63rd IEEE ECTC – Las Vegas, NV: May 28–31, 2013

Low Cost, Room Temperature Debondable Spin on Temporary Bonding Solution: A Key Enabler for 2.5D/3D IC Packaging

Ranjith Samuel E. John¹, Herman Meynen², Sheng Wang¹, Peng-Fei Fu¹, Craig Yeakle¹, Sang Wook W. Kim³, Lyndon J. Larson¹ and Scott Sullivan⁴

¹Dow Corning Corporation, 2200 W. Salzburg Road Midland, MI, 48686-0994, USA ²Dow Corning Europe S.A., Parc Industriel - Zone C- Rue Jules Bordet, 7180 Seneffe, Belgium ³Dow Corning Korea, 690-1 Gwanghyewon-Ri, Gwanghyewon-Myeon, Jincheon-Gun, Chungcheongbuk-Do, 365-830, Korea

⁴Suss Microtec, 430 Indio Way, Sunnyvale, CA, 94085

Outline

- Background
- Why A Dow Corning Temporary Bonding Solution
- Dow Corning Temporary Bonding Process
- Experimental Results
- Conclusions
- Acknowledgements

Background

Thermoplastic Temporary (De)Bonding Technology

Glass Carrier Temporary (De)Bonding Technology

Why A Dow Corning Temporary Bonding Solution (TBS)

Requirements

- Thermal Stability
- Chemical Stability
- Excellent Adhesion for withstanding Wafer
 Thinning
- Global TTV of 2μm or less across thin wafer
- Low Temp. Debonding
- Easy Wafer Cleaning

Dow Corning TBS Properties

- Thermally Stable
- Chemically Stable
- Wafer Thinning 50 μm
- Global TTV 2 µm (stack)
- Room Temp Bonding
- Room Temp. Debonding
- Easy Wafer Cleaning

Dow Corning Temporary Bonding Process

- Simple Spin-On Technology
- No Adhesive on Device Wafer after debonding
- No Additional Wafer Processing or Equipment for pre-processing of wafers

200 mm Spin Coating Evaluation

As Spun

Max = 66.61

Min = 65.71

TTV = 0.9

Uniformity = $\pm -0.7\%$

Max = 65.96

Min = 65.60

TTV = 0.36

Uniformity = $\pm -0.3\%$

300 mm Coating & Bonding Test

TTV = 0.84um

he 63rd Electronic Component

and Technology Conference

Mean = 1630.6 microns. TTV = 4.1 microns

Typical < 5um TTV for un-optimized carrier bonding using a ~68um bonding layer

- Release layer = 0.2 um & Adhesive layer = 68 um
- Most recent demonstration Post Wafer Thinning
 - 2 um TTV with 50 um adhesive layer on 50 um thin wafer
 - 2 um TTV on 50 um thin wafer with 45 um bumps
 - 3 um TTV on 50 um thin wafer with 70 um bumps

TTV is device wafer configuration dependent

TTV of 50 μ m Thin 300 mm Blanket Wafer -**After Backgrinding**

Thicknesses (µm)

Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	0
							Notch							
							L1							
			L6				0.873				L2			
				0.874			0.875			0.874				
	L5			0.875			0.875			0.875			L3	
		0.875							0.875			0.875		
			0.875				0.875		0.875		0.875			
				0.875						0.875				
L4	0.875								0.875					L4
				0.875						0.875				
			0.875				0.875		0.875		0.875			
		0.874							0.875			0.874		
	L3			0.875			0.875			0.875			L5	
				0.873			0.875			0.873				
			L2				0.873				L6			
							L1							

2013 μm TTV with 5 mm edge exclusion DOW CORNING

300 mm Wafer Thinning Performance

50 micron bonded stack

No Edge Chipping on non-edge trimmed wafers

Thermal Stability of 50 µm 300 mm Thin Bonded Pair

Before Thermal

200C-20 mins

260C-10 mins

200C - 3 hours

No Voids or Delamination

Chemical Resistance

Adhesive Bond Layer shows good resistance to common chemicals used in the post grind processing.

Chemical Resistance of Bonded Pair

No delamination seen of bonded pair during solvent soak test

Adhesive Layer (AL) After Chemical Treatment

Wafer Map of AL of debonded wafer after Chemical Soak Test -No Loss of AL, TTV of AL ~ 2.4 micron

DOW CORNING

-13-

De-Bonding Process

- Simple Room Temp.de-bonding process steps:
 - Automated mechanical de-bonding at room temperature
 - Performed on SUSS MicroTec DB300T and DB12T de-bonders

Processes

50 micron debonded wafer

RL + AL on bumped

silicon wafer

TTV of 50 µm Back Ground 300 mm wafer with 45 µm Tall Bumps

TTV of 50 µm Back Ground 300 mm wafer with 70 µm Tall Bumps

moderate pany														
Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	0
							Notch							
							L1							
			L6				0.924				L2			
				0.924			0.924			0.924				
	L5			0.924			0.923			0.924			L3	
		0.924			0.923				0.923			0.924		
			0.924		0.923		0.923		0.923		0.924			
				0.923		0.922	0.923	0.922		0.923				
					0.923	0.923		0.923	0.923					
L4	0.924	0.924	0.923	0.923	0.923				0.922	0.923	0.923	0.924	0.924	L4
					0.923	0.922		0.923	0.923					
				0.923		0.923	0.922	0.923		0.923				
			0.924		0.923		0.923		0.923		0.924			
		0.925			0.923				0.923			0.924		
	L3			0.924			0.923			0.924			L5	
				0.924			0.924			0.924				
			L2				0.924				L6			
							L1							
		1					1	1	I		1	1		1

Debonded Thin Bumped Wafer

50 μm thin wafer with 70 μm tall bumps

50 μm thin wafer with 45 μm tall bumps

Crack Free Debond

Process Survey

Production Readiness

Categorized:

1 : Qualified /used for high volume manufacturing

2: Integration tests in line at institute

3: Qualified by SUSS internal tests

Cost of Ownership

Calculated:

Equipment cost Process times & cycles

Other consumables:

e.g. Cost of Tape

(Cost of materials)

Performance

Weighted:

Process Latitude

(Survivability / Debondability)

Achievable min. wafer thickness (TTV)

Temperature

Max. temperature for post processing

Cost Of Ownership

Conclusion

Dow Corning Temporary Bonding Solutions is offering:

- Simple bi-layer structure for a temporary bonding solution
 - No wafer pretreament
- Excellent uniformity for thick layers
 - Less than 1 μm TTV for coated bonding material prior to bonding
- Fast room temperature bond
 - TTV of 2-3 μm micron demonstrated on 50 μm thin bumped wafer stack
- Good thermal & chemical characterisitics
 - Thermal stability demonstarted in air and vacuum ambient
 - Chemical stability demonstrated with respect to TSV process chemical
- Fast mechanical de-bonding with a high throughput potential
 - Easy room temperature de-bond

DOW CORNING

-20-

Acknowledgments

- Thank you for your attention to this presentation!
- The authors would like to thank the many contributors that collaborated to create the temporary bonding solution presented here:
 - SUSS MicroTec:

May 28-31, 2013

- S. Lutter, W. Bair, & S. Krausse
- Dow Corning Commercial Excellence Team for Temporary Bonding Solutions

