error caused by

the fault is within the estimated precision error of the floating

point operations. We therefore call this detector “lossy.”

Detecting errors in BitReverse function: In the FFT

application from the SPLASH2 benchmark suite, nearly

half of the SDC-causing sites belong to a function called

BitReverse. This function takes an integer value as input and

reverses its bits in the boolean representation. For example,

if the input is 3 (0011), a 4-bit value, then the output should

be 12 (1100).

The output of this function depends only on the input

and no other previously stored data. Hence all the errors

generated within this function body propagate through the

output at the end of this function making it an ideal location

for detector placement. Since this procedure does not show

any accumulating behavior, we resort to checking parity on

both the input and output. Since they both have the same

number of bits set, the computed parities should match and

detect faults that makes output and input differ by an odd

number of bits. Naive software implementation for parity

generation, however, can be expensive. One of the most

optimized ways is to compute it in parallel [21] as shown

in Figure 3(a). Another way is to use the parity flag in

Intel 64 architectures that is generated on every logical and

arithmetic operation on the low-order byte of the result.

Figure 3(b) shows how this flag can be used to compute

the parity of a 32-bit value. It uses the conditional move if

parity is odd instruction, CMOVPO [22]. This detector may

lose coverage if the corrupted output has a multi-bit error,

and is therefore “lossy.”

Detecting errors affecting registers with a fixed upper

bound: A significant number of SDCs in the Water applica-

tion from SPLASH2 were generated by errors in the variable

KC in the code segment shown in Figure 4. To detect faults

Input: V (32-bit value) 

Output: P 

 

V1  = V >> 16 

V  = V1 XOR V 

V1  = V >> 8 

V  = V1 XOR V 

V1  = V >> 4 

V  = V1 XOR V 

V  = V AND 0xF 

P  = 0x6996 >> V 

Input: V (32-bit value) 

Output: P 

 

  P    = 0 

  V    = V OR 0 

CMOVPO  P    = 1 

  V    = V >> 8 

CMOVPO P    = 0 

  V    = V >> 8 

CMOVPO  P    = 1 

  V    = V >> 8 

CMOVPO  P    = 0 

     (a)       (b)  

Figure 3. Efficient computation of parity on a 32-bit value. Part (a) uses
parallel parity computation and part (b) uses the parity flag in Intel 64
architectures.

C code 

 

KC=0; 

for (K = 0; K < 9; K++) { 

 Some computation 

 if (condition) 

  KC++; 

} $VVHUW��.&���9) 
Assert (K == 9) 

Extra code 

Figure 4. A detector for a register with a fixed upper bound. The figure
shows a code section from the Water application. Faults affecting this code
eventually corrupt the value of KC and produce SDCs. The assertions
show how these faults can be detected.

affecting the variablesK andKC (directly and/or indirectly)

in different iterations of this loop, we placed a detector at the

end of the loop. From this code, it is evident that KC ≤ 9
and K = 9 hold at the end of loop; we therefore used these
invariants as detectors. Since all faults affecting K cannot

be detected by testing KC ≤ 9 alone, we also add K = 9 to
the detector. Faults that affect KC alone (without corrupting

K) such that KC ≤ 9 may remain undetected. Since a loss
in detection coverage can be observed, this detector is again

“lossy.”

Detecting errors in the random number generator from

Swaptions: Over 90% of the SDCs in the Swaptions ap-
plications from the Parsec suite were caused just by a

uniform random number generator function. This function

takes a seed as the input and performs a series of integer

operations to update the seed. This updated value is then

used to generate the random number which ranges between

0 and 1. Since errors always propagate through the output,
we place the detector at the end of this function call and

it tests whether the output follows the specification; i.e.,

0 ≤ output ≤ 1. Since this detector cannot detect all the
errors affecting the output of this function, it is “lossy.”



for (i=0; i<n; i++) { 

 a[i].state ^= (1<<target ) 

      } 

      A = address of array a[0].state 

      Shift left l7 = 1 << target 

L1: Load l1 8�[A] 

      Xor  l2 = l1 ^  l7 

      Store O��:�>$@ 

      Add A = A + 0x10 

      Add i = i + 1 

      Compare i, n 

      Branch less than L1 

      nop 

 

  Sethi   hi(0x100000), l1 

  Or  l1 = l1 | 0x4 

  Shift left  l2 = l1 << 0xc 

  Load  l3 8�[l2 + 0x5c8] 

 

 

  Load O��8�>�[�������F�@ 

 

(a)  

 

 

 

 

  

 

  

 

(b) 

C code Assembly code 

Figure 5. SDCs due to local computations. (a) Code from the Libquantum
application is shown where short-lived register values, l1 and l2, are
created. Faults in these produce a non-negligible fraction of SDCs. (b)
Instructions generated by the Sun cc compiler to compute a static address
are shown. Again, faults in short-lived registers, l1 and l2, produce SDCs.

D. Local computations or registers with short life

We observed that a non-negligible fraction of SDCs were

caused by faults in local computations with short register

data flow chains. One example of this scenario is shown in

Figure 5(a). Registers l1 and l2 store intermediate results and
have short lives. Faults affecting these registers eventually

corrupt the values stored in memory locations pointed by

A. Another example of this pattern is the sequence of

instructions that compute the static addresses known at com-

pile time (Figure 5(b)). In SPARC V9 systems (our target

machine), the global data section is stored above 1GB point

in the virtual address space layout [23] and hence addresses

of global variables require >32 bits. Multiple instructions

are needed to generate these addresses because the ISA lacks

instructions that can move constants of required sizes of >32

bits directly.

Since errors in the locally computed values do not prop-

agate to a few values at an easily identifiable location in

the program, deriving detectors and placing them for cost-

effective detection is hard. Hence, we rely on instruction-

level redundancy for these computations.

III. EXPERIMENTAL METHODOLOGY

We analyzed application resiliency by performing fault

injection experiments in the fault sites that are selected by

Relyzer [15]. Relyzer applies fault pruning techniques to

select a small fraction of fault sites such that fault injection

experiments in these few sites can estimate outcomes of all

locations in the application.

For our fault model, we consider transient faults or single

bit flips in various application fault sites. For each dynamic

application instruction, every bit in each of its integer

architecture register operands is considered as a separate

fault site. Since this fault model considers fault sites that

are highly likely to be architecturally live, it inherently

filters a large fraction of masked faults (faults that do not

affect application output). This allows us to focus more on

faults that impact application output (and potentially cause

SDCs). Our study does not consider faults in instructions

from system calls and dynamically linked library function

calls and faults in floating point registers; these are part of

our future work.

We selected a mix of six applications from the

SPLASH2 [24], Parsec [25], and SPEC CPU2006 [26]

benchmark suites (Table I). All the selected applications

were compiled using Sun C/C++ compiler version 5.9 with

the highest level of optimization. We do not consider faults

in the initialization and final phases of the applications where

the inputs and outputs are read or written from/to files

respectively and data structures are created and destroyed.

We selected the inputs to the applications such that it

was feasible to analyze 99% of all the fault sites reported

by Relyzer. Overall we performed 890,000 fault injections

across all the studied applications. These experiments were

completed in approximately 3 days on a cluster of 175

compute nodes.

A. Fault injection framework

Our fault injection framework is based on Wind River

Simics [27], an architecture level full system simulator. Our

simulation environment models an UltraSPARC processor

(using SPARC V9 ISA [28]) running a modern operating

system (OpenSolaris). For fault injection, we first select

Relyzer’s specified injection locations which specify when

and where to inject faults. In particular, an injection point is

a tuple consisting a cycle number or instruction number (in

our 1 IPC system), register number (that is either used as

a destination or source in this instruction), and bit number

(to flip the bit-value in that location). For each injection

point, we start the application, execute it until the injection

cycle number is reached, inject the specified fault, and run

the application until a symptom detector (or program-level

detector) is fired or the application output is produced.

We use fatal traps, kernel panic, system error messages,

checks for out-of-bounds memory accesses, and timeouts

(executions taking more than twice the expected runtime)

as symptom detectors [11], [15], [18]. As the last step, we

compare the produced application output with the fault-free

output to distinguish masked cases from SDCs.

B. Detectors and overhead evaluations

We implemented our program-level detectors (described

in Section II) in Simics using breakpoints. Simics provides

a framework to set breakpoints on various processor events

and perform desired computations on these events. Our

program-level detectors usually have two parts - one for

collecting the information (typically at the beginning of



Application Description Input
Num. dynamic Num. executed static
instructions after init instructions after init
& before finish phase & before finish phase

Blackscholes
(PARSEC

Calculates prices of options with
Black-Scholes partial differential equation

Sim-large 22.3 Million 538

FFT
(SPLASH-2)

1D Fast Fourier Transform 64K points 548.0 Million 1,483

Libquantum
(SPEC 2006)

Simulates a quantum computer running Shor’s
polynomial-time factorization algorithm

Test 235.4 Million 2,922

LU
(SPLASH-2)

Factors a matrix into the product of a lower
and upper triangular matrix

512 x 512 matrix
16 x 16 block

402.8 Million 1,124

Swaptions
(PARSEC)

Computes prices of a portfolio of swaptions
using Monte Carlo simulations

Sim-small 922.2 Million 1,696

Water-Spatial
(SPLASH-2)

Evaluates forces and potentials that occur
over time in a system of water molecules

512 molecules 504.4 Million 3,740

Table I
APPLICATIONS

Operations Estimated num
instructions

Collecting a
register value

reg′ = reg 1

Lossless
detectors

r1 − r1′ == r2 − r2′ 4
(r1 − r1′)/const == r2 − r2′ 5

(r1 − r1′)/r3 == r2 − r2′ 5
r1 == r2 2

r1 == const 2
r1 == r2 − const 3

Lossy
detectors

r1 ≤ const 2
Testing BitReverse functionality 20
Accumulated check for exp function 20
Range checking for RandUnif 4

0 ≤ reg ≤ 1

Table II
EXTRA INSTRUCTIONS USED FOR MEASURING EXECUTION OVERHEAD

loops or functions) and the other for executing a specified

check. At these points, we also collect information needed to

measure the execution overheads. We measure the overheads

in terms of the increase in the number of dynamic instruc-

tions. Table II shows the number of instructions we add to

the application’s total number of dynamic instructions on

every invocation of collection or testing point of a detector.

We measure the overheads for instruction-level redundancy

by estimating that one instruction can be protected by one

extra instruction even though the requirement is often more.

C. Evaluating the lossy detectors

The expected coverage of a detector is obtained by ana-

lyzing SDC causing sites and checking whether the detector

can catch errors originating from these sites. Since the

actual coverage observed by the lossy detectors may differ

from the expected coverage, their effectiveness must be

evaluated experimentally. Hence we performed a statistical

fault injection campaign for the fault sites that are expected

to be covered by these detectors. Overall we performed

approximately 10,000 injections such that the error bars on

our results are < 2.8% at 99% confidence level.

D. Determining the lowest overhead detectors for a target

SDC coverage

Our detectors from Section II coupled with instruction-

level redundancy based detectors provide a range of choices

to achieve a given SDC coverage (fraction of SDCs de-

tected). We would like to determine the lowest overhead set

of detectors for each target SDC coverage, and understand

the consequent trade-off between execution overhead and

SDC coverage. Such SDC coverage vs. overhead curves also

enable a fair comparison with instruction-level redundancy

based detectors, allowing a comparison of performance

overhead for a given target SDC.

To generate the above curves, we used a dynamic pro-

gramming algorithm similar to one that solves the 0-1 knap-

sack problem. We start by labeling all (mutually exclusive)

detectors of interest (redundancy based and/or our program-

level detectors) with the fraction of SDCs they cover and

their execution overheads (as discussed in Section III-B). We

then run the optimization algorithm to find the combination

of detectors with the minimum combined overhead with a

constraint that the sum of the SDC coverage provided is at

least equal to the target.

We generate execution overhead vs. SDC coverage curves

for different classes of detectors: instruction-level redun-

dancy only, our lossless detectors, and our lossless+lossy

detectors. For the last two curves, some SDC causing static

instructions of an application may not be covered (or may be

only partially covered) by our program-level detectors. We

therefore add instruction-level redundancy-based detectors

for those static instructions to our dynamic programming

problem. For the partially covered static instructions, the

SDC coverage assigned to the redundancy based detectors

(for the purposes of our optimization algorithm) is the

number of SDCs not covered by our detectors. For the

lossless+lossy curves, the dynamic programming algorithm

assumes there is no coverage loss in the lossy detectors when
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Figure 6. Baseline absolute SDC rates. These absolute rates are higher
than previously reported for symptom-based detectors, largely because of
the different fault models used.

determining which redundancy based detectors to consider

(but the SDC coverage attributed to the lossy detectors when

plotting the curves does take into account the loss using

the method in Section III-C). Thus, these curves may still

terminate without covering all SDCs. Finally, the overall

optimal solution for a target SDC coverage is to select the set

of detectors that incur the least execution overhead among

the above three trade-off curves.

IV. RESULTS

A. Sources of SDCs

For reference, Figure 6 shows the absolute SDC rates

obtained by our Relyzer-driven fault injection experiments as

described in Section III. The SDC rates of our applications

range between 8% to 32%. These are much higher than prior

evaluations [11], [18], primarily because of the difference

in the fault model. Our fault model considers faults in only

those architectural registers that are highly likely to be alive,

whereas prior work uses microarchitecture (and lower) level

fault models which have a much higher masking rate [11],

[29]. We chose the higher level fault model because our

focus is on uncovering all possible SDCs with as few fault

injections as possible and then reducing those SDCs. While

we report the absolute SDC rate here for reference, the

rest of this section focuses on the fraction of the baseline

SDCs that are detected by our detectors (or SDC coverage).

Comparing the absolute SDC rates for the different fault

models is outside the scope of this paper.

To understand where in the program the SDC causing

instructions come from, Figure 7 categorizes them based on

the code patterns we identified in Section II. Figure 7 shows

this categorization. We observe that fault sites that corre-

spond to registers with long life and incrementalized loops

produce a significant fraction of SDCs for FFT, Libquantum,

LU, and Water (>90% of SDCs in Libquantum and LU).

Application-specific behavior was a major contributor for
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Others

Local
computation

App specific

Incrementalized
loops

Registers with
long life

Figure 7. Contribution of code patterns from Section II to SDCs.

Applications
Num app.
locations

Lossless Lossy
Loop Long lived Application
based register based specific

Blackscholes 2 4 4 1

FFT 10 15 12 1

Libquantum 10 8 18

LU 13 12 16

Swaptions 9 12 5 1

Water 15 13 17 2

Table III
NUMBER OF DETECTORS PLACED IN THE STATIC APPLICATION CODE

Blacksholes, FFT, Swaptions, and Water. The figure shows

that only a small fraction of SDC producing fault sites (up

to 11.5%) were either categorized as local computations or

not categorized at all (labeled as others in the figure) for all

applications. This indicates that our detectors can potentially

cover a large fraction of SDCs.

B. Static overhead of the program-level detectors

Table III shows the program-level detectors placed in

the static code for our applications. The second column

shows the number of static application locations where our

detectors were placed. The remaining columns show the

number of detectors placed for covering faults in incre-

mentalized loops, registers with long life, and application

specific behavior. The sum of the last three columns may

not add up to the value in the second column because

multiple detectors can be placed in one static code location.

The relatively small number of static code locations that

require modifications shows that our devised detectors are

not intrusive on the application. Moreover, the small number

of application specific detectors means that limited program

knowledge is required to implement them. This reinforces

the benefit of Relyzer in pinpointing the SDC-vulnerable

code sections that need examination.



C. SDC coverage of the program-level detectors

Since the program-level detectors were placed based on

the SDC vulnerability of the fault sites, the corresponding

reduction in the SDCs (SDC coverage) is known a priori,

assuming that the added detectors are perfect. Thus, for

the lossless detectors, the corresponding areas marked in

Figure 7 (incrementalized loops and registers with long

life) directly give the SDC coverage. We observe that on

average, these detectors alone provide an SDC coverage

of 50%. These detectors do not need further evaluation –

they are sound and do not compromise coverage of their

corresponding SDC sites.

Figure 7 shows that the application specific or lossy

detectors also potentially cover a significant fraction of

SDCs. Since these detectors can observe a coverage loss,

their actual SDC coverage cannot be derived from their

area in Figure 7. Instead we use a statistical fault injection

campaign as explained in Section III-C. Our detectors for

the exponential function, BitReverse function, values with

upper bounds, and uniform random number generator show

a coverage loss of 16%, 27%, 3%, and 33% respectively,

relative to their expected or potential coverage indicated by

Figure 7. For faults in the exponential function, we observed

that most of the undetected faults produced outputs that

could be tolerated by the application. For the random number

generator, we observed that for our input set, the number

of iterations of the corresponding Monte Carlo simulation

executed is small and not yet convergent; preliminary experi-

ments showed that with a large enough number of iterations,

the errors may be tolerated in this case as well. In this work,

however, we treat all undetected faults that result in output

deviation as loss in coverage.

Figure 8 shows the total actual SDC coverage of our

program-level detectors, combining both the lossy and loss-

less detectors. The figure shows that our detectors are highly

successful, converting 67-92% of the original SDCs into

detections (average of 84%), with both the lossy and lossless

detectors contributing significantly.

D. Execution overhead from the program-level detectors

Figure 9 shows the runtime overheads of our program-

level detectors, separating the contributions from the lossy

and lossless detectors. The overheads range from 0.08% to

18%, with an average of 10%.

The largest overheads come from the lossy application-

specific detectors. Specifically, the exponential function in

Blackscholes and the BitReverse function in FFT take the

overheads for these applications to over 10%. Libquantum,

Swaptions, and Water see much lower overheads of under

10%. Libquantum in particular sees almost zero overhead

because of its use of loop-based detectors placed at the end

of long running loops.

Although LU shows an overhead of 12.57%, a closer

look showed that it can be lowered significantly. One of the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
la

c
k

s
c

h
o

le
s

F
F

T

L
ib

q
u

a
n

tu
m L
U

S
w

a
p

ti
o

n
s

W
a

te
r

A
v

e
ra

g
e

S
D

C
 C

o
v
e

ra
g

e
 

Lossy Lossless

Figure 8. SDC coverage obtained by our program-level detectors, separated
into coverage from the lossless and lossy detectors.
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Figure 9. Execution overheads incurred by the program-level detectors,
separated into coverage from the lossless and lossy detectors. The overhead
of LU can be lowered to 3.4% with a small change in an input parameter
without loss of performance or SDC coverage.

loop based detectors (shown in Figure 2) executes with high

frequency because the loop terminates after a small number

of iterations (16 in particular). The number of iterations

of this loop is dictated by a parameter that controls the

block-size used by the blocking optimization for improving

the effectiveness of memory hierarchies. This parameter can

be increased to 64 on modern processors without any loss

of performance [25]. When we deployed our detectors on

this application with the block-size parameter set to 64,

we observed that the overheads reduced to a much lower

3.24%. Since all the detectors used in this application are

lossless, there is no compromise on SDC coverage with this

modification.

E. SDC coverage vs. execution overheads

Figure 10 plots, for each application, SDC coverage vs.

execution overhead trade-off curves for different classes of
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Figure 10. SDC coverage vs. execution overhead for each application for different classes of detectors.
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Figure 11. SDC coverage vs. execution overhead, averaged across all
applications, for redundancy based and (optimal) program-level detectors.

detectors: instruction-based redundancy, lossless program-

level, lossless+lossy program-level, and optimal that com-

bines the best of the above. For LU, the figure also shows

a curve for the version with the block size of 64 (using the

same SDC profile as for the base LU since the application

binary and inputs other than block size are unchanged).

The methodology used is as described in Section III-D.

In particular, the curves for program-level detectors add

(selective) instruction-level redundancy for the SDC tar-

gets they cannot otherwise reach. Figure 11 summarizes

the above information by averaging across all applications

for the redundancy-based and optimal curves. The above

curves serve two purposes: (1) they provide a fair way to

compare the redundancy based and program-level detectors

by allowing overhead comparisons for a fixed SDC coverage

target and (2) they enable programmers and system designers

to systematically trade off SDC coverage and performance.

The graphs show that our program-level detectors can

reduce overhead relative to instruction-level redundancy

alone at all target SDC coverage points for most of the

applications. Focusing on Libquantum and LU, which do

not use lossy detectors, we observe that in both cases, the

overhead reduction relative to redundancy-only is quite high

for the most part. The gains for LU are magnified when

a larger block size of 64 is used (the “LU-64 lossless”

curve). For Libquantum, the program-level detectors see near

zero overheads to cover up to 91% of the SDCs. For both

applications, the optimal curves fully overlap the program-

level detector (lossless) curves.



Among the applications that use lossy detectors, all but

Swaptions see significant overhead improvements for most

of the interesting SDC coverage targets. In Blackscholes,

the lossless+lossy curve shows a step behavior at 25% SDC

coverage because the detector used to cover the SDCs in

the exponential function with overhead of about 18% was

required to achieve the target SDC coverage. This detector

could have potentially capped the overhead for high SDC

coverage points but its lossy behavior limited its coverage.

For FFT and Water, the use of the lossy detectors along

with the lossless ones consistently provided lower execution

overheads than lossless detectors alone. In Swaptions, the

simple lossy detector provides a low-cost alternative to

redundancy up to an SDC coverage of up to 70%. For

higher coverage the optimal solution was, however, to use

redundancy for the most part. The lossless detectors provided

limited benefit in reducing the overhead needed to cover all

SDCs.

Figure 11 shows that on average, our approach consis-

tently yields much better execution overheads for all SDC

coverage targets of interest. It shows that the optimal solu-

tion at 90%, 99%, and 100% average SDC coverage incur

execution overhead of 12%, 19%, and 27% respectively,

whereas the corresponding overheads for the redundancy-

only solution are 30%, 43%, and 51% (which are 2.5X,

2.26X, and 1.89X higher).

V. RELATED WORK

SWIFT [16] is a fully compiler-based software solution

for fault detection. This technique inserts redundant code

to compute duplicate versions of all register values, and

validation code for checking the two versions. SWIFT more

than doubles the number of dynamic instructions, rely-

ing on underutilized hardware resources for performance.

CRAFT [17] later improved the performance of SWIFT

through hardware support. PROFiT [30] improves upon both

SWIFT and CRAFT by adding techniques to manage the

desired levels of performance and reliability. It uses the

program’s performance and reliability profile (obtained by

statistical fault injections) to identify the code sections that

need duplication to meet the given performance and reliabil-

ity constraints. Due to the lack of fine grained knowledge of

the application’s reliability profile, it considered duplication

only at the function granularity. In our work, we obtain a

detailed reliability profile through Relyzer and use selective

redundancy only on the SDC causing instructions as our

baseline. The focus of our work is to provide low-cost

detectors such that higher reliability or performance can

be achieved for a given performance or reliability budget

respectively.

A more recently proposed technique called

Shoestring [14] also shares our goal of reducing SDCs by

protecting only those program instructions that potentially

result in SDCs when subjected to transient faults. For

identifying the potential SDC causing instructions, it

employs a static program analysis that conservatively

assumes that all writes to memory and function arguments

are SDC causing sites. For protection, however, they rely on

a SWIFT-like selective instruction-level redundancy based

approach.

Symptom-based fault detection techniques [11], [10],

[31], on the other hand, have emerged as low-cost alterna-

tives for redundancy. These techniques have been shown to

be effective in detecting a large chunk of transient and per-

manent faults with only a small fraction resulting in SDCs

through statistical fault injections on microarchitecture-level

models. Such techniques form the baseline for our work.

Range-based likely program invariants (inserted at stores)

have been employed for detecting hard faults [12]. Re-

sults show a reduction in SDCs of up to 74% for a

microarchitecture-level permanent fault model, but with an

execution overhead of 14% on SPARC machines. Moreover,
this technique suffers from false positives which can further

increase the overheads. For a transient fault model, our

technique provides a better SDC coverage vs. performance

trade-off through a more selective placement of a broader

range of detectors. Combining insights from these two

studies for both fault models is part of our future work.

Pattabiraman et al. [32], developed metrics, namely fanout

and lifetime, to identify what application variable to protect

and where to place detectors. The goal, however, was to

prevent or limit fault propagation and avoid system crashes

with minimum possible detector locations, not particularly to

reduce SDCs. Subsequently, they also proposed a technique

to automatically derive application-specific detectors to be

placed at these locations [9]. This technique tries to dynam-

ically associate a property check for the identified variable

from a set of pre-defined checks. The properties they used

are similar in some respects to a few of our observations.

However, they differ significantly because detectors in [9]

never considered complex properties spanning across multi-

ple variables like the loop based detectors presented in this

paper. Moreover, detectors in [9] produce false positives,

whereas our detectors never fire in fault-free executions.

VI. CONCLUSIONS AND FUTURE WORK

With technology scaling, the hardware reliability problem

is becoming increasingly challenging for a wide class of

systems, motivating low-cost reliability solutions. Software-

level symptom detection techniques have emerged as low-

cost and effective solutions with low Silent Data Corruption

(SDC) rates. However, eliminating or significantly lowering

the user-visible SDC rate is crucial for these solutions to

become practically successful. This paper presents an under-

standing of the program-level properties for a large fraction

of SDC causing instructions. This analysis facilitated the

development of low-cost program-level error detectors. We

find that these detectors are able to convert an average of



84% of the SDCs to detections across our applications,

at an average execution overhead of 10%. Compared to

instruction-level redundancy alone, our program-level detec-

tors (with instruction-level redundancy as backup) show, on

average, significantly lower execution overheads at all SDC

coverage targets of interest; e.g., 19% vs. 43% for 99% SDC

coverage. Thus, the program-level detectors, owing to their

lower cost and efficacy in detecting SDCs, provide practical

and flexible choice points in the performance vs. reliability

trade-off curve.

In the future, we plan to extend our study to more

applications with expanded fault models and more accurate

overhead estimates. Currently, the placement and derivation

of the program-level detectors is manual. Ideally, we would

like to automate this to the extent possible. In cases where

application-specific knowledge is needed, we envision pro-

viding feedback to programmers such that they can make

informed decisions to trade performance for reliability.
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