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Abstract 

The exposure to air pollutant mixtures is a well-known risk factor for inducing and increasing the 

severity of diseases. Combining low-cost sensors in arrays holds great potential for real-time monitoring 

of pollutant exposure because of versatility and aptitude for tracking multi-pollutant exposure. While 

many low-cost air pollution monitoring devices have been proposed, several underexplored 

opportunities remain, including sensor-derived pollution indices, source analysis and exposure 

assessment. 

A thorough investigation of different low-cost commercial gas and particulate matter sensors from 5 

manufacturers has been conducted and best-performing sensors were identified. A device for 

monitoring air quality has been developed and tested. Each device consists of an array of commercially 

available metal oxide semiconductor for monitoring NOx and O3, CO, CO2 and optical sensors for 

monitoring PM2.5. Level of pollutant exposure has been characterized at different locations in Toronto 

over 3 different campaigns between 2013 and 2016. These deployments allowed long-term sensor 

performance to be evaluated under different meteorological conditions as well as different ranges of 

pollutant concentrations.  

Analysis of a large range of gas sensors revealed several key challenges, including high intra-sensor 

variability, interference from temperature and nonlinearity. Air quality health index estimation from 

sensor readings was successfully demonstrated. Three aspects of device reproducibility were evaluated: 
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drift over time, impact of interferences and impact of site-specific mixtures. Three categories of 

approaches for improving sensor accuracy and reproducibility were tested: nonlinear calibration 

models, variable transformations and training data selection. Model reproducibility, ability to adjust for 

multiple combinations of interferences and ability to resolve sites was improved when devices were 

calibrated at multiple sites. Analysis showed that both short-term and long-term temporal patterns 

could be resolved and compared at different sites. Background subtraction helped further emphasize 

the differences and rank sites in terms traffic-related pollution. 
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1 Introduction 

 

1.1 Background and motivation 

 

The quality of the air we breathe is a cause for concern for environmental and public health researchers 

alike (Fuzzi et al. 2015). More than 3.2 million deaths per year have been attributed to air pollution 

(Jerrett 2015). This value can be even greater for young children, the elderly, and people with disabilities 

(Gordon et al. 1999; UNICEF 2016; Buka et al. 2006). Awareness of chemical pollution and its influence 

on human health and the environment has given rise to increased regulatory control on emissions of 

toxic compounds into the environment, forcing both industry and academia to respond with effective 

monitoring and control measures. The interest in a more complete understanding of the health effects 

of environmental pollutants and pollutant mixtures has also led to a rising demand for robust studies on 

their distribution with increasing spatial and temporal resolution. The ability to compare pollutant levels 

and types in different microenvironments is also becoming increasingly important. These trends have 

prompted vigorous research and the development of methods and devices for sensitive monitoring of 

multiple airborne pollutants. 

 

Furthermore, it is difficult to disregard the multi-chemical and multi-source nature of human exposure 

to airborne pollutants (Table 1). These effects are particularly important when the mixture components 

influence each other’s response. Hamada et al have suggested that fine particulate matter may facilitate 

exposure to toxic vapours (Hamada et al. 2000). NO2 has been shown to increase the inflammatory 

effect of aeroallergen exposure in asthma patients (Barck et al. 2005). A report commissioned in the 

beginning of 2010 by the Environment Directorate General of the European Commission has 

demonstrated that health implications are greater for pollutant mixtures than for the sum of their 

components, even at trace concentrations (Kortenkamp, Backhaus, and Faust 2009). Sensitive multi-

pollutant analysis can be accomplished using sampling-laboratory analysis protocols. Most of the studies 

contributing to the body of knowledge in this field have used a sampling-laboratory analysis protocol 

(Corrêa et al. 2010; Araki et al. 2010; Cindoruk and Tasdemir 2010; Ramadan 2010; Zhang et al. 2010; 

Chang et al. 2010). These analyses are intrinsically off-line, time-consuming, expensive, and have been 

linked to problems with sample integrity and artifacts.  
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A review of the literature in the field of air quality monitoring and exposure assessment research yields 

several recurring areas of interest: 

1. Detection of a diverse range of pollutants;  

2. Improvement in sensitivity of detection of trace levels of pollutants; 

3. Quantitation and correction for chemical interactions and interferences; 

4. Improvement of specifications (i.e. miniaturization, cost reduction and ease of operation). 

 

Table 1. Common air pollutants and their associated sources, concentration ranges and health effects. It 

is common for pollutants to be emitted by several sources and to be present in complex mixtures 

making interferences a problem for cross-responsive sensors (adapted from Williams and Kilaru 2014). 

 

Air pollutant Type Source Example Typical 

Range 

Regulatory 

threshold 

level1 

Health Effects2 

Ozone (O3)  Secondary 

and 

sometimes 

primary 

Photo-chemical 

via NOx and 

organics; 

photocopy, laser 

machines 

 

0-150 

ppb 

62 ppb  

(8 hours) 

-Breathing 

problems 

-Reduced lung 

function 

-Asthma 

-Eye irritation 

Carbon 

monoxide 

(CO) 

Primary Fuel combustion 

– mobile sources, 

0-0.3 

ppm 

9 ppm  

(8 hours) 

35 ppm  

-Respiratory 

diseases 

                                                      
1

 CCME developed Canadian Ambient Air Quality Standards (CAAQS; http://airquality-qualitedelair.ccme.ca/en/) for 

PM2.5, O3, and NO2. For particulate matter, ambient standards are shown as 3-year averages of the annual 98th 

percentile of the daily 24-hour average concentrations or annual average of all 1-hour concentrations.  For ozone, 

the 3-year average of the annual 4th highest daily 8-hour average concentrations in used, while for nitrogen dioxide, 

the 3-year average of the annual 98th percentile of the daily maximum 1-hour average concentrations and average 

over a single calendar year of all 1-hour average concentrations are used. EPA National Ambient Air Quality 

Standards (40 CFR part 50; https://www.epa.gov/criteria-air-pollutants/naaqs-table) are shown for CO since 

corresponding ambient standards are not available in Canada. No regulatory exposure limits are available for CO2. 

2
  Adapted from U.S. Environmental Protection Agency. Air Pollution Monitoring. Available online: http://www.epa. 

gov/oar/oaqps/ montring.html. Additional data from Air Quality Ontario, Ministry of the Environment, 

http://www.airqualityontario.com/ 
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industrial 

processes 

(1 hour) -Cardiovascular 

diseases 

Nitrogen 

dioxide (NO2) 

Primary and 

Secondary 

Fuel combustion 

– mobile sources, 

electric utilities, 

off-road 

equipment 

0-50 ppb 42 ppb  

(1 hour) 

12 ppb 

(1 year) 

-Respiratory 

diseases 

-Cardiovascular 

diseases 

Carbon 

dioxide (CO2) 

Primary Fuel combustion 

– electric utilities, 

mobile sources 

350-600 

ppm 

None -Fatigue 

Fine 

particulate 

matter (PM2.5) 

Primary and 

Secondary 

Fuel combustion 

(mobile sources, 

electric utilities, 

industrial 

processes), dust, 

agriculture, fires 

0-40 

μg/m3  

27 μg/m3 ( 

24 hours) 

8.8 μg/m3 (1 

year) 

-Eye, nose, throat 

irritation 

-bronchitis 

-lung cancer 

 

Many innovative technologies that have been recently proposed for air pollution monitoring and 

exposure assessment (Choi et al. 2010; DeVito et al. 2009; Khatko et al. 2009; Penza et al. 2008; Talazac 

et al. 2001; Jerrett et al. 2017). Their compact size, fast response, low-cost and wide range of detectable 

pollutants enable concurrent monitoring at multiple locations, portable monitoring applications as well 

as more informative monitoring of wide range of pollutants in ambient air. These properties are highly 

beneficial for environmental exposure studies. However, while the low-cost commercial sensor 

technologies appear very promising in laboratory-based tests, their performance in complex 

environments encountered in field studies remains unsatisfactory (Lewis and Edwards 2017). 

Interference effects from temperature, humidity and chemical reactivity are some of the major 

challenges to acquiring accurate data for air quality analyses. In addition, the selective detection of a 

diverse range of existing and emerging compounds of concern in a single measurement has yet to be 

effectively accomplished.  The inherent trade-off between selectivity and the reversibility of sensor 

surfaces further complicates the design of an optimum air quality monitoring device. However, there are 

several opportunities for overcoming these challenges. In particular, combining low-cost sensors into 

arrays would allow a diverse range of air contaminants to be monitored in a single measurement and in 

real time, while keeping overall monitoring costs low. Monitoring of multiple air contaminants creates 
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opportunities to use signal processing to lower the impact of variability in physical and chemical 

interferences on the signal. The use of sensor array architecture can also improve long-term data 

reliability since parallel data output from multiple sensor replicates can significantly increase statistical 

power of the measurement. 

 

It is hypothesized that an inexpensive device can be developed, which would utilize time-resolved 

data for airborne pollutant mixtures to provide an integrated measure of exposure. The first objective of 

this PhD project was to develop a modular portable system for the analysis of pollutant mixtures at 

ambient levels. An array of commercial sensors was combined into a real-time data collection system 

with built-in data storage. The second objective of this PhD project was to assess the performance of 

this system in field studies. The portable, inexpensive multi-pollutant monitoring system developed 

during this project was expected to facilitate the comparison of the temporal profiles of major 

pollutants in different microenvironments, allowing their exposure profiles to be developed.   

 

This thesis document is organized as follows: 

• Chapter 1 summarizes the background and motivation for undertaking the proposed research. 

The importance of increasing temporal and spatial resolution of monitoring, parallel detection 

of multiple pollutants and cost reduction is outlined. 

• Chapter 2 provides a synthesis of relevant literature, including gaps and opportunities for 

extending the capabilities of low cost sensor technologies as well as potential applications. 

• Chapter 3 provides an overview of methodology of the research including the design of 

AirSENCE devices, data analysis methodology, calibration process and studies that were carried 

out. 

• Chapter 4 outlines 7 key areas of research, including analysis of sensor performance, pollutant 

model performance, the impact of interferences, performance optimization methods, analysis 

of temporal and spatial patterns as well as analysis of sources, such as traffic. 

• Chapter 5 summarizes the findings and conclusions. 

• Chapter 6 provides and overview of the future work. 
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1.2 Motivation 

 

The primary goal of this research was to show that low-cost devices for simultaneous, multi-pollutant 

measurement can be designed to provide measurements of urban air pollution with acceptable accuracy 

and precision. It was hypothesised that the advantages of sensor array approach combined with the 

multivariate signal processing techniques would mitigate challenges associated with low-cost sensor 

performance. 

 

1.2.1 Increasing temporal and spatial resolution 

 

One of the greatest priorities in pollution exposure research is the ability to acquire high time and 

spatial resolution data. Urban air pollution exposure is characterized by highly variable time-activity 

patterns and air pollution is known to be highly variable both temporally and spatially (Steinle, Reis, and 

Sabel 2013). Therefore, high time resolution monitoring is essential for exposure assessment (Kumar et 

al. 2016). Therefore, a key goal of this project was to design a low cost (below $500) and portable device 

capable of obtaining high time resolution data. Device portability and low cost increase the number of 

devices that can be deployed, thereby increasing the spatial resolution of the measurements and allow 

for a more accurate exposure assessment and source analysis. Fast sensor response, combined with the 

multi-pollutant data, would allow for a more comprehensive assessment of the temporal and spatial 

patterns in pollutant concentrations. 

 

1.2.2 Detection of Multiple Pollutants 

 

The second key goal of this research project was to improve the ability to measure and resolve multiple 

pollutants within air pollution mixtures. The need to analyze as many air pollutants as possible is 

balanced by the availability, the cost, and the long-term robustness of sensors. The following major 

urban pollutants are the focus of this research: NOx, PM2.5, CO, CO2, O3. Although the 1-hour time 

resolution data is available at 4 Ministry of Environment and Climate Change air quality monitoring 

stations in Toronto for NOx, O3 and PM2.5, their spatial coverage of spatially heterogeneous pollutants is 

limited. NOx and CO concentrations can be highly variable in space and a knowledge of this variability is 

essential to our understanding of the impacts of combustion-related pollution sources. Measurement of 

O3 is key for understanding pollutant chemistry. CO2 is important for understanding of emission factors. 
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PM2.5 measurements improve our understanding of pollution background and source contribution. 

Temperature and relative humidity are important for understanding the impact of meteorology on 

pollutant levels. Furthermore, most of both gases and particulate matter can have serious impact on 

population health and these impacts often vary in space and time (Jerrett 2015). Concurrent monitoring 

of multiple ambient air contaminants has many potential benefits such as the improved data quality, 

more thorough exposure assessment, improved characterization of pollution sources and pollution 

gradients throughout a city. 

 

1.2.3 Cost reduction 

The development of novel low-cost integrated circuit technologies and manufacturing processes have 

contributed to a range of low cost commercially available sensors. In addition, open source hardware 

and software toolkits have enabled reduction in product development costs. Furthermore, wireless 

technology enabled continuous monitoring and remote device adjustment that further reduced air 

pollution study costs. The requirement for trained personnel is one of the highest long-term costs 

associated with air quality monitoring studies. Hence, another major goal was the design of a system 

that is robust and can be operated reliably for extended periods without human intervention. To this 

end, the priorities included: 1) quantification of the accuracy of the sensor response, 2) development of 

a method to correct the sensor response for short-term noise and long-term drift, and 3) wireless 

networking for data acquisition and remote diagnostics. The low cost of the commercially available 

sensors and microcontrollers as well as wireless signal acquisition and remote device diagnostics were 

all key drivers of cost savings. 

 

1.2.4 Research Hypotheses 

 

The overarching research hypothesis for this thesis was as follows: “Coupling multiple sensors (sensor 

array devices) with appropriate data mining methods can yield pollutant concentrations that reveal 

meaningful spatial and temporal patterns arising from to traffic emissions”. This hypothesis can be 

broken down to three supporting hypotheses: 

1. Sensor array devices show acceptable performance relative to gold standard instruments. 

2. Sensor array devices are able to reveal meaningful temporal and spatial patterns. 

3. Sensor array devices can reveal relative contribution of sources such as traffic. 
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2 Literature review 

 

Holistic understanding of air pollution as well as its variation in space and time is essential for 

development of effective strategies to reduce the impact of air pollution on our health and environment 

(Tham 2016).  Traditionally, air quality monitoring is primarily guided by the need to validate regulatory 

compliance as well as understand and model air pollution sources, sinks and transformation processes. 

The data is collected by standard monitoring equipment that has been well-characterized by both the 

manufacturer and researchers for a wide variety of applications. More, recently, the paradigm has 

shifted, driven by community efforts in using a wide range of low-cost, heterogeneous, little-

characterized sensors across the world (Aberer et al. 2010; Carton 2015; Snyder et al. 2013). Availability 

and low cost of a wide range of sensors has prompted many researchers to develop their own 

equipment. For example, web cameras have been re-proposed for monitoring air quality (Wong et al. 

2007). Research literature suggests that by combining low-cost AirSENCE devices with standard data and 

new algorithms, we would be able to derive new insights (Figure 1). The efforts of improving intrinsic 

sensor performance should be combined with development of generalizable calibration strategies and 

data processing methods through collaborative work of experts in sensing technology, software 

development, data processing and pollution monitoring domain expertise (Theunis, Stevens, and 

Botteldooren 2017). 

 

 

 

Figure 1. The new paradigm of air quality monitoring. 
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The field of air quality monitoring using low-cost sensors can be sub-divided into 7 major research 

topics. The first core area of research is the design and characterization of the sensor modules. The aim 

is to characterize the performance of the sensors from material, chemical or physical perspective to gain 

deeper understanding of the underlying processes governing the sensor response and performance. The 

second core research area is the development and evaluation of regression and classification calibration 

models relating the sensor response to pollutant types and levels. The third major area of study is the 

validation of the pollution models by testing their reliability over extended periods of time and under a 

range of environmental conditions and pollutant levels. The shortcomings identified by the validation 

studies often lead to proposals of approaches for improving calibration model performance through 

adaptive models, which can be characterized as another research area. The sensors are then applied to 

understand 2 major aspects of air pollution exposure research areas: 1) spatial distribution of air 

pollution, and 2) variation of pollution in time. Finally, spatial and temporal variation in sensor response 

are combined to understand pollution sources. The focus of this thesis is to address the research gaps in 

the 7 research topics described above. 

 

2.1 The challenges and opportunities associated with the low-cost sensors 

 

Various sensor technologies have become available over the last 10 years to measure the air quality, but 

many accuracy and reliability challenges still exist (Wetchakun et al. 2011; Fine et al. 2010; Kanan et al. 

2009; Yamazoe 2005). Most of the research developments have been focused on analysis of the criteria 

pollutants, including carbon monoxide, ozone, nitrogen dioxide and particulate matter (Commercially-

available air monitoring devices). Sensor technologies commonly used for detecting these pollutants 

include metal oxide semiconductors (MOS), electrochemical cells (EC), non-dispersive infrared sensors 

(NDIR) and light scattering sensors (Table 2). Other technologies such as ultraviolet absorption sensors, 

light absorption sensors and direct mass transduction sensors have also been used but are not readily 

available commercially. Each of the sensor technologies comes with tradeoffs with respect to 

performance and usability. However, metal oxide semiconductor (MOS) sensors and optical light 

scattering sensors are the least expensive technologies for detecting gas and particulate matter 

contaminants. Since reducing device cost was a key design goal, MOS and optical sensor technologies 

were selected for device development and optimization of their performance was a core focus of the 

thesis. 
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Table 2. Common sensing and transduction methods used for air pollution monitoring. 

Detection method Common target 

pollutants 

Advantages Disadvantages 

Metal oxide 

semiconductor (MOS) 

CO, O3, NOx, VOCs Small size, stable, 

inexpensive 

Sensitive to change of 

RH, T; cross-sensitivity; 

high power 

consumption. 

Electrochemical cell 

(EC) 

CO, O3, NOx Low power, more 

sensitive and linear 

than MOS 

Large impact from 

interferences and drift, 

smaller lifetime  

Non-dispersive infrared 

(NDIR) 

CO2 Compact, stable Sensitivity depends on 

path length; calibration 

is easy to misinterpret 

Light scattering PM Small, inexpensive, 

easily available 

commercially 

Not a direct mass 

measurement; cannot 

detect ultrafine 

particulate matter 

 

 

2.1.1 Gas sensors 

 

A common low-cost method for monitoring is metal oxide semiconductor (MOS) sensors (Figure 2). MOS 

sensors respond to gases through the change in resistance of a semiconductor film in response to 

oxidation and reduction reactions that occur on its surface (Figure 3). The MOS sensor surface becomes 

catalytically active in response to heating, which facilitates adsorption, reaction and desorption of gases.  
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Figure 2. Schematic of MOS sensors commonly used for monitoring gases. Gases get adsorbed on 

semiconductor sensor grain boundary surface, catalytically activate by heated substrate, and undergo a 

redox reaction. Redox reaction leads to electron transfer and change in metal oxide conductivity. 

 

 

 

Figure 3. Common reactions between metal oxide semiconductor gas sensors and detected gases. 

 

The change in MOS sensor resistance is the result of three types of processes: 1) sensing process 

(controlled by gas-solid interaction), 2) electrical transduction process (controlled by microstructure), 3) 

gas diffusion process (controlled by the sensor structure and manufacture properties) (Table 3). 
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Table 3. Three key sensor aspects governing gas monitoring using metal oxide sensors. 

Sensor surface properties Transducer properties Sensor structure properties 

Gas adsorption 

Redox reactions 

Carrier mobility 

Grain size 

Doping 

Pore size 

Diffusion depth 

Film thickness 

 

Some of the ongoing challenges associated with MOS sensors are sensor variability and poor 

performance of the devices in field. While sensors were shown to have acceptable performance for 

some pollutants (i.e. ozone), others have been found to have poor correlation to reference monitors 

(Theunis, Stevens, and Botteldooren 2017). Variation between sensors of the same type is generally low, 

but the sensor cross-sensitivity is a major problem that often cannot be explained by known correlation 

between pollutants because it depends on a variety of environmental factors. 

Another challenge in using the metal oxide semiconductor sensors is that the sensor response and 

sensitivity is impacted by the order of gas exposure (Sarry and Lumbreras 1999).  This is particularly 

significant when the gases have opposite effect on sensor response (i.e. oxidizing vs reducing). 

Novel semiconductor sensors have recently been proposed that have better response to oxidizing gases 

and less dependence on humidity and better stability, but are still in research stage (Korotcenkov 2007). 

While the choice of metal oxide material generally affects both sensing and transduction processes, new 

composite sensors that allow for optimization of both processes separately have been proposed 

(Korotcenkov 2007). Studies suggest that detection of ambient pollutant mixtures using metal oxide 

sensors is still challenging due to noisy response and cross-sensitivity (Williams, Kaufman, and Garvey 

2015). Drift over time is another challenge for metal oxide semiconductor sensors. Some researchers 

proposed methods to adjust drifted sensor response using other sensors which have correlated 

response but which show less drift (Aguiar et al. 2015). The sensors were used as a supplementary tool 

to standard monitors to assess urban traffic but could not be used independently because of large cross 

sensitivity. The authors suggest that multi-sensor array combined with field calibration would help 

correct for interferences. A summary of the advantages and disadvantages associated with MOS 

sensors, according to the literature, is provided in Table 4. A major focus of the thesis was to validate 

the advantages and overcome the disadvantages through improved device design and data analysis 

techniques. 
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Table 4. Advantages and disadvantages associated with MOS sensors. 

Advantages Disadvantages 

• More responsive to low levels of 

pollutants 

• Fast response time once stabilized 

• Good repeatability  

• Long sensor life 

• Least expensive technology 

• Responds to large range of compounds 

• Small size 

• Can operate at higher temperature & 

pressure 

• Sensitive to interferences 

• Not linear at higher concentrations 

• Impacted by drift 

• Slow start-up due to warm-up 

• Shorter battery life due to heated sensor 

element 

 

 

2.1.2 Particulate matter sensors 

 

The most common sensor used for detection of particulate matter is optical scattering sensor, which 

works by measuring the light (commonly IR) refracted by the particulate matter passing through an 

optical chamber (Figure 4).  

 

 

Figure 4. Schematic of optical light scattering sensors commonly used for monitoring particulate matter 

(PT = photodetector; IRED = IR LED). 
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Very few commercial particulate matter monitors are capable of accurately assessing the variation in 

particulate matter concentration (Williams et al. 2014). While some monitors have acceptable 

performance (i.e. Dylos DC1100, Met One, RTI MicroPEM), they are too expensive and too large for 

many applications. A few sensors have been shown to be able to detect pollution hot spots, but the 

sensitivity was too low for long-term air quality monitoring (Budde, Busse, and Beigl 2012). Sensors are 

still limited by the high cost and power requirements (Jovaseevic-Stojanovic et al. 2015). Studies show 

that field calibration could yield better results than interpolation of reference instrument data, although 

extensive device-specific and site-specific calibration was required (Holstius et al. 2014). More work is 

needed to better characterize variation between sensors and operation parameters. While some laser-

based optical scattering sensors are correlated with research-grade equipment, the accuracy varies with 

particle properties and the type of sampling used (Kelly et al. 2017). The particle size distribution and 

particle composition have large effect on sensor signal, resulting in low correlation with particle mass 

concentration. More work is needed to develop accurate models for complex aerosol systems. In 

addition, a large impact of humidity exists due to hygroscopic growth of particles that leads to 

overestimation of particle mass concentration. More inter-comparison studies with standard 

instruments in specific particle mixtures are required due to variation in sensor design, mode of particle 

transfer and the impact of humidity (Manikonda et al. 2016). Other research studies showed that the 

performance depends on particle composition, size, ambient humidity, resulting in difference in sensor 

output by as much as a factor of 10 (Wang et al. 2015). Modifying the airflow system, particle 

concentration algorithm and averaging interval helped improve the performance. Sensors were 

demonstrated to have linear response on average, with some saturation at higher particulate matter 

concentrations and higher relative standard deviation with decrease in concentration. Field studies also 

suggest that low-cost optical aerosol sensors are impacted by the temperature interference and the drift 

in sensor baseline response by more than 30% in three weeks (Olivares and Edwards 2015). More work 

is needed to understand sensor response towards different aerosol compositions and size distributions 

as well as understand the sensor variability and the causes for drift and temperature interference. 

 

2.1.3 Sensor arrays 

 

One of the key opportunities highlighted by US Environmental Protection Agency in recent report on low 

cost sensor technology is the use of sensor arrays to measure multiple pollutants in parallel, the need 

for more field studies, quality control and techniques for improving sensor sensitivity, selectivity and 
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reliability over extended periods of time (MacDonnell et al. 2014). Combining an array of cross-

responsive sensor with multivariate statistics has been suggested as a particularly promising technique 

for assessing air pollution variation and sources (Schutze 2008). 

 

The optimum performance of sensor arrays depends on the selection of best combinations of sensors 

and sensor feature predictors. The selection of sensors depends on multiple parameters, including 

sensitivity, selectivity, hysteresis, stability over the time and on exposure to other gases in the 

environment. In addition, the choice of sensor operation temperature can determine chemical, 

structural, and long-term stability. While lower temperatures are associated with higher sensitivity and 

longer lifetime, higher temperatures lead to lower dependence on humidity, better signal 

reproducibility as well as fast response and recovery (Korotcenkov 2007). Feature selection 

methodologies have been used to reduce the level of drift and noise, leading to more accurate, lower-

cost and power-efficient devices (Gardner, Boilot, and Hines 2005; Gualdrón et al. 2007). Studies have 

shown that subsampling features can reveal optimum combination of features for specific applications 

(Nowotny et al. 2013). It was found that while some sensor technologies outperform others when 

subsets are compared, the combination of the different sensor technologies in a single array can lead to 

the best performance. Studies have also suggested that more accurate and robust models can be built 

through better feature selection methods. A cascaded genetic algorithm was used to select variables to 

identify and quantify volatile organic compounds detected by metal oxide semiconductor sensor array 

(Llobet et al. 2004). The method also had an added advantage of reduced computation time due to a 

smaller subset of the best-performing variables selected. Feature selection was used to identify new 

features that show superior performance compared to ratio between sensor resistance in gas and clean 

air (Rs/R0) suggested by most sensor datasheets and was found to improve the classification and lead to 

a better understanding of the data (Pardo and Sberveglieri 2007). 

 

2.1.4 Summary 

 

Low-cost sensors and sensor arrays have been shown to have promising characteristics for applications 

in air quality studies. However, several research gaps remain. Sensor datasheets contain very limited, 

and often misleading information on sensor performance as well as information that was collected 

exclusively under lab conditions. In addition, no published studies, to the best of the author’s 

knowledge, provide comprehensive comparison of sensor performance across a range of commercial 

metal oxide semiconductor sensors in ambient air environment. The impacts of environmental 
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conditions and pollutant concentration on sensor performance and the variability between sensors of 

the same type need to be characterized in more detail. The variability between sensors has a large 

impact on calibration model performance, but its characteristics and causes have not been explored in 

the literature in a comprehensive manner. In addition, the extent of correlation of sensor response 

between different types of sensors and between sensors and pollutants has not been described in the 

literature. The characterization of correlations (i.e. spread, slope, intercept) can give insights into the 

cross-responsiveness of sensors, how it varies with environmental conditions and the suitability of 

specific sensors as predictors for target pollutants. In addition, literature review has not revealed any 

studies characterizing sensor response distribution. A detailed analysis of sensor distribution is needed 

to better understand the dynamic range of sensor response and how it varies with environmental 

conditions. 

 

2.2 Development and evaluation of calibration models for low-cost AirSENCE devices 

 

2.2.1 Calibration methods 

 

As indicated earlier, inherent variability of low-cost sensors makes it necessary to conduct extensive 

calibrations prior to using the devices for monitoring air quality. Several recent studies have compared 

different calibration approaches and proposed new and innovative calibration methods that save costs 

and improve performance (Appendix 1: ). The performance of collocation calibration and lab calibration 

was compared for a custom low-cost air quality monitor for CO, O3, NO2, total VOCs, and CO2 (Piedrahita 

et al. 2014). In addition to being time-consuming and expensive, lab calibration was found to exhibit 

higher measurement error due to narrow environmental variable space that can be generated under lab 

conditions, differences in composition of lab and ambient air as well as meteorological variability in 

ambient environments. However, collocation calibration also had some limitations, including lack of 

control over gas interferences, pollutant range and variation in temperature and humidity. These factors 

resulted in flatter and noisier calibration curves. The calibration of individual sensors and testing under a 

range of environmental conditions and air pollution mixtures in field was found to improve the 

performance. Model performance and assessment of diurnal trends was further improved when the 

calibration location and time were optimized to ensure the higher variability in the training dataset. 

Similar results have also been shown with volatile organic sensor array, where calibration with wider 

range of gas concentrations can lead to more a generalizable performance in response to new gas 
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mixtures (Rodriguez-Lujan et al. 2014). A semi-supervised calibration technique has been shown to help 

improve the performance of sensor array at classifying field samples of carbon monoxide, 

formaldehyde, and toluene samples, while reducing the time and cost of training the sensor array 

(Huang et al. 2016). 

Adaptive calibration approaches, where the calibration model parameters are continuously adjusted, 

have also been tested by several research groups. A continuous re-calibration approach for enhancing 

the quality of pollution measurements has been proposed and validated in field using ozone sensor 

measurements in a public transportation vehicle-mounted sensor network (Hasenfratz, Saukh, and 

Thiele 2012). The approach was found to significantly reduce sensor aging, cross-sensitivity as well as 

reduce the measurement error by a factor of ten. It was also least dependent on the amount of 

reference data, which is important for mobile networks where the location of reference stations and the 

mobile node schedule cannot be changed. On-the-fly calibration correction method exploiting periodic 

proximity between devices as well as reference monitors, was found to stabilize device readings and 

improve accuracy (Budde et al. 2013). However, more work is needed to automate sensor calibration 

and reduce the influence of environmental factors such as humidity and air pressure. A set of 

approaches related to adaptive calibration are calibration transfer approaches, where the calibration 

model is transferred between devices. Calibration transfer between devices can reduce cost, save time, 

improve mass production efficiency as well as reduce the requirement for recalibration of drifting 

sensor. However, large amount of mismatch between the response of sensor replicates makes the 

calibration transfer difficult. Several different calibration transfer methods were evaluated for gas 

sensor arrays (Fonollosa et al. 2016) and Direct Standardization was demonstrated to have the best 

performance both for transferring calibration between two different devices to reduce calibration costs 

and for the same device over time to mitigate drift. 

 

2.2.2 Performance metrics 

 

A major challenge in ensuring high performance air pollution monitoring at low cost is development of a 

generalizable set of metrics that can be used to validate device performance. Mean error and 

correlation to standard equipment are commonly used metrics to assess sensor performance, but they 

do not predict sensor performance in large-scale field applications and do not cover all aspects of 

possible differences between sensors and standard equipment as well as changes in performance over 

time. Other groups proposed an entirely new set of criteria that allows for a more holistic performance 
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assessment for a larger set of applications and environments (Robinson et al. 2017). The suggested 

criteria include 8 different metrics: 1) Root Mean Squared Error (RMSE), 2) Pearson correlation 

coefficient, 3) Kandel correlation coefficient, 4) Spearman correlation coefficient, 5) ability to locate 

pollution sources, 6) ability to represent the pollution level on a coarse scale, 7) ability to capture the 

high temporal variability and 8) metric reliability in space and time. The criteria were deployed for 

assessment of diverse set of gas and particle sensors across 8 cities in Europe and provided a unique 

information on sensor performance as well as a system to identify systematic and sensor-specific faults. 

For sensor arrays, the performance metrics can be more difficult to quantify since the component 

sensors often have different performance characteristics but are considered in combination for 

pollutant concentration assessment. A new approach for defining the limit of detection (LOD) for multi-

sensor systems has been found to provide more accurate comparisons between sensor systems by using 

a broader definition of noise (Fonollosa et al. 2014). The method considers the variability of the noise 

distribution with pollutant concentration and generates LOD for different concentration levels. The 

method is more generalizable to different types of noise and better captures the information contained 

in the analytical signals and prior knowledge, allowing for more accurate benchmarks of analytical 

systems. 

 

2.2.3 Pollutant model performance 

 

Several different low-cost air pollution monitoring devices have recently been described in the 

literature. Appendix 1 highlights some of the commonly-used commercially-available devices along with 

their performance metrics. Most devices based on electrochemical sensors for NO2 and O3 have been 

shown to have good linearity, detection limit under 10 ppb and response time under 2 minutes 

(Spinelle, Gerboles, and Aleixandre 2015). However, high cross-sensitivity between NO2 and O3 as well as 

humidity and long-term drift have significant effect on sensor response. A drift of over 6 ppb over a 

period of 3 months was observed. Combining the multiple sensor measurements with multivariate 

regression method had a positive effect on sensor performance, allowing for the data quality objectives 

of the European Directive for indicative methods to be achieved (measurement uncertainty of 30%). 

While some device sensors (i.e. CairClip NO2) have good linearity, repeatability and lack hysteresis, the 

sensor was shown to suffer from long-term drift and ozone interference (Spinelle, Gerboles, and 

Aleixandre 2013). Long-term ambient air calibration was needed to develop reliable models to estimate 

NO2. On the other hand, Cairclip O3/ NO2 sensor did not suffer from long-term drift. However, 
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calibration in field over a period of one week was still necessary for reliable performance. Field 

calibration was also found to be essential for measuring volatile organic mixtures using sensor arrays 

(Romain and Nicolas 2007). Recent multi-year, multi-city CAIRSENSE study provided an overview of 

performance of emerging ambient air quality devices measuring oxides of nitrogen, ozone, carbon 

monoxide, and particles under real-world conditions (Jiao et al. 2016). The study indicated high 

variability in correlation to reference monitors (r = 0.4 – 0.60) even for devices composed of identical 

sensors. 

 

2.2.4 Air quality index estimation performance 

 

Air quality indices can be used represent cumulative air quality sensor measurements and exposure. 

Sensor arrays have a potential to become useful platforms for quantifying air quality indices and their 

variation in space and time since they can be designed multiple air pollutants at once while maintaining 

low cost and small size that enable large scale deployment. Several studies have recently explored the 

performance of sensor arrays for quantifying air quality indices. Low-cost multi-sensor devices were 

integrated in distributed city-network and used to assess spatial variation in pollution exposure and EPA 

air quality index (AQI) (Penza et al. 2014). Long-term accuracy of the index as well as the individual NO2, 

CO and PM10 pollutant measurements was tested. The study demonstrated good performance of the air 

quality index estimates but a significant cross-sensitivity between nitrogen dioxide and ozone. The NO2 

sensor correlation coefficient was 0.79 for the correlation with NO2 analyzer and 0.83 for the 

combination output of O3 and NO2 analyzers. 

 

EPA air quality index (AQI) often tends to underestimate the air pollution and is subjective since it does 

not consider all health hazards (Sowlat et al. 2011). A novel air quality index based on fuzzy logic has 

been proposed to overcome these limitations and combine the criteria pollutant data (i.e. CO, SO2, 

PM10, O3, NO2) with organic pollutant data (benzene, toluene, ethylbenzene, xylene, 1,3-butadiene) as 

well as differential weighting factors. According to the case study conducted over a period of one year at 

5 different sampling stations, the index based on fuzzy inference proved to be a useful tool for ranking 

of air quality. A new Multipollutant-Multisite Air Quality Index has also been proposed as a better 

framework allows the comparison of air quality over time and across sites (Plaia et al. 2013). The index is 

derived through a two-step aggregation, using spatial PCA synthesis and pollutant synthesis across CO, 

NO2, PM10 and SO2 pollutants. The index was demonstrated to have multiple advantages, including 
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ability to account for the coexistence of multiple air pollutants, more consistent performance across 

space and time and reduced ambiguity (false positive). 

 

2.2.5 Summary 

 

In summary, a large range of air quality monitoring devices as well as regression methods and 

calibration approaches have been proposed in the literature and by commercial companies within the 

last 10 years. However, only limited data is available on the performance of models as a function of 

sensor type and number. In addition, more work is needed to compare the calibration models for 

different pollutants with respect to their accuracy, precision, linearity, inter-device variation and other 

calibration performance metrics. Analysis of causes for performance limitations would help identify 

opportunities for improvement. The comparison of performance between device replicates and with 

changes in pollutant concentration would also reveal insights regarding the best calibration approach for 

the AirSENCE devices. No research studies have analyzed the accuracy of multi-pollutant health indices 

(e.g. Air Quality Health Index), and their reliability with changes in environmental conditions. Most of 

the air quality studies that exist rely on calculating the index from the estimated pollutant 

concentration. Deriving the pollution indices using multivariate regression could lead to lower error and 

improved performance compared to calculation approach. However, to the best of author’s knowledge, 

no studies exist comparing the two approaches. 

 

2.3 Reliability of sensor device calibration models 

 

2.3.1 Impact of meteorological factors 

 

Impact of interferences can be a big challenge for accurate pollution monitoring. Some of the major  

factors influencing sensor response are meteorological factors, including changes in temperature and 

humidity (Williams and Kilaru 2014). For example, ozone sensors calibrated in a laboratory conditions 

were found to suffer from changes in temperature, the influence of which declined when the devices 

were calibrated with ambient air during field study (Gerboles and Buzica 2009). Humidity was also 

demonstrated to have large reducing effect on response of most commercial metal oxide sensors 

(Delpha, Siadat, and Lumbreras 1999). The assessment of CO, NO2 and O3 model performance has 
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indicated high sensor variability due to weather conditions and emission patterns (Castell et al. 2017). A 

linear dynamic model was proposed that describes the change metal oxide semiconductor sensor 

resistance as a function of gas concentration under known changes in temperature and humidity 

(Hirobayashi, Kimura, and Oyabu 1999). The effect of humidity is similar for different types of tin oxide 

sensors and can be approximated by exponential function for steady state response and linear function 

for dynamic response. Beyond just changes in ambient environment, the physical design of sensor 

device can exacerbate the impact of temperature and humidity on device performance. The air flow, 

material temperature dissipation and even sensor orientation can create issues with overheating, 

overcooling on condensation, which can impact sensor performance. Methods have been proposed for 

detecting anomalies in temperature distribution and correcting for them by optimizing the PCB and 3D-

printed case design, thereby improving device accuracy , by reducing the error to 2% (Salamone et al. 

2017).  

 

2.3.2 Impact of cross-sensitivity 

 

Cross-sensitivity is another major factor influencing sensor performance. Good performance in the 

laboratory is not indicative of a good performance under real-world conditions (Castell et al. 2017). Due 

to low measurement repeatability, individual sensor calibration as well as rigorous evaluation under a 

range of environmental conditions are needed. In many cases, interferences lead to a greater sensor 

response than the target pollutant (Lewis et al. 2016). While trace gases (i.e. CO2) generally have small 

effect on sensor response, the high concentration of these gases relative to target pollutant can still lead 

to large artefacts. Supervised machine learning approaches were shown to have better performance 

than standard individual parameter regression in correcting for the effect of interferences (Lewis et al. 

2016). Challenges remain in development effective strategies for sensor data quality control. A 

comprehensive calibration and testing in the presence of co-pollutants and interferences is important to 

correct for sub-optimal measurement but is lacking in the literature. 

 

2.3.3 Impact of drift 

 

While sensor arrays are often used to counteract selectivity and calibration issues, they require a period 

of calibration co-located with reference device to develop a calibration model. One of the key challenges 

is that the resulting model is often specific to calibration site and season, while gas composition varies 
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between sites and seasons, resulting in deteriorated performance over time. Temperature variation has 

been shown to be one of the factors contributing to sensor drift, by introducing shifts in dynamic 

features of sensor resistance and decreasing sensor stability (Abidin, Asmat, and Hamidon 2013). The 

changes in ambient and operating temperature were used to detect initial stages of sensor drift and its 

compensation. The impact of different causes on sensor degradation was compared for 8 different types 

of commercial metal oxide sensors incorporated in sensor arrays (Fernandez, Marco, and Gutierrez-

Galvez 2015). Electrical failure resulted in least degradation in sensor performance, followed by sensor 

poisoning, while sensor ageing had the worst effect on performance. Electrical failure and poisoning had 

the effect of bringing the sensor response to a fixed level, while sensor poisoning also introduced 

random noise. Both sensor redundancy and diversity were important for a sensor device to maintain 

discrimination capacity and be less prone to damage. 

 

2.3.4 Summary 

 

While temperature and humidity have been shown to have a large impact on sensor performance, the 

difference in their impact on performance parameters, such as sensitivity, baseline and inter-device 

variation has not been explored in detail. Most of the existing studies that explore the impact of 

temperature and humidity on sensor performance do not consider their impact in long term and in the 

context of ambient air. It is important to characterize the types and magnitude of interferences as well 

as their impact on observation uncertainty. Quantification of the change of specific performance metrics 

for each environmental factor and their relative impact on accuracy can help better understand the 

various components of sensor response, calculate measurement confidence to flag the faulty 

measurements as well as develop methods for correcting the sensor response. Comparison of the 

pollutant models with respect to the influence of interferences in ambient air can also help understand 

the expected level of uncertainty for each pollutant for a specific type of site as well as the return on 

investment on adding a capability of monitoring an air contaminant to a device. The magnitude of the 

impact of interferences can also help predict how well a device will perform at a site with different 

pollutant mixture. The accuracy of calibration models should be validated at several sites with different 

levels of air pollution and types of air pollutant mixtures. Validation of device accuracy at several sites as 

well as ranking of models based on the extent to which their performance is generalizable to different 

combinations of interferences can help better prioritize the sensor maintenance and analysis. 

Another key aspect of sensor device model performance that needs further exploration is drift. While 

drift in baseline has been explored in several research studies, the drift in sensitivity has received 
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relatively little attention in the literature. In particular, more studies are needed for quantifying the rate 

of drift over time to better understand when the devices need to be re-calibrated or replaced. The 

evaluation of the impact of drift on regression model parameters would help develop correction factors 

to extend the useful lifetime of sensors in field. In addition, the evaluation of the impact of drift on the 

inter-device variation can help understand the extent to which spatial variation can be quantified by 

sensor device networks. 

 

2.4 Approaches for improving calibration model performance 

 

Three types of approaches have been proposed in the literature for improving sensitivity and selectivity 

of AirSENCE devices: 1) physical modification approaches, 2) operational approaches, 3) statistical 

approaches (Table 5) (Theunis, Stevens, and Botteldooren 2017; Kumar et al. 2016). Physical 

modification approaches include gas pre-concentration, removal of interfering gases through scrubbers 

and filters and development of sensor arrays. Operational approaches include thermal cycling and 

modulation of the airflow speed. Statistical approaches include sensor response transformation, the use 

of nonlinear regression models, reconstruction of sensor signal from noise and optimization of the 

training dataset. Several approaches have been proposed in the literature for improving the sensitivity 

and selectivity of sensors (Barsan, Koziej, and Weimar 2007; Liu et al. 2012) but this area is still a subject 

of ongoing research. 

 

Table 5. Methods for improving sensitivity and selectivity of gas sensors. 

Approach Impact on sensitivity Impact on selectivity 

Physical modification approaches 

Pre-concentrator 

(an add-on to sensor 

chamber that provides 

controlled adsorption 

and release of gases) 

Enables an increase in target gas 

concentration 

Pre-concentrator can be designed to 

be selective 

Scrubber 

(an add-on to sensor 

chamber that removes 

Removal of interferences can 

improve signal-to-noise ratio for 

detection of target analyte 

Removal of interferences improves 

detection selectivity 
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select gases from the 

air) 

Sensor array 

(a combination of cross-

responsive sensors) 

Sensor redundancy can improve 

sensitivity by increasing the 

signal-to-noise ratio 

Provides multi-dimensional 

signatures; corrects for variation in 

temperature and humidity; improves 

overall performance when target 

gases have different optimum sensing 

conditions 

Operations approaches 

Thermal cycling 

(operation of sensors 

using a controlled 

heating cycle) 

Improves sensitivity for gases 

with different optimum sensing 

temperatures 

Improves selectivity for gases with 

different optimum sensing 

temperatures 

Modulation of airflow 

speed 

(control of airflow 

through the sensor 

chamber) 

Faster air exchange range 

improves sensitivity towards fast-

changing sources 

- 

Statistical approaches 

Signal transforms Improve linearity and sensitivity 

for a greater range of pollution 

concentrations 

- 

Nonlinear regression 

models 

Improve linearity and sensitivity 

for a greater range of pollution 

concentrations 

Can improve performance through 

interference correction 

Reconstruction of data 

from noise 

Improves sensitivity by reducing 

the impact of interferences 

(baseline shifts, cross-sensitivity, 

aging) and improves performance 

Improves selectivity by reducing the 

impact of interferences (baseline 

shifts, cross-sensitivity, aging) and 

improves performance 

Training dataset 

optimization 

 

Improves sensitivity by training 

on a dataset with a greater range 

of pollutant concentration levels 

Improves selectivity by training on a 

dataset with a greater range of 

interferences 

 



24 

 

2.4.1 Physical and operational approaches 

 

The sensitivity and selectivity of metal oxide gas sensors can change significantly when sensors are 

operated at a different temperature (Fonollosa et al. 2013). The modulation of working temperature of 

metal oxide sensors has been a popular method for improving the accuracy of discriminating and 

quantifying gas mixtures using sensor arrays, while reducing the effects of noise and nonlinearity 

(Vergara et al. 2005). Periodic heating and cooling of the metal oxide surface alters the kinetics of 

diffusion and reaction processes of the gas on sensor surface. Combining temperature modulation with 

global feature extraction method has led to improved device accuracy, reduced measurement time and 

power consumption (Vergara, Martinelli, et al. 2007; Vergara, Llobet, et al. 2007). Novel sensing 

approach that makes use of a single gas sensor and an algorithm that classifies sensor response kinetics 

has been proposed. The system can identify chemicals accurately regardless of their concentrations and 

is able to estimate concentrations of the analytes, while reducing the complexity of hardware and 

software. A new methodology was proposed for selecting the optimal operation temperature for each 

sensor in a gas sensor array based on a combined index of performance (Fonollosa et al. 2013). The 

method provided precise information on the ability of the sensor array to discriminate organic 

compounds based on the temperature of component sensors. New metal oxide sensor active sampling 

microchambers were proposed as a method to better control gas depletion reactions to identify 

individual pollution species in gas mixtures and detect ambient pollutant levels (Becker et al. 2000).  

In addition, the design of sensor chamber and air sampling system were found to impact the device 

performance. Smaller sensor chambers with hydrophobic walls, higher operation temperatures and 

active sampling were shown to increase the speed of analysis and sensitivity while allowing for 

calibration and self-test features that reduce drift and improve performance. The design of better 

calibration and validation protocols that acknowledge both the advantages and the limitations of 

commercial sensors has been highlighted by several recent publications as the subject of future work 

(Lewis and Edwards 2017).  

 

2.4.2 Statistical approaches 

 

Several interesting approaches have been proposed in the last few years for sensor optimization using 

statistical methods. In particular, nonlinear regression models have recently become more common for 

processing sensor data. The performance of linear, multilinear and artificial neural network (ANN) 
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calibration models was compared for a sensor array of ozone, nitrogen dioxide, carbon dioxide and 

carbon monoxide sensors (Spinelle, Gerboles, and Aleixandre 2015). Two-week calibration and five-

month testing revealed that simple multi-linear regression was sufficient for ozone estimation, while an 

ANN model was needed for estimation of NO2, NO, CO and CO2. ANN with multiple sensor predictors of 

mixed types (metal oxide, electrochemical, optical) showed the highest correlation with reference 

measurement and the lowest bias, while correcting for cross-sensitivity issues. ANN was able to also 

correct for temperature and humidity interference for NO2 and CO2 without the need for temperature 

and humidity sensors, although these were required for NO and CO models. Neural network ensemble 

and dynamic ensemble integration have recently been proposed for online concentration estimation of 

formaldehyde, benzene, toluene, and carbon monoxide using a metal oxide sensor array (Kadri et al. 

2013). Sensor fusion algorithms based on neural networks and support vector machines have also been 

proposed for continuous monitoring and identification of NO2– NH3–humid air mixtures (DeVito et al. 

2007). Analysis of short term sensor response dynamics was used to correct for poor stability and 

selectivity of sensors. In a different study, independent component analysis (ICA) was used to 

differentiate and remove the temperature and humidity influence on the data, leading to 20% 

improvement in classification accuracy (Di Natale, Martinelli, and D’Amico 2002). The proposed method 

was also found to reduce disturbance from environmental parameters without directly measuring them. 

The performance of a two-dimensional classifier ensemble has been demonstrated over a period of 3 

years (Liu, Chu, and Tang 2015). The method has been shown to have a good long-term performance 

and independence of gas concentration. A metal oxide sensor array was combined with a fuzzy-logic 

algorithm to identify, discriminate and quantify low levels of carbon monoxide and nitrogen dioxide in 

mixtures with relative humidity and volatile organic compounds, while ensuring selectivity required for 

indoor air quality applications and HVAC control (Zampolli et al. 2004). A new method for monitoring 

and forecasting ozone, nitrogen dioxide, and sulfur dioxide using low-cost array of gas and 

meteorological sensors has been demonstrated (Shaban, Kadri, and Rezk 2016). Three machine learning 

algorithms were evaluated for accuracy in using historical data to predict pollutant levels 1-24 hours into 

the future. It was found that the decision tree-based M5P model produced the most accurate and 

generalizable performance, SVM was adaptable to high dimensional data but showed mediocre 

performance, while ANN achieved the worst performance because of its tendency to overfit and poor 

ability to generalize when working with a relatively small training dataset. Multivariate modeling, where 

pollutant, meteorological and temporal variables were combined, was found to enhance prediction 

accuracy because of interdependence of the captured variables. 
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2.4.3 Impact of training data 

 

Several studies have also explored the impact of training data and calibration model transfer on 

regression model performance in field. Neural network regression applied on a metal oxide sensor array 

was used to detect CO, NO2, NOx and benzene (DeVito et al. 2009). Two-week field calibration was 

sufficient to ensure consistent performance. A different neural network model trained for one week on 

a sensor array with field data was found to accurately estimate benzene for over 6 months (DeVito et al. 

2008). Training period greater than 25 days further improved model performance, reducing benzene 

overestimation. However, seasonal variation impacted long-term model performance, reducing the 

model accuracy at low benzene levels. A method for transferring calibration models between metal 

oxide sensor array devices designed for monitoring volatile organic compounds has been demonstrated 

(Fernandez et al. 2016). The comparison of four different calibration techniques lead to selection of the 

Piecewise Direct Standardization method that is least sensitive to the variations in the working 

temperature and leads to the best predictive performance. 

 

As described in Table 3, sensor signal is often composed of a number of different components. Some 

researchers have indicated good results with dynamic multivariate modeling approaches. For instance, 

dynamic neural networks have been combined with multi-sensor devices to reduce the influence of 

cross-sensitivity on NO2, NOx and O3 concentrations estimated by AirSENCE devices (Esposito et al. 

2016). Dynamic neural networks work by exploiting sensor response dynamics and rapid transients to 

improve accuracy and reduce uncertainty of model output. The method has been shown to achieve 

significant reduction in estimation error for all target pollutants, particularly when the target gas 

concentration is rapidly changing. A novel technique has been proposed to reconstruct signal from 

Poisson noise to compensate for dynamic and systematic errors (Budde, Köpke, and Beigl 2015). The 

technique is robust against offset, drift and some types of cross-sensitivity. It can also be applied in post-

processing and doesn’t assume any prior knowledge about time since calibration and the extent of drift. 

It is therefore suitable for use by non-expert users and analysis of publicly-available datasets. However, 

some of the challenges of the method include large amount of cross-sensitivity that is similar in 

frequency to signal and high frequency variation in systematic error.  

 

2.4.4 Drift compensation 
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Drift over time is another major drawback of low-cost sensors and has been an active subject of several 

different research studies with a number of different drift compensation approaches being proposed in 

the literature. A simple and robust algorithm has been successfully demonstrated to compensate the 

drift in an array of commercial metal oxide sensors. The algorithm makes use of curve fitting of the 

temporal variation of the sensor signal to describe the temporal drift and is suitable for real-time drift 

compensation applications (Haugen, Tomic, and Kvaal 2000). An energy-efficient data mining algorithm 

based on random forest ensemble learning and feature selection has been proposed to tracking gas 

sensor array drift (Alwadi and Chetty 2015). The advantages of the method include lack of assumptions 

and physical analysis needed as well as adaption to system parameters reducing the need for 

interrupting system operation during sensor response adjustment. A novel methodology based on 

multiple kernels was proposed for increasing the robustness of sensor arrays against sensor failures as 

well as extending sensor array device lifetime (Fonollosa, Vergara, and Huerta 2013). A dynamic drift 

tracking and reduction system using adaptive estimation algorithms has been proposed and 

demonstrated to perform well in situations where traditional pattern recognition techniques have failed 

(Holmberg et al. 1997). 

 

2.4.5 Summary 

 

Optimization of AirSENCE devices to improve sensitivity, selectivity and long-term performance is an 

active area of research. However, there are still several research gaps. While nonparametric regression 

models have been shown to yield better performance with non-linear sensor response, their training is 

often computationally expensive and requires a highly variable training dataset. A more detailed analysis 

is needed to compare the performance of standard parametric regression approaches with alternative 

regression methods, such as neural networks and support vector machines. In particular, a comparison 

of parametric and nonparametric approaches for the full range of pollutants of interest and for a range 

of pollutant levels across different sites would be very beneficial for selection of an optimum data 

analysis pipeline. In addition, a number of data processing methods are available that improve the 

performance of nonlinear sensor models while maintaining the analysis simplicity of linear regression. 

For example, variable transformation approaches are promising, but have received relatively little 

attention in the literature. In addition, development of multi-component regression, where a separate 

model is built for different pollutant concentration ranges, is another promising approach that needs to 

be tested.  Furthermore, the following research topics need further exploration: 1) the impact of 



28 

 

training data subset characteristics on calibration model performance, 2) the techniques for adjusting 

sensor response for interferences, and 3) the techniques for resolving sites during the analysis of spatial 

variation of pollution. For example, a comparison of the performance of calibration models trained at 

sites with high, medium and low pollution levels would help design better device calibration protocols. 

Finally, the extent to which long-term historical training data can be used to improve model 

performance should be investigated in more detail as this would also be another important 

consideration for optimization of calibration protocols. 

 

2.5 Evaluation of temporal patterns using low cost AirSENCE devices 

 

2.5.1 The importance of temporal pattern analysis 

 

Air pollution is known to be highly variable both temporally and spatially, while urban exposure is 

characterized by highly variable time-activity patterns (Steinle, Reis, and Sabel 2013). Therefore, high 

time resolution monitoring is important for reliable exposure assessment (Kumar et al. 2016). Fast 

response of many low-cost sensor technologies has enabled a variety of new air pollution analysis 

applications, such as traffic emission factor analysis, commute exposure monitoring and real-time 

sensor networks (Fuertes et al. 2016). They were also used to enable gas source localization and 

distribution mapping(Monroy, Gonzalez-Jirenez, and Blanco 2012). High frequency sensor-based 

monitoring device mounted on an unmanned aerial vehicle was used for identification and 3D mapping 

of pollution sources (Malaver et al. 2015). One of the limitations of such studies has been the 

stabilization time of metal oxide semiconductor sensors3. However, studies on transient feature analysis 

has provided a way to expedite pollutant quantification and classification while ensuring the stable 

performance (Muezzinoglu et al. 2009). The use of transient features has an added advantage of 

providing power savings and resulting in predictor features that are less affected by drift and other 

interferences. The temporal variation patterns detected by sensors have been shown to be key for 

spatiotemporal deep learning-based air quality prediction models, which have been shown to have 

superior performance and temporal stability (Li et al. 2016). The time series sensor data combined with 

temporal pattern visualization techniques were found to reveal unique patterns and relationships 

                                                      
3

 After the sensors have been turned off, they need time to stabilize as the metal oxide semiconductor heats up 
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between air quality, wind direction and other meteorological factors (Du et al. 2017). The changes in 

temporal patterns have also been used for early failure detection (Wu and Song 2013) and long-term 

drift prediction and compensation (Zhang et al. 2013). High resolution AirSENCE devices can improve 

accuracy by identifying outliers, while providing an early warning system to help reduce exposure to air 

pollution (Yu and Lin 2015). Portable sensor platforms have been proposed for collecting real-time data 

on public transport and as part of citizen-driven pollution sensing (Devarakonda et al. 2013). While the 

device temporal resolution was sufficient to track exposure, more work is needed to develop reliable 

calibration protocols. 

 

2.5.2 Summary 

 

As shown above, a number of studies have explored the applications of high time resolution signal 

processing provided by sensor arrays for air quality monitoring and exposure assessment. However, 

more detailed analysis of the ability of AirSENCE devices to monitor both short-term and long-term 

temporal patterns is needed. Temporal patterns are key for understanding the characteristics of 

sources, their variation in space and their influence on exposure. The variation in peak magnitude, 

timing and frequency could be informative of local sources and emission factors but is often lost during 

temporal averaging in air quality studies. Comparing temporal patterns for different pollutants could 

reveal the characteristics of traffic at the site as well as help validate the accuracy of the device. For 

example, the analysis of CO relative to NOx could suggest temporal variation in gasoline, diesel and 

other types of combustion source emissions. However, such analysis is lacking in the literature. 

 

2.6 Evaluation of spatial patterns using low cost AirSENCE devices 

 

2.6.1 The importance of spatial pattern analysis 

 

Research studies have repeatedly shown strong dependence of ambient urban air pollution levels on 

local emissions and meteorology resulting in strong spatial and temporal gradients (Borge et al. 2016). 

Therefore, high density air quality monitoring is essential for full understanding of sources and spatial 

distribution on air pollution. Reviewers suggested that while low-cost sensors enable high spatial 

resolution monitoring, the cost of sensor network installation, maintenance and data analysis will likely 
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exceed the cost of AirSENCE devices themselves. Therefore, we also need to develop better approaches 

for optimizing sensor networks and the design of data analysis pipelines (Kumar et al. 2015). 

A number of research studies have explored the use of low-cost sensors in high density networks. A 

network of low-cost particulate matter sensors was used to identify the city air quality patterns and 

hotspots, effectively  supplementing existing city air quality networks (Gao, Cao, and Seto 2015). A high 

density continuous air quality monitoring network was used to map air pollution exposure and develop 

a new algorithm to suggest routes that help reduce exposure (Hasenfratz et al. 2015). The high spatial 

resolution data was used to develop land-use regression models and continuously improve their 

accuracy using historical measurements. The intra-site variability and contributions of large emission 

sources as well as local activities were effectively detected by dense low-cost sensor networks, which 

were shown to have comparable performance in resolving spatial variation as standard monitor 

networks (Miskell, Salmond, and Williams 2017). Other studies have demonstrated that while sensor 

networks can detect spatiotemporal variation at sub-neighborhood spatial scale, frequent field 

calibrations are required to ensure sensor consistency (Moltchanov et al. 2015). A new method for 

optimizing sensor networks to improve the precision of air quality monitoring while reducing the cost 

has also been proposed (Boubrima, Bechkit, and Rivano 2016). The model incorporates sensor drift and 

weather conditions to select sensor locations such that the quality of air pollution estimation 

interpolated between the sensor nodes is maintained. The model was evaluated in Lyon city and was 

found to perform 3 times better then random and uniform deployment. 

 

2.6.2 Summary 

 

Assessment of spatial variation of air pollution is one of the most common applications of low cost 

sensors. However, there are several research topics that would benefit from more attention. First, the 

spatial variation in pollutant levels measured by AirSENCE devices needs to be validated in a more 

comprehensive manner during sensor network studies. This can be done by deploying the AirSENCE 

devices at existing government pollution monitoring sites. In addition, most studies in the literature 

assess the spatial variation in average levels primarily. However, pollution peak levels (i.e. top 5% of the 

pollutant concentration distribution) could be more informative of the local sources and provide a 

better means of comparison between sites. Another key gap in the literature is the lack of availability of 

comparisons between different types of pollutant models in terms of their ability to resolve differences 

between sites. The dependence of the differences between sites on the amount of traffic is another key 
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area of interest, since it is expected that the differences between sites are likely to be mostly caused by 

local pollution sources. In addition, analysis of the dependence of the differences between sites on the 

wind direction, time of the day and day of the week could be informative for design of better study 

protocols. Low-cost sensors are known to suffer from cross-sensitivity and lack of linearity, which could 

be affecting the analysis of spatial distribution of air pollution. Therefore, another key area that needs 

further analysis is the impact of nonlinear models and sensor response transformation on the accuracy 

of spatial variation analysis. 

 

2.7 Evaluation of pollution sources using low cost AirSENCE devices 

 

2.7.1 Low cost AirSENCE devices as a method to characterize air pollution sources 

 

Due to the ubiquity of most air pollutants, identifying specific sources and comparing the relative 

quantities of pollutants emitted from these sources can be challenging. Source apportionment is 

essential for development of strategies to control and eliminate emissions (Leoni et al. 2018; Zhang et 

al. 2018). Complex receptor modeling and expensive long-term air quality monitoring studies have been 

undertaken to attempt linking air pollutants to their corresponding sources (Ou et al. 2018).  Sensor 

arrays can facilitate automated and potentially much simpler strategies for source apportionment 

through analysis of the pollutant mixture response of the sensor array.  

 

A number of studies explored the use of low cost sensors to classify pollution sources. Vehicle-mounted 

sensors have been used to detect and identify urban pollution hotspots such as gas pipeline leaks (von 

Fischer et al. 2017). A mobile sensor device combined with inverse modelling algorithm and urban 

building models was used locate outdoor pollution sources with minimal model training (Xue and Zhai 

2017). A semiconductor array composed of 9 commercially available sensors was used to estimate 

pollution severity and classify sites using categories “urban”, “traffic” and “photochemical pollution” 

with a success rate of 80% (Barakeh et al. 2017). A calibration and normalization method, employing 

Neural Network and “fuzzy logic” algorithms, was used to overcome drift and inter-array reproducibility 

issues. Another study has been conducted to evaluate the applications of gas sensors for monitoring 

indoor air quality events and interventions, but was shown to have limited capacity to resolve complex 

organic mixtures at low concentration levels (Caron et al. 2016). Studies assessing higher concentration 

mixtures, such as combustion sources, have indicated more promising results. Analysis showed that 

differentiation of gasoline or diesel fuel emissions is possible using sensors combined with multivariate 
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statistics (Schutze 2008). Furthermore, low-cost sensors were used to calibrate city traffic-related air 

pollution models (Seto et al. 2014). Methods for estimating emission factors using low cost particulate 

matter sensors across a wide range of pollutant concentrations have been proposed (Johnson et al. 

2016). However, additional work is still needed to characterize the sensor performance under a wide 

range of environmental conditions as well as improve the accuracy in under higher levels of relative 

humidity. 

 

One of the biggest challenges in air quality monitoring and pollution source analysis studies using low 

cost sensors is selecting the right sensors and ensuring sufficient data quality for the target application. 

While regulatory monitoring requires high level of precision and accuracy, useful information can still be 

generated for supplemental monitoring or hotspot identification application even when the regulatory 

performance metric goals cannot be achieved (Table 6). 

 

Table 6. Application requirements for air quality monitoring devices (adapted from Williams and Kilaru 

2014). 

Application area Pollutants Precision 

and Bias 

Error 

Data 

Completeness4 

Rationale (Tier I-IV) 

Education and 

Information 

All <50% ≥ 50% Collect evidence that the 

pollutant exists in some wide 

range of concentration. 

Hotspot 

Identification and 

Characterization 

All <30% ≥ 75% Show that the pollutant of 

interest exists at a concentration 

that is close to its true value. 

Supplemental 

Monitoring 

Criteria 

pollutants, 

Air Toxics 

<20% ≥ 80% Provide additional air quality data 

to complement existing monitors. 

Personal 

Exposure 

All <30% ≥ 80% Understand factors influencing 

personal exposures at precision 

and bias errors that are 

                                                      
4

 Data Completeness - amount of data that was obtained, compared to the amount that was expected 
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representative of those reported 

in the scientific literature. 

Regulatory 

Monitoring 

O3, 

CO, SO2, 

NO, PM2.5, 

PM10 

<7% 

<10% 

<15% 

<10% 

≥ 75% Ensure high quality data is being 

obtained to meet regulatory 

requirements 

 

2.7.2 Summary 

Several different research groups have proposed new methods for assessment of pollution sources using 

low cost sensors. Progress has been made in attributing sensor response to various source 

characteristics. However, there are still several research areas that need to be explored in more detail. 

The temporal variation in air pollution consists of several different components that can be attributed to 

different types of sources. However, the feasibility of using the local traffic component as a proxy of 

local traffic emissions has not been validated. In addition, more research is needed to assess the 

differences in relative contribution of local component of sensor response relative to background 

component for traffic related pollutants across a range of sites. This type of information would be useful 

for ranking sites based of the local pollution and source contribution. Multi-pollutant monitoring 

capability of sensor arrays is promising for understanding the emission profiles of sources. In particular, 

correlations between pollutants could reveal source composition, but the use of multi-pollutant 

correlations as a method to resolve source profile is yet to be explored. Wind direction can also be 

combined with sensor array data to provide further information regarding the likely local sources. 

However, few long-term studies made use of wind data to understand the impact of local sources on 

sensor response as well as compare sites with respect to contribution of traffic emissions. Furthermore, 

temporal variation in raw sensor response has a potential to reveal the information on pollution sources 

directly, bypassing the additional errors associated with regression models. However, the feasibility of 

this approach has yet to be evaluated. 

 

2.8 Literature review summary 

 

There is a lot of potential for high density networks of low-cost sensor  devices to drive policy change an 

improve public health (Reis et al. 2015). Low-cost sensor technologies create capacity for monitoring of 

more air contaminants at higher temporal and spatial resolution compared to traditional approaches. As 

a result, they can provide unique insights into the pollution sources and variation of air pollution in 
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space and time. However, there is often a tradeoff between data quality, deployment density and cost 

(Figure 5). Some of the major challenges identified include questionable data quality, lack of 

characterization of commercially available sensors in ambient conditions (Snyder et al. 2013) and lack of 

detailed sensor drift assessment (McKercher, Salmond, and Vanos 2017). The implementation of quality 

control procedures would be a key priority moving forward, as is the development of standard 

guidelines and protocols for sensor evaluations based on their intended applications (Wang and Brauer 

2014). 

 

 

Figure 5. Trade-off between data quality, deployment density and cost (inspired by Snyder et al. 2013). 

 

The literature review shed light on several key research areas that need to be explored in more detail 

(Figure 6), which can be sub-divided into three research fields (i.e. sensors, environment and actionable 

insights) as well as three additional topics at the intersection of these fields (i.e. sensor selection, 

calibration and correction). Major areas of interest in sensor performance assessment include sensor 

cross-responsiveness, repeatability in different environments and drift over tie. With respect to impact 

of the environment, assessment of the impact of temperature, humidity and interferences need further 

assessment. Furthermore, opportunities remain to develop better methods for using sensor data to 

derive actionable insights (i.e. source control, exposure reduction and city planning). Given their large 

impact on sensor response, a comprehensive assessment of the impact of environmental factors is key 

for developing calibration protocols for low-cost AirSENCE devices. A detailed understanding of the 

impact of temperature and humidity as well as interferences on sensor performance is needed for 

development of better methods for understanding measurement uncertainty and correcting sensor 

response. More studies investigating the variation in sensor performance across a range of locations 
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with different pollutant levels and source profiles would be key for accomplishing this goal. Investigation 

of sensor performance across a range of sites would also help quantify the impact of calibration data on 

sensor response and will be key for designing better sensor maintenance protocols and calibration 

methods that lead to more generalizable calibration models. Regression techniques used for deriving 

calibration models could also benefit from more detailed assessment. In particular, a comparison of 

nonlinear and linear regression models as well as different variable transforms could help identify 

optimum methods for specific types and combinations of sensors. Comparison of regression methods 

for deriving cumulate health indices using low-cost sensor measurements could help develop more 

robust approaches for quantifying Air Quality Health Index. Further investigation of temporal sensor 

response patterns would help reveal new insights in level and characteristics of pollution sources, while 

also helping understand the causes for sensor drift and suggest methods that could be useful for 

correcting sensor response. 

 

Figure 6. Overview of the three core areas in need for further research. 
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3 Methodology 

 

The design and development of AirSENCE devices was conducted in modular manner and involved 

several key components. Sensor array printed circuit boards (PCBs) were designed in parallel with the 

data logging system and power supply PCBs and were integrated into a PCB assembly for each device. All 

the electrical components were contained in an enclosure which was designed to ensure optimum air 

sampling while reducing issues that are known to impact sensor response, such as the impact of 

humidity, overheating, contamination as well as uneven airflow dynamics. Once the devices were 

developed, they were calibrated and tested. Indirect calibration method was used, where the devices 

were calibrated by cross-comparison with reference equipment. Finally, the devices were validated and 

optimized in field during 3 sensor network campaigns carried out over the period of 5 years in Toronto.  

 

3.1 AirSENCE device design 

 

As highlighted in the literature review, very limited data is available on the evaluation of performance of 

pollutant calibration models as a function of sensor type or number (Section 2.1.4). A more 

comprehensive comparison of sensor performance across a range of commercial sensors is needed for 

designing an optimum sensor array for ambient air monitoring applications. Therefore, one of the goals 

of sensor device design was the setup of a reproducible platform for testing a wide array of different 

types of sensors prior to selecting a subset to be used in the models. Another key priority was evaluation 

of the sensor variability. To this end, several replicates of the device needed to be assembled to verify 

that the sensor response was comparable and correction factors were developed if needed. Finally, the 

analysis of different models of sensors was also important for understanding of sensor stability and 

sensitivity to interferences and drift. For example, as shown in the literature review, temperature and 

humidity are known to have a large impact on sensor performance and can contribute to drift (Section 

2.3.1). The design of sensor enclosures needed to be such that the air sampling is consistent and 

representative of ambient air, while the impacts of temperature and humidity are minimized. Several 

devices were designed and tested over the duration of the project. Sensor array device design (Figure 7) 

consisted of the following four components: 1) enclosure and air circulation system, 2) data logging 

system, 3) power management system, and 4) sensor array system.  These four components were 

developed and improved upon over the course of this PhD project. Several key target attributes were 

identified for each of the device components based on literature review and initial prototyping (Table 7). 
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The overview of system design is provided in Figure 7 and detailed design overview is provided in 

Appendix . 

Table 7. Key attributes of AirSENCE device deign. 

System component Target attributes 

Enclosure and air 

circulation system 

• Fast air exchange 

• Consistent air sampling across all sensors 

• Minimized influence of weather, temperature and humidity 

Data logging 

system 

• Modular design for easy exchange of components 

• Removable data storage system 

• Flexibility in integrating additional capabilities (i.e. RF communication) 

Power 

management 

system 

• Adjustable voltage output between 2.5 and 8V required by the sensors 

• Stable power supply with low noise level 

• Modular design for easy replacement 

Sensor array 

system 

• Consistent sampling across sensors 

• Flexible connector system for easy exchange of sensors 

• Minimized thermal noise 

 

 

 

Figure 7. Diagram of AirSENCE device design. 
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3.1.1 Enclosure and air circulation system design 

Over the course of the thesis project, several versions of AirSENCE devices were assembled. They were 

tested in different micro-environments such as indoor, outdoor and public transportation. The testing 

results provided insight into some of the challenges and tradeoffs for reliable monitoring air pollution in 

field. For example, exposing sensors to direct airflow improves the ability to detect high frequency 

variation in pollution levels but often results in a reduced sensor lifespan due to direct exposure to 

humidity and particulate matter suspended in the air. Other challenges included uneven airflow 

distribution, thermal noise and interferences. An overview of the challenges and design process is 

provided below, and a detailed overview of the design is provided in Appendix 2: Design for the 

AirSENCE sensor device. 

 

3.1.1.1 Airflow dynamics and sensor distribution 

 

Active air exchange is one of the most common type of air sampling in air quality monitoring field 

(Arfire, Marjovi, and Martinoli 2016). Active air sampling has benefits and drawbacks. While fans 

consume significant amount of power, they can reduce residence time and therefore increase sensor 

device sensitivity for detecting high frequency variation in air pollution. It is important that airflow 

through the sensor array is fast but sufficiently mixed to ensure that the sampled air mass is 

homogenous and representative of the ambient air. Therefore, a fan was used in AirSENCE devices for 

air exchange. In addition, the sensor array enclosure was designed to optimize performance. A vertical 

tube-like design was chosen to ensure laminar airflow and even air distribution while minimizing the 

impact of humidity and the contamination of gas sensors with residual particulate matter in the air. In 

this tube-like arrangement, air was sampled from the lower part of the device, pulled through the 

sensing chamber and exhausted in the upper part of the device (Figure 7). The air exchange inside the 

device was generated by two low-power fans in the top section of the enclosure. Even when the fans 

were turned off, low level of air exchange was still maintained as a result of convection generated by the 

heat gradient created by catalytic heating modules built in gas sensors. Airflow considerations have also 

informed the sensor placement for particulate matter sensors. Unlike gas sensors, they needed to be 

placed close to inlet to minimize particle losses due to impaction on the walls of the enclosure. In 

addition, particulate matter sensors were required to have a very specific orientation and position 

within the device to ensure continuous air flow through the optical chamber (Figure 7). Therefore, 
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special attachment points were designed for them in the lower part of the device directly in front of the 

inlet. 

 

3.1.1.2 Overheating 

 

Metal oxide gas sensors have built-in catalytic heating modules, which need to be operated at 200-

300oC. Due to the large array of sensors tested, thermal noise due to the overheating of power lines was 

a concern. To protect microcontroller and sensitive ICs from overheating, while maintaining compact 

design for portability, a 2-layer container system was designed. A vertical tube-like enclosure allowed us 

to use the sensor heating to our advantage, creating convection as an additional mechanism for air flow 

through the device. The sensitive integrated circuits and microcontroller were physically separated from 

the high-temperature components and sensors using an additional compartment in the lower part of 

the device. The locations of sensors on the sensor PCBs was also chosen such that the thermal 

distribution and power consumption is balanced as much as possible to avoid high current in the power 

lines and thermal noise in signal paths. In addition, temperature and relative humidity sensors needed 

to be positioned further away from the heated MOS sensors so that they could be exposed to the same 

air mass but be protected from heating. 

 

3.1.1.3 Interferences 

The impact of dust, interferences and contaminants was another key challenge that needed to be 

addressed when designing the sensor enclosure. A large amount of dust accumulated inside the device 

when it was deployed for long periods of time outdoors. To reduce the impact of dust and insects, a 

mesh screen was set up on the inlet of the device. This screen could also be optionally converted to an 

impactor assembly if removal of larger particles was needed. Sensors were distributed on the PCBs such 

that the sensors for monitoring pollutants with similar redox chemistry are close to each other. This 

setup reduced the impact of pollutant depletion processes resulting from gas catalytic reactions (Figure 

3) and ensured the data was consistent.  

The stability of enclosure material and the potential interactions between the surface of the material 

and sampled air mass was another challenge. Although plastic was the preferred material for prototype 

development due to light weight and durability, there were some concerns that it could be off-gassing 

volatile organic compounds at high temperature generated by the gas sensors and interfering with the 
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sensor response. To address these issues, customized aluminum enclosure was designed. As a result, no 

additional waterproofing was needed. During the SCULPT 2013 summer campaign, the devices were 

placed on a tripod, allowing sampling at controlled height, reducing the contamination with dust (Figure 

8).  

 

 

Figure 8. Sensor array device setup during the SCULPT 2013 summer campaign. 

 

3.1.2 Electrical design 

 

Modular design was used for AirSENCE electrical system to facilitate troubleshooting and minimize the 

cost of fixing a device. Each device consisted of five printed circuit boards (PCBs): two sensor PCBs (each 

with a unique sensor subset), one power management PCB (interface board), one PCB for data logging 

and one PCB for signal multiplexing (Figure 9).  
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Figure 9. System level diagram of AirSENCE device design. 

 

Several versions of prototypes were hand-wired before shifting to PCB design and fabrication. The first 

PCB-fabricated prototype was designed and assembled for the SCULPT study in August 2013 (AirSENCE 

Rev1). PCB manufacturing was outsourced, while component soldering and assembly was completed at 

the lab. Each device required five boards to be soldered, tested and assembled. An updated version of 

the device (AirSENCE Rev2) was manufactured in April 2014 in preparation for Pan Am study, while 

another major revision of the device (AirSENCE Rev2.5) was designed and manufactured in March 2016 

in preparation for deployments in Beijing. In total, over thirty-five devices were manufactured over the 

course of the project (Figure 10). Over the course of the project, several revisions were made to device 

design (Table 8). Most of the analysis in this document is focused on AirSENCE Rev1-2.5 due to 

consistent sensor subset used in these device revisions as well as large number of data samples 

collected. 

Table 8. AirSENCE device revision description. 

Device version Revision description 

AirSENCE Rev0 • Device was hand-wired. 

• Sensor array was composed of 5 gas sensors (MQ3, TGS822, TGS825, 

MQ135 and TGS880) and 2 particulate matter sensors (ionization and 

optical sensors from smoke alarms). 



42 

 

• Data logging through USB connection to a laptop. 

• Plastic Tupperware enclosure was used. 

AirSENCE Rev0.5 • Device was hand-wired. 

• Sensor array was composed of 5 gas sensors (MQ3, TGS822, TGS825, 

MQ135 and TGS880), DHT22 temperature and humidity sensor and 2 

particulate matter sensors (GP2Y1010AU0F, PPD42). Particulate matter 

sensors were upgraded because smoke detector sensors did not show 

good performance. Temperature and humidity sensor was added to 

improve the accuracy of regression models. 

• Internal data logging module was integrated in the device to enable data 

collection without tethering to a laptop. 

• Enclosure was upgraded to a more robust design and power adaptor was 

used to power the device. 

AirSENCE Rev1 • Circuit schematics were transitioned to PCB design. The printing was 

outsourced but the assembly was done at the lab. 

• Sensor array was composed of 12 gas sensors (MQ3, TGS822, TGS825, 

MQ135 and TGS880, TGS2600, TGS2620, MICS5525, MICS5521, 

MICS5121, MICS2611, P/N706), DHT22 temperature and humidity sensor 

and 2 particulate matter sensors (GP2Y1010AU0F, PPD42).  

AirSENCE Rev2 • Several major circuit design errors were fixed in an updated PCB design. 

• Wireless capability was added to the device. 

AirSENCE Rev2.5 • Power management interface board was revised to accommodate for 

more efficient power regulation. 

• Website was developed to display sensor data. 

AirSENCE Rev3 • Two sensor boards were consolidated into one board. 

• The list of sensors was overhauled due to sensor model obsolescence. 

• Device design was reduced in size and weight. 

• Device design was made more weatherproof. 
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Figure 10. AirSENCE device design iterations. 

 

3.1.2.1 Data acquisition system 

 

Data acquisition system was designed for signal sampling, time keeping and data storage. The key 

components of the system included a microcontroller module and a data logging system. A commercial 

microcontroller module (Arduino) was used for controlling the operation of the sensor device and 

providing access to peripheral inputs and outputs, such as USB and DC power supply. It included a signal 

processing circuit and a microcontroller circuit. The module also included power regulation circuit and 

adaptors for communications (USB port) and power source (AC/DC adaptor). Arduino microcontroller 

module was used as a backbone for the data acquisition system because it provided a balance between 

price and functionality. Arduino Uno Rev3 microcontroller (~$25 USD) was used for most versions of the 

device and included 13 digital input/output pins, 6 analog input/output pins and a built-in 10-bit analog 

to digital converter (ADC). 10-bit resolution was found to be sufficient for the sensors we used. Data 

logging system, assembled in the lab, included low pass filter, real time clock (RTC), SD card flash storage 

module, and multiplexing module. Real time clock (RTC) IC was used for generating time stamps. SD card 
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flash storage module was used for data storage. Low pass filter was used for circuit noise reduction, 

while 16:1 multiplexer was needed to expand the number of input pins for testing more sensors.   

 

3.1.2.2 Power management system 

 

Careful design of voltage regulation system was important to ensure sensors were operated at correct 

and consistent voltage while also maintaining the device power efficiency. Many of the tested sensors 

had different requirements for supply voltage (ranging between 1.7 and 8V) and current (ranging 

between 10mA and 1A). As mentioned earlier, metal oxide gas sensors have built-in catalytic heating 

modules, resulting in high current draw. Switching regulators were therefore selected to produce stable 

output voltage while ensuring energy efficiency. Operating voltage of the system was set to 5V and five 

regulators were used to control the voltage - four buck converters were used to down-regulate the 

voltage and one boost regulator was used to up-regulate the voltage for sensors and components 

requiring lower and higher voltages respectively. Power management PCB was also used for managing 

the operation and power supply to external components, including the fans controlling device airflow 

and Arduino microcontroller. In addition, power management PCB was used to interface AirSENCE 

device components to simplify the design and to reduce the number of cables needed. Sensor signal 

traces were also passed from the sensor boards to data logging module through the power management 

PCB.  

 

Device power consumption was evaluated and different scenarios for power consumption reduction 

were tested. Original power consumption of the device was on the order of 7W (5V, 1.4A) for the 

temperature range of 10-22 oC. Sensor subset optimization described in Section 4.1.5 allowed for 

reduction in power consumption to 5.25W (5V, 1.05A). Tests with commercial 20 Ahr battery packs 

showed that the device could be operated continuously for 6 hours, which could be significantly 

increased if several battery backs were combined. 

 

3.1.2.3 Sensor system 

 

The sensor system consisted of two sensor PCBs (each with a unique sensor subset) attached to 

interface board through a PCB-mounded connector. Both sensor PCBs were modular and could be easily 

replaced in case of failure. The sensors mounded on each of the PCBs could also be easily removed and 

replaced at the end of their operational lifetime. Sensor PCBs have undergone three major revisions 
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over the course of the project, although many smaller sensor subset revisions were also implemented 

whenever new sensors were released commercially, or sensors were replaced due to poor performance. 

 

Several different gas sensor types were considered for gas pollutant monitoring using AirSENCE, 

including metal oxide semiconductor sensors, electrochemical sensors, photoionization sensors and IR 

sensors. Metal oxide semiconductor (MOS) gas sensors were selected, due to low cost, small size, simple 

signal monitoring circuit and availability of many different sensors for a range of gas contaminants. Gas 

sensor output was measured using an adjustable voltage divider, created using a potentiometer. Sensor 

resistance was calculated using sensor input voltage, load resistance and voltage across the load resistor 

in the voltage divider circuit. The use of the potentiometer to adjust the value of load resistor allowed 

for the control of output voltage. Due to low manufacturing reproducibility associated with low-cost 

sensors (Section 4.1.1), the ability to adjust sensor output was important.  

 

Several different types of particulate matter sensors were tested, including ionization-based particle 

sensors and photoelectric particle sensors extracted from smoke detectors, as well as optical light 

scattering particulate matter sensors sold as components commercially. Light scattering particulate 

matter particle sensors were selected because of low cost, ease of use and promising results cited in the 

research literature (Section 2.1.2). The particulate matter monitoring circuit was more complicated that 

the gas sensor circuit, requiring drivers and amplifiers to control the operation of the light source LED 

and process the output of the photodetector. However, most of the required circuit components were 

included in the commercially-available sensor circuit, making it possible to connect the sensor directly to 

the data acquisition system. 

 

3.2 Calibration, data acquisition and data processing 

 

Calibration process plays a key role in sensor performance in monitoring ambient air quality. As 

discussed in Section 2.1, the low manufacturing reproducibility, cross-sensitivity and nonlinearity of low-

cost commercial sensors makes calibration an essential part of sensor device development process. 

While some calibration information is available in sensor datasheets, it is limited to lab conditions and is 

often misleading. While direct lab calibrations using diluted pollutant standards are typical for air quality 

monitoring equipment (Ministry of the Environment and Climate Change 2017), these methods were 

shown to have inadequate performance for the low-cost sensors due to the high level of cross-

sensitivity as well as sensitivity to environmental interferences (Section 2.2.1). Pollution composition is 
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highly spatially variable in urban environment, which is a challenge for cross-responsive sensors. 

Therefore, variability of the training dataset used for development of calibration models is key for 

ensuring good performance. As a result, one of the key areas of focus of this thesis was the 

development of robust calibration protocols optimized for low-cost sensors. Another key area of focus 

was the design of an optimum data analysis pipeline. It was important to develop protocols for 

correcting sensor response for outliers, noise, nonlinearity, inter-device variation and drift. These factors 

have a large impact on accuracy and precision of sensor response.  

 

3.2.1 Calibration process 

 

As indicated in the literature review, calibration under lab conditions generally does not result in 

calibration models that perform well in ambient environment (Section 2.2.1). Therefore, indirect 

calibration approach was used in this work, where AirSENCE devices were co-located with standard air 

pollution monitoring equipment for a period of time to generate calibration datasets. AirSENCE devices 

were co-located directly outside of the SOCAAR lab window at 200 College Street, sampling air from the 

College St and St George St intersection (Figure 11). Sensor calibration was conducted by comparing 

sensor response to standard instrument response over a period of 1 week. Five standard instruments 

were used for calibration – Thermo 42i NOx monitor, Thermo 49C Ozone monitor, Thermo 48C CO 

monitor, Thermo 410i CO2 monitor and Magee Scientific Sharp AE33-7 (continuous light scattering 

nephelometer). In addition to pollutant calibration, AirSENCE devices were also calibrated against 

cumulative multi-pollutant index air quality health index (AQHI). 

 

AirSENCE devices were set up to sample air using fan-driven flow-through system. The reference 

instruments were sampling air 10-15 m west from the sensors, along the same side of the building. 

Indirect calibration also has several limitations. Because of the co-presence of many different pollutants 

in ambient air, sensor selectivity cannot be directly evaluated. In addition, pollutant concentration and 

environmental interferences cannot be controlled, resulting in unreliable calibration model performance 

at high pollutant levels. Several approaches to expand the calibration data variability were evaluated, 

including the use of historical calibration data and calibration of devices at several locations with diverse 

pollutant levels and source profiles. The results of these evaluations are discussed in Section 4.4.4. 
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Figure 11. Sensor array device calibration setup. 

 

3.2.2 Data acquisition and processing 

 

As mentioned above, development of protocols for correcting sensor response is key for ensuring 

reliable device performance due to the significant impact of an array of factors on sensor performance. 

These factors include outliers, noise, nonlinearity, cross-sensitivity, inter-device variation and drift. Data 

acquisition and processing software pipeline was developed, composed of: 1) data logging C++ firmware 

running on the device microcontroller, 2) data reformatting, averaging, merging and cleaning Python 

script, and 3) baseline correction and outlier removal R script, and 4) data exploration, variable selection 

and model development R scripts. (Figure 12). 
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Figure 12. Data processing pipeline. Black colour denotes steps that are always part of the analysis, blue 

colour denotes steps that are only relevant to some type of analyses. Orange colour denotes data 

sources. 

 

Data acquisition process describes the steps involved in extracting data from device. Microcontroller 

firmware was developed to collect and log time stamps and sensor measurements while ensuring 

correct operation and sampling frequencies for each of the sensors. Initially, Arduino platform was used, 

which was based on ATmega328P microcontroller and runs machine code compiled from C++. While 

libraries were available for some modules (i.e. Real Time Clock, SD card logging), other libraries needed 

to be developed (i.e. sensor data probing and signal processing). Initially, the firmware functionality was 

limited to signal processing and data logging on an SD card. In the later versions, the ability to 

communicate using Xbee, WiFi and GPRS protocols was added. In newer versions of the device, the data 

was wirelessly communicated between devices (i.e. Xbee protocol) or sent to an online server (WiFi and 

GPRS protocols). This was coupled with software for reading data from the online server and backing it 

up in the local MS SQL database. As functionality was expanded, the built-in Arduino module memory 

proved insufficient for the complexity of procedures. Therefore, Arduino platform was substituted for 

standalone ATMega microcontroller with more available memory. This transition required most of the 

code and many of the libraries to be re-written but allowed for more flexibility and more complex 

processes to run on the microcontroller. 

The next step of the data processing pipeline was data reformatting. Statistical computing language R 

was used for initial data and time stamp reformatting5. Data reformatting was necessary because the 

optimum format for data logging was different from the optimum format for analysis. Long format was 

used for data logging to capture high time resolution sensor data. However long format was not 

optimum for data review, cleaning and analysis. 

Data reformatting was followed by data averaging and merging using Python. Data was averaged at 1, 5, 

15, and 30min resolution depending on the type of analysis. A separate step was needed for data 

averaging and merging because time resolution and data continuity varied between different reference 

instruments.  

The fourth step of data processing pipeline was data cleaning, which included purging data off flagged 

measurements (i.e. shifts in sensor readings, outliers) associated with sensor stabilisation, device 

                                                      
5

 http://www.r-project.org 
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troubleshooting, and optimisation. Data cleaning was an important step in data processing for several 

reasons: device testing6, adjustments, and stabilisation. Sensor device testing was regularly conducted 

to identify and correct any performance issues early (i.e. faulty sensors, components, and circuit errors). 

Sensor operation range was also adjusted for the pollutant levels using the potentiometers, which 

resulted in a shift of baseline voltage level. Another important factor, sensor stabilisation, is defined 

here as decrease in sensor response noise due to heating of metal oxide semiconductor film. For new 

sensors, stabilisation time was 24 hours. For sensors, which have been previously used and were later 

disconnected for sufficient time to allow the MOS sensor to cool down (i.e. greater than 1 minute), 

stabilisation time could range between 15 minutes and 1 hour.  Sensor response during stabilisation had 

different characteristics compared to sensor response post-stabilization due to adsorption and 

desorption of gases at the MOS surface. As a result, the measurements associated with device testing, 

adjustment and stabilisation were flagged and removed. 

Another important correction required for all sensors was baseline correction. In particular, MOS 

sensors have a large baseline resistance, which varies significantly between replicate sensors of the 

same model. Therefore, baseline correction is an essential step in data preprocessing for these types of 

sensors. Baseline correction was performed by rescaling the data between 0 and 1 using R: the global 

minimum7 was subtracted from each observation and the result was divided by the difference between 

the global maximum8 and the global minimum. To avoid rescaling range bias, outliers were removed 

from sensor response by applying 1-99% bandpass filter. For some analyses, nonlinear transforms were 

applied to data to avoid the impact of sensor nonlinearity on calibration model performance. 

The last 3 steps of the data analysis pipeline (i.e. data exploration, variable selection and regression 

model development) are more complex and vary depending on the type of analysis conducted. They are 

therefore discussed at length in Sections 4.1, 4.2 and 4.4. 

 

3.3 Field study procedures 

 

                                                      
6

 Device testing included: 1) basic PCB design and continuity tests, 2) power tests, 3) sensor circuit performance 

tests and optimisation, 4) data acquisition system tests, 5) wireless communication tests. For newly-assembled 

devices or those with sensors replaced, the initial week of sensor measurements was used for device testing. 

7
 Global minimum = the minimum sensor reading over one week of measurements after sensor stabilization. 

8
 Global maximum = the maximum sensor reading over one week of measurements after sensor stabilization 
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There were several key objectives for conducting field studies. The first objective was validation of 

AirSENCE device performance. As mentioned above, indirect calibration method had several limitations. 

One of them is the limitation in ability to evaluate the impact of interferences on sensor response. In 

addition, pollutant concentration and environmental interferences vary across sites, which could result 

in degraded calibration model accuracy at sites other than the calibration site. Therefore, validation of 

the device performance at several locations with diverse pollutant levels and source profiles was 

needed. This was accomplished by deploying AirSENCE devices at existing government pollution 

monitoring sites. Such validation studies have also allowed for evaluation of the impact of calibration 

training data variability on sensor performance. Another key objective for conducting field studies was 

the assessment of spatial variation of air pollution and the extent to which it can be quantified by 

AirSENCE devices. Deployment of AirSENCE devices at a range of different sites allowed comparison of 

pollutant models in terms of their ability to adjust for interferences and the extent to which their 

performance is generalizable. The third key objective of conducting field studies was evaluation of the 

ability of AirSENCE devices to resolve pollution sources. Different sources are associated with different 

pollution profiles and hence one of the key objectives was to test the ability of AirSENCE devices to 

detect influence of sources and feasibility of ranking sites based of the local pollution and source 

contribution. In addition, temporal variation in air pollution consists of several different components 

that can be attributed to different types of sources. Therefore, the feasibility of using high frequency 

variation in sensor response as a proxy of local traffic emissions was also of interest. The fourth key 

objective of field studies was design of better study protocols. For example, factors such as wind 

direction, time of the day and day of the week are known to have an impact on pollution levels. 

However, the impact of these factors on ability of AirSENCE devices to resolve sites has not yet been 

tested. Field studies offer the opportunity to develop better study protocols for evaluating spatial 

variation of air pollution as well as correcting for factors negatively impacting sensor response, such as 

drift. Four different campaigns were conducted to address the objectives describes above (Figure 13): 

• Spatial Characteristics of Ultrafine ParticLes in Toronto (SCULPT) conducted in July-August 2013 

• Long-term performance study conducted August 15, 2013 - May 10, 2014 

• Pan Am study conducted in May-September 2015 

• Multi-site validation study conducted between December 2015 and February 2016 at SOCAAR 
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Figure 13. AirSENCE device testing campaigns. 

 

Four datasets collected over the course of the campaigns are summarized in Table 9. 

Table 9. An overview of the data sets collected using AirSENCE devices during field studies. 

 
Dataset #1 Dataset #2 Dataset #3 Dataset #4 

Campaign/ 

Study 

SCULPT Long-term 

performance 

study 

Pan Am Campaign Reference 

validation 

Device 

version 

AirSENCE Rev1 AirSENCE Rev1 AirSENCE Rev2 AirSENCE Rev2 

Locations 6 1 7 (4) 3 

Period August 8 - 25, 

2013 

August 15, 2013 - 

May 10, 2014 

April 20 - 

September 9, 

2015 

September 20, 

2015 - January 15, 

2016 

Size 818  

observations 

6561 observations 191812 

observations 

139742 

observations 

Sampling 

resolution 

30-minute 

resolution 

30-minute 

resolution 

1-minute 

resolution 

1-minute 

resolution 

Retention 90% of data used 70% of data used 90% of data used 90% of data used 
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3.3.1 Spatial Characteristics of Ultrafine ParticLes in Toronto (SCULPT) Campaign and long-term 

performance study 

 

AirSENCE devices were deployed at 18 different sites in Toronto for two two-week deployments in July-

August 2013 (Figure 14). In addition to sensors, reference instruments (CPC, DiscMini, SMPS, microAeth) 

for monitoring ultrafine particulate matter (UFP) and black carbon (BC) were also deployed at the sites. 

Eleven sites were investigated during the first deployment and seven sites were investigated during the 

second deployment. AirSENCE devices were moved between the central site and two remote sites, 

spending the first two weeks at one of the eleven sites (deployment 1), followed by one week at the 

SOCAAR lab, followed by two weeks at one of seven other sites (deployment 2). Measurements taken at 

the SOCAAR lab (August 5 – August 14, 2013) were used for sensor calibration.  This gave an opportunity 

to test sensor response under a variety of different conditions. The spatial variability analysis is focused 

on 6 sites assessed during deployment 2 due to issues with device reliability during earlier deployments. 

As a follow-up to the SCULPT Campaign, long-term performance study was conducted at SOCAAR site to 

evaluate the performance of AirSENCE devices over longer period (August 15, 2013 - May 10, 2014) to 

assess drift and the impact of seasonal factors. 

 

 

Figure 14. Selected sensor array device locations during SCULPT deployment. Devices from deployment 

2 (outlined by yellow circles) were selected for analysis of spatial variation of pollution. Device setup 

during deployment is also shown in the photo from one of the sites. 

 

3.3.2 Pan Am study 
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A summer campaign conducted during 2015 Pan American games in Toronto gave an opportunity to 

further test sensor response under a variety of different conditions. An updated version of the sensor 

device (AirSENCE Rev2) was tested in May-September 2015 in a multi-site deployment. AirSENCE devices 

were calibrated at SOCAAR for one week and deployed at eighteen different sites for periods of time 

ranging from seven days to one month. Four sites were selected for more detailed analysis (Figure 15). 

While no reference data was available at most sites, 2 locations (SOCAAR lab and MOE Station at 

Highway 401 site) had co-located standard instruments for NOx, O3, CO, CO2, and PM2.5. 

 

 

Figure 15. Selected sensor array device locations during Summer 2015 Pan Am Games Campaign. Photos 

of device setup during deployment are also shown. 

 

3.3.3 Multi-site validation study 

Another multi-site study was conducted between December 2015 and February 2016 at three sites with 

standard instruments for NOx, O3, CO, and PM2.5. The three sites included SOCAAR, Halan’s Point at the 

Toronto Island and MOE station at Highway 401 (Figure 16). Two devices were deployed at each of these 

sites after calibration for at least a week at SOCAAR. The presence of reference pollution monitoring 

equipment at these sites allowed us to validate the sensor device performance as well as evaluate the 

impact of factors like temperature, humidity, wind direction and drift. 
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Figure 16. Sensor array device locations during Winter 2015 validation at Highway 401, SOCAAR and 

Halans Point. Photos of device setup during deployment are also shown. 
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4 Results and discussion 

 

4.1 Sensor performance 

 

The fist major aim of this research work was to evaluate commercially-available low-cost sensors with 

regards to their performance and identify the sensors that are most suitable for applications in long-

term field deployments. A secondary goal was to identify methods which could be used for correcting 

sensor performance issues. The following research questions were of interest: 

 

Sensor response variation 

1. What is the extent of inter-device variation for the commercially available sensors? 

2. What is the distribution of the inter-device variation? How does it vary with sensor response 

level? 

3. What is the effect of environmental factors and pollutant levels on the variation between 

devices? 

Sensor importance, distribution and multicollinearity 

4. What are characteristics of sensor data distribution and how does it compare to air pollutant 

distribution? 

5. What is the effect of multicollinearity on sensor response and which sensors are the most 

affected? 

6. Which pollutants can be most readily measured by commercially available AirSENCE devices? 

Site influence & drift 

7. What is the extent of correlation between sensor response and air pollutant levels? How does 

this change when sampling at a different location (i.e. a different pollutant mixture)? 

8. What is the extent of drift in sensor baseline and range and which sensors are affected the 

most? 

 

4.1.1 Intra-sensor variation is a big challenge 

 

The initial goal for sensor evaluation was to quantify the extent of variation between replicates of the 

same sensor. This evaluation is important to understand the degree of error in sensor readings and is 

especially important for air pollution monitoring sensor networks. Accurate quantification of spatial 

pollution patterns depends on the assumption that the extent of variation between sensor replicates is 
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minimum. Knowledge of the inter-device sensor variation also allows us to assess the extent to which 

calibration factors can be transferred (i.e. calibration factors and regression coefficients derived from 

one device data can be applied to other devices). In addition, most sensor datasheets do not quantify 

the extent of variation between sensors and comprehensive evaluation of this factor has not yet been 

conducted in the research literature.  

 

Five replicates of 15 different commercial sensors were selected for detailed evaluation (Table 10). The 

sensors were selected from a much larger pool of evaluated sensor models (Appendix ) based on a 

combination of factors, including sensor cost, initial performance, circuit complexity, size and power 

consumption. To evaluate the sensor performance, 5 identical devices were assembled, each containing 

a copy of each of the sensors shown in Table 10. Sensors were co-located on an outdoor windowsill at 

SOCAAR and their performance was evaluated 4-8 months. Inter-device sensor variation was 

determined for each sensor, derived from standard deviation and mean of rescaled sensor 

measurements. 

 

Table 10. Sensor subset included in each AirSENCE device.9 

Manufacturer Model Operation Price ($CAN) 

for 1-9 units 

Sensor detection targets identified in the 

sensor data sheets 

Aosong 

Electronics 

DHT22 Thermistor, 

capacitive 

sensor 

$15 Temperature, humidity 

Figaro TGS2600 MOS $15 Methane, CO, iso-butane, ethanol, 

hydrogen 

Figaro TGS2620 MOS $15 Methane, CO, iso-butane, ethanol, 

hydrogen 

Figaro TGS822 MOS $15 Organic solvents, acetone, methane, CO, 

isobutane 

Figaro TGS825 MOS $57 Hydrogen sulfide 

Figaro TGS880 MOS $15 CO, methane, isobutane, ethanol, 

cooking vapours 

                                                      
9

 https://www.yumpu.com/en/document/view/379764/price-delivery-information-for-figaro-gas-sensors 
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E2V / MICS MICS5525 MOS $10 CO 

E2V / MICS MICS5521 MOS $10 CO, hydrocarbons, volatile organics 

E2V / MICS MICS5121 MOS $10 CO, hydrocarbons, volatile organics 

(protective filter) 

E2V / MICS MICS2611 MOS $10 O3 

Synkera P/N706 MOS $30 NOx 

Hanwei MQ3 MOS $5 Alcohol, benzene, CH4, hexane, LPG, CO 

Hanwei MQ135 MOS $8 NH3, NOx, alcohol, benzene, smoke, CO2, 

CO 

Sharp GP2Y1010

AU0F 

Optical $12 Particulate matter 

Shinyei PPD42 Optical $12 Particulate matter 

 

Overall, the variability between AirSENCE devices was found to be high, suggesting that sensor readings 

are not very reproducible (Figure 17). Most MOS gas sensors and optical PM sensors are characterised 

by high inter-device sensor variability. Sensors P/N706 (NOx) and PPD42 (PM1) were found to show the 

highest inter-device variation, while temperature and humidity sensors - the lowest. These findings 

suggest the importance of inter-device comparison and calibration prior to their deployment in field 

studies. 
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Figure 17. Inter-device sensor variation of sensor response. Five AirSENCE devices were compared based 

on raw voltage readings rescaled 0-1. %RSD across the five devices was derived for each 30-minute 

observation and the average %RSD along with the standard deviation of these average %RSD values are 

shown. Original data was collected between August 15, 2013 and May 10, 2014, sampled at 30-minute 

resolution, 6561 observations, 70% of data used. Data source: 2013-2014, AirSENCE Rev1. 

 

4.1.2 Variation in sensitivity 

 

As inter-device sensor variation analysis indicated, most sensors show high variability between 

replicates and need to be corrected. There are several methods commonly used for correcting for inter-

device sensor variability. These include:  

• Rescaling sensor reading 

• Correcting sensor response based on multi-sensor average 

• Deployment of redundant sensors within each device 

 

To establish the type of correction required and whether a correction is possible, the distribution of 

inter-device variation has to be evaluated. The relationships between each of the sensors to an average 

of all sensors of specific type was found through correlation.  

 

It was found that for some sensors, the relationship between sensor replicates is a simple bias that can 

be corrected by baseline removal through rescaling. For other sensors, the inter-device sensor variability 

function was more complicated. Transformation of sensor data through power of log transforms is often 

required to correct the data due to non-linearity at high sensor response levels (Chaiyboun et al. 2007; 

Hirobayashi et al. 2003). However, for most sensors the inter-device variation is caused by the variation 

in slope between devices (Figure 18), which suggests that major reasons for large inter-device sensor 

variation is the difference in sensor sensitivity. For TGS822 gas sensor (a sensor for monitoring volatile 

organic compounds), the response of each sensor replicate was linear relative to sensor average, but the 

slope varied between 0.5 and 2.  
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Figure 18.  Inter-device sensor variation for the TGS822 sensor. TGS822 is a MOS sensor for volatile 

organic compounds, such as solvents. The units of the data shown are arbitrary (sensor voltage 

measurements rescaled 0-1). Original data was collected between August 15, 2013 and May 10, 2014, 

sampled at 30-minute resolution, 6561 observations, 70% of data used. Data source: 2013-2014, 

AirSENCE Rev1. 

 

This type of variation can also be corrected for using a linear function (i.e. multiplying by a constant). An 

example of the impact of sensor response correction is shown in Figure 19. Sensor response was 

corrected by co-locating AirSENCE devices and deriving a correction function based on relationship 

between the sensor response and that of the average of the AirSENCE devices. 

 

 

Figure 19. The impact of sensor response correction on reducing inter-device sensor variation. Three 

AirSENCE devices are compared. The units of the data shown are arbitrary (sensor voltage 
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measurements rescaled 0-1). Original data was collected between September 20, 2015 and January 15, 

2016, sampled at 1-minute resolution, 139742 observations, 90% of data used. Data source: Multi-site 

validation study, Summer 2015, AirSENCE Rev2. 

 

The high variability between sensor replicates as well as presence of different types of inter-device 

sensor variability contribute to systematic error and highlight the need for device-specific calibration. 

During device-specific calibration, intercepts and weights are derived separately for each device 

replicate during calibration, allowing to correct for both additive bias and multiplicative sensitivity 

variation. 

 

 

4.1.3 Influential factors 

 

While most of the instances of inter-device sensor variation were systematic in nature, sensor response 

was also influenced by interference error and random error, which are less consistent and more difficult 

to predict. 

 

Sensor output = Signal + Systematic error + Interference error + Random error 

 

For example, the variation in response of the TGS2620 (a volatile organic compound sensor) was 

affected by inter-device sensor variation that is not only due to variation between sensors but also the 

variability in impact of temperature on sensor response (Figure 20). Higher ambient temperature (above 

15 C) was associated with higher variation between devices. MOS sensor response is catalyzed by 

increase in temperature generated by the integrated heating element. High impact of temperature on 

sensor response as well as high variability in temperature response profiles of MOS sensors has been 

shown in the literature (Masson, Piedrahita, and Hannigan 2015; Huerta et al. 2016). Hence inter-sensor 

variation in the temperature-sensor response profile could be one of the causes for the higher spread of 

the sensor measurements at higher temperatures. These results suggest that sensor-specific calibration 

under a range of ambient temperatures is essential for accurate results. 
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Figure 20. Inter-device variation of tgs2620 sensor and the impact of temperature. Original data was 

collected between August 15, 2013 and May 10, 2014, sampled at 30-minute resolution, 6561 

observations, 70% of data used. Data source: 2013-2014, AirSENCE Rev1. 

 

The impact of environmental factors on sensor data was systematically evaluated by binning the sensor 

measurements using the 4 quartile range bins of different factors (i.e. environmental variables and 

pollutant concentrations). The difference between 1st and 4th quartile was used as metric of the 

influence of the factor.  

 

The influential factor analysis indicated that temperature, O3 and CO concentrations were the biggest 

contributors to high variation between devices (Figure 21). High temperature had greater influence on 

inter-device sensor variability than low temperature, while higher pollutant concentration always 

contributed to higher variation between sensors. The large influence of temperature is expected due to 

the importance of temperature in the operation of MOS gas sensors (i.e. the catalytic effect of 

temperature on sensor response). 

 

One of the major reasons for increase in inter-device sensor variation with increase of concentration is 

the nonlinearity in sensor response and high inter-sensor variability in sensitivity at higher pollutant 

levels. The variability between devices is smaller at low pollutant levels because the change is sensor 

response with respect to change in pollutant levels is smaller and more consistent. The challenges 

associated with variation in sensor sensitivity as well as opportunities for sensor response correction are 

discussed in more detail in sections 4.2.4 and 4.4 respectively. 
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Figure 21. Summary of variables contributing to increasing inter-device %RSD. For example, 15 of the 16 

sensors were influenced by temperature. Only consistent trends that apply across all sensor replicates 

are shown. 

 

4.1.4 Sensor multicollinearity and distribution 

 

Many of the commercial gas sensors are cross-responsive (Masson, Piedrahita, and Hannigan 2015). 

However, this lack of specificity creates an opportunity for multi-sensor monitoring and analysis using 

pattern recognition. Therefore, analysis of the correlation between sensors and pollutant monitors is 

important to understand sensor response characteristics and identify potential issues with predictor 

collinearity for regression models utilizing multiple different types of sensors. Even though 

multicollinearity does not reduce the overall predictive power or reliability of a model, it does affect 

predictor regression coefficients and relative importance analysis. In addition, this analysis helps identify 

sensors which could be used for correcting the model output. For instance, one of the sensors might be 

very sensitive to CO but is affected by drift while another sensor might be less sensitive to CO but is also 

less affected by drift. Including both sensors in the model would introduce redundancy but could lead to 

a calibration model that can accurately measure CO while being less prone to drift. To establish the 

degree of correlation between sensors as well as correlation between sensors and reference monitors, 

initial data exploration through evaluation of correlation matrices was performed (Figure 22, Figure 23).  
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Figure 22. Assessment of strength of correlation between sensors. Pearson correlation coefficients are 

shown only when bigger than 0.5. The quantity of stars indicates significance as indicated by p value. 

The sensor data is shown in arbitrary units. Original data was collected between September 20, 2015 

and January 15, 2016, sampled at 1-minute resolution, 139742 observations, 90% of data used. Data 

source: Multi-site validation study, Summer 2015, AirSENCE Rev2.  

 

Some sensors were found to be weakly correlated to pollutant targets and were strongly cross-

responsive (i.e. TGS2600, TGS2620, TGS822). In several cases, same sensor was found to be correlated 

to several pollutants. For example, MICS5521 was found to be correlated to CO2, NOx and O3. Other 

sensors were characterized by higher selectivity. For example, TGS880 showed higher correlation to CO 

as compared to other pollutants. Some gas sensors (i.e. TGS822) were found to be better correlated to 

PM2.5 than some actual particulate matter sensors. In addition, reference pollution monitor response 

distribution was found to be more skewed as compared to sensor response distribution suggesting that 

sensors might not be as sensitive to higher pollutant concentrations or that the sensor response was 

related to the log of pollutant concentration. 
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Figure 23. Assessment of strength of correlation between sensors and reference monitoring instruments 

for carbon monoxide, carbon dioxide, nitric oxides, ozone and particulate matter. Pearson correlation 

coefficients are shown. The quantity of stars indicates significance as indicated by p value. The sensor 

data is shown in arbitrary units, while reference data is shown in concentration units (i.e. ppb, ugm-3). 

Original data was collected between September 20, 2015 and January 15, 2016, sampled at 1-minute 

resolution, 139742 observations, 90% of data used. Data source: Multi-site validation study, Summer 

2015, AirSENCE Rev2. 

 

4.1.5 Relative sensor importance 

 

Several different methods were used to evaluate sensors to select the best sensor subsets to be used in 

calibration models for each of the investigated air pollutants (i.e. NOx, PM2.5, CO, CO2, O3). Sensor subset 

selection is an important step for developing calibration models because the challenges and 

opportunities associated with sensor cross-responsiveness need to be balanced. While multivariate 

regression models with large number of sensor predictors can be more accurate, they can also lead to 

overfitting and unstable performance at locations with different pollutant compositions. Another goal 
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for sensor subset selection was to identify the sensors that could be excluded from AirSENCE device, 

thereby reducing the cost and power consumption. 

 

The first type of analysis used to evaluate sensor predictor subsets was the analysis of standardized 

regression coefficients (which allows the sensor predictors to be evaluated on a common scale) and p 

value (which describes the degree o4f sensor importance significance). For the purpose of this analysis, 

sensors for which p values are below 0.2 (i.e. 80% confidence level) were considered significant enough 

to be included in the model. However, p value doesn’t describe the magnitude of the effect of sensor 

variable on the predictive ability of the model. Therefore, standardized regression coefficients were also 

evaluated to check whether some of the sensors should be excluded due to the small effect they are 

having on model performance. Standardized regression coefficients were determined by subtracting the 

mean and dividing by the standard deviation of the sensor variable so that the mean is zero and the 

variance is 1. The standardized regression coefficients of the resulting model show by how many 

standard deviations a sensor reading changes per standard deviation change of pollutant concentration 

as measured by the reference instrument.  

 

To further investigate the sensor subsets that result in improved model performance, a search was 

performed for best subsets of sensors. Four different regression search algorithms were compared: 

exhaustive search, forward stepwise, backward stepwise and sequential replacement. The relaimpo R 

package was used to compute variable importance. The subset models were evaluated using two model 

performance metrics – adjusted r-squared (r-squared adjusted for the number of explanatory terms in 

the model) and Schwartz's information criterion BIC (criterion for model section that incorporates a 

penalty term for the number of parameters in the model to discourage overfitting). Both adjusted r-

squared and BIC gave almost identical performance. The model subset analysis confirmed some of the 

sensor importance hypotheses, which were generated by standardized regression coefficient and 

variable significance analyses. However, sensor subset selection analysis also suggested importance of 

some other sensors, which were not considered important before.  

 

One of the challenges associated with sensor variable ranking using searches based on regression model 

comparison is that there are many possible subsets that appear to have similar performance, which 

commonly results in local minimum sensor subset that does not perform best across all of the 

environmental conditions the AirSENCE devices might be exposed to (Gualdrón et al. 2006). Therefore, 

sensor variable ranking using a random forests regression algorithm was also evaluated to analyze the 
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relative importance of different sensors and identify candidates for exclusion. The random forest model 

is an ensemble learning model, which works by constructing multiple decision trees and evaluating 

mode of the output of those trees. This method can be used for ranking the importance of sensors by 

calculating mean square error (%MSE) of the prediction when the sensor is removed from the model. 

Since different sensor array devices result in slightly different ranking, the ranking scores were averaged 

over 5 devices to reduce any bias. Random forest-based variable ranking helped identify sensor 

candidates for exclusion. 

 

The summary of the 3 analysis methods was used to identify the final predictor subsets for NOx, O3, CO, 

CO2, PM2.5 and AQHI (Table 11). An overview of the final sensor predictor subset as well as 

corresponding calibration model coefficients is provided in Appendix 3: Finalized calibration model 

predictor subsets and coefficients. Combination of NO2 and NO (i.e. NOx) was used as target rather then 

the component gases because models with adequate accuracy for NO2 and NO could not be developed 

using the output form the available sensors. The selectivity of MOS sensors is insufficient to differentiate 

NO2 and NO gases. While other sensor types (i.e. electrochemical sensors) have been shown to 

differentiate NOx species, they have not been investigated in this work and are beyond the scope of this 

thesis. Sensors that were found to be important as indicated by all 3 analysis methods were used in the 

final predictor subsets. Many of the sensors served as predictors for several pollutants, as expected 

from the cross-responsive nature of MOS sensors. For instance, temperature, relative humidity and 

P/N706 sensors were found to be important for most pollutant targets. Notably, the best predictors for 

each of the target pollutants are often not the ones expected based on the information form the sensor 

datasheets (Table 10). The data included in sensor manufacturer datasheets is often limited to lab 

studies with a small number of target pollutants. As a result, much of the sensor response properties are 

underexplored, which highlights the importance of comprehensive evaluation of new sensors in 

response to air pollution variation in ambient air. Variable selection process is summarized in Figure 24. 
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Figure 24. Variable selection process. 

Table 11. Best-performing sensor vs pollutant matrix after evaluating variable importance. Pollutants of 

interest are listed along top row. Selected sensors are shown in green. Sensors that were found to be 

important as indicated by all 3 analysis methods for each pollutant were used as final predictor subsets. 

Sensor Model NOx O3 CO CO2 PM2.5 AQHI Selected 

DHT22 X X X X 
 

X 5 

TGS2600 
    

X X 2 

TGS2620 
  

X 
 

X X 3 

TGS822 X 
 

X 
 

X X 4 

TGS880 
    

X X 2 

P/N706 X X X X X X 6 

GP2Y1010AU0F 
    

X X 2 

PPD42 
    

X X 2 

Selected 3 2 4 2 7 8 
 

 

 

4.1.6 Site variation 
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As discussed earlier, sensor reproducibility is key for accurate assessment of spatial variation in pollutant 

levels. The analysis of inter-device sensor variation helped identify variability in sensor response to 

pollutants at a single site. However, deployment of devices at other location leads to new challenges. 

The pollution sources and therefore pollutant mixtures, chemistry and interferences often change 

depending on location. Sensors are often highly sensitive to these changes due to their cross-

responsiveness. 

The hypothesis that change in levels and types of interferences can influence change is sensor response 

was tested by monitoring the change in correlation strength between reference instruments and 

sensors at SOCAAR’s downtown Toronto site, Toronto Island site and Highway 401 site (Table 12). 

Toronto Island site is an example of background site with low level of traffic pollution, while Highway 

401 site is located close to highway and is an example of site with high levels of traffic pollution. The 

downtown site is close to an arterial road and is affected by medium levels of traffic pollution. 

 

Table 12. Average, minimum and maximum pollution levels at the three sites investigated during 

AirSENCE deployment campaigns (April – December 2015). 

Site NOx (ppb) O3 (ppb) CO (ppb) CO2 (ppm) PM2.5 (ugm-3) 

SOCAAR’s 

downtown Toronto 

15 (0-102) 25 (2-89) 272 (35-1039) 430 (378-593) 8 (0-148) 

Toronto Island 

(Halans Point) 

6 (0-42) 15 (0-49) 190 (59-447) 414 (398-469) 9 (1-35) 

Highway 401 48 (2-266) 10 (0-35) 337 (7-1156) 389 (350-570) 11 (0-99) 

 

It was found that the importance of predictors in estimating NOx and CO concentration changes 

depending on deployment location (Figure 25). Sensor cross-sensitivity results in change in correlation 

between sensors and pollutants. For example, the sensors TGS880, ASMLN and P/N706 were highly 

correlated to the NOx reference instrument at the SOCAAR site. However, the correlation strength for 

these sensors was significantly smaller at both the Island and Highway sites. This suggests that while 

these sensors are responding the same pollutant(s), these pollutants do not necessarily include NOx. 

The sensors might be responding to proxy contaminants emitted by the same sources as NOx or the 

contaminants that are associated with NOx through chemical reactions. This result highlights the 

importance of calibrating AirSENCE devices at several different types of sites to ensure robust 

performance. The correlation between MQ3 and NOx decreased but was still the highest compared to 
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other sensors after the deployment, which suggests that this sensor should be used for NOx model 

correction. For CO, the ASMLN and MQ3 sensors retained the highest correlation to reference monitors 

after deployment at the Island and Highway sites. 

 

 

Figure 25. Pearson correlation coefficients between reference instruments and AirSENCE devices for 

NOx and CO at three contrasting sites. The numbers shown are Pearson correlation coefficients 

multiplied by 100. The colour of ellipses and the shape indicates the degree of correlation. The negative 

sign indicates negative correlation. Original data was collected between September 20, 2015 and 

January 15, 2016, sampled at 1-minute resolution, 139742 observations, 90% of data used. Data source: 

Multi-site validation study, Summer 2015, AirSENCE Rev2. 

 

4.1.7 Sensor response drift 

 

Drift in sensor response is another major known factor impacting sensor performance. It is important to 

quantify the magnitude and direction of the drift in sensor baseline and reduction in sensitivity as well 

as the useful operational lifetime of the sensors. 

 

Sensor readings were first rescaled 0-1 to correct for inter-device sensor systematic offset. Sensor 

baseline was calculated by taking a 7-day average of rescaled sensor response. Sensor sensitivity (i.e. 

range) was calculated by taking the difference between maximum and minimum value for each day and 

averaging daily values over the course of 7 days. Averaging allowed for assessment of long-term drift 

while correcting for known temporal patterns (i.e. variation over the course of a day or a week). Drift in 

sensor response was quantified by assessing the change in the value of sensor baseline and range over 

time (Figure 26).  
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To assess the impact of drift on sensor response under more targeted conditions, the validation dataset 

was divided into subsets, selecting only the conditions that would have limited impact on sensor 

response. For example, NOx and O3 are known to vary seasonally and have an impact on sensor 

response. By selecting the data associated with lower quartiles of NOx (0-9ppb) and O3 (5-17ppb) over a 

6-month period (2 seasons), we can extract variation in sensor response over time without confounding 

the analysis with any seasonality of these pollutants. Temperature (high and low extremes) and 

humidity (high extreme) are also known to have a large impact on sensor response. Therefore, 2nd 

temperature quartile and 1st humidity quartile subsets were selected for analysis. The data was subset 

for each condition separately since it was impossible to correct for all conditions simultaneously because 

these conditions didn’t co-occur in the available ambient data. In addition, analysis was conducted for 3 

sensor replicates separately, since sensor average is not necessarily representative. The overall impact 

of temporal drift was categorized as low or high by comparing the average of sensor metrics (i.e. 

baseline and response range) for each consecutive month and verifying the significance using a t-test. 

 

 

Figure 26. The process for evaluating sensor drift. 

 

Drift impacts sensor response after 4 months of operation and sensors were significantly affected by 

drift in baseline and reduction in range over time (Figure 27). The P/N706 and PPD42 sensors were most 

effected by drift in baseline and reduction in sensitivity. Ironically, sensor drift also contributes to 

reduced inter-device sensor variation over time as unresponsive sensors agree well with each other. 
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Figure 27. Change in baseline (drift) and range (sensitivity) in P/N706 sensor response (average of four 

devices). Original data was collected between August 15, 2013 and May 10, 2014, sampled at 30-minute 

resolution, 6561 observations, 70% of data used. Data source: 2013-2014, AirSENCE Rev1. 

 

In general, a reduction in sensitivity was more common than drift in baseline (Table 13). In addition, all 

sensors that are affected by baseline drift are also affected by a reduction is sensor response range. Five 

sensors were not affected by drift in baseline and reduction in range. These sensors could be used for 

correcting the response of the sensors that are more affected by drift. For instance, earlier analysis 

indicated that sensors TGS822, TGS2620, TGS2600 and TGS880 are inter-correlated. Since TGS822 and 

TGS2620 are less affected by drift, they can be used to correct TGS2600 and TGS880 sensors for drift in 

response range. In addition, P/N706 is correlated with MICS5521, MICS5121 and MQ3. Therefore, 

sensors with larger drift can potentially be corrected using output of sensors with less drift. 

 

For example, sensor MQ3 shows less baseline drift compared to sensor P/N706 (Figure 28). However, 

the two sensors are correlated, allowing for baseline drift correction of the P/N706 sensor response 

(Figure 29). The baseline drift correction was accomplished by subtracting P/N706 sensor baseline and 

adding MQ3 sensor baseline corrected for the difference between P/N706 and MQ3 sensors. 



72 

 

 

 

Figure 28. Comparison of drift for sensor with high sensor drift (P/N706) and low sensor drift (MQ3). 

Original data was collected between April 20, 2015 and September 9, 2015, sampled at 1-minute 

resolution, 191812 observations, 90% of data used. Data source: Pan Am Campaign, Summer 2015, 

AirSENCE Rev2. 

 

 

Figure 29. Sensor baseline drift correction for P/N706 using MQ3 sensor data. Original data was 

collected between April 20, 2015 and September 9, 2015, sampled at 1-minute resolution, 191812 

observations, 90% of data used. Data source: Pan Am Campaign, Summer 2015, AirSENCE Rev2. 

  

Table 13. The impact of baseline and range (sensitivity) drift over time on the response of all the tested 

sensors. 

  Baseline impact 
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Sensitivity (range) 

impact 

  Low  High  

Low 

  

TGS822, TGS 2620, MICS5121, 

TGS825, MQ3 

 

High  

  

GP2Y1010AU0F, TGS2600, 

MICS5525, MICS5521, MQ135, 

TGS880 

P/N706, PPD42, MICS2610 

  

 

4.1.8 Summary 

 

In summary, sensors were found to be affected by high inter-device sensor variability. A major 

systematic error contributing to inter-device sensor variation is the difference in the degree of sensor 

response relative to the reference (i.e. sensitivity) for different sensor replicates.  High temperature and 

high CO and O3 concentrations also contribute to variation between sensor replicates and should be 

accounted for. 

When sensor importance was evaluated, it was found that same types of sensors are often correlated 

with multiple pollutants and predictor importance analysis suggests that same sensors should be used in 

calibration models for several pollutants. When sensor signal distribution is compared to that of 

reference instruments, sensor distributions were found to be less left-skewed suggesting reduced 

sensitivity to higher pollutant levels. Sensor response non-linearity was found to be a major cause and 

sensor response transformation was identified as a potential solution. Calibration of sensors using 

higher pollution level is another potential solution as it would allow for development of a separate 

calibration model for higher pollutant levels rather than relying on extrapolation.  This solution is 

explored in Section 4.4 of this document. 

 

It was also found that many sensors are cross-responsive. Cross-sensitivity results in change in 

correlation between sensors and pollutants at different sites and suggests the importance of calibrating 

the AirSENCE devices at multiple sites. Finally, drift was found to have a large impact on sensor 

performance after 4 months of operation. Drift in sensitivity affects more sensors than drift in baseline.  

 

4.2 Pollutant model performance 

 

The second major aim of this research work was to evaluate the performance of calibration models that 

relate sensor measurements to pollutant concentration. The performance of calibration models for NOx, 



74 

 

O3, CO, CO2, PM2.5 combining different types of sensors was evaluated and devices were characterized 

with respect to accuracy, precision, sensitivity and limit of detection. Devices, in the context of this 

work, are defined as arrays of 15 non-identical sensors (Table 10) connected to the same 

microcontroller and power supply. Each device represents a complete sensor array that has been 

independently calibrated against the references monitors. The resulting calibration models for each 

target pollutant are the same with respect to sensors used but vary with respect to the calibration 

model coefficients. The variation of performance with changes in pollutant concentration was also 

explored as well as the factors contributing to lack of accuracy. Performance of AQHI models was also 

evaluated. The following research questions were of interest: 

 

Calibration model performance 

1. What is the impact of combining different types of sensors on calibration model performance? 

2. Which pollutants can be predicted with highest (and lowest) accuracy and precision? 

3. What is the sensitivity of the sensor array towards each pollutant and how does this inform the 

applications for which the sensor array can be used? 

4. How linear is the sensor array response towards each pollutant? 

5. What is the lowest concentration at which each pollutant can be detected and quantified? 

Factors affecting calibration model performance 

6. How does the accuracy and precision of the prediction vary with pollutant concentration? 

7. What are the major factors affecting the calibration model accuracy? 

8. How does variation in reference residuals compare to that of inter-device residuals? 

Variability in performance across devices and sites 

9. How does inter-device variation in pollutant estimates compare with their accuracy? 

10. How does an Air Quality Health Index (AQHI) estimates derived directly using model fitting 

compare to those calculated from pollutant estimates? How does performance vary across 

sites? 

 

4.2.1 Multivariable models 

 

Due to cross-responsive nature of sensors, combining selective as well as supporting sensor 

characteristics with environmental variables was postulated to lead to more robust models with higher 

sensitivity and reduced impact of interferences. This premise was tested by combining the sensors 

selected by variable importance subset search algorithms to derive multiple linear regression (MLR) 
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models for NOx, O3, CO, CO2 and PM2.5. The R package “Stats” was used to build and evaluate the 

models and MLR regression coefficients for each sensor device in response to each pollutant were 

determined. Although sensor data was baseline-corrected, there was still large variability in sensitivity of 

sensor replicates. As a result, the models for each device were formulated using the same predictors 

(sensors) but with device specific regression coefficients associated with each of the predictors. To 

evaluate performance of the MLR models, measurements were analyzed at 15min time resolution to 

capture full-scale diurnal variation of pollutant levels, while averaging out any effects irrelevant for this 

analysis (ex. differences in time scale of pollutant dispersion and other short time scale effects). Analysis 

of residual time series was used to for initial evaluation of device model. Residuals between each 

pollutant model observation and multiple device pollutant model average was used to assess how 

comparable the devices are to each other and the residual between each pollutant model observation 

and reference monitor was used for initial assessment of accuracy. 

 

AirSENCE devices Rev1 were found to track the reference instrument well but underestimated some 

pollutant peak levels (Figure 30). The analysis also showed that combining sensor response variability 

(dimensionality) as well as temperature and humidity measurements lead to improved accuracy of 

pollutant models. Due to cross-response nature of some sensors (i.e. O3 metal oxide semiconductor 

sensors), addition of other sensor predictors (i.e. NOx sensors) was necessary for correcting the sensor 

response and improving the accuracy of pollutant estimates.  

 

 

Figure 30. The performance of ozone MLR model improves as predictors are added to the model. The 

output of the ozone sensor model [O3]” is compared to a model making use of both ozone and NOx 
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sensor predictors [O3]’ as well as a model combining ozone, NOx, temperature and humidity sensors 

[O3]. Original data was collected between August 8, 2013 and August 25, 2013, sampled at 30-minute 

resolution, 818 observations, 90% of data used. Data source: SCULPT Campaign, Summer 2013, 

AirSENCE Rev1. 

 

 

4.2.2 Model performance 

 

Evaluation of quantitative performance metrics was important for gaining a full understanding of 

limitations of pollution monitoring using AirSENCE devices. Accuracy and precision helped assess the 

sensor device performance characteristics and indicated which models need to be optimized. The 

evaluation of linearity and sensitivity helped verify whether linear regression models explain all 

variability in sensor response. Analysis of limit of detection and limit of quantification as well as inter-

device variation helped identify the types of applications the AirSENCE devices could be suitable for. 

 

Regression model performance was evaluated using a set of regression metrics (i.e. accuracy, precision, 

linearity, sensitivity, limit of detection and limit of quantitation). All the definitions for sensor 

performance metrics were taken from the “17025” standard developed by International Organization 

for Standardization (ISO), the International Electrotechnical Commission (IEC) as well as the American 

Society for Testing and Materials (ASTM) documentation (ISO 2005; ASTM International 2016; IEC 2017). 

All the metrics were evaluated for a set of 4 devices to ensure variability between devices is captured. A 

MLR model was built for each device for each of the five pollutant targets: NOx, O3, CO, CO2, PM2.5. The 

regression metrics were evaluated on the training set to determine the best-case performance of the 

MLR models. 

 

Precision was defined as the agreement (degree of scatter) between a series of measurements of a 

sample. Precision can change depending on pollutant concentration, sensor operating conditions and 

environmental variables (i.e. temperature, humidity). Different types of analyses and metrics were used 

to assess the precision of the sensors: 

• repeatability (evaluated under the same pollution source profile and environmental conditions), 

• intermediate precision (evaluated under same source profile but different environmental 

conditions) 

• reproducibility (evaluated for different source profiles or mixtures of pollutants).  
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While sensor repeatability was evaluated during calibration (Section 4.2), intermediate precision was 

evaluated during long-term device testing (Section 4.3.1) at SOCAAR and reproducibility was evaluated 

when the devices were tested at other sites (Section 4.3.4). Analysis of reproducibility informs sensor 

response robustness and ruggedness. For the purpose of calibration model performance evaluation, 

sensor precision was expressed as relative standard deviation (%RSD) (Equation 1). Relative standard 

deviation was calculated for each device by dividing each device model output by average sensor model 

output at that concentration. Precision %RSD represents variation of one device in its ability to 

reproducibly measure a specific pollutant concentration 

Equation 1. Equation for precision or inter-device variation. %RSD is % relative standard deviation and s 

is the standard deviation of the sensor device replicate measurements. For precision measurement, x ̅is 

the average pollutant estimate for a concentration level for one device, while for inter-device variation, 

x ̅is average pollutant estimate for sensor device replicates. 

 

 

Precision also informs LOD – the smallest change in concentration that can be detected. Limit of 

detection (LOD) was determined as the lowest amount of pollutant, which could be detected. It was 

quantified by identifying the point for which measurement value was larger than the uncertainty 

associated with it. Limit of detection was calculated by multiplying standard deviation of baseline 

response by 3. Standard deviation of baseline was calculated using standard deviation of lower end of 

calibration range (i.e. zero air). 

 

Limit of quantitation (LOQ) is defined as the lowest amount of pollutant which can be quantified with 

acceptable accuracy and precision. Limit of quantitation was calculated using two methods: 1) by 

multiplying standard deviation of baseline response (calculated the same way as LOD) by 10, and 2) by 

finding the lowest concentration, at which the measured value does not exceed 30% RSD (precision) and 

30% absolute % error (accuracy) for the actual measured pollutant concentration range. The biggest 

value out of the two calculated values was taken as limit of quantitation. Two methods were used to 

calculate LOQ because even though low standard deviation may indicate very low LOQ, the actual 

estimation can be higher depending on the measured pollutant concentration range. 
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A related metric to precision is inter-device variation, which is defined as variation between device 

replicates for a specific pollutant concentration. For the purpose of calibration model performance 

evaluation, inter-device variation was expressed as relative standard deviation (%RSD). Inter-device 

%RSD was calculated by dividing each device model output by average sensor model output of 5 devices 

for each observation. 

 

Accuracy was defined as the difference between pollutant concentration estimated by sensor device 

and accepted reference value (Equation 2). Sensor device accuracy varied depending on pollutant 

concentration and environmental conditions. In addition, accuracy changed over time as a result of 

baseline drift and sensitivity decline due to sensor aging. Accuracy was quantified as mean absolute 

percentage error between sensor measurement and reference measurement. It was calculated by 

finding the difference between reference monitor output and sensor device model output and dividing 

it by reference monitor output. The value was then converted to an absolute percentage. To aid with 

comparisons between different types of pollutants, the reference residual was defined as average 

residual expressed as % full scale (i.e. residual divided by the difference between maximum and 

minimum pollutant level). 

Equation 2. Accuracy equation. A is average absolute % Error, At is the target pollutant reference value, 

Ft is sensor measurement and n is the number of observations. 

 

 

Sensitivity is defined as change in sensor device regression model output per unit change in pollutant 

concentration (Equation 3). It was calculated by finding the slope of the relationship between sensor 

device regression output and reference monitor output. 

Equation 3. Sensitivity equation. M is sensitivity, Δy is change sensor device regression model output, Δx 

is change in pollutant concentration during the same period. 
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Linearity is defined as degree to which unique sensor observations deviate from the linear regression 

line (Equation 4). Linearity was defined as good for the pollutant range where regression line residual 

(deviation from regression line) did not significantly exceed sensor precision. Linearity was expressed 

quantitatively as % best fit nonlinearity, which is the ratio of the maximum output deviation from the 

best-fit line divided by the full-scale output, specified as a percentage. Since ambient air pollution 

exposure was used to calibrate the AirSENCE devices, the pollutant concentration range for which 

linearity could be assessed was limited by the ambient pollution concentration range. In addition, 

linearity was qualitatively evaluated using 2 plots: 1) sensor vs reference scatter plot, 2) sensor residual 

vs reference. 

 

Equation 4. Nonlinearity equation. %NL is percent best fit nonlinearity, Dmax is maximum output 

deviation from the best-fit line and FS is full-scale output. 

 

 

 

MLR models for CO and CO2 were found to demonstrate the best performance in terms of precision and 

absolute accuracy (Table 14). However, it is important to note that when the average residual was 

normalized by pollutant full scale variation, the accuracy of MLR models for these pollutants were 

comparable to NOx, O3 and PM2.5. The higher average levels relative to the ranges of CO and CO2 is a 

major reason for this discrepancy. 

 

Some of the contributors to lower accuracy in NOx, O3 and PM2.5 sensor device measurements are 

sensor response nonlinearity and lower sensitivity in MLR models for these pollutants (Table 14).  In 

addition, the limit of quantitation is also higher for NOx, O3 and PM2.5, suggesting that one of the causes 

for lower accuracy is lower signal-to-noise ratio. 

 

Table 14. Calibration performance metrics for inorganic gases and particulate matter. Precision and 

accuracy were evaluated using pollutant concentration range excluding the data below LOQ. Average 

value for each of the performance metrics is shown for the set of 4 devices as well as standard 

deviation, which represents variation between devices. (* LOQ values were evaluated using two 

methods described in the text). Original data was collected between August 15, 2013 and May 10, 2014, 
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sampled at 30-minute resolution, 6561 observations, 70% of data used. Data source: 2013-2014, 

AirSENCE Rev1. 

  NOx O3 CO CO2 PM2.5 

Pollutant 

range during 

calibration 

week 

1.7 - 62 ppb 1.9 - 75 ppb 201- 729 ppb 371- 453 ppm 0.5 – 33 ugm-3 

Mean ± SD 27 ± 7 34 ± 9 340 ± 78 395 ± 15 17 ± 4 

Quartiles 

(Q1, Q2,  

Q3, Q4) 

7, 11, 15, 62 

ppb 

15, 21, 31, 75 

ppb 

287, 333, 38, 

729 ppb 

385, 393, 403, 

453 ppm 

4, 6, 9, 33 

ugm-3 

Precision - 

Repeatability 

(%RSD)  

22 ± 10% 14 ± 10% 9 ± 4% 0.7 ± 0.6% 13 ± 8% 

Accuracy 

(abs % error, 

residual as % 

full scale)  

  

29 ± 16% 

23% 

  

26 ± 9% 

25% 

7 ± 10% 

29% 

2 ± 1% 

35% 

38 ± 14% 

24% 

% Nonlinearity  55 ± 7% 63 ± 17% 32 ± 5% 8 ± 2% 55 ± 4% 

Sensitivity 

(Δ sensor/  

Δ reference) 

0.83 ± 0.03 0.9 ± 0.03 0.97 ± 0.008 0.99 ± 0.0003 0.85 ± 0.004 

LOD 
5 ± 1 ppb 11 ± 1 ppb 65 ± 20 ppb 11 ± 1 ppm 

3.5 ± 0.5 ugm-

3 

LOQ * 

(method 1, 

method 2) 

18 ± 5 ppb 

18 ppb 

37 ± 3 ppb 

20 ppb 

217 ± 68 ppb  

250 ppb 

35 ± 4 ppm 

371 ppm 

12 ± 2 ugm-3 

15 ugm-3 

 

4.2.3 Accuracy and precision 

 

Assessment of the variability of accuracy and precision with change in pollutant concentration is 

important for understanding the usable range of AirSENCE devices as well as the characteristics of their 
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performance. Magnitude and direction of change in accuracy and precision in response to pollutant 

concentration also informs the performance of AirSENCE devices over time and space. 

 

It was found that precision increases as the pollutant concentration increases, while accuracy is highest 

for mid-range ambient pollutant concentrations, as indicated with the sample ozone regression model 

data (Figure 31). Data for other pollutants can be found in Appendix 4: Precision and accuracy analysis. 

The low level of precision at low pollutant concentration is caused by high variability in sensor 

measurements at pollutant levels close to the limit of detection. The decrease in accuracy at higher 

pollutant concentration is associated with negative % error or underestimation of pollutant 

concentration by AirSENCE devices. The underestimation of pollutant levels is partially caused by 

skewed pollutant concentration distributions, resulting in the majority of the training data 

corresponding to low-medium pollutant levels. Another factor contributing to underestimation of 

pollutant levels is nonlinearity in sensor measurements. Nonlinearity leads to reduced performance of 

MLR model when the model is used for extrapolating the pollutant concentrations associated with 

sensor response outside of the training range. Methods for compensating for these issues are explored 

in section 4.4. 

 

 

 

Figure 31. Evaluation of accuracy and precision of ozone model with change in ozone concentration. A) 

Accuracy is expressed as the percent difference from reference instruments as a function of ozone 

concentration over the ozone concentration range during the calibration week. Error bars represent 

variation between devices in predicting ozone concentration (SD between devices). B) Precision 

expressed as the relative standard deviation between replicate devices (n=4) as a function of ozone 
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concentration. Vertical lines represent limit of detection (LOD). Error bars represent variation between 

devices in predicting ozone concentration (SD between %RSD of devices). Original data was collected 

between August 15, 2013 and May 10, 2014, sampled at 30-minute resolution, 6561 observations, 70% 

of data used. Data source: 2013-2014, AirSENCE Rev1. 

 

4.2.4 Model nonlinearity affects performance 

 

One of the factors contributing to the high % error for PM2.5, NOx and O3 was the nonlinearity of sensor 

response at higher pollutant concentrations. Pollutant slope tends to decrease with increased pollutant 

concentration and MLR performance decreases. To further understand the impact of nonlinearity on 

accuracy of AirSENCE devices, the impact of nonlinearity was compared for different target pollutants. 

The impact of sensor response nonlinearity on resolving temporal variation in pollutant concentration 

was also investigated. 

 

Nonlinearity was found to cause underestimation of peak pollutant levels because of failure to capture 

some of the short-term changes in pollutant levels. However, the AirSENCE devices were still able to 

capture long-term temporal variation well (Figure 32). 

 

While deviation from line of best fit rarely exceeded 1 standard deviation, the residuals were still 

significant for higher pollutant concentrations. Sensor response nonlinearity and underestimation of 

higher pollutant concentration is a recurring challenge for low cost sensors (Zampolli et al. 2004; 

Srivastava 2003; Peterson et al. 2017). There are several factors that might contribute to 

underestimation of pollutant levels. The reactive MOS surface can only accommodate only a certain 

number of molecular interactions at a given time. Therefore, depending on kinetics of the pollutant 

reaction on sensor surface, sensor device response towards higher pollutant levels could be subject to 

saturation (Helwig et al. 2009). Inaccuracy at high pollutant levels can also be caused by the need for 

regression model extrapolation when the measured pollutant concentration range exceeds that of the 

calibration dataset. Another cause for nonlinearity is confounding effects from other environmental 

variables and interferences which might co-occur with pollutant peak levels (Tian et al. 2016; Smith et al. 

2017). It has been shown that interference form environmental factors like ambient air humidity can be 

large, leading to a change in sensor response by as much as a factor of five. The effects of the 

interferences were also found to be inconsistent across sensor replicates, varying by up to a factor of 

two for any given humidity value. 
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When regression model is optimized for a specific set of observations, overfitting may occur resulting in 

non-generalizable model output for data outside of the parameter range of the training data. Based on 

the earlier assessment of relative importance of the model predictors (4.1.5), the P/N706 sensor (a 

major predictor for NOx and O3 models) and GP2Y1010AU0F sensor (a major predictor for PM2.5 models) 

are responsible for the nonlinearity in model estimates. Nonlinear regression models (He et al. 2017) 

and variable transformation may help improve calibration model performance at higher pollutant levels. 

These topics will be explored in Section 4.4. 

 

 

Figure 32. Model nonlinearity and its effect on pollutant models. Time series plot of NOx MLR model 

output indicates nonlinearity at higher NOx levels (A) and % nonlinearity calculation suggests that NOx 

and O3 are affected by nonlinearity the most (B). Original data was collected between August 8, 2013 

and August 25, 2013, sampled at 30-minute resolution, 818 observations, 90% of data used. Data 

source: SCULPT Campaign, Summer 2013, AirSENCE Rev1. 

 

4.2.5 Inter-device performance variation 

 

Combining different types of sensors improved the regression model performance. However, one of the 

challenges associated with multi-sensor regression models was the requirement for calibration of each 

individual device due to high variability in response of sensor replicates. In fact, the MLR predictors that 

had greatest influence on model performance were also associated with highest inter-device sensor 

variation. Therefore, device-specific calibration is essential for reliable analysis. While device-specific 

calibration corrects for some of the variation between devices, its quantification and comparison to the 
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reference device residual is key for to enable spatial variability analysis. Low inter-device variability 

increases the confidence that the variation between devices in sensor network is real (e.g. due to actual 

spatial variation) rather than variability between devices. 

 

To investigate the extent of the variation in sensor response between identical AirSENCE devices, the 

MLR model performance was evaluated for a set of device replicates for each pollutant of interest. The 

discrepancy between AirSENCE devices was compared to the discrepancy between AirSENCE devices 

and reference instrument for each pollutant to evaluate whether the scale and ranking of pollutants is 

comparable for these metrics (Figure 33). To aid with comparisons between different types of 

pollutants, the reference residual was defined as average residual expressed as % full scale. 

 

Five AirSENCE devices were calibrated and tested by comparison to reference pollutant monitors at the 

downtown SOCAAR site. The variation between sensor device pollutant estimates and reference 

measurements was found to be bigger than the variation between AirSENCE devices (Figure 33). While 

the reference residual is above 20% of full scale for most devices, the inter-device mean %RSD is smaller 

than 15%. Relatively low variation between devices suggests that even when the AirSENCE devices might 

not be able to accurately estimate pollutant concentration, they can still be used for comparing sites. In 

addition, the reference residual is highest for CO and CO2, while variation between devices is highest for 

O3 and NOx. Even though the average reference residual relative to pollutant full scale is high for CO, the 

devices show very similar response suggesting that CO predictors might be useful for correcting the NOx 

model output at sites where these pollutants are generated by the same major source (i.e. traffic). 
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Figure 33. Comparison for inter-device variation and reference residual. Data for five devices is shown. 

The regression models were calibrated and tested at the same site using the same reference air 

pollution monitors. Original data was collected between August 15, 2013 and May 10, 2014, sampled at 

30-minute resolution, 6561 observations, 70% of data used. Data source: 2013-2014, AirSENCE Rev1. 

 

Another key finding was that while reference residual increases with pollutant concentration, the inter-

device variation does not change with pollutant concentration (Figure 34). This finding is important for 

the analysis of sensor network data. While sensor devices at different locations might appear to have 

consistent response, the spatial variation of air pollution could be underestimated due to reduced 

regression model accuracy at high pollution levels. 

 

 

Figure 34. Analysis of residuals between sensor device MLR models and reference instrument (A) 

compared to residuals between sensor device MLR models and an average sensor MLR model for 5 

devices (B). Original data was collected between August 15, 2013 and May 10, 2014, sampled at 30-

minute resolution, 6561 observations, 70% of data used. Data source: 2013-2014, AirSENCE Rev1. 

 

4.2.6 Multi-pollutant patterns 

 

Pollution mixture analysis makes it possible to estimate combined metrics related to health impact. 

Using sensor measurements for estimation of air pollution indices enables more succinct 

communication of pollution data. Indices like Air Quality Health Index (AQHI) also combine the data for 



86 

 

multiple pollutants into a single metric. Since sensors are cross-responsive, a metric combining the 

measurement of several different pollutants should be easier to estimate than discrete pollutants. 

Air quality health index is calculated using O3, NO2 and PM2.5 pollutant data (Equation 5). 

 

Equation 5. Air Quality Health Index calculation equation. 

 

 

 

 There are two methods for deriving AQHI using AirSENCE devices: 1) development of MLR model for 

AQHI using reference AQHI calculated using reference monitor data and sensor variables as predictors, 

and 2) calculation of the index indirectly using the sensor device estimates for O3, NOx, PM2.5 in the 

AQHI formula. AQHI calculation using Equation 5 is a standard way to derive the index. The formula is 

simple but requires data for the NO2, O3 and PM2.5 concentrations. Three separate regression models 

would therefore need to be developed to derive AQHI using formula calculation method, resulting in 

increased analysis complexity and uncertainty due to propagation of errors from each of the models. 

Deriving AQHI directly from sensor predictors could reduce the analysis complexity and errors 

associated with the AQHI estimates but could be more impacted by sensor noise and signal artefacts. To 

evaluate reproducibility, the performance of AirSENCE devices in estimating AQHI was evaluated at a 

medium traffic site (SOCAAR), high traffic site (Highway 401) and low traffic site (Halan’s point at the 

Toronto Island). 

 

The analysis revealed that while both of the methods for estimating AQHI performed well at SOCAAR, 

the direct method (i.e. AQHI derived directly from sensor variables) performed much better when the 

devices were deployed at the island and highway locations (Figure 35). Model fitting method was also 

found to be more accurate in evaluating larger AQHI range compared to calculation method (Table 15), 

suggesting that AQHI model performs better at extrapolation. Sensors also are cross-responsive and 

nonlinear which constrains their ability to accurately resolve individual pollutant levels and contributes 

to some measurement errors. When AQHI is calculated using sensor device estimates for O3, NOx and 

PM2.5, the errors associated with estimating these individual pollutants propagate. Since the errors are 

highest when the AirSENCE devices are validated at a new site (due to different pollutant levels and 

interferences), the errors in AQHI measurements are significantly higher for calculated AQHI values 

compared to errors arising from a direct AQHI regression model. As a result, reproducibility is higher for 
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model fitting method compared to calculation method. It is also expected that model fitting method 

would perform better for long-term AQHI monitoring studies, but this is a topic for future work as more 

data is needed to test this hypothesis. 

 

 

Figure 35. Comparison of performance of two Air Quality Health Index (AQHI) estimation methods at 

SOCAAR, Highway and Island sites. AQHI sensors v1 refers to AQHI MLR model calculated directly using 

the sensor data, while AQHI sensors v2 refers to AQHI measurements derived from using AirSENCE 

estimates for O3, NO2 and PM2.5 in the AQHI equation. Original data was collected between September 

20, 2015 and January 15, 2016, sampled at 1-minute resolution, 139742 observations, 90% of data used. 

Data source: Multi-site validation study, Summer 2015, AirSENCE Rev2. 

 

Table 15. Standard deviation values associated two Air Quality Health Index (AQHI) estimation methods 

at SOCAAR, Highway and Island sites. AQHI sensors v1 refers to AQHI MLR model calculated directly 

using the sensor data, while AQHI sensors v2 refers to AQHI measurements derived from using AirSENCE 

estimates for O3, NO2 and PM2.5 in the AQHI equation. Original data was collected between September 

20, 2015 and January 15, 2016, sampled at 1-minute resolution, 139742 observations, 90% of data used. 

Data source: Multi-site validation study, Summer 2015, AirSENCE Rev2. 

Location AQHI variable Standard deviation 

SOCAAR AQHI Reference 0.7 

AQHI Sensors v1 0.3 

AQHI Sensors v2 0.1 

Island AQHI Reference 0.7 

AQHI Sensors v1 0.5 

AQHI Sensors v2 0.2 
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Highway AQHI Reference 3.4 

AQHI Sensors v1 2.3 

AQHI Sensors v2 1.9 

 

4.2.7 Summary 

 

In summary, MLR models using multiple sensors provided more accurate pollutant concentrations than 

using single sensors. A combination of different sensors is needed to determine pollutant concentration. 

NOx and PM pollutant models suffer from the low precision and accuracy. While precision improves 

with pollutant concentration, accuracy is highest for mid-range pollutant levels. Nonlinearity is one of 

the major contributors to low accuracy. Evidence suggests that variable transformation or non-linear 

regression model development might improve performance. Difference between reference monitors 

and AirSENCE devices is higher than the difference between device replicates, which doesn’t exceed 

15%. Air quality health index can be quantified and is useful for resolving spatial and temporal pollution 

patterns. Its estimation by direct regression model fitting leads to a more accurate result compared to 

indirect calculation. 

 

4.3 Reproducibility & the impact of interferences 

 

Majority of studies in the literature use short-term calibration at a single site as a method for deriving 

calibration models and rely on these models to accurately estimate pollutant variation over space and 

long periods of time (Piedrahita et al. 2014; Gao, Cao, and Seto 2015). However, the assessment of 

device performance at the calibration site for a period of time less than a month provides only a limited 

snapshot of device performance (Castell et al. 2017; Spinelle, Gerboles, and Aleixandre 2013). It helps 

establish the best-case performance, but sensor have been shown to be cross-responsive and sensitive 

to drift. To be useful for air pollution monitoring applications, sensor device needs to not only show 

acceptable performance in measuring pollutant levels, but also good long-term reliability. Therefore, a 

key step in sensor device performance analysis pipeline is the assessment of consistent performance 

over time and in response to changes in environmental conditions and pollution source composition.  

 

Key metrics that define device performance are: 

• Change in baseline performance 

• Change in range (i.e. ability to measure full span of response) 
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• Inter-device variation (i.e. %RSD) 

 

Consistent baseline suggests consistency in sensor device response to low pollutant levels, while 

consistent range is a proxy for robust sensitivity performance. Stable inter-device variation suggests that 

the ability of sensor device is able to accurately assess of spatial variation of pollution stays constant.  

 

Therefore, the impact of drift on device performance and inter-device variation was investigated to 

establish the long-term device performance. The impact of interferences on model performance was 

also analyzed and the influence of factors such as changes in temperature, humidity and pollution 

concentration on MLR model baseline and range was assessed. The reliability of model performance at 

sites with different levels of traffic was also investigated. 

 

The following questions were addressed: 

Impact of drift over time 

1. What is the impact of drift on sensor device estimate of pollutant baseline, range and inter-

device variation? 

2. What is the change in relationship between pollutant levels estimated by AirSENCE devices over 

time? 

Impact of interferences 

3. What is the impact of interferences on sensor device response? 

4. How does temperature and humidity impact the baseline, range and inter-device variation of 

sensor device regression models? 

5. How does change in pollutant concentration influence sensor device performance and inter-

device variation? What are the most influential factors with respect to the number of sensor 

affected? 

Impact of site variability 

6. How is the sensor device performance affected when devices are deployed at a site with 

different pollution concentration? 

 

Assessment of the impact of drift and changes in response to environmental variables requires long-

term monitoring for sufficient data to be collected. The long-term performance of AirSENCE devices was 

tested over a period of 9 months during deployment at SOCAAR site. In order to evaluate the long-term 

performance of sensors, the devices were co-located at the SOCAAR lab. Evaluation was conducted only 
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for AirSENCE devices that showed acceptable performance during calibration in order to ensure 

consistent benchmark.  

 

The impact of several different factors on sensor performance was assessed: 

• Drift over time 

• Variation in environmental conditions (temperature, humidity) 

• Variation in pollutant concentration (i.e. NOx, O3, CO, CO2, PM2.5) 

• Level of pollution at the site 

 

Baseline drift was quantified by taking a 7-day average of regression model estimates and evaluating the 

change in weekly averages over time. Change in sensitivity was quantified by calculating the change in 

regression model range. Regression model range was calculated by finding the difference between 

minimum and maximum pollutant concentration over the course of a day and averaging the daily range 

values over 7-day period. Averaging over 7 days allowed us to assess the impact of drift and 

environmental factors on sensor device performance, while averaging out known temporal patterns (i.e. 

variation of pollutant levels over the course of a day or a week).  

 

The goal of the analysis was to quantify change in sensor performance. However, the reference 

instrument is also expected to change over time and respond to changes in environmental variables. 

Therefore, both baseline and range values were normalized by taking a ratio between the sensor 

estimates and reference measurements and expressed as percentage.  

 

Drift was quantified by finding the difference between median sensor device-to-reference ratios for 

maximum and minimum quartiles of each factor (i.e. time, temperature, humidity, pollutant 

concentration). For example, the inter-quartile difference for change over time was found by calculating 

the difference in median sensor device-to-reference ratios between August and April of the following 

year. 

 

The inter-quartile difference for temperature was found by calculating the difference in median sensor 

device-to-reference ratios for low temperature range (-13-8 C) and high temperature range (20-32 C) 

based on the variation measured over the selected 9-month period. The impact of humidity and 

pollutant concentration was quantified similarly.  
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In order to compare AirSENCE devices based on the extent to which reproducibility (variation between 

device replicates) changes over time, inter-device %RSD was analyzed for 4 device replicates. It was 

calculated by finding the standard deviation for a given pollutant across 4 devices and dividing it by the 

average for these devices (Figure 36). 

 

 

Figure 36.  The process for analyzing the impact of drift and interferences on pollutant model 

performance. 

 

4.3.1 Pollutant model drift analysis 

 

The major goal of sensor device drift analysis was to evaluate whether there is any appreciable 

degradation in sensor performance and make projections about the sensor operation lifetime. 

Understanding how drift influences the sensor device performance helps identify methods for its 

correction. For example, drift in baseline can be corrected for by rescaling the sensor device 

performance or inter-comparisons between sites during the periods when pollutant levels are low. 

However, drift in sensitivity is more difficult to correct. More complicated and expensive measures such 

as device re-calibration or sensor replacement might be needed to correct for sensitivity drift. In 

addition, understanding of the impact of drift on inter-device variation as well as the causes for this 

change helps assess how the ability to resolve spatial variability in pollution varies over time. 
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The impact of drift on change in sensor baseline, sensitivity and inter-device variation was evaluated 

between August 2013 and April 2014. The change in inter-device variation over time was also compared 

for different pollutants. 

 

Baseline and sensitivity were found to decline over time (Figure 37). The change in sensitivity (i.e. range) 

was bigger than that of baseline and was more consistent between device replicates. Unlike the other 

pollutants, the PM2.5 baseline estimates increased over time, which was likely caused by accumulation of 

dust on the scattering optics. O3 and PM2.5models were more impacted by the drift in baseline, while 

NOx, CO and CO2 estimates were more impacted by drift in response range (sensitivity). 

 

Some devices were impacted by large change in sensitivity at the onset due to low quality of some 

sensors, suggesting that early diagnosis of sensor operation parameters is vital. However, the long-term 

drift in baseline and range was found to be consistent across device replicates and independent of 

seasonal variation in temperature, humidity and pollutant concentration. The response range declined 

to less than 60% of reference after 2 months of operation and continued to decline to below 30% after 4 

months of operation. For most devices, drift correction or re-calibration is needed after 2 months of 

operation. After 6 months of operation sensor replacement might be needed for some sensors.  

 

The variation between devices was also found to decrease over time for NOx, CO, CO2, and to a lesser 

extent – O3 and PM2.5. While initially %RSD is close to average % reference residual, it decreases by over 

50% in 9 months. The main reason for the decline in variability between devices over time was the 

decline in sensor range. As the sensors aged, key sensors became less responsive to changes in the 

pollutant concentration and thus their readings approached a constant value.  With each sensor 

showing less variability, the variability between sensors also declined and hence the %RSD decreased. 

Based on the earlier analysis (Section 4.1.7), the key sensors responsible for pollutant model drift and 

high inter-device variation were P/N706 and PPD42. 
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Figure 37. Impact of time on pollution baseline and range measured by AirSENCE devices. Impact is 

expressed as change over time (difference between end of Spring 2014 and Fall). Both baseline and 

range declined over time as indicated by negative % change in baseline and range. Average of 3 device 

replicates is shown. In addition, comparison of inter-device variation (%RSD) for NOx, O3, CO, PM2.5 and 

CO2 is shown as a function of time. Original data was collected between August 15, 2013 and May 10, 

2014, sampled at 30-minute resolution, 6561 observations, 70% of data used. Data source: 2013-2014, 

AirSENCE Rev1. 

 

The change in sensor device performance over time also impacts the relationship between pollutants 

(Figure 38). While the slope between CO and NOx measured by reference monitors doesn’t change over 

time, the slope and correlation between CO and NOx for AirSENCE devices increases. CO and NOx 

sensors become more correlated and cross-responsive as baseline and range of sensor response 

declines and hence became less capable of resolving CO from NOx. 
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Figure 38. Drift results in inaccurate long-term assessment of multipollutant patterns. Original data was 

collected between August 15, 2013 and May 10, 2014, sampled at 30-minute resolution, 6561 

observations, 70% of data used. Data source: 2013-2014, AirSENCE Rev1. 

 

4.3.2 Interference impact 

 

Combining different types of sensors contributes to more robust models that are less sensitive to the 

influence of some interferences. For example, combining O3 and NOx sensors in a NOx calibration model 

helped correct for the corresponding interference. However, depending on the quality and variability of 

the training dataset used, the regression models were still found to be impacted by interferences.  

 

The impact of cross-sensitivity was assessed by comparing the strength of correlation between sensor 

pollutant estimates and target pollutant concentration. For instance, the strength of correlation 

between the sensor NOx estimates and the reference NOx measurements indicates how good the 

devices are in predicting target pollutant levels, while the strength of correlation between the sensor 

NOx estimates and the reference measurements for other pollutants (e.g. CO, CO2, O3) indicates 

whether these pollutants might interfere with sensor response.  

 

Interferences were found to have significant impact on model performance (Figure 39). The strength of 

the correlation between NOx sensor device estimates and reference measurements for NOx, CO2, O3 

and CO was used as a proxy to access the performance of sensor device NOx MLR model. The 

correlation was lower than 1 (0.7) for NOx. The correlation was also smaller between sensor NOx and 
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reference CO (compared to reference NOx and reference CO). However, the correlation was higher 

between sensor NOx and reference CO2 and O3 (compared to the correlation with reference NOx). These 

results suggest that multi-sensor models can under- or overestimate the actual correlation between 

pollutants. One of the reasons for reduction in model accuracy and selectivity was the quality of the 

training dataset used to build the multi-sensor models. When the training dataset does not contain 

sufficient variation in environmental conditions and pollutant concentration range, the calibration 

models are not able to effectively account for the interferences. Thus, the cross-responsiveness of the 

sensors cannot be effectively corrected for. In addition, pollutants in ambient air were often more 

correlated during some periods of time compared to others, highlighting the importance of using 

sufficiently large and variable training datasets. 

 

 

Figure 39. Impact of inferences on NOx sensor response, expressed as the difference in strength of the 

correlation between sensor device output and reference instruments (R2 Pearson NOx sensor – R2 Pearson NOx 

reference). Person correlation coefficient was calculated between sensor device NOx and reference 

measurements for NOx, CO2, O3 and CO (R2 Pearson NOx sensor). The extent of error in the correlation strength 

was then quantified by subtracting the Pearson correlation coefficient for reference NOx and reference 

measurements for NOx, CO2, O3 and CO (R2 Pearson NOx reference). The value of R2 Pearson NOx reference for reference 

NOx vs. reference measurements for NOx was 1.0. Average of 6 AirSENCE devices is shown. Original data 

was collected between August 15, 2013 and May 10, 2014, sampled at 30-minute resolution, 6561 

observations, 70% of data used. Data source: 2013-2014, AirSENCE Rev1. 
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4.3.3 Influential factors 

 

The assessment of influential environmental factors on sensor response was discussed in Section 4.1.3. 

To extend that analysis and assess the extent to which MLR models can correct for influential factors 

was further investigated by comparing the impact of temperature, humidity, interfering gases on sensor 

model performance. The major goal of this analysis was to identify the most influential variables to 

enable better data quality control and interference correction. Insight of the factors influencing sensor 

response helps: 1) flag data for quality control and 2) develop more robust models by ensuring more 

variability in training dataset and improving the ability of AirSENCE devices to extrapolate beyond the 

training variable variation range. The impact of pollutant concentration on inter-device variation was 

also tested to assess the extent to which it impacts device performance and identify which pollutant 

models are most sensitive. 

 

Ozone was found to have one of the largest impacts on inter-device variability of NOx, O3, CO and CO2 

(Figure 40). As the concentration of ozone increased, the variability between devices declined. While the 

inter-device %RSD for NOx is close to average % reference residual at ozone concertation below 5ppb, it 

decreases with increasing ozone until it reaches 10% for ozone concentration higher than 17 ppb.  In 

contrast, earlier analysis showed that inter-device sensor variability increased with pollutant 

concentration suggesting that the calibration models subdue the variability in sensor replicates at higher 

concentration of ozone. The decrease in inter-device variation with increased pollutant concentration 

might also be related to reduction in sensitivity of regression models towards changes in pollutant level 

at higher concentration. Drift over time also has a similar effect on inter-device variability suggesting 

that significant reduction in inter-device variability can be a sign of degraded performance. 
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Figure 40. Impact of pollutant concentration on inter-device variation. Comparison of inter-device 

variation (%RSD) for NOx, O3, CO, PM2.5 and CO2 is also shown as a function of pollutant concentration. 

Original data was collected between August 15, 2013 and May 10, 2014, sampled at 30-minute 

resolution, 6561 observations, 70% of data used. Data source: 2013-2014, AirSENCE Rev1. 

 

Increase in temperature was found to affect the greatest number of sensors (Figure 21). Its impact on 

sensor device response range, baseline and inter-device variation was therefore considered in more 

detail. Its impact on inter-device variation was also compared for target pollutants. To correct for the 

influence of seasonal change in pollutant concentration, a sensor-reference ratio was used as a metric 

instead of pollutant concentration.  

 

Temperature was found to have the largest impact on increasing regression model baseline and the 

increasing range, particularly for NOx (Figure 41). Humidity also had an effect of increasing baseline and 

range, albeit much smaller one. The impact of temperature could be confounded by the impact of 

sensor drift since most of the measurements in low temperature conditions co-occurred with sensor 

aging (Section 4.3.1). However, even when the dataset was limited to the first 3 months of sensor 

operation, the temperature influence trend remains significant suggesting that the impact of 

temperature and drift with time are separate. The impact of temperature on sensor performance is also 

supported by the literature (Popoola et al. 2016). These results suggest that the device performance 

improves as temperature and humidity increase and that the control of environmental conditions within 

the sensor box could help improve device performance. 
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Figure 41. Impact of temperature and humidity on pollution baseline and range measured by AirSENCE 

devices. Impact is expressed as difference between lowest and highest quartiles. Positive change 

indicates increase with the factor. Average of 3 device replicates is shown. Original data was collected 

between August 15, 2013 and May 10, 2014, sampled at 30-minute resolution, 6561 observations, 70% 

of data used. Data source: 2013-2014, AirSENCE Rev1. 

 

4.3.4 Site variation 

 

The influence of interferences on sensor device response suggested that sensor device calibration 

models might be sensitive to variation in pollutant mixtures in locations with different types of sources 

and levels of air pollution. In addition, earlier results showed that the importance of regression model 

predictors changes depending on the type of site. Therefore, the evaluation of performance of AirSENCE 

devices at sites with different levels of air pollution is important to understand the accuracy and 

limitations of spatial variation analysis. 

 

Therefore, reproducibility of regression model response was evaluated for AirSENCE devices trained at 

SOCAAR site and deployed at the Toronto Island Halan’s Point and Highway 401 sites. Toronto Island site 

is an example of background site with low level of traffic pollution, while Highway 401 site is located 

close to highway and is an example of site with high levels of traffic pollution. SOCAAR site is close to an 

atrial road and is affected by medium levels of traffic pollution. 

 

The analysis resulted showed that good performance at calibration site is not indicative for acceptable 

performance at other sites (Figure 42). While AirSENCE devices showed acceptable performance when 
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trained and tested at SOCAAR, the device accuracy was degraded at the island and highway sites. 

Regression models for NOx trained at SOCAAR site can be used to distinguish medium and low pollution 

levels for NOx but not levels above 40 ppb. The deterioration in model performance differs by the type 

of pollutant. SOCAAR-trained regression models fail at accurately measuring ozone at location with low 

levels of traffic pollution such as island site. They also cannot measure CO2 and PM2.5 reliably at the sites 

where they were not trained. However, the performance of CO models trained at SOCAAR was shown to 

be acceptable and suitable for resolving sites with different levels of air pollution. 

 

Two factors that have likely contributed to poor regression model performance are interferences and 

sensor surface saturation. Sensor response is correlated to exchange of oxidative and reductive species 

on sensor surface. Hence, the range of sensor response is limited and depends on kinetics of pollutant 

reactions on the sensor surface. In addition, high sensor cross-responsiveness suggests the importance 

of the training dataset. When calibration models are developed, they are optimized to correct for 

specific types and levels of interferences. The change of device location leads to changes in the types 

and levels of both target pollutants and interferences, which can lead to lower accuracy. Development 

of calibration models using data from multiple sites can lead to more robust performance and better 

ability to access spatial variability of air pollution. 

 

 

Figure 42. NOx model performance before (top) and after (bottom) deployment at the highway site. 

Average weekly trend over a month is shown. Original data was collected between September 20, 2015 

and January 15, 2016, sampled at 1-minute resolution, 139742 observations, 90% of data used. Data 

source: Multi-site validation study, Summer 2015, AirSENCE Rev2. 
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4.3.5 Summary 

 

Drift was found to have a large impact on sensor device model performance. The response range 

declined to less than 60% of reference after 2 months of operation and continued to decline to below 

30% after 4 months of operation. The impact on sensor sensitivity was higher than on baseline response 

and affected slope and correlation of pollutant regression models. Inter-device variation declined over 

time for most pollutant models due to the progressive decline in the responsiveness of the devices.  

 

Environmental factors were also found to have large impact on pollutant model performance. Increase 

in temperature and humidity caused increase in pollutant model baseline, sensitivity and inter-device 

variation. Temperature had bigger impact on model performance than humidity and the impact on 

pollutant model sensitivity was bigger than on baseline. 

 

Gas interferences also had a large impact on regression model performance. NOx regression model was 

found to be highly correlated with O3 and CO2 suggesting the impact of these gases on model 

performance. The effect of drift, environmental factors and interferences was highest for NOx and O3. 

 

Good performance at a calibration site was also found to not necessarily assure acceptable performance 

at other sites. The accuracy of calibration models was found to decline when devices were deployed at 

new locations. The degradation in performance was smallest for CO and largest for CO2 and PM2.5. For 

NOx and O3, the performance was dependent of the range of pollution concentration at the site. 

 

4.4 Performance optimization 

 

While AirSENCE devices have acceptable performance when tested at the same site they are calibrated 

at, the accuracy declines when the devices are deployed at sites with different types of sources or 

pollution levels. The two major reasons for decline in performance are: 1) sensor non-linearity, 2) sensor 

cross-responsiveness. While linear regression models are preferable due to their simplicity and speed of 

computation, their accuracy is low for many pollutants due to nonlinearity of sensor response. Decline 

in accuracy is often caused by underestimation of pollutant concentration and is most significant at 

higher pollutant levels. The large impact of non-linearity on sensor device model performance suggests 
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that nonlinear models and variable transformations might improve the accuracy of the pollutant 

estimations. 

 

Sensor cross-responsiveness is another inherent characteristic of commercial MOS sensors. While it can 

be partially corrected for using regression models, the performance of the models is often biased by the 

training dataset. When calibration models are developed using data from a single location with low 

variability in the types of sources and emissions, they are often limited in the types of factors and 

interferences they can correct for. As a result, deployment at a new site often leads to decreased 

accuracy because of change in types and combinations of pollutants. The quality and variability of the 

training dataset was shown to have a large impact on pollutant model accuracy at sites where pollutant 

levels are higher or lower compared to the model training site. Using data from multiple sites to 

calibrate AirSENCE devices might therefore improve device performance. 

 

To correct for the impact of sensor nonlinearity and cross-responsiveness, several different techniques 

were tested. Nonlinear regression models such as support vector machines and random forests were 

compared to multiple linear regression (MLR) models in their ability to improve the accuracy of 

pollutant baseline and range estimates. In addition, the impact of different types of transformation on 

sensor response was assessed. The impact of variable transformation on MLR model performance and 

improvement in performance across sites was also tested. In addition, the impact of multi-site 

calibration on performance of calibration models and their ability to correct for sensor cross-

responsiveness was also tested. 

 

The following questions were investigated: 

Nonlinear models impact 

1. Can nonlinear models be used to improve sensor device performance? What is their impact on 

sensor baseline and range? 

Variable transformation impact 

2. What types of variable transformation techniques are most impactful in improving the device 

performance? How does variable importance ranking change when variables are transformed? 

3. How do MLR models using transformed predictors compare to MLR models using raw sensor 

measurements when their performance is tested at sites with different level of traffic pollution? 

4. How do MLR models developed using transformed variables compare in their ability to resolve 

special differences between sites? 
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Training data impact 

5. How to AirSENCE devices calibrated at sites with low, moderate and high traffic pollution 

compare in their performance? 

 

4.4.1 Nonlinear models 

 

Linear regression makes a number of assumptions regarding the variable distribution as well as 

relationships between predictors: 

• Linear relationship between independent and dependent variables 

• Multivariate normality (normal distribution of predictors) 

• No or little multicollinearity (low correlation between predictors) 

• No auto-correlation (residuals are independent of each other) 

• Homoscedasticity (error is the same across all values of predictor) 

 

Earlier analysis showed that while majority of the assumptions were valid, some didn’t apply across full 

pollution concertation range. The limitations in pollutant concentration range for which the assumptions 

applied became apparent when the devices were deployed at other sites. For example, due to sensor 

response non-linearity, the calibration models underestimated the pollutant levels at some sites and 

overestimated them at other sites. This suggests that the models were not generalizable and that 

alternative regression techniques might be needed to improve model performance. 

 

Alternative regression techniques were tested to verify whether model performance could be improved. 

These techniques included GLM (generalizable linear model), MARS (multivariate adaptive regression 

spline), NN (neural network), SVM (support vector machine) and RF (random forest). Most of the 

selected alternative regression techniques were non-linear (except for GLM) to help validate the 

hypothesis that non-linearity in sensor response contributed to poor calibration model reproducibility.  

The analysis showed that nonlinear models improve accuracy for some pollutants (Figure 43). According 

to the comparison of model performance in lab and in field, SVM models were found to improve model 

predictions for PM2.5. MARS, GLM, RF and NN models did not significantly improve the model 

predictions and in some cases even reduced the accuracy. 
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Figure 43. Analysis of improvement in performance when nonlinear calibration models are tested. 

Comparison of MLR and SVM models for monitoring PM2.5 at the Highway 401 site is shown. All models 

were trained at SOCAAR location. Original data was collected between September 20, 2015 and January 

15, 2016, sampled at 1-minute resolution, 139742 observations, 90% of data used. Data source: Multi-

site validation study, Summer 2015, AirSENCE Rev2. 

 

4.4.2 Transformed sensor importance 

 

Although nonlinear models improve the device performance, regression models like SVM and RF are 

computationally expensive when used in real-time calculations. Transforming sensor response prior to 

using them as predictors in MLR models is another method that can be used to correct for nonlinearity 

in sensor response, while reducing the computational needs (i.e. time and memory required to generate 

real-time model estimates).  

 

Variable transforms were investigated as a method to correct for sensor measurement non-linearity and 

improve the model accuracy. The impact of variable transforms on model importance was evaluated by:  

1. Calculating variable transforms for all sensor variables 

2. Selecting the variable combinations that had the highest performance 

3. Evaluating the improvement in accuracy for AirSENCE devices trained at SOCAAR site and 

deployed at other sites. 

 

The following transforms were calculated for each sensor variable for all devices: 

• Natural logarithm transform 

• Base 10 logarithm transform 
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• Exponential transform 

• Square transform 

• Square root transform 

 

Relative importance metrics for all variables were calculated. SOCAAR data and data from other sites 

(i.e. Toronto Island and Highway 401) was used for model training and validation respectively. The 

relaimpo R package was used to compute variable importance and adjusted R squared was used as a 

metric. New predictor sets were chosen based on variable importance analysis.  

 

The analysis has indicated that square and exponential transform were the most useful in improving the 

model performance (Figure 44). In addition, sensors TGS880 (important in NOx, CO, CO2 models) and 

MICS5521 (important in NOx and O3 models) were found to be more influential on model performance 

when transformed. 

 

 

Figure 44. Best-performing sensor transforms. 

 

4.4.3 Variable transformation impact 

 

While nonlinear regression techniques and variable transforms contributed to improvement in model 

performance, the AirSENCE devices still underestimated the peak pollutant levels, particularly for sites 

with high traffic-associated pollution. A hypothesis explaining the reason behind peak pollutant level 

underestimation was regression model bias caused by skewed pollutant concentration distribution. The 

occurrence of high pollutant concentrations was relatively infrequent. As a result, most of the training 

data was much lower than the peak pollutant levels, which could bias the calibration models.  This bias 
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was further amplified since the calibration models were developed at SOCAAR site, where peak 

pollution levels are lower compared to higher traffic locations, such as Highway 401 site. 

 

The influence of peaks and baseline on calibration model was therefore decoupled by building 

calibration model using background-subtracted data. Background was calculated by finding the rolling 

minimum average with a 60-minute window for both reference data and sensor data (Figure 45). 

Background was then subtracted from the raw data for both reference instruments and sensor 

measurements to find the local source contribution to the measurements. Two separate models were 

then built: 1) background regression model and 2) peak regression model. The models were then 

applied to new sensor data and added to generate pollutant concentration estimates. 

 

 

Figure 45. Baseline subtraction for NOx measurements at site 18. Baseline is indicated in orange. One-

minute resolution data is shown. 

 

It was found that the combination variable transformation and separate model development for local 

and background components together led to significant improvements in regression model accuracy for 

NOx, O3, CO and CO2 at both Highway 401 and Toronto Island sites (Figure 46). The improvement in 

model accuracy for ozone was especially significant at the Toronto Island site. The accuracy of 

estimating both the median concentration as well as the concentration distribution improved. 
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Figure 46. Comparison of non-transformed and transformed O3 regression model performance tested at 

the island and highway sites. Original data was collected between September 20, 2015 and January 15, 

2016, sampled at 1-minute resolution, 139742 observations, 90% of data used. Data source: Multi-site 

validation study, Summer 2015, AirSENCE Rev2. 

 

4.4.4 Training site impact 

 

For most calibration models described in this thesis, 2-3-week period at SOCAAR was used for model 

training. While this period of time proved sufficient for development calibration models that performed 

well for extended periods of time when deployed at SOCAAR, the performance at other sites was 

significantly worse. One of the biggest challenges with MLR models was that for some pollutant targets 

they did not perform well at sites they were not calibrated at. It was hypothesized that training sensor 

device models using sufficiently variable data is important due to high cross-responsiveness in sensor 

response. Since sensors have been shown to be responsive to multiple pollutants and environmental 

factors, capturing more variation in the levels of pollutant concentration, temperature and humidity in 

the model training data could improve the model accuracy and reproducibility at other sites.  

 

The impact of the calibration location of AirSENCE devices on model performance was evaluated. The 

AirSENCE devices were first trained at SOCAAR and their performance was verified at highway and island 

sites by comparing the similarity of concentration distributions between sites. The importance of 

calibration site was evaluated by training devices at highway or island location and testing the 

performance at SOCAAR. 
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It was found that calibration at site with higher pollutant concentration improves overall calibration 

model accuracy (Figure 47). For CO, the AirSENCE devices overestimated levels of CO concentration (by 

50 ppb on average) at highway when the models were trained at SOCAAR. When devices were trained at 

the highway site, the overestimation of CO levels at highway was smaller (10 ppb) and the devices 

performed well when the model was applied to SOCAAR data. When devices were trained at SOCAAR 

and deployed at the Island, they performed well with regards to evaluating CO distribution. However, 

when the devices were trained at the Island and tested at SOCAAR, they were not able to correctly 

extrapolate the higher CO levels. This suggests that the CO calibration model cannot accurately 

extrapolate high CO levels outside of the calibration range. A major reason for this is nonlinearity in CO 

sensor response at higher CO levels. Training the CO model at a site with higher CO concentration levels 

is essential for accurate model output.  

 

NOx calibration models trained at SOCAAR site underestimated the NOx levels (10 ppb on average) 

when deployed at the highway site. The models were able to correctly assess the NOx concentration 

when trained with data from the highway site but were unable to extrapolate the lower NOx 

concentrations correctly. This suggests that the NOx regression model is nonlinear at both higher and 

lower concentrations and requires training at multiple sites. In addition, nonlinear regression techniques 

or variable transformation might assist in more accurate model output. 

 

These findings support the hypothesis that calibration of AirSENCE devices using skewed data can bias 

pollution estimates, especially when peak pollution levels at the calibration site are lower than those at 

deployment site. The results suggest that either multi-site calibration is key to accurate analysis. 

Another solution is a strategic calibration protocol where devices are calibrated at a site with higher 

pollutant levels than the site where they are deployed. 
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Figure 47. Comparison of CO calibration model trained at SOCAAR and tested at Highway 401 and Island 

sites with CO regression model trained at the sites and tested at SOCAAR. Original data was collected 

between September 20, 2015 and January 15, 2016, sampled at 1-minute resolution, 139742 

observations, 90% of data used. Data source: Multi-site validation study, Summer 2015, AirSENCE Rev2. 

 

Another key finding was that using more than 2 months of historical data didn’t improve the model 

performance. Training the AirSENCE devices at a specific site helps generate best calibration models at 

that site, but training AirSENCE devices at multiple sites leads to the best performance across multiple 

sites. 

 

4.4.5 Summary 

 

In summary, nonlinear models were found to improve the accuracy of regression models for NOx and 

PM2.5. However, continuous deployment of these models was computationally expensive. While variable 

transformation was found to improve the MLR model accuracy, AirSENCE devices have a tendency to 

underestimate the pollutant levels, particularly at sites with high pollutant levels. The combination of 

variable transforms with separate model development for background and local contributions helped 

improve model performance, particularly at sites other than the calibration site. 

 



109 

 

In addition, the reproducibility of models at other sites was improved when devices were calibrated at 

sites with higher pollutant concentration. The sensor device model performance and ability to resolve 

sites was highest when the devices were calibrated using data from several different sites. A major 

reason for improved performance was the improved ability of calibration models to adjust for different 

combinations of interferences. However, long-term historical training data didn’t significantly improve 

model performance. 

 

4.5 Temporal patterns 

 

The ability to track the variation of air pollution over time is useful for understanding air pollution 

sources. The amplitude and integral of short-term spikes in pollution levels can help appreciate local 

sources such as traffic. The variation of pollution levels at time resolution less than 1 minute can be used 

for analyzing traffic emission factors. Long-term temporal analysis can be used to assess the changes in 

impact of source profile and meteorological variables of pollutant levels. The analysis of the absolute 

pollutant levels by AirSENCE devices is often confounded by sensor nonlinearity and cross-sensitivity to 

interferences. However, even when the absolute pollutant estimation is not accurate, the relative 

temporal patterns are still informative in comparing the changes in sources contributions. In addition, 

earlier sensor device validation analysis indicates that the devices are able to assess temporal patterns 

better than absolute pollutant levels. 

 

The performance of AirSENCE devices in detecting temporal pollution patterns was assessed by 

comparing diurnal variation at different sites. Both background and local contributions were considered 

and the differences in peak frequency and amplitude between sites were investigated for sites with 

different levels of traffic. The variation between sites was validated through: 1) comparison with known 

temporal variation in pollutant concentration (e.g. morning rush hour) and 2) comparison with known 

traffic volume differences between sites. The sensor device performance in detecting diurnal, weekly 

and seasonal patterns was validated against reference monitor at SOCAAR, high traffic site and 

background site. The temporal variation in relative contributions of gasoline and diesel sources was also 

inferred from temporal variation of CO/NOx ratios. 

 

The following questions were addressed: 

Temporal pattern estimation accuracy 
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1. How accurate are the AirSENCE devices in detecting temporal variation of pollutants over the 

course of a day, a week and a year? 

Spatial variation of temporal patters 

2. Can AirSENCE devices be used to detect differences in pollutant diurnal patterns at different 

types of sites? 

3. How does the accuracy of temporal patterns measured by AirSENCE devices vary between sites 

with different levels of traffic pollution? 

Source contribution analysis 

4. Can temporal patterns measured by AirSENCE devices be used to distinguish the sites with 

different levels of traffic pollution? 

5. How accurate are the AirSENCE devices in assessing the temporal variation of relative 

contribution of different pollutants (and hence sources) at a site? 

 

4.5.1 Temporal pattern estimation accuracy 

 

A key application of AirSENCE devices is the analysis of changes in pollutant concentration over time. To 

ensure reliable analysis, the AirSENCE devices need to fulfill several criteria: 

1. Accurately detect variation in pollutant baseline over time 

2. Detect full scale of changes in pollutant levels 

3. Show reliable performance in response to changes in pollutant levels and environmental 

parameters over time 

While fulfillment of all the criteria is ideal, it is not always required for deriving insights from sensor 

device data. Even when the absolute magnitude of pollutant variation is inaccurate, the timing of the 

changes in pollutant levels can be useful for detecting the variability in source profile. Therefore, it was 

important to quantify the accuracy and reliability of AirSENCE devices in detecting the temporal 

variation in pollutant levels. 

 

The accuracy of temporal patterns estimated by comparing the temporal variation in sensor 

measurements to that of reference monitors. The reliability in estimating the temporal patterns was 

evaluated by summarizing the accuracy over 5-month period. The temporal variation in sensor 

measurements was compared to reference monitors over a course of a day, a week and a year (Figure 

48). Daily variation analysis was used to access the ability of AirSENCE devices to detect changes in 

pollution levels due to rush hour. Weekly variation analysis was used to access the reliability of AirSENCE 
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devices in response to small changes in source contribution. Assessments of temporal variation over the 

course of several months was used to understand long term reliability of sensor device performance and 

quantify the ability of AirSENCE devices to resolve seasonal patterns. The temporal variation was 

examined as the change in the average distribution 1) over the course of a day, 2) between weekdays 

and weekends as well as 3) over the period of 5 months. 

 

The analysis has indicated that both short term and long-term temporal variation in pollutant levels can 

be resolved by AirSENCE devices. The diurnal variation in CO2 levels due to rush hour was accurately and 

reliably detected by AirSENCE devices, although they slightly underestimated the peak levels in the early 

morning and over-estimated the reduction in CO2 levels in late morning and early afternoon. The 

distribution median was also systematically higher for AirSENCE devices. The difference in pollutant 

levels between weekday and weekend was small for both reference monitors and AirSENCE devices. 

However, the distribution of CO2 levels measured by AirSENCE devices was narrower than that of 

reference monitors. The AirSENCE devices were also able to accurately access changes in pollutant 

between May and September, although they tended to underestimate the pollutant levels in May and 

overestimate the levels in June. The accuracy in CO2 estimates was highest in July, August and 

September when pollutant levels were lowest.  

 

 

Figure 48. Evaluation of the ability of AirSENCE devices to resolve short-term and long-term variation in 

pollutant levels. Original data was collected between September 20, 2015 and January 15, 2016, 

sampled at 1-minute resolution, 139742 observations, 90% of data used. Data source: Multi-site 

validation study, Summer 2015, AirSENCE Rev2. 

 

4.5.2 Spatial variation of temporal patters 
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The analysis of temporal patterns at a single site can help understand the variation in pollution sources 

and sinks. However, the comparison of temporal patterns between sites can be useful in detecting 

differences between sites even when the accuracy in detection of absolute pollution levels is 

insufficient. Temporal pattern parameters include: 

• frequency of peaks 

• amplitude of peaks 

• timing of peaks 

• magnitude of variation in baseline 

• timing of variation in baseline 

 

Time series analysis is a simple and intuitive way to assess how pollution levels and source contribution 

vary over both time and space. For example, the higher frequency of peaks may suggest higher volume 

of traffic, while the presence of high amplitude peak may suggest the presence of a source that emits a 

large amount of pollutant over a short period of time. 

 

Diurnal temporal variation in pollutant levels was assessed at 5 different sites spread across Toronto 

during SCULPT campaign. The sites varied in the urban density, proximity to the road, size of local roads 

as well as the average volume of local traffic. Diurnal temporal patterns at the sites were compared with 

respect to magnitude of increase in NOx levels during the morning rush hour. 

 

It was found that both the magnitude and temporal pattern of the NOx levels varied across the sites, 

suggesting that sensors can detect variation in temporal patterns (Figure 49). While large daily variation 

occurred at some sites (e.g. central site, site 12, site 18), the variation was much smaller at other sites 

(e.g. site 10, site 15). Morning period was important for understanding spatial variability. Most sites 

were characterized by an increase in NOx in the morning, driven primarily by morning rush hour, but 

strength of morning peak differed between sites suggesting that sensors can detect variation in 

temporal patterns. 
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Figure 49. Comparison of NOx temporal variation for AirSENCE devices at sites 12, 18, 10, 15, 5 and 

central site (1 min average data). Average of 4 weekdays is shown. Original data was collected between 

August 8, 2013 and August 25, 2013, sampled at 30-minute resolution, 818 observations, 90% of data 

used. Data source: SCULPT Campaign, Summer 2013, AirSENCE Rev1. 

 

AirSENCE devices were able to resolve the differences in temporal patterns between sites. However, the 

ability to detect differences between sites does not necessarily suggest accuracy. Factors such as local 

variations in interferences, temperature and humidity can affect the ability of AirSENCE devices to 

accurately resolve temporal patterns and some of the observed differences in temporal patterns could 

be due to interferences, not just changes in concentration. The validation of temporal variation of 

sensor device response at sites with different local source contributions is important for quantifying the 

confidence and limitations of temporal pattern analysis. 

 

The validity of the observed temporal variation in sensor device response was assessed by comparing 

sites with low, medium and high levels of traffic. The devices were deployed at SOCAAR, Toronto Island 

and Highway 401 MOE stations between December 2015 and February 2016. The presence of reference 

pollution monitoring equipment at these sites allowed us to evaluate the sensor device performance. 

The sensor device pollution estimates were compared to the reference monitor by examining the 

temporal variation in the average pollution distributions over a course of day and over a period of 3 

months. 
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The AirSENCE devices were found to accurately assess both the long-term and the short-term changes in 

O3 levels at SOCAAR, where the devices were calibrated (Figure 50). However, even though they were 

able to resolve changes in O3 levels with time, the AirSENCE devices failed to assess the full range of O3 

at high traffic site and also overestimated the median pollutant concentration. The AirSENCE devices 

were unable to reproduce the temporal variation at the low traffic site, even though the median 

pollution levels measured by AirSENCE devices and reference monitors were similar. The analysis 

suggests that while the temporal patterns and average concentrations estimated by AirSENCE devices 

might be different across sites, they are not necessarily accurate. Accuracy of pollution spatial variability 

assessment was also found to vary over time. Model optimization through calibration of devices using 

the data from multiple sites might improve the accuracy of temporal patterns estimated by AirSENCE 

devices. 

 

 

Figure 50. Evaluation of the ability of AirSENCE devices to compare temporal patterns of O3 at 3 

different sites. Original data was collected between September 20, 2015 and January 15, 2016, sampled 

at 1-minute resolution, 139742 observations, 90% of data used. Data source: Multi-site validation study, 

Summer 2015, AirSENCE Rev2. 

 

4.5.3 Source contribution analysis 
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In addition to site comparison, another key application of temporal variation analysis is the 

quantification of source emissions. The amplitude and area under the curve can be used for calculating 

emission factors and their variation over time. In addition, both the frequency and amplitude of peaks 

are related to the local traffic volume. 

 

Analysis of the temporal variation of NOx at sites with different levels of traffic was conducted to verify 

the hypothesis that the temporal variation in sensor device response can be used to rank the sites based 

on the level of traffic pollution. Each site in the SCULPT campaign was assigned an average level of 

traffic, measured in volume of vehicles per day within a 1500m buffer. Differences in NOx temporal 

patterns were cross-referenced with the traffic volume labels. 

 

The average NOx levels at central site were found to be higher on average compared to sites with lower 

level of local traffic sources (i.e. site 18), particularly during the morning rush hour (Figure 51). In 

addition, the peak frequency was higher and the peak amplitude was lower for AirSENCE devices 

deployed at SOCAAR compared to those at the lower traffic sites, suggesting that while the traffic 

emissions might be contributing to more frequent changes in pollutant levels at SOCAAR, the magnitude 

of emissions from the sources at site 18 is higher. Site 18 is therefore likely influenced by a different 

type of pollution source, which produces higher emissions over a longer period of time. 

 

 

Figure 51. Comparison in differences in diurnal pattern for NOx at site 18. Traffic level was measured in 

volume of vehicles per day within a 1500m buffer. Original data was collected between August 8, 2013 

and August 25, 2013, sampled at 30-minute resolution, 818 observations, 90% of data used. Data 

source: SCULPT Campaign, Summer 2013, AirSENCE Rev1. 
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The analysis of the variation of a pollutant over time gives insight into the magnitude and timing of the 

influence of local sources but doesn’t reveal much information about the source category. The analysis 

of co-occurrence of peaks of different types pf pollutants is helpful for attributing the pollution peaks to 

specific categories of sources. For instance, the relative amounts of NOx and CO can help explain the 

relative contribution of gasoline and diesel sources. The relationship between these pollutants is known 

to vary between sites and over the course of a week.  

 

To evaluate the ability of AirSENCE devices to distinguish the temporal patterns of NOx and CO, CO/NOx 

ratios were calculated. The average CO/NOx ratios and distributions were compared for AirSENCE 

devices and reference instruments at the central site in order to establish the accuracy of sensor 

estimates. 

AirSENCE devices were found to correctly detect changes in the CO/NOx ratio over the course of a day, a 

week and in long term (Figure 52).  However, the CO/NOx ratios were underestimated at night and on 

the weekend, suggesting that comparison of gasoline and diesel sources might be less accurate on the 

weekend. There are two possible reasons for underestimation of CO/NOx ratio: 1) underestimation of 

CO and 2) overestimation of NOx. Earlier analysis showed that NOx calibration models show lower 

correlation to CO and higher correlation to CO2 and O3 compared to reference instruments. Therefore, 

as the sources of NOx and CO decline at night, the impact of interferences becomes more pronounced 

and this impacts the CO/NOx ratio. 

 

 

Figure 52. Evaluation of the ability of AirSENCE devices to accurately access temporal variability of CO 

relative to NOx. Original data was collected between September 20, 2015 and January 15, 2016, 

sampled at 1-minute resolution, 139742 observations, 90% of data used. Data source: Multi-site 

validation study, Summer 2015, AirSENCE Rev2. 
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4.5.4 Summary 

 

In summary, the analysis indicated that site difference in temporal variation can be detected. Both 

short-term changes in pollutant levels over the course of the day and long-term changes between 

months were detected.  

 

Traffic-related pollution (TRAP) levels were highest and most divergent across most sites in the morning 

as a result of morning rush hour. The magnitude of morning increase in pollution levels measured by 

AirSENCE devices was found to vary between sites suggesting that sensors can detect variation in 

temporal patterns. TRAP levels produced by local sources were highest at the central site and site 12, 

medium at central site and site 18, and lowest at sites 10 and 15. The device performance was also 

validated against reference monitor data at sites with high, medium and low levels of traffic pollution. 

The accuracy of temporal pattern analysis was good at sites with high and medium traffic, but 

inadequate at sites with low traffic. There is evidence to believe that higher variability in the calibration 

model training dataset would lead to better performance. 

 

Analysis of temporal patterns of NOx revealed differences in peak magnitude, timing and frequency at 

different sites. The absolute pollutant levels were found to be related to the average traffic volume at 

the site. In addition, the timing and frequency of peaks revealed insights into local pollution sources. The 

AirSENCE devices were also found to detect changes in CO relative to NOx, suggesting that they could be 

useful for comparing changes in relative contributions of diesel, gasoline and other types of combustion 

sources over time. 

 

4.6 Spatial patterns 

 

The ability to detect differences in pollution levels across sites is important for quantifying the 

population exposure to air pollution. However, the analysis of the absolute concentration is often 

confounded by sensor nonlinearity and cross-sensitivity to interferences. Comparisons of changes in 

pollution levels through analysis of temporal patterns can sometimes be used to rank sites based on the 

level of air pollution. However, the accurate assessment of absolute pollution levels is often required for 

the comparison of true contribution of local sources to pollution levels at different sites. It was 

important to identify the pollutant models that are more accurate in resolving differences between sites 

and assess what techniques could be used to improve the ability to detect spatial differences between 
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sites. In addition, analysis of the factors influencing the differences between sites contributes to 

understanding underlying causes. It was also important to understand which pollutants are more 

reliable for comparing differences between sites. 

 

The performance of AirSENCE devices in detecting spatial pollution patterns was assessed by comparing 

the concentration distributions estimated by AirSENCE devices deployed at different sites. Pollutant 

models were assessed on their ability to distinguish sites with low, medium and high levels of traffic 

pollution. Methods such as predictor transformation were evaluated on their impact on the accuracy of 

detecting differences between sites. In addition, the change in the similarity between sites in response 

to different types of factors (i.e. time of day, day of the week and wind direction) was investigated. 

 

The following questions were addressed: 

Spatial pattern analysis accuracy 

1. Can AirSENCE devices detect the spatial variation of absolute pollution levels? 

2. Which pollutant models are the most accurate in detecting differences in pollutant distributions 

at sites with different levels of traffic pollution? 

3. Can predictor transformation be used to improve the accuracy of MLR models in assessing the 

differences in pollutant distributions at sites with different levels of traffic pollution? 

Spatial variation of temporal patters 

4. Does time of day affect the differences between sites? When are the sites most divergent from 

each other? 

5. How do the differences between sites compare between weekdays and weekends? 

Impact of wind direction on the differences between sites 

6. What is the impact of wind direction on the differences between sites? 

 

4.6.1 Absolute spatial pollutant variation 

 

Traffic-related pollutants are known to be highly variable spatially. However, the assessment of their 

spatial variability is often limited because of small number of continuous air pollution monitoring 

stations available in most cities. For example, continuous NOx measurements are only available at 4 

Ministry of Environment stations in Toronto. The analysis of the magnitude and spatial scale over which 

the pollutant levels vary in the city is important for understanding the sources and their impact on 

population exposure. The relatively low cost of AirSENCE devices makes it possible to deploy them in 
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dense urban networks. However, the limited reference data makes it difficult to validate the differences 

between sites measured by AirSENCE devices. Land use regression models can be used in such cases to 

evaluate sensor measurements. While LUR models normally represent a snapshot in time, they can still 

be useful for comparing the average pollution levels in different regions. 

 

An average NO2 levels based on two LUR models was therefore used to assess whether AirSENCE devices 

can be used to detect spatial variation in absolute pollution levels of NOx. The LUR models were 

calibrated from 2002 fall and 2004 spring monitoring campaigns with 143 monitors10. LUR model results 

were compared to sensor device data from the 5 different sites in Toronto that were studied during 

2013 fall SCULPT campaign. The sites varied in the urban density, proximity to the road, size of local 

roads as well as the average volume of local traffic. While NOx levels measured by AirSENCE devices are 

higher than NO2 levels estimated by LUR models, they are proportional to each other and are still useful 

for site comparisons. 

 

The detected difference in magnitude of pollutant levels the sites with high and medium concentration 

for AirSENCE devices during 2013 SCULPT campaign was found to be similar to the difference between 

the same regions as indicated by Land Use Regression (LUR) models (Figure 53). For example, the LUR-

derived NO2 levels in downtown were found to be 1.5 times greater then those in north-east region of 

Toronto. Similarly, the median NOx levels measured by AirSENCE devices at downtown SOCAAR site 

were found 1.52 greater then those measured at site 18, in the north-east region of Toronto. Both 

median and distribution range of pollution levels were lower at site 18 compared to SOCAAR site. 

However, there were more outliers in NOx levels at site 18, suggesting that while there are less local 

sources – the existing sources emit large amounts of pollution. Earlier temporal analysis has pointed 

towards similar conclusion. These results suggest that that AirSENCE devices are able to resolve absolute 

differences between sites both in terms of average pollutant levels and the peak levels. 

 

                                                      
10

 Environmental Health Perspectives Jerrett et al. (2009) 
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Figure 53. Comparison of the absolute NOx level differences measured by AirSENCE devices (shown in 

box-and-whisker distribution plots) and those derived using land use regression models calibrated from 

2002 fall and 2004 spring monitoring campaigns with 143 reference monitors (shown in a map). Sensor 

data was collected between August 8, 2013 and August 25, 2013, sampled at 30-minute resolution, 818 

observations, 90% of data used. Data source: SCULPT Campaign, Summer 2013, AirSENCE Rev1. 

 

4.6.2 Validation of differences between sites 

 

Model data suggests that AirSENCE devices show promise in resolving the differences between sites. 

However, it is important to validate the accuracy and limitations of spatial pattern analysis. Sensor 

device accuracy is known to be lower at sites other than the calibration site. Therefore, it was important 

to evaluate how accurate the sensor device models are in detecting differences in pollutant distributions 

at sites with different levels of traffic pollution. The goal was to identify the target pollutants for which 

the models are more reliable across sites and develop methods for correction of the models that are less 

reliable. 

 

The validation of accuracy of sensor device was carried out at sites with low, medium and high level of 

traffic. The devices were deployed at SOCAAR, Toronto Island and Highway 401 MOE stations between 

December 2015 and February 2016. The presence of reference pollution monitoring equipment at these 

sites allowed us to validate the sensor device performance. Sensor device pollution estimates were 

compared to the reference monitor by examining the average pollution distributions at the three sites. 

All the sensor device models were calibrated at SOCAAR site. 
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CO model shows the best performance in detecting differences between low, medium and high traffic 

sites. Both distribution quartiles and median for CO estimates by AirSENCE devices were close to that of 

reference CO measurements (Figure 54). A low traffic site (i.e. Toronto Island) could be easily 

distinguished from the Highway 401 and SOCAAR sites because of lower mean and interquartile range. 

The high traffic site (i.e. Highway 401) has a median that is close to that of SOCAAR, but higher 

maximum values for both the sensor device and reference monitor. While the accuracy of the CO sensor 

device was highest compared to other pollutants, the AirSENCE devices still overestimated the 25% 

quartile for the highway and SOCAAR sites and 75% quartile – for the island site.  

 

On the other hand, NOx and CO2 estimates by the AirSENCE devices could only be resolved at the 

SOCAAR and Island site because of underestimation of concentration at the Highway 401 site. O3 

estimates by the AirSENCE devices could only be used to compare the SOCAAR and 401 sites. The O3 

sensor estimates can be biased at sites with lower traffic pollutant levels because the calibration models 

have built-in correction factor for NOx, which biases the O3 estimates. PM2.5 measurements were not 

accurate enough to compare sites. 

 

 

Figure 54. Assessment of the performance of CO measurement at SOCAAR, Highway 401 and Island 

sites. Original data was collected between September 20, 2015 and January 15, 2016, sampled at 1-
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minute resolution, 139742 observations, 90% of data used. Data source: Multi-site validation study, 

Summer 2015, AirSENCE Rev2. 

 

The NOx levels were underestimated at sites with high level of traffic pollution. While earlier analysis 

indicated that calibration of NOx models using data from high traffic locations could improve their 

performance, this is not always possible. Another method to improve model performance at higher 

pollutant levels is model predictor transformation. 

 

To evaluate the extent to which predictor transformation can be used to improve the accuracy of MLR 

models in assessing the differences in pollutant distributions at different sites, MLR models were 

developed using transformed predictors. The most impactful transformed variables were selected based 

on the relative importance ranking output by relaimpo R with adjusted R squared used as a metric. The 

logarithm, exponential and square root transforms were ranked as the most important for NOx. The 

impact of variable transformation on the accuracy of spatial analysis was evaluated by comparing the 

NOx concentration distributions for reference monitors, original sensor device models and transformed 

sensor device models. 

 

The ability of AirSENCE devices to correctly classify sites based on the level of NOx was improved when 

predictor variables were transformed (Figure 55). Without variable transformation, the local SOCAAR 

and island NOx levels are often higher than those at the highway site. Variable transformation helps 

develop regression models that correct for sensor nonlinearity and lead to more accurate estimation of 

inter-quartile range. For example, the interquartile range was smallest for Toronto Island site, medium 

for SOCAAR and high for Highway 401 for both reference monitors and MLR models derived using 

transformed predictors but not for the MLR models derived from raw predictor measurements. Despite 

the improved ability in ranking sites, the interquartile range is still larger at sites with low and medium 

traffic and smaller at sites with high levels of traffic pollution compared to NOx reference interquartile 

range. PM2.5 models developed using transformed predictors also yielded significant improvement in the 

ability of the AirSENCE devices to correctly rank sites based on the level of pollution. 
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Figure 55. Comparison of distributions of NOx at the island, SOCCAR and highway sites for regression 

models derived using transformed and raw data. Original data was collected between September 20, 

2015 and January 15, 2016, sampled at 1-minute resolution, 139742 observations, 90% of data used. 

Data source: Multi-site validation study, Summer 2015, AirSENCE Rev2. 

 

4.6.3 Impact of time on spatial variation 

 

Multiple factors influence the similarity and differences in pollution distributions at sites, including type 

of sources present, time of day, day of the week, season, temperature, pollutant concentration and the 

levels of interferences. Binning sensor data can help evaluate sensors with respect to their ability to 

resolve the differences between sites. For example, knowledge of the conditions under which the sites 

are most divergent can help evaluate the ability of the AirSENCE devices to reveal spatial gradients.  

 

Alternatively, the conditions when sites are known be more similar to each other can be used for 

correction of bias and drift. Temporal variation in pollutant levels over a day or week is generally 

consistent across sites and is a promising factor for establishing the periods when the AirSENCE devices 

are more similar or different from each other. Therefore, one of the major goals of the analysis was to 

investigate how time of day affects the differences between sites. 

 

The impact of time of day on the discrepancy between sites was analyzed by comparing the NOx 

distributions at SOCAAR to 5 different sites spread across Toronto during SCULPT campaign. MLR models 

were used to convert sensor data to NOx concentration. The sites varied in the urban density, proximity 

to the road, size of local roads as well as the average volume of local traffic. For the purpose of this 
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analysis, morning was defined as period of time between 5 AM and 11 AM, afternoon was defined as 11 

AM – 5 PM, evening was defined as 5 PM – 11 PM and night was defined as 11 PM – 5 AM. 

 

Nonparametric Kolmogorov-Smirnov Two Sample Test was used to quantify the difference between site 

distributions and assess the significance of the difference between sites. This test was selected because 

it makes no assumptions about the probability distributions of the predictors and bidirectional test was 

used because it makes no claims about the direction of the difference between sites. The difference 

between sites was measured by Kolmogorov-Smirnov D statistic, which increases as the difference 

between pollutant distribution at the compared sites increases.  

 

It was found that the between site differences in NOx distributions are greater in the morning compared 

to afternoon (Figure 56). The difference from the central site is statistically significant (Kolmogorov-

Smirnov p value < 0.05) for all site comparisons but is especially pronounced for sites 10 and 15. This 

suggests that comparing pollutant levels during morning rush hour might be the best way to reveal 

spatial variation due to traffic-related air pollution (TRAP). 

 

 

Figure 56. Analysis of the impact of time of day on divergence between central site and other sites. 

Summary of the similarity between central site and other sites in the morning is also shown. 

Kolmogorov-Smirnov D statistic is used as a metric of divergence. Morning is defined as 5 AM-11 AM. 

Original data was collected between August 8, 2013 and August 25, 2013, sampled at 30-minute 

resolution, 818 observations, 90% of data used. Data source: SCULPT Campaign, Summer 2013, 

AirSENCE Rev1. 

 

To verify the impact of time of day on the variation in traffic related pollutant distributions, distributions 

of NOx at the sites with low medium and high level of traffic were compared. The devices were 
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deployed at SOCAAR, Toronto Island and Highway 401 MOE stations between December 2015 and 

February 2016. The sensor device NOx distributions were compared for morning and afternoon as well 

as weekend and weekday. 

 

It was found that differences across sites are more significant in the morning and on weekdays 

compared to those in afternoon and on weekends (Figure 57). Median, 25th and 75th percentiles were 

lower in afternoon and on weekends for high and medium traffic sites. The pollutant levels at low traffic 

site (Toronto Island), on the other hand, increased slightly in the afternoon and on weekends suggesting 

that increase in pollution at that site is more likely due to city background levels rather then local 

pollution sources. The higher levels of traffic during morning rush hour and on weekdays can explain the 

higher differences between sites. 

 

Figure 57. Analysis of the variation in divergence between sites depending on time of day and day of the 

week. Original data was collected between September 20, 2015 and January 15, 2016, sampled at 1-

minute resolution, 139742 observations, 90% of data used. Data source: Multi-site validation study, 

Summer 2015, AirSENCE Rev2. 

 

4.6.4 Impact of wind on spatial variation 

 

The differences between sites have been shown to vary depending on time of day and day of the week. 

Another factor that is known to have large impact on variation between sites is wind direction. Change 

in wind direction can change the influence of local sources on pollution levels at a site and therefore can 

highlight the differences between sites. Therefore, wind measurements not only help resolve 

differences between sites but can also highlight influences of specific sources. 
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The impact of wind direction on traffic-related pollutant distribution was investigated by assigning a 

wind direction category to each sensor device observation. Pollution observations associated with wind 

from 45-315-degree direction was categorized as coming from north, 45-135-degree direction – coming 

from east, 135-225-degree direction – coming from south and 315-225-degree direction – coming from 

west. The analysis showed that east, west and south were the predominant wind directions for the 

investigated time period and therefore only the observations associated with wind coming from these 

directions were considered. The spatial variation in both NOx and CO was considered. 

 

The analysis showed that wind from west is associated with highest pollutant levels and largest 

differences between sites for both NOx and CO (Figure 58). This finding is consistent with these sites 

being downwind of more traffic emissions when winds are from the west and northwest. The spatial 

variation in NOx was more impacted by wind direction than that of CO. Wind from east is associated 

with highest similarity between sites for NOx and wind from south is associated with highest similarity 

between sites for CO. Binning the sensor device measurements based on wind direction can help 

improve the sensitivity of the analysis of spatial variation of air pollution. 

 

 

Figure 58. Analysis of the variation in divergence between sites for NOx and CO depending on wind 

direction. Original data was collected between September 20, 2015 and January 15, 2016, sampled at 1-

minute resolution, 139742 observations, 90% of data used. Data source: Multi-site validation study, 

Summer 2015, AirSENCE Rev2. 
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4.6.5 Summary 

 

In summary, it was found that spatial variability in pollutant levels can be resolved and the difference in 

magnitude of pollutant levels measured by AirSENCE devices is supported by the literature LUR models. 

AirSENCE devices were able to resolve absolute differences between sites both in terms of average 

pollutant levels and the peak levels. 

 

Sensor device models for CO model showed the best performance in detecting differences between 

sites compared to other pollutants. NOx and CO2 estimates by the AirSENCE devices could only be 

resolved at medium and low traffic sites, while O3 estimates by the AirSENCE devices could only be used 

to compare medium and high traffic sites. 

 

The ability to resolve sites and site ranking also varied over the course of day and week. The differences 

across sites were more significant in the morning and on weekday compared to those in afternoon and 

on weekend. Therefore, comparing pollutant levels during week day morning rush hour might be the 

best way to reveal the spatial variation of traffic-related pollution. 

 

Wind from west was found to be associated with highest pollutant levels and largest differences 

between sites for both NOx and CO. Binning the sensor device measurements based on wind direction 

can help improve the sensitivity of the analysis of spatial variation of air pollution. 

 

The ability of AirSENCE devices to correctly classify sites based on the level of NOx was improved when 

predictor variables were transformed, since it allowed for correction for sensor nonlinearity and lead to 

more accurate estimation of inter-quartile range. Overall, the AirSENCE devices provided pollutant 

patterns that were consistent with the known temporal and spatial patterns of traffic related air 

pollutants.  

 

4.7 Traffic-related pollution 

 

Source contribution analysis is one of the most promising applications of AirSENCE devices. Due to low 

cost, dense networks of AirSENCE devices can be deployed, and hold promise in improving 

understanding of types of local sources, the magnitude of their contribution as well as temporal 

variation in their impact. In addition, since source analysis is mostly categorical, the limitations of 
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regression models can be avoided. Source contribution analysis can even be conducted using the sensor 

data directly without the need to develop calibration models. Even when the regression model accuracy 

is insufficient for analysis of pollutant levels, the sensor device performance might still be acceptable for 

detecting differences in source contribution. A key goal of source analysis was to evaluate ability of 

AirSENCE devices to rank sites based on level of traffic and identify the analysis methodology and 

metrics which can improve the ability of AirSENCE devices to resolve the contribution of local traffic 

sources. Another major goal was to understand the extent to which the multipollutant patterns and 

combining sensor data with wind direction measurements can help improve source contribution 

assessment. Multipollutant pattern analysis can also help distinguish traffic source types like diesel and 

gasoline.  

 

To assess the ability of AirSENCE devices to detect traffic-related pollution, temporal patterns were 

compared at sites with different levels of traffic. The impact of methods such as background subtraction 

on ability to detect traffic pollution peaks was investigated. The relationship between traffic volume and 

traffic related pollution levels was tested. Sources contributing to pollution levels at the site were 

identified by comparing the correlations between the pollutants at the sites. By combining wind 

direction data with sensor device measurements, source contribution was evaluated, and major local 

sources were ranked based on relative contribution. The variation in local source influence over the 

course of a week and 5 months was evaluated to understand the frequency and magnitude of source 

impact variation. Relative contribution of local sources was compared for major traffic pollutants and 

sites were ranked based on the extent of local source contribution. Sensors were also tested on their 

ability to distinguish different types of traffic pollution (i.e. gasoline and diesel) sources by quantifying 

the ratio of pollutants associated with these two sources. Change in co-occurrence of peaks over the 

course of a week was used to identify trends in source contribution. In addition, the comparison of 

average daily and weekly trends in response of NOx, VOC, CO and PM sensors was used to validate the 

temporal patterns in contribution of sources and assess the potential applications on uncalibrated 

sensors to distinguish source patterns. 

 

The following questions were addressed: 

Spatial variation in traffic pollution 

1. Can sensor device pollutant estimates be used to distinguish between sites based on their 

relative levels of traffic pollution? 
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2. Is the average pollutant concentration related to average traffic volume within a 1500m buffer 

of a site? 

Multi-pollutant patters and source identification 

3. Do correlations between different sensor device pollutant models improve the ability to 

compare pollutant sources? 

Impact of wind direction on source contribution 

4. Can wind direction data improve the ability of AirSENCE devices to identify local pollution 

sources? 

5. How does the pollution source contribution vary over the course of a day and season? 

Local and background source contributions 

6. How do pollutant models compare with respect to local and background source contribution? 

7. How do the site rankings based on local pollutant source contribution vary for different types of 

pollutants? 

Traffic source categorization 

8. Can AirSENCE devices be used to compare sites based on type of traffic source contribution? 

Can AirSENCE devices be used to resolve gasoline contribution from diesel contribution? 

9. Can the temporal variation in diesel and gasoline pollution sources be detected by AirSENCE 

devices? Is it possible to resolve source contribution using raw sensor output directly without 

calibration? 

 

4.7.1 Local vs background impact 

 

Air pollution monitoring campaigns have indicated that air pollutant levels vary across sites and show 

dependence on traffic volume and fleet characteristics. The number, location and size of the nearby 

roads affects the air pollution level as well as timing and frequency of increase in air pollution 

concentration. However, the use of road metrics (i.e. road length and width) is often insufficient for 

evaluating the impact of traffic on pollution levels at a site. Many other factors impact the variation in 

air pollution, including wind direction, wind speed, mixing height and traffic conditions. These factors 

can be highly variable and inconsistent between days and contribute to large variation in pollutant levels 

as well as variability in relative contribution of local sources. For example, during Pan Am Game 

campaign the pollutant levels at Old Toronto site were often high due to proximity to Gardiner 

Expressway, but in the morning the levels were often much lower compared to downtown sites like 
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SOCAAR. In addition, the short-term variation in pollutant levels and the frequency of change was often 

higher at the downtown site suggesting large variability in local source contribution (Figure 59). 

 

 

Figure 59. Pollutant levels estimated by AirSENCE devices vary over the course of the day and depend on 

the amount of traffic. Data source: Pan Am Campaign, Summer 2015, AirSENCE Rev2. 

 

When temporal patterns are closely assessed, two components of temporal variation emerge: a 

background component and a local component (Figure 60). The temporal variation in background 

pollutant levels occurs at a time scale of several hours and is the result of meteorology and contribution 

of city-wide and regional sources. The temporal variation in local pollutant levels occurs at a time scale 

of seconds-minutes and is contributed by local sources. It is expected that when the sites are compared 

at high temporal resolution (i.e. 1min or lower), local patterns would emerge helping characterizing sites 

and better evaluate differences between them. 
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Figure 60. Pollution component contributions (inspired by Fuzzi et al. 2015). 

 

The contribution of traffic to pollutant levels at a site was evaluated by comparing the temporal 

variation in NOx at 5 different sites spread across Toronto during the SCULPT campaign. The sites varied 

in the urban density, proximity to the road, size of local roads as well as the average volume of local 

traffic. In order to analyze the local component of temporal variation (i.e. traffic pollution contributed by 

a nearby road), all the data was averaged to 1 min temporal resolution to retain high frequency 

pollution variation data while reducing the amount of noise. Background was quantified as 1 hour rolling 

minimum. This background signal was subtracted from the 1 min resolution data to calculate the local 

contribution to pollutant levels at a site. Sites with different levels of traffic were then compared to each 

other. Traffic volume was quantified in vehicles per day within a 1500m buffer. The spatial variation of 

both background and local source component of pollutant measurements was compared. 

 

It was found that background subtraction helped emphasize the differences and similarities between 

sites in terms of local traffic source contribution (Figure 61). While both site 15 and site 5 showed large 

amounts of background variation throughout the day, the extent to which this variation was contributed 

by local traffic sources was unclear. Site 5 is a low traffic site that nonetheless has high NOx background 

level. When the background is subtracted, the high-frequency variation in NOx levels at site 15 is clearly 

greater than that at site 5. The variation in local source contribution at the sites becomes emphasized, 

especially during afternoon rush hour. Local component of pollutant distribution is therefore a more 

representative measure of the local source impact and better reflects local traffic. 
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Figure 61. Analysis of local differences between site 15 (site with higher traffic influence) and site 5 (site 

with lower traffic influence) sensor measurements (1 min average data). Original sensor measurements 

are compared to those with background removed. *Traffic data is shown in vehicles per day within a 

1500m buffer. Original data was collected between August 8, 2013 and August 25, 2013, sampled at 30-

minute resolution, 818 observations, 90% of data used. Data source: SCULPT Campaign, Summer 2013, 

AirSENCE Rev1. 

 

To evaluate the extent to which local source contribution can be used to rank sites with different levels 

of traffic pollution, % local contribution was calculated for each of the 5 sites investigated during the 

SCULPT campaign. The normalized % local contribution was found by calculating relative proportion 

contributed by local sources and normalizing it by dividing the site measurements by those at SOCAAR. 

The normalized % local contribution was then compared to the average volume of traffic within a 1500m 

buffer of the site. 

 

It was found that relative to the SOCAAR site the percent of local NOx levels was highest at site 10 and 

site 15, medium at site 12 and 18, and lowest at site 5 (Figure 62). These trends were found to be 

consistent with local traffic level. High local contribution (>1% normalized local contribution) at SOCAAR, 

site 10 and 15 was associated with high traffic level (>100,000 vehicles/day), medium local contribution 

(0.75-1% normalized local contribution) at site 12 and 18 was associated with medium traffic level 

(~70,000 vehicles/day) while low local contribution (<0.75% normalized local contribution) at site 5 was 

associated with lower traffic level (~65,000 vehicles/day). 
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Figure 62. Comparison between local pollution source contribution and the traffic volume at different 

sites. *Traffic data is shown in vehicles per day within a 1500m buffer. Original data was collected 

between August 8, 2013 and August 25, 2013, sampled at 30-minute resolution, 818 observations, 90% 

of data used. Data source: SCULPT Campaign, Summer 2013, AirSENCE Rev1. 

 

4.7.2 Major source identification 

 

As shown earlier, the multi-pollutant output of sensor array devices can be used to identify differences 

in pollutant levels and their changes in different regions of the city. This study also provided some 

evidence that multi-pollutant temporal patterns can be used to reveal differences in source 

composition. Ideally, analysis of local pollution mixtures through correlation of pollutant measurements 

at specific sites may be able to identify common sources and help improve understanding of the 

differences in sources between the sites.  

 

Correlation analysis was conducted between NOx and other pollutants (i.e. CO, CO2, O3 and PM2.5) at 3 

different sites in Toronto during the SCULPT campaign. The analysis was conducted to test the 

hypothesis that differences in types of sources can be identified by examining multi-pollutant patterns. 

The degree of cross-correlation was quantified at each site and correlation pattern was used to evaluate 

whether the pollutants originated from a common source at that site. 

 

Correlation between pollutant estimates was found to differ between sites and suggests different 

sources (Figure 63). As expected, traffic was a major contributor to pollution levels at site 18 and 

SOCAAR site given the higher correlation between NOx, CO and CO2. On the other hand, sites with less 
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traffic (site 5) showed less correlation between traffic-related pollutants. PM2.5 is correlated with NOx 

only at site 18, which might possibly be due to construction at that site during the period when 

measurements were collected.  Overall, analysis of correlation between pollutants is indicative of 

dominant sources and is useful for site comparison. 

 

 

Figure 63. Comparison of pollutant signatures associated with different sites. Axes represent absolute 

Pearson correlation coefficients between NOx and other pollutants estimated by AirSENCE devices at 

different sites (central site, site 18, and site 5). A larger shaded area indicates stronger correlation.  

Original data was collected between August 8, 2013 and August 25, 2013, sampled at 30-minute 

resolution, 818 observations, 90% of data used. Data source: SCULPT Campaign, Summer 2013, 

AirSENCE Rev1. 

 

Combining sensor device output with wind data can help understand the timing and magnitude of 

impact of sources at a site (Appendix 5: Wind impact analysis). A 3-dminensional analysis can be 

achieved by tracking the change in pollutant levels in response to changes in wind direction and over 

time while verifying whether the change is consistent across all pollutants. Wind direction 

measurements help identify potential local source categories, pollutant co-presence helps validate those 

categories and change over time helps identify the extent to which they are consistent. 

 

Analysis of sensor response as a function of wind direction was conducted by binning the sensor data 

relative to wind direction. Wind speed and direction data from the meteorological station on the roof of 

the Wallberg building was used. Only the measurements corresponding to wind speed more than 0.2 

and less than 3 meter per second were selected, since the very low and high wind speed measurements 
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are known to be associated with higher uncertainty. The wind direction data was binned into 12 sectors 

and the pollutant data was binned in 6 categories. For each of the 12 wind direction sectors, the average 

contribution of each of the 6 pollution level categories was then calculated and the change over time 

was examined. 

 

Traffic pollution is known to be highly variable over the course of a day. While the amount of traffic itself 

varies as a result of rush hour and daily commute patterns, wind direction is another important factor 

affecting the level and type of pollutants measured at a site. The combined impact of time of day and 

wind direction on pollutant level was assessed by binning the pollutant data into 4 categories: morning, 

afternoon, evening and night. For the purpose of this analysis, morning was defined as period of time 

between 5 AM and 11 AM, afternoon was defined as 11 AM – 5 PM, evening was defined as 5 PM – 11 

PM and night was defined as 11 PM – 5 AM. 

 

Increase in levels of NOx in the morning was found to be associated with wind from the south and 

south-west, increased NOx in afternoon was associated with wind from south and east, increased NOx in 

the evening was associated with wind from south and north-west, while higher level of NOx at night was 

associated primarily with wind from north (Figure 64). This finding suggests that the background and 

local sources of NOx are different. The results are also supported by the typical traffic patterns in 

Toronto. For example, the increased pollution levels associated with north-west wind might be related 

to increased traffic at the west end of Gardiner Expressway in the morning (Figure 65). Increase in traffic 

along Yonge street as well as downtown portion of Gardiner Expressway in the afternoon might be the 

cause of increase in pollution levels associated with east and south winds at that time of day. Larger 

contribution associated with wind from the north in the evening and at night might be due to increased 

freight, construction and city maintenance diesel vehicle volume, which is often scheduled in the 

evening and at night to avoid disruption to traffic. 
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Figure 64. Variation in pollution source contribution over a course of a day. The graph is split into panels 

to show the dominant wind direction and speed for different times of day: morning, afternoon, evening 

and night. The NOx_lm colour sale indicates the NOx concentration measurements by the sensor device. 

Wind speeds are split into the intervals shown by the scale in each panel. The grey circles show the % 

frequency occurrence based on 1 min data. The plots show the proportion (here represented as a 

percentage) of time that the wind is from a certain angle and wind speed range. Original data was 

collected between April 20, 2015 and September 9, 2015, sampled at 1-minute resolution, 191812 

observations, 90% of data used. Data source: Pan Am Campaign, Summer 2015, AirSENCE Rev2. 

 

 

Figure 65. Variation in traffic volume at SOCAAR in the morning, afternoon and evening. 

 

Wind direction also affects long-term variation in pollution levels. Whether influenced by changes in 

local sources (i.e. nearby construction), changes in mixing height or pollutant transport distance, the 

wind direction associated with increase in traffic-related pollution changes over time. To evaluate extent 

of its change, sensor data was binned by month between May and September 2015. Change in wind 

direction associated with the increase in NOx level was examined. 
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The results indicated that the wind direction associated with increase of NOx levels changed over the 

course of summer (Figure 66). While south-west and east wind dominated the increase in NOx levels in 

May and June, north-west sources had a much bigger effect in July and August. The impact of south 

wind increased in August and September, while the north-west wind continued to have a large impact. 

These results suggest that the influence of local sources on pollution levels at a site varies over the 

course of a season and the monthly variation in source impact is big enough to be resolved by AirSENCE 

devices. The lack in consistency of source impact with time also suggests that wind direction data is 

important for effectively comparing sites based on the influence of local sources. 

 

 

Figure 66. Variation in pollution source contribution over a course of 5 months. The graph is split into 

panels to show the dominant wind direction and speed for different months. The NOx_lm colour sale 

indicates the NOx concentration measurements by the sensor device. Wind speeds are split into the 

intervals shown by the scale in each panel. The grey circles show the % frequency occurrence based on 1 

min data. The plots show the proportion (here represented as a percentage) of time that the wind is 

from a certain angle and wind speed range. Original data was collected between April 20, 2015 and 

September 9, 2015, sampled at 1-minute resolution, 191812 observations, 90% of data used. Data 

source: Pan Am Campaign, Summer 2015, AirSENCE Rev2. 

 

4.7.3 Traffic source comparison 

 

Motor vehicle traffic (personal and freight) is a major contributor to Toronto air pollution and the 

associated health effects. Major components of vehicle exhaust include CO2, NOx, CO, hydrocarbons, 

black carbon (BC) and PM. While gasoline car emissions contain higher proportion of CO and 

hydrocarbons, diesel truck emissions contain more NOx, BC and PM (Figure 67).  Despite higher levels of 

NOx and PM in diesel exhaust, they’re also present at significant levels in some gasoline emissions. CO2 

is present at high concentration in all vehicle exhaust and is often used to understand the total amount 

of emissions and derive emission factors. 
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Figure 67. Differences in traffic emissions associated with gasoline and diesel vehicles. 

 

Differences in the pollutant composition of diesel and gasoline sources suggests that the comparison of 

output of regression models for different pollutants might help resolve sites relative to the contribution 

of the different types of vehicles. For example, comparison on local contribution of NOx and CO and CO2 

at different sites may both help quantify relative amounts of diesel traffic sources and suggest the 

magnitude of the impact of local sources relative to background sources. For example, higher local 

contribution of NOx compared to CO might indicate more diesel sources compared to gasoline sources, 

while high frequency pollutant variation might suggest large relative impact of nearby roads. 

 

The % local contribution was calculated for NOx, CO and CO2 for each of the 5 sites investigated during 

the SCULPT campaign. The pollutants were then compared based on the average local contribution 

across all sites. In addition, the normalized % local contribution was found for each site by calculating 

relative proportion contributed by local sources and normalizing it by dividing the site measurements by 

those at SOCAAR. Sites were then ranked based on the influence of local and background sources for 

each pollutant. 

 

It was found that NOx showed highest local contribution across sites (24%), followed by CO (7%) and CO2 

(2%) (Figure 68). NOx is less stable and has a much shorter atmospheric lifetime than CO and CO2, which 

as a result are transported over longer distances and have larger background levels. The relative 

background and local contribution of NOx, CO and CO2 was also found to vary between sites. Sites 10 

and 15 are more influenced by local sources compared to SOCAAR, sites 12, 18 and 5. Larger local 

contribution of NOx relative to CO at sites 10 and 15 suggests that these sites are more impacted by 
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diesel vs gasoline pollution than the other sites. The local diesel source contribution relative to CO at 

site 10 is highest compared to other sites, since the ratio between normalized local contribution on NOx 

and CO is the above 3 for that site and below 1 for all other sites. Conversely, at site 12 higher local CO 

contribution relative to NOx suggests a larger influence of gasoline vehicle sources. An interesting 

feature of background sites is higher relative local contribution of CO2 compared to NOx and CO, 

suggesting generally cleaner vehicles with lower emissions of NOx and CO per mass of fuel burnt. These 

results suggest that AirSENCE devices are sensitive and selective enough to allow for ranking of sites 

based on the local contribution for different pollutants. Extracting local pollutant contribution can help 

cluster sites based on the level and types of pollution sources. 

 

 

Figure 68. Assessment in variation of local source contribution for 3 traffic-related pollutants: NOx, CO 

and CO2. Ranking of sites based on local traffic influence and comparison of 3 traffic-related pollutants is 

also shown. Original data was collected between August 8, 2013 and August 25, 2013, sampled at 30-

minute resolution, 818 observations, 90% of data used. Data source: SCULPT Campaign, Summer 2013, 

AirSENCE Rev1. 

 

Analysis of local component of pollutant estimates by AirSENCE devices has been shown to be useful for 

qualitative site comparison. However, deriving quantitative cumulative comparison metrics from multi-

pollutant data can be more useful for real-time analysis. For example, traffic-related pollutant ratios can 

simplify the comparison of source composition at different sites. In addition, pollutant ratios between 
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sites can suggest the extent to which sites are similar to each other. In particular, emission factors can 

be derived to help compare sites with different source composition. 

 

Analysis of pollution peak ratios and emission factors requires the comparison of plume peaks for the 

key traffic-related pollutants like NOx, CO and CO2. Therefore, the similarity of peak patterns was first 

compared for AirSENCE devices for these three pollutants. Background subtraction was found to be 

essential for comparison of plume peaks for NOx, CO and CO2. At site 18, most peaks coincided very well 

in background-corrected data, suggesting promise in using sensors to estimate emission factors (Figure 

69). While NOx, CO & CO2 have similar high time frequency patterns, the relative background 

contribution differs for each pollutant. These differences in background contribution obscure the 

relative local source contribution. Therefore, it was essential to perform background subtraction.  

 

 

Figure 69. Comparison of diurnal trends for CO2, CO and NOx at site 18 for original data (A) and 

background-corrected data (B) (1 min average data. Original data was collected between August 8, 2013 

and August 25, 2013, sampled at 30-minute resolution, 818 observations, 90% of data used. Data 

source: SCULPT Campaign, Summer 2013, AirSENCE Rev1. 

 

Since CO and NOx are both major markers of vehicle exhaust, it was hypothesized that the co-

occurrence of NOx and CO peaks could indicate periods of the day when peaks in these pollutants are 

caused by traffic (Appendix 6: CO/NOx ratio analysis). Comparison of the CO and NOx peak co-

occurrence over time can help understand traffic pollution patterns over the course of a day and a 
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week. Site 18 was characterized by the broadest distribution in CO/NOx ratios and therefore was the 

focus of detailed time pattern analysis.  

 

Background-subtracted data was used for analyzing the similarity in temporal patterns of NOx and CO at 

site 18. The comparison was conducted over 4 days – 2 weekdays and 2 weekends. Both the frequency 

and the amplitude of peaks was investigated. In addition, the average CO/NOx ratios were also 

compared at site 18 on weekdays and weekends. CO/NOx ratios were then calculated for a set of 

representative peaks, which were coincident for the two pollutants. Background-subtracted data was 

used for calculating the ratios. Peaks were identified by calculating a smoothed first derivative and 

identifying when it crosses zero. In order to ensure that the selected peaks correspond to actual vehicle 

plumes, amplitude and slope thresholds were also applied to filter out the peaks that were too small or 

too wide. The peaks which were coincident for CO and NOx were then selected and CO/NOx ratios were 

found for each peak.  

 

The CO/NOx ratios were found to vary depending on the day of the week (Figure 70). On weekdays, the 

NOx and CO peaks were very similar in frequency and amplitude, particularly in the morning and 

evening. Morning period was characterized by highest increase in both pollutants, validating the 

importance of morning period for understanding spatial variability in source contribution. However, on 

weekends there was no corresponding increase in NOx levels when the CO levels increased in afternoon. 

The weekend increase in CO/NOx ratio is likely the major cause for the broad distribution in CO/NOx 

ratios at site 18. A possible cause for the observed pattern could be the relatively high weekend gasoline 

traffic compared to other sites, but reduced diesel traffic on weekends compared to weekdays. The 

observed increase in CO/NOx ratio on weekend was larger compared to that detected at SOCAAR site 

(where the CO/NOx ratio is ~1.18 times higher on weekends (Sofowote et al. 2017)). These results 

provide additional evidence to support the site-specific nature of temporal variation in local source 

composition. 
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Figure 70. Time series of local contribution to NOx and CO levels at site 18 (1 min average data). 

Comparison of relative levels of CO and NOx for weekday and weekend are shown. Original data was 

collected between August 8, 2013 and August 25, 2013, sampled at 30-minute resolution, 818 

observations, 90% of data used. Data source: SCULPT Campaign, Summer 2013, AirSENCE Rev1. 

 

Analysis of traffic contribution to pollution levels at a site is generally a two-step process. Initially, the 

pollutant estimates are derived from sensor readings by finding and applying optimum calibration 

models. In the second step, the signal relevant to traffic is extracted through background subtraction 

and the relationship is found between pollutant regression model output and traffic metrics (i.e. 

emission factor, pollutant ratio, site ratio). The output of this process is confounded by the propagation 

of errors in both steps of the analysis. Earlier analysis has indicated that estimation of exposure metrics 

directly from sensor data can help improve the accuracy and reproducibility of the result. For example, 

the method for deriving the Air Quality Health Index (AQHI) directly from sensor data outperformed the 

alternative method of calculating the pollutant concentration and applying the AQHI formula. Traffic 

source analysis using the sensor data directly also has a potential to reduce the analysis error and 

improve accuracy and reproducibility. In addition, this method can improve the quality of the analysis by 

making use of the sensor data that is currently not used in regression models. For example, some 

volatile organic (VOC) sensors are informative for analysing sources but are not currently used in 

regression models because of limited VOC reference data. 

 

The ability of sensors to detect meaningful temporal pollution patterns was tested by investigating 

average daily and weekly patterns at SOCAAR site (Device C6, site C), west site (Device C11, Site 1 at 

Palais Royale), east site (Device C10, Site 2 in Ajax) and north site (Device C1, Site 3 in North Toronto). 

The data was collected in May-September 2015 during a multi-site deployment during Pan Am Games in 

Toronto. Average temporal variation over the course of a day and a week was investigated for 4 
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categories of sensors: 1) NOx and O3 sensors, 2) CO sensors, 3) PM2.5 sensors and 4) VOC sensors. The 

magnitude of relative sensor response as well as consistency of that change across the different sensors 

was used evaluate the timing of change in the impact of gasoline and diesel sources. 

 

The average sensor response was found to differ for NOx, CO, PM and VOC sensors over the course of a 

day and a week (Figure 71). Daily pattern in sensor response was found to be similar across sites for 

most sensors, while weekly patterns varied more between sites. These results suggest that analysis over 

the course of a week is more informative for comparing sites relative to background pollution levels. 

Higher time resolution analysis and background subtraction would also help resolve local source 

contribution. Several patterns emerge with respect to gasoline and diesel source comparison. Gasoline 

fuel is known to contain higher concentration of CO and hydrocarbons, while diesel fuels contains higher 

concentration of NOx and particulate matter. Over the course of a day, largest increase in both CO and 

VOCs was found to occur in the morning between 6 AM and 12 PM, corresponding to the morning rush 

hour traffic. Trends in diesel-associated pollutants are not as consistent. While NOx and O3 sensor 

response is highest in the evening and at night, the particulate matter sensor response increases during 

the day. Both NOx and particulate matter sensors indicate slight increase in response 12 – 3 AM 

suggesting that this increase could be contributed by increased logistics truck traffic at night. It was also 

found that diurnal patterns in CO and PM2.5 sensor response are similar, suggesting a common 

background source. In addition, NOx sensor response increase after 4 PM co-occurred with VOC sensor 

response increase at that time suggesting that evening source composition might be different from that 

in the morning. Over the course of a week, all of the traffic related pollutants were found to be increase 

on Tuesdays and Sundays at most sites. Overall, raw sensor response was found to be sufficient for 

detecting differences in source composition at different times of day and over the course of a week. 

However, higher time resolution analysis is required for distinguishing pollutant patterns at different 

sites. 
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Figure 71. Diurnal and weekly trend clusters for 4 types of sensors (inorganic gas, carbon monoxide, 

organic gas and particulate matter) at 4 different sites are shown. Raw sensor voltage output was 

normalized at each site prior to comparison. Only relative changes displayed are meaningful, not 

absolute levels. Original data was collected between April 20, 2015 and September 9, 2015, sampled at 

1-minute resolution, 191812 observations, 90% of data used. Data source: Pan Am Campaign, Summer 

2015, AirSENCE Rev2. 

 

4.7.4 Summary 

 

Background subtraction was found to help emphasize the differences and similarities between sites in 

terms of local traffic source contribution. Local contribution is more representative of local traffic. For 

example, local NOx level was found to be related to local traffic level and could be used to distinguish 

sites with low, medium and high level of traffic. 

 

Multi-pollutant patterns were found to be useful for detecting differences in sources. Comparison of the 

degree of correlation between different pollutants measured by AirSENCE devices revealed differences 

in source composition at different sites. 

 

While NOx, CO & CO2 have similar high time frequency patterns, the relative background contribution 

differs for each pollutant. NOx was found to have the highest local contribution across sites, followed by 

CO and CO2. The devices were also found to be sensitive and selective enough to allow for ranking of 

sites based on the local contribution for different pollutants as well as the level and type of pollution 
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sources. Relative levels of NOx and CO varied spatially and temporally suggesting that changes in vehicle 

fleet composition can be detected by AirSENCE devices.  

 

The average sensor response was found to differ for NOx, CO, PM and VOC sensors over the course of a 

day and a week. Daily pattern in sensor response was found to be similar across sites for most sensors, 

while weekly patterns varied more between sites. Temporal patterns suggest highest diesel contribution 

at night and highest gasoline contribution – in the morning. Overall, raw sensor response was found to 

be sufficient for detecting differences in source composition at different times of day and over the 

course of a week. 
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5 Conclusions 

 

The studies presented in this thesis revealed several key insights about the performance of low-cost 

sensors, accuracy and precision of pollutant models, reproducibility of sensor performance over time 

and in response to interferences as well approaches for improving sensor accuracy and reliability. In 

addition, detailed analysis is presented on the opportunities to apply sensor array devices for analysis of 

temporal and spatial patterns, as well as assessment of air quality index and traffic-related pollution. 

 

Analysis of a large range of gas sensors revealed several key challenges. One of the biggest issues is the 

high inter-device sensor variability in sensitivity caused by limited quality control of low cost commercial 

sensors. In addition, the variation between sensors increases with increase in temperature and 

concentrations of pollutants like CO and O3. Another major issue is sensor response nonlinearity as 

indicated by left-skewed sensor distribution and reduced sensitivity at high pollutant levels. Sensors 

were also found to be cross-responsive, which is both a challenge and an opportunity. While sensor 

cross-responsiveness needs to be corrected for, it can be useful for detecting patterns associated with 

complex air pollution mixtures.  

 

It was found that multiple regression models can provide more accurate pollutant estimates when 

multiple different sensor predictors are used compared to models with single sensor predictors. Sensor 

nonlinearity was one of the biggest contributors to reduction in pollutant model accuracy, which was 

found to be lower than measurement precision. While precision improved with increase in pollutant 

concentration, accuracy was highest for mid-range pollutant concentrations, partially because of the 

higher frequency of these pollutant levels in the calibration data. NOx and PM2.5 models were found to 

have lower accuracy and precision compared to other pollutants. Air quality health index (AQHI) 

estimation from sensor readings was successfully demonstrated and accuracy was found to be higher 

with direct regression model fitting compared to calculation using AQHI formula and pollutant 

estimates. Sensor array devices also facilitated evaluation of variation of AQHI in space and time. 

 

Three aspects of device reproducibility were evaluated: drift over time, impact of interferences and 

impact of site-specific mixtures. Drift was found to have a bigger impact on sensor sensitivity then 

baseline and lead to change in both slope and correlation of regression models. The decline is 

performance was significant, reaching 40% decline in range after 2 months and 70% decline after 4 

months. Decline in sensor responsiveness over time also led to decline in inter-device variation. Increase 
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in temperature and humidity led to increase in sensor inter-device variation in baseline and sensitivity. 

NOx and O3 pollutant models were most impacted by drift and interferences. The performance of 

calibration models declined when the devices were moved to a new location with the magnitude of 

decline impacted by the relative range of pollutant concentrations at calibration site compared to the 

new site. 

 

Three categories of approaches for improving sensor accuracy and reproducibility were tested: 

nonlinear calibration models, variable transformations and calibration data selection. Nonlinear models, 

particularly random forest ensemble model and support vector machines, were found to improve the 

accuracy of regression models for NOx and PM2.5. A new approach was developed, combining variable 

transformation with training two separate models for background and local pollution components. The 

approach was found to have higher accuracy, particularly at new deployment sites. Model 

reproducibility, ability to adjust for multiple combinations of interferences and ability to resolve sites 

was improved when devices were calibrated at multiple sites, particularly sites with higher pollutant 

levels. However, incorporation of long-term historical data didn’t significantly improve model 

performance. 

 

Analysis showed that both short-term and long-term temporal patterns, including the variation in peak 

magnitude, timing and frequency could be resolved and compared at different sites. Traffic-related 

pollution was highest and most divergent across sites during the morning rush hour. While absolute 

pollutant levels were indicative of average traffic volume at a site, pollutant temporal transients (i.e. 

variation in peak timing, frequency, amplitude) revealed insights on local pollution sources. The accuracy 

of temporal pattern analysis was higher at sites with high and medium traffic. Sensors could also detect 

changes in CO-to-NOx ratios, which varied spatially and temporally suggesting that changes in vehicle 

fleet composition can be detected by AirSENCE devices. 

 

The spatial variability in pollutant level magnitude could be detected by sensor array devices, consistent 

with those previously identified through Land Use Regression models. The spatial variation in traffic-

related pollutants was most significant in the morning and on weekdays, suggesting those are the best 

time to detect differences between sites. Wind from west was associated with largest difference 

between sites for NOx and CO. The sensor device CO model showed the best performance in resolving 

spatial variation, while NOx and CO2 models showed best performance at sites with low and medium 

traffic levels. This was caused by decline in accuracy at high concentration of pollutant due to sensor 
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response nonlinearity. The importance of nonlinearity was confirmed by the positive impact of variable 

transformation on model performance.  

The analysis of multi-pollutant patterns supports the analysis of pollution sources. The comparison of 

the degree of correlation between pollutants at different sites helped reveal source composition 

patterns. Background subtraction helped further emphasize the differences and rank sites in terms 

traffic-related pollution, as indicated by the comparison of spatial variation in local NOx contribution 

compared to that of background contribution. NOx was found to have the higher local contribution 

component on average across sites, followed by CO and CO2. Wind direction was also found to be 

helpful for understanding the effect of local pollution sources. Weekly temporal variation pattern was 

more variable across sites compared to daily pattern, suggesting that it might be a better metric for site 

comparison. Raw sensor data was found to be sufficient for detecting differences in source composition 

variation. This is particularly promising, since significant amount of time and costs can be saved if 

sensors can be directly useful without calibration. Comparative analysis of temporal patterns of 

different sensors revealed changes in fleet composition over time. 

 

In summary, the results described above are promising with respect to performance and applications of 

sensor array devices for monitoring air pollution levels, composition and sources. The data collected by 

AirSENCE devices enabled monitoring of more air contaminants at higher temporal and spatial 

resolution compared to traditional approaches. It also provided unique insights into the pollution 

sources and variation of air pollution in space and time. However, the analysis of the impact of 

environmental factors and inter-sensor variation has revealed key performance limitations that are 

important for developing calibration protocols for low-cost sensor devices. For instance, the analysis of 

the impact of temperature and humidity as well as interferences on sensor performance have suggested 

novel methods that would help flag faulty measurements and correct sensor response. Key sensor 

response interferences were identified, and this result will be useful for accessing the level of 

measurement uncertainty in future work. Another key conclusion of this work is the importance of 

validation of sensor devices at a range of locations with different pollutant levels and sources. The 

impact of calibration dataset was explored, and the insights derived from analysis of sensor response to 

different combinations of interferences will be key for designing sensor maintenance protocols in future 

studies. A new protocol was proposed for calibration of low-cost sensor devices to ensure generalizable 

calibration models and better performance across sites. A new method was also developed for 

evaluating sensor drift, revealing new insights into ideal re-calibration frequency and drift correction 
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methods. The comprehensive comparison of variable transforms and nonlinear approaches has 

suggested that some approaches (Support Vector Machine Regression as well as square and exponential 

variable transforms) clearly outperform others and should be the focus of future studies. Furthermore, 

the comparison of methods for deriving Air Quality Health Index indicated higher accuracy of direct 

regression calibration approach – an important insight for design of future studies of air quality indices 

derived using low-cost sensor measurements. The temporal sensor response patterns revealed unique 

insights into the differences in level and characteristics of sources such as traffic across sites. The results 

suggested that background subtraction and analysis of the peak magnitude, timing and frequency would 

be useful for spatial pollution pattern analysis in future sensor network studies. While some challenges 

still remain, inroads in tackling them have been made and the results have indicated new opportunities 

for using the pollution sensor data to improve the design our cities as well as reduce the impact of air 

pollution on our health and wellbeing (Figure 72). 

 

Figure 72. Summary of the key contributions of the thesis to the field of research. 
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6 Future Work 

 

While many major challenges and opportunities associated with low-cost sensor devices have been 

addressed in this work, several key opportunities remain. The field of air quality monitoring has matured 

significantly over the past 10 years. Air pollution sensor technology is evolving quickly.  New sensors and 

air quality monitoring devices have been proposed and adapted into sensor networks. New sensors have 

been introduced, while others became obsolete. It will be key for researchers and industry alike to 

continue testing new technologies and develop better calibration protocols that would allow for the 

calibration models to be transferred across devices (Fang and Bate 2017). Better methods for control of 

inter-device variation will be important for development of generalizable calibration models. Better 

calibration protocols will also need to be developed to generate calibration models that perform well 

across sites with different types and levels of air contaminants as well as across a range of 

environmental conditions. As this work indicated, calibration of AirSENCE devices using data from a 

combination of different locations leads to improved performance. However, as the size of sensor 

network grows, the costs and time required to conduct such calibrations becomes unsustainable. 

Oversampling is one approach for overcoming this challenge (Balzano and Nowak 2007). Alternative 

approaches that make use of sensor nodes mounted on public transit or other moving platforms is 

another solution for acquiring large and diverse calibration datasets quickly (Hasenfratz, Saukh, and 

Thiele 2012). Another key opportunity for further research is development of correction factors for 

sensor interferences and drift. A more robust system is needed for flagging interferences in sensor data, 

categorizing data according to the level of uncertainty as well as automatically adjusting it in real time. 

Such metadata would also be essential for prioritizing device maintenance and quality control. Finally, 

improved algorithms for identifying differences between sites and tracking the variation in pollution 

sources across space and time will be important as low-cost air quality sensor technologies and 

networks continue to evolve. Fusion of diverse datasets (i.e. satellite data, traffic data and weather data) 

will be key for the development of these algorithms. 

 

There are 3 major areas of research will continue to be important as the sensors and the air quality 

monitoring techniques continue to evolve: 1) Improving the hardware, software and data infrastructure 

required to enable high density measurements, 2) Optimizing frameworks for tracking and optimizing 

context-specific performance of AirSENCE devices, and 3) Developing new protocols for enabling key 

emerging applications for tracking pollution sources and exposure. 
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First, higher density sensor networks will lead to new opportunities. The existing static sensor networks 

will be supplemented with mobile peer-to-peer networks, where sensors are mounted on vehicles, 

bicycles and eventually worn by people (Figure 73). The work for supplementing static sensor networks 

with mobile networks is already in progress at SOCAAR lab, where AirSENCE devices have been installed 

on two TTC streetcars (Mitchell 2018). AirSENCE technology has been licensed to AUG Signals and is in 

preparation for commercial launch. 

 

 

Figure 73. AirSENCE devices installed on TTC streetcars for monitoring ozone, carbon monoxide, carbon 

dioxide, and PM2.5 along King Street routes11. 

 

However, for the sensor networks to become truly dense and ubiquitous, sensors need to become more 

power-efficient and smaller. Some progress in this area has already been made both by academic (Deng 

et al. 2016) and industrial teams (Figaro 2017). Smartphones containing air pollution sensors have been 

announced (Jones 2018). Innovative battery-free systems based on radio frequency energy harvesting 

have been proposed (Tran, Dang, and Chung 2017).  

 

Second, as the sensors become more ubiquitous, a system would need to be developed to automatically 

track the quality of data and model output. As shown earlier in this document, sensor performance can 

vary significantly depending on how the sensor device was calibrated as well as the types of nearby 

                                                      
11

 http://annualreports.allergen-nce.ca/ar2016/#c8 
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sources and environmental factors. The development of a distributed ledger system for tracking the 

device, calibration, model and deployment parameters will become key to ensuring the quality of sensor 

device output moving forward. One method to implement such a system is an open database of sensor 

response under a range of environmental conditions and source profiles. Such database would serve as 

a platform for researchers and citizen scientists to upload their own documented datasets. A system for 

documentation and automatic curation and quality control as well as open hardware and software 

infrastructure would be essential for helping us establish such a database and steps in the right direction 

have already been taken (Kotsev et al. 2016). Establishing a system for data governance will be a key 

need moving forward. The open database would be very useful for developing classification model 

libraries (i.e. fully reproducible model specifications) that would identify pollution sources and predict 

pollution variation in the future. These model libraries would become more accurate and generalizable 

as more sample pollution data is uploaded in the database and would enable people across the world to 

develop tools and APIs using these data sources. Having reliable open datasets and models would be 

invaluable to help develop better policies on urban development, pollution source control and climate 

change mediation. We would also be able to use them to test the outcomes of small-scale interventions 

(i.e. no-idling laws, electric and biofuel vehicles, new city designs).  

 

Finally, new sensor-specific data analysis techniques should be developed that go beyond improving the 

sensor performance and support new applications. For example, the analysis of emission factors, source 

apportionment, exposure assessment and tracking of air pollution interventions are some of the 

emerging areas of interest. Some recent studies have been published exploring the use of low-cost 

sensors for evaluating emission factors (Johnson et al. 2016) and deriving exposure estimates (Castell et 

al. 2017). An ongoing challenge in exposure assessment is that the level of the concentration recorded 

by a sensor at a specific point in time may not reflect the duration of exposure related to that standard 

or benchmark (e.g. daily or annual average benchmarks).  A new framework for benchmarking data 

collected by low cost sensors will need to be established. 
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8 Appendices 

 

8.1 Appendix 1: Commercially-available air monitoring devices 

An overview of capabilities and cost of commercially-available sensor devices is provided in 

Table 16. 

 

Table 16. Summary of select commercially-available air monitoring devices. 

Pollutants Range 
Limit of 

Detection 
Accuracy Precision 

Field 

Testing 
Cost Device 

NO 
0-20000 

ppb 
<3 ppb ±5 ppb — Yes $5500-$9000 

Geotech 

AQMesh 

NO2 0-200 ppb <5 ppb ±5 ppb — Yes $5500-$9000 
Geotech 

AQMesh 

NO2 0-250 ppb 20 ppb <30 % 
±7 ppb, 

±15 % 
Yes ~$60~$5400 

Cairpol 

CairSens 

NO2 
0.05-10 

ppm 
— — — No ~$500~$650 

Sensaris 

SensPods 

NO2 
0.05-5 

ppm 
— — — No $175-$230 Smart Citizen 

NO2 
0.05-5 

ppm 
— — — No $185 

Air Quality 

Egg 

NO2 0-20 ppm — — — Yes $1000 CitiSense 

NO2 0-5 ppm — — — No $199 
Sensorcon 

Sensordrone 

NO2 
0.05-5 

ppm 
— — 3 ppb No $180 

AirCasting 

Air Monitor 

NO2 
10-250 

ppb 
— — 10 ppb Yes $2250 Unitec SENS-IT 

NO2 0-1ppm — — ± 20 ppb Yes $460 
Aeroqual 

Series 500 
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O3 0-200 ppb <5 ppb ±5 ppb — Yes $5500-$9000 
Geotech 

AQMesh 

O3 0-250 ppb 20 ppb <30 % 
±7 ppb, 

±15 % 
Yes ~$60~$5400 

Cairpol 

CairSens 

O3 
10-1000 

ppb 
— — — No ~$500~$650 

Sensaris 

SensPods 

O3 
10-1000 

ppb 
— — — No $185 

Air Quality 

Egg 

O3 0-1 ppm — — — Yes $1000 CitiSense 

O3 
2 ppb - 10 

ppm 
— — 2 ppb Yes $4900 

2B 

Technologies 

O3 0 -500ppb — — ± 5.0 ppb Yes $460 
Aeroqual 

Series 500 

CO 
100-8000 

ppb 
— — 200 ppb Yes $2250 Unitec SENS-IT 

CO 
0-50000 

ppb 
<5 ppb ±10 ppb — Yes $5500-$9000 

Geotech 

AQMesh 

CO 0-20 ppm 0.05 ppm <25 % 

±0.05 

ppm, ±15 

% 

Yes ~$60~$5400 
Cairpol 

CairSens 

CO 
1-1000 

ppm 
— — — No ~$500~$650 

Sensaris 

SensPods 

CO 
1-1000 

ppm 
— — — No $175-$230 Smart Citizen 

CO 

1-1000 

ppm 

 

— — — No $185 
Air Quality 

Egg 

CO 
0-2000 

ppm 
— — — Yes $1000 CitiSense 

CO 
0-1000 

ppm 
— — — No $199 

Sensorcon 

Sensordrone 
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CO 
30~1000 

ppm 
— — — No $180 

AirCasting 

Air Monitor 

CO 
0 - 250 

ppb 
— — ± 50 ppb Yes $460 

Aeroqual 

Series 500 

CO2 
0-5000 

ppm 
— ±30 ppm ±5 % No ~$500~$650 

Sensaris 

SensPods 

CO2 

0-2000 

ppm 

 

— ±50 ppm — No ~$830 Envirologger 

CH2O 
0-1000 

ppb 
10 ppb <30 % 

±5 ppb, 

±20 % 
Yes ~$60~$5400 

Cairpol 

CairSens 

VOCs 0-16 ppm 10 ppb <30 % 
±10 ppb, 

±15 % 
Yes ~$60~$5400 

Cairpol 

CairSens 

VOCs 
1-1000 

ppm 
— — — No $185 

Air Quality 

Egg 

PM2.5 

0-250 

μg/m3 

 

5 μg/m3 ±50 % 
±5 μg/m3, 

±10 % 
Yes ~$60~$5400 

Cairpol 

CairSens 

PM ≥1 μm 
0-28,000 

pcs/L 
— — — No ~$500~$650 

Sensaris 

SensPods 

PM ≥1 μm 
0-28,000 

pcs/L 
— — — No $185 

Air Quality 

Egg 

PM2.5 — — — — No $99 
Speck / 

GPSpeck 

 

 

8.2 Appendix 2: Design for the AirSENCE sensor device 

 

8.2.1 Electrical design for the AirSENCE sensor device 

This electrical system of each AirSENCE device (Rev1-2.5) was comprised of three system level modular 

components: 1) data logging unit (composed of a microcontroller board, a data logging board and 
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connection board); 2) power interface board, and 3) two sensor boards (Figure 74). The modular. 

component-based design was used to simplify device troubleshooting and maintenance. 

 

 

 

Figure 74. System Level Diagram of Electrical Components. 

 

The data logging unit consisted of three separate printed circuit boards (Figure 75, Figure 76): 1) a 

microcontroller board (i.e. commercial Arduino Uno board), 2) a data logging board and 3) a connection 

board containing a multiplexer, low pass filter and cable connectors for linking to the interface board. 

Low pass filter was used to reduce the noise in sensor signals. The measurements were passed through 

a 16:1 analog multiplexer, allowing for probing of 16 sensors with 4 I/O pins. An analog to Digital 

Converter (ADC) on the microcontroller board was used to convert analog sensor measurements to 

digital format. The data then gets stored on a micro-SD card using a micro-SD read/write breakout 

board. A Real Time Clock (RTC) chip was used to generate time stamps and store them along with the 

sensor data. During PCB design, thin traces were used for signal and thicker traces - for power lines. 

Signal traces were routed to avoid thermal noise from the heat generated by chips. 
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Figure 75. The design for circuit boards comprising data logging unit as well as images of completed and 

assembled boards. 

 

 

Figure 76. Data logging unit circuit schematics. 

 

The interface board (Figure 77, Figure 78) has two key roles: 

1) To provide the sensors with power at the required voltage and current levels; 

2) To route the signals from the two sensor boards to the data logging board. 

While most sensors required the same voltage as given by AC adaptor (5V), some needed voltages lower 

or higher. Switching converters were used as power regulators.  

Finally, a footprint for an additional microcontroller is available on the interface board and was included 

for implementing power management functionality in the device. 
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Figure 77. The design for the power interface board as well as image of a completed and assembled 

board. 

 

 

Figure 78. Power interface board circuit schematics. 

 

Each AirSENCE device was composed of two sensor boards, each with different types of sensors (Figure 

79, Figure 80). The sensors on boards were grouped based on two factors: 1) Power consumption and 2) 

Types of pollutants monitored. Metal oxide semiconductor gas sensors consume significant amount of 

power (500-800 mW) due to the heater integrated in the sensor. The heater catalyzed the redox 

reactions happening on sensor surface. As a result, it was important to balance the current draw of the 

two sensor boards and to ensure similar heat gradient across the two sides of the device. Since power 

consumption of sensors was correlated to the amount of heat they generate, balancing power 

consumption also ensured balanced convection on the two sides of the device. In addition, the sensors 

were grouped according to the pollutants they measured to ensure consistent readings. Provision for 

breakout boards for power management and signal amplification were also made. 
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Figure 79. The design for one of the sensor boards as well as image of a completed and assembled 

board. 

 

Figure 80. Sensor board circuit schematics. 

 

A complete list of evaluated sensors is provided in Table 17 and the list of other components used in 

design is provided in Table 18. 
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Table 17. Evaluated sensor list.12 

Manufacturer Model Operation Price 

($CAN) 

for 1-9 

units 

Target Analyte 

Aosong 

Electronics 

DHT22 Thermistor, 

capacitive 

sensor 

$15 Temperature, humidity 

Figaro TGS2602 MOS $15 Methane, CO, iso-butane, ethanol, hydrogen 

Figaro TGS2600 MOS $15 Methane, CO, iso-butane, ethanol, hydrogen 

Figaro TGS2620 MOS $15 Methane, CO, iso-butane, ethanol, hydrogen 

Figaro TGS822 MOS $15 Organic solvents, acetone, methane, CO, 

isobutane 

Figaro TGS825 MOS $57 Hydrogen sulfide 

Figaro TGS800 MOS $15 CO, methane, isobutane, hydrogen and ethanol 

Figaro TGS823 MOS $24 Acetone, methane, CO, iso-butane, ethanol, 

hydrogen 

Figaro TGS882 MOS $15 Fumes from food (alcohol, odor) 

Figaro TGS2201 MOS $15 Gasoline and Diesel Exhaust Gas Sensor 

Figaro TGS2611 MOS $15 Methane, iso-butane, ethanol, hydrogen 

Figaro TGS880 MOS $15 CO, methane, isobutane, ethanol, cooking 

vapours 

Figaro TGS826 MOS $15 Ammonia, ethanol 

Figaro TGS832 MOS $25 Chlorofluorocarbons 

Figaro TGS2442 MOS $15 CO 

E2V / MICS MICS5525 MOS $10 CO 

E2V / MICS MICS5521 MOS $10 CO, hydrocarbons, volatile organics 

E2V / MICS MICS5121 MOS $10 CO, hydrocarbons, volatile organics (protective 

filter) 

E2V / MICS MICS2610 MOS $10 O3 

                                                      
12

 https://www.yumpu.com/en/document/view/379764/price-delivery-information-for-figaro-gas-sensors 
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E2V / MICS MICS2710 MOS $10 NOx 

E2V / MICS MICS2611 MOS $10 O3 

Synkera P/N706 MOS $30 NOx 

Synkera P/N707 MOS $30 Volatile organics (methanol, dicholoromethane, 

hexane, ethyl acetate, isopropyl acetate) 

Hanwei MR513 MOS $23 Alcohol 

Hanwei MQ3 MOS $5 Alcohol, benzene, CH4, hexane, LPG, CO 

Hanwei MQ135 MOS $8 NH3, NOx, alcohol, benzene, smoke, CO2, CO 

Hanwei MQ131 MOS $20 O3 

Hanwei MQ7 MOS $9 CO 

Applied 

sensor 

ASMLN MOS $30 NOx 

Sharp GP2Y1010

AU0F 

Optical $12 Particulate matter 

Shinyei PPD 42 Optical $12 Particulate matter 

Grove SEN 

21723 

N-MOS $15 Sensor 

 

 

Table 18. Bill of materials for components used in design. 

Part What Value Model Amount Price ($CAN) 

Power Jack 
 

PJ-102B 1 1.17 
 

Switch 
  

10 5.84 
 

Indication LED  Red WP3A10HD 10 0.97 
 

LED Resistor 1k 
 

50 1.27 

SMPS IC 
 

RT7273 2 3.84 
 

Capacitor 10uF CL21A106KOQNNNE 50 4.03 
  

22uF CL21A226MQQNNNE 50 5.5 
  

3.3uF CL21A335KPFNNNE 25 3.44 
 

Resistor 100k ERJ-6ENF1003V 50 1.44 
  

383k ERJ-6ENF3833V 50 1.44 
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5V Capacitor 100nF CL21B104KACNNNC 50 1.2 
  

4.7nF CL21B472KBANNNC 50 1.27 
  

5.6nF CL21B562KBANFNC 50 1.4 
  

22uF 
 

- - 
  

470pF CL21B471KCANNNC 50 0.8 
 

Resistor 24k ERJ-6GEYJ243V 50 0.98 
  

43k ERJ-6GEYJ433V 50 0.98 
  

40.2k ERJ-6ENF4022V 50 1.44 
  

7.68k ERJ-6ENF7681V 50 1.44 
 

Inductor 6.8uH SRR1240-6R8M 10 8.72 

8V Capacitor 4.7nF 
 

- - 
  

5.6nF 
 

- - 
  

100nF 
 

- - 
  

470pF 
 

- - 
  

22uF 
 

- - 
 

Resistor 24k 
 

- - 
  

51k ERJ-6GEYJ513V 50 0.98 
  

40.2k 
 

- - 
  

4.42k ERJ-6ENF4421V 50 1.44 
 

Inductor 6.8uH 
 

- - 

4.7V Capacitor 4.7nF 
 

- - 
  

5.6nF 
 

- - 
  

100nF 
 

- - 
  

470pF 
 

- - 
  

22uF 
 

- - 
 

Resistor 24k 
 

- - 
  

51k 
 

- - 
  

40.2k 
 

- - 
  

8.25k 
 

50 1.44 
 

Inductor 6.8uH 
 

- - 

2.4V Capacitor 4.7nF 
 

- - 
  

100nF 
 

- - 
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470pF 

 
- - 

  
22uF 

 
- - 

 
Resistor 20k ERJ-6ENF2002V 50 1.44 

  
51k 

 
- - 

  
40.2k 

 
- - 

  
20k 

 
- - 

 
Inductor 4.7uH SRN5020-4R7M 10 3 

2.35V Resistor 21k ERJ-6ENF2102V 50 1.44 
 

Sensor Board Connector 
 

A33573-ND 2 14.36 
 

LED/Switch Connector 
 

1984617 10 3.8 

     

8.2.2 Code for AirSENCE sensor device 

 

8.2.2.1 Code for logging sensor data 

 

#include <Wire.h> // Wire library that helps the Arduino with i2c  

#include <Streaming.h> // Streaming C++-style Output with Operator << from 

http://arduiniana.org/libraries/streaming/ 

 

//------------------------------------------------------------------------------ 

// CONFIGURATION 

//------------------------------------------------------------------------------ 

 

// define FAST sensor sampling interval 

unsigned long INTERVAL_FAST = 5000; // sample duration (ms)30s, david holstius used 60000 

unsigned long last_time_fast_ms;     // time of last check/output 

 

char CSV_HEADER[] = "Timestamp,Sensor,Variable,Value"; 

 

//------------------------------------------------------------------------------ 

// COMPONENT SETUP 

//------------------------------------------------------------------------------ 
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//-------------------------------------------------------------------------- MUX 

 

int MUX_BASE = 0; // analog pin to interact with mux 

int MUX_CONTROL[] = {2, 3, 4, 5}; // digital pins for mux pin selection 

int mux(int channel) { 

  // select channel on multiplexer 

  for (int i = 0; i < 4; i++) { digitalWrite(MUX_CONTROL[i], bitRead(channel, i)); } 

  // return base pin for analogRead/Write to use 

  return(MUX_BASE); 

} 

 

void setup_mux() { 

  // set digital pins controlling multiplexer to OUTPUT 

  for (int i = 0; i < 4; i++) {  

    pinMode(MUX_CONTROL[i], OUTPUT);  

  } 

} 

 

//------------------------------------------------------------ SD card (logging) 

 

#include "SD.h" //SD library to talk to the card 

#define SD_PIN 10 // for the data logging shield, we use digital pin 10 for the SD cs line 

#define SD_INTERVAL_SYNC 1000 // mills between calls to flush() - to write data to the card 

uint32_t sd_last_time = 0; // time of last sync() 

File logfile; // the logging file 

 

// error function (ex. couldn't write to the SD card or open it) 

void error_sd(char *msg)  { 

  log_error("SDcard", msg); 

  while(1); // sits in a while loop forever to halt setup 

} 

 

// setup 
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void setup_sd() { 

     

  // initialize the SD card and find a FAT16/FAT32 partition  

  log_info("SDcard", "initializing...");  

 

  pinMode(SD_PIN, OUTPUT); // default chip select pin is set to output 

 

  if (!SD.begin(SD_PIN)) { // see if the card is present and can be initialized 

    error_sd("card failed or not present"); 

    return; // don't do anything else 

  } 

 

  log_info("SDcard", "initialized");  

 

  // create a new file, LOGGERnnnn.csv (nnnn is a number), make a new file every time the Arduino 

starts up  

  char filename[] = "0000.csv";  

  for (uint16_t i = 0; i < 10000; i++) { 

 

    for (int j = 0; j < 4; j++) { 

      filename[4-j-1] = ((int)(i / pow(10, j)) % 10) + '0'; 

    } 

 

    if(!SD.exists(filename)) { // only open a new file if it doesn't exist 

      logfile = SD.open(filename, FILE_WRITE); // Unix style command flags - logfile.open() procedure 

FILE_WRITE - create the file and write data to it 

      break;  // leave the loop! 

    } 

  } 

 

  if (! logfile) { 

    error_sd("could not create file"); 

  } 
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  logfile << CSV_HEADER << endl; 

  log_info("SDcard", filename); 

 

  sd_last_time = millis(); 

} 

 

//------------------------------------------------------ Chronodot (timekeeping) 

 

#include "Chronodot.h" // Chronodot RTC library 

Chronodot RTC; 

 

// setup 

void setup_rtc() { 

  // kick off the RTC initializing the Wire library - poking the RTC to see if its alive 

  Wire.begin();   

  RTC.begin(); // Chronodot 

 

  if (!RTC.begin()) { 

    logfile.println("RTC failed"); 

    Serial.println("RTC failed"); 

  } 

} 

 

// log 

void log_time() { 

  DateTime now = RTC.now(); 

  int year  = now.year(); 

  int month = now.month(); 

  int day   = now.day(); 

  int hours = now.hour(); 

  int mins  = now.minute(); 

  int secs  = now.second(); 
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  Serial  << "\"" << year; 

  Serial  << "-" << ((month<10)?"0":"") << month; 

  Serial  << "-" << ((day<10)?"0":"")   << day; 

  Serial  << " " << ((hours<10)?"0":"") << hours; 

  Serial  << ":" << ((mins<10)?"0":"")  << mins; 

  Serial  << ":" << ((secs<10)?"0":"")  << secs; 

  Serial  << "\","; 

  logfile << "\"" << year; 

  logfile << "-" << ((month<10)?"0":"") << month; 

  logfile << "-" << ((day<10)?"0":"")   << day; 

  logfile << " " << ((hours<10)?"0":"") << hours; 

  logfile << ":" << ((mins<10)?"0":"")  << mins; 

  logfile << ":" << ((secs<10)?"0":"")  << secs; 

  logfile << "\","; 

} 

 

//---------------------------------------------------------- DHT22 (temperature) 

 

#include "DHT.h" 

#define DHT_PIN 7 

#define DHT_TYPE DHT22   // DHT 22  (AM2302) 

DHT dht(DHT_PIN, DHT_TYPE); 

 

// setup 

void setup_dht() { 

  dht.begin(); 

} 

 

// log 

void log_dht() { 

  // Reading temperature or humidity takes about 250 milliseconds! 

  // Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor) 

  float h = dht.readHumidity(); 



183 

 

  float t = dht.readTemperature(); 

  // check if returns are valid, if they are NaN (not a number) then something went wrong! 

  if (isnan(t) || isnan(h)) { 

    log_error("DHT22", "failed to read"); 

  } else { 

    log_measurement("DHT22", "humidity", h); 

    log_measurement("DHT22", "temperature", t); 

  } 

} 

 

//----------------------------------------------------------- Sinyei (particles) 

 

#define SNY_PIN 8 

unsigned long sny_duration; 

unsigned long sny_lowocc_us = 0; // sum of time spent LOW 

 

unsigned long SNY_INTERVAL_ms = 30000; // sample duration (ms)30s, david holstius used 60000 

unsigned long sny_last_time;           // time of last serial dump 

 

// setup 

void setup_sinyei() { 

  pinMode(SNY_PIN, INPUT); 

  sny_last_time = millis(); 

  sny_lowocc_us = 0; 

} 

 

// reading 

void log_sinyei(unsigned long lowocc_us, unsigned long sampletime_ms) { 

  float ratio; // fraction of time spent LOW 

  float concentration = 0; 

 

  ratio = lowocc_us / (sampletime_ms * 1000.0) * 100.0; 

  concentration = 1.1 * pow(ratio, 3) - 3.8 * pow(ratio, 2) + 520 * ratio + 0.62; // using spec sheet curve 
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  log_measurement("Sinyei", "sampletime_ms", sampletime_ms); 

  log_measurement("Sinyei", "low_occupancy_duration_us", lowocc_us); 

  log_measurement("Sinyei", "occupancy_ratio", ratio); 

  log_measurement("Sinyei", "concentration", concentration); 

} 

 

//------------------------------------------------------------ Sharp (particles) 

 

// connected to analog 1 and controlled by digital 9 

#define SRP_PIN_DUST 1 

#define SRP_PIN_LED 9 // led Power is any digital pin on the arduino connected to Pin 3 on the sensor 

(can be 2, 4,…) 

 

int srp_delay1_us = 280; // delays are in microseconds 

int srp_delay2_us = 40; 

int srp_delayoff_us = 9680; 

 

// setup 

void setup_sharp() { 

  pinMode(SRP_PIN_LED, OUTPUT); 

} 

 

// log 

void log_sharp() { 

  digitalWrite(SRP_PIN_LED, LOW); // power on the LED 

  delayMicroseconds(srp_delay1_us); 

  int dustVal = analogRead(SRP_PIN_DUST); // read the dust value 

  delayMicroseconds(srp_delay2_us); 

  digitalWrite(SRP_PIN_LED, HIGH); // turn the LED off 

  delayMicroseconds(srp_delayoff_us); 

 

  log_measurement("Sharp", "dust", dustVal); 
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} 

 

//------------------------------------------------------- Arduino voltage supply 

 

// read Arduino voltage 

long read_vcc() { 

  // Read 1.1V reference against AVcc 

  // set the reference to Vcc and the measurement to the internal 1.1V reference 

  #if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || 

defined(__AVR_ATmega2560__) 

    ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); 

  #elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__) 

    ADMUX = _BV(MUX5) | _BV(MUX0); 

  #elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__) 

    ADMUX = _BV(MUX3) | _BV(MUX2); 

  #else 

    ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); 

  #endif   

  delay(2); // Wait for Vref to settle 

  ADCSRA |= _BV(ADSC); // Start conversion 

  while (bit_is_set(ADCSRA,ADSC)); // measuring 

  uint8_t low  = ADCL; // must read ADCL first - it then locks ADCH   

  uint8_t high = ADCH; // unlocks both 

  long result = (high<<8) | low; 

  result = 1125300L / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000 

  return result; // Vcc in millivolts 

} 

 

// log 

void log_vcc() { 

  float vcc = read_vcc(); 

  log_measurement("Arduino", "voltage", vcc); 
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} 

 

//------------------------------------------------------------------------------ 

// LOGGING 

//------------------------------------------------------------------------------ 

 

void log_measurement(String sensor, String variable, float value) { 

  log_time(); 

  Serial  << sensor << "," << variable << ","; 

  Serial.print(value, 4); 

  Serial  << endl; 

  logfile << sensor << "," << variable << ","; 

  logfile.print(value, 4); 

  logfile << endl; 

} 

 

void log_error(String sensor, String msg) { 

  log_status(sensor, "ERROR", msg); 

} 

 

void log_info(String sensor, String msg) { 

  log_status(sensor, "INFO", msg); 

} 

 

void log_status(String sensor, String category, String msg) { 

  log_time(); 

  Serial  << sensor << "," << category << "," << msg << endl; 

  logfile << sensor << "," << category << "," << msg << endl; 

} 

 

//------------------------------------------------------------------------------ 

// SETUP 

//------------------------------------------------------------------------------ 
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void setup(void) { 

 

  // setup serial 

  Serial.begin(9600); 

  Serial << CSV_HEADER << endl; 

    

  // setup RTC 

  setup_rtc(); // all logging depends on RTC, so start it up first 

 

  // setup SD card 

  setup_sd(); 

 

  // setup MUX 

  setup_mux(); 

   

  // setup DHT 

  setup_dht(); 

   

  // setup Sinyei 

  setup_sinyei(); 

 

  // setup Sharp 

  setup_sharp(); 

   

  // set fast sensor clock 

  last_time_fast_ms = millis(); // get the current time 

 

} 

 

//------------------------------------------------------------------------------ 

// MAIN LOOP 

//------------------------------------------------------------------------------ 
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void loop() { 

 

//main loop: 1)Wait until time for the next reading, 2)Ask for the current time and date from RTC,  

//3)Log the time and date to SD, 4)Read sensors, 5)Log readings to the SD, 6)Sync data to the card at 

right time 

 

 

  sny_duration = pulseIn(SNY_PIN, LOW); 

  sny_lowocc_us += sny_duration; 

 

  //-------------------------------------- read/log Sinyei sensor (30s interval) 

 

  if ((millis() - sny_last_time) > SNY_INTERVAL_ms) { 

 

    // log Sinyei 

    log_sinyei(sny_lowocc_us, millis() - sny_last_time); 

 

    // reset 

    sny_lowocc_us = 0; 

    sny_last_time = millis();  

 

  } 

 

  //--------------------------------- read/log other sensors (fast 10s interval) 

 

  if ((millis() - last_time_fast_ms) > INTERVAL_FAST) { 

 

    // log Arduino voltage 

    log_vcc(); 

 

    // log DHT 
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    log_dht(); 

 

    // log Sharp 

    log_sharp(); 

 

    // log MUX 

    int num_sensors = 16; 

    int sensor_value; 

    String sensor_name = "channel_"; 

 

    for (int channel = 0; channel < num_sensors; channel++) { 

      sensor_value = analogRead(mux(channel));  

      log_measurement("Mux", sensor_name + ((channel<10)?"0":"") + channel, sensor_value); 

    } 

 

    // reset clock to current time 

    last_time_fast_ms = millis();  

 

  } 

 

  //--------------------------------------------------------------- sync SD card 

 

  // write data to disk! Don't sync too often (2048 bytes of I/O SD card, a lot of power, takes time) 

  if ((millis() - sd_last_time) > SD_INTERVAL_SYNC) {  

    logfile.flush(); 

    sd_last_time = millis(); 

  } 

} 

 

8.2.2.2 Code for data merging and cleaning 

 

# Aggregate sensor array time series data from multiple devices stored 

# as flat CSV files with columns [Port,] Timestamp, Sensor, Variable, Value 



190 

 

#------------------------------------------------------------------------------- 

 

from __future__ import division 

import os 

import sys 

import csv 

import glob 

from datetime import datetime, timedelta, time 

from collections import defaultdict 

 

import logging 

logger = logging.getLogger() 

 

# default fieldnames 

FIELDNAMES_IN  = ['Deployment', 'Device', 'Location', 'Port', 'Timestamp', 'Sensor', 'Variable', 'Value'] 

FIELDNAMES_OUT = ['Timeslot', 'Deployment', 'Device', 'Location', 'Port', 'NumObservations', 'Sensor', 

'Variable', 'Value'] 

FIELDNAMES_IN_REQUIRED = FIELDNAMES_IN[-4:] 

MAX_FIELDS = 5 

 

PARSERS = { 

    'Timestamp': lambda v: datetime.strptime(v, '%Y-%m-%d %H:%M:%S'), 

    'Value': lambda v: float(v), 

} 

DEFAULTS = { 

    'Port': None, 

} 

 

 

def get_timeslot(timestamp, interval): 

    if not isinstance(interval, timedelta): 

        raise TypeError('Interval must be a timedelta object') 

 



191 

 

    if interval > timedelta(days=1): 

        raise ValueError('Intervals longer than a day are not supported') 

 

    if interval < timedelta(seconds=1): 

        raise ValueError('Intervals shorter than a second are not supported') 

 

    if interval.total_seconds() < 0: 

        raise ValueError('Negative intervals are not supported') 

 

    if (timedelta(days=1).total_seconds() % interval.total_seconds()) != 0: 

        raise ValueError('The chosen interval must evenly divide a day') 

 

    # Construct baseline at the start of the day,  

    # with all attributes potentially affected by the interval set to zero 

    baseline = datetime(year=timestamp.year, month=timestamp.month, day=timestamp.day) 

 

    # Find and center timeslot 

    slots_elapsed = int((timestamp - baseline).total_seconds() // interval.total_seconds()) 

    timeslot = baseline + interval * slots_elapsed  # Start 

    timeslot += interval // 2  # Center 

 

    return timeslot 

 

 

def get_meta(path): 

    levels = [] 

    path = os.path.abspath(path) 

    for i in range(3): 

        path = os.path.dirname(path) 

        levels.append(os.path.basename(path)) 

    deployment, location, device = reversed(levels) 

    return {'Deployment': deployment, 'Location': location, 'Device': device} 
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def csv_clean(iterable): 

    for i, line in enumerate(iterable): 

        line = line.replace('\x00', '') 

        # Construct default CSV header if missing 

        if i == 0 and 'Timestamp' not in line: 

            logger.debug('Using default header') 

            fields = csv.reader([line]).next() 

            if len(fields) > MAX_FIELDS: 

                logger.error("Too many fields ({n}) to be a valid input CSV file".format(n=len(fields))) 

                break 

            yield ','.join(FIELDNAMES_IN[-len(fields):]) 

        else: 

            yield line 

 

 

def csv_read(path): 

    metadata = get_meta(path) 

    logger.info('Deployment: "{Deployment}", Location: "{Location}", Device: 

"{Device}"'.format(**metadata)) 

    with open(path, "rb") as handle: 

        reader = csv.DictReader(csv_clean(handle)) 

        while True: 

            # Attempt to read next row 

            try: 

                csv_row = reader.next() 

                i = reader.line_num 

            except StopIteration: 

                break 

            except Exception as e: 

                logger.warning('Row {i}: Failed to parse row: "{msg}"'.format(i=reader.line_num, 

msg=e.message)) 

                continue 
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            # Pre-process row 

            row = {} 

            row.update(DEFAULTS) 

            success = True 

            for k, v in csv_row.items(): 

                try: 

                    row[k.strip()] = v.strip().strip('"') 

                except Exception as e: 

                    logger.warning('Row {i}: Invalid data {k}="{v}"; skipping'.format(i=i, k=k, v=v)) 

                    success = False 

                    break 

            if not success: 

                continue  # Skip 

 

            # Check for required fields 

            if not all(k in row for k in FIELDNAMES_IN_REQUIRED): 

                logger.error( 

                    'Row {i}: Missing fields: {fields}'.format( 

                        i=i, fields=', '.join('"{k}"'.format(k=k) for k in FIELDNAMES_IN_REQUIRED if k not in row) 

                    ) 

                ) 

                break  # Abandon ship! 

 

            # Skip diagnostic data 

            if row['Variable'] in ['INFO', 'ERROR', 'Variable']: 

                logger.debug( 

                    'Row {i}: Skipping diagnostic data {k}="{v}"'.format(i=i, k=row['Variable'], v=row['Value']) 

                ) 

                continue 

 

            # Parse values 

            try: 
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                for k, v in row.items(): 

                    row[k] = PARSERS.get(k, lambda _: _)(v) 

            except Exception as e: 

                logger.warning( 

                    'Row {i}: Could not parse {k}="{v}" ({msg}); skipping'.format(i=i, k=k, v=v, msg=e.message) 

                ) 

                continue 

 

            # Override metadata 

            row.update(metadata) 

 

            yield row 

 

 

def csv_aggregate(rows, interval): 

    block = None 

    timeslot_current = None 

    acq_keys = 'Deployment', 'Device', 'Location', 'Port', 'Sensor', 'Variable' 

    for row in rows: 

        timestamp = row['Timestamp'] 

        timeslot  = get_timeslot(timestamp, interval) 

 

        if timeslot != timeslot_current: 

            if block is not None: 

                for acq_values, values in sorted(block.items()): 

                    _row = dict(zip(acq_keys, acq_values)) 

                    _row.update({ 

                        'Timeslot': timeslot, 

                        'NumObservations': len(values), 

                        'Value': sum(values) / len(values) 

                    }) 

                    yield _row 

            block = defaultdict(list) 
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            timeslot_current = timeslot 

 

        block[tuple(row[k] for k in acq_keys)].append(row['Value']) 

 

 

def csv_merge(src_paths, dst_path, interval=timedelta(seconds=15), min_size=1024): # min_size in KiB 

    with open(dst_path, 'wb') as handle: 

        writer = csv.DictWriter(handle, fieldnames=FIELDNAMES_OUT) 

        writer.writeheader() 

        for src_path in src_paths: 

            if os.stat(src_path).st_size < min_size*1024: 

                continue 

            logger.info('Processing "{path}"'.format(path=src_path)) 

            for row in csv_aggregate(csv_read(src_path), interval): 

                writer.writerow(row) 

 

 

def run_aggregate(sources, filename, interval, units, min_size): 

    filename = filename.format(interval=interval, units=units) 

 

    formatter = logging.Formatter("%(asctime)15s - %(levelname)s - %(message)s") 

    fh = logging.FileHandler(filename=filename+'.log', mode='w') 

    fh.setLevel(logging.INFO) 

    fh.setFormatter(formatter) 

    ch = logging.StreamHandler() 

    ch.setLevel(logging.DEBUG) 

    ch.setFormatter(formatter) 

    logger.setLevel(logging.DEBUG) 

    logger.addHandler(fh) 

    logger.addHandler(ch) 

 

    sources = sum((glob.glob(source) if '*' in source else [source] for source in sources), []) 

    logger.debug('Starting to aggregate data') 



196 

 

    csv_merge(sorted(sources), filename, interval=timedelta(**{units: interval}), min_size=min_size) 

    logger.debug('Done') 

 

 

def main(argv=sys.argv[1:]): 

    import argparse 

 

    parser = argparse.ArgumentParser(description='Merge time series data from CSV files.') 

    parser.add_argument('-o', '--output', help='output filename', type=str, default='merged-

{interval}_{units}.csv') 

    parser.add_argument('-i', '--interval', metavar='interval', type=int, help='time window to average 

values over (in the specified unit)', required=True) 

    parser.add_argument('-u', '--units', metavar='units', choices=('seconds', 'minutes', 'hours'), help='unit 

to use for interval (seconds, minutes, or hours)', required=True) 

    parser.add_argument('-m', '--min-size', metavar='size', type=int, help='minimum file size to process (in 

KiB)', default=1024) 

    parser.add_argument('sources', metavar='file', nargs='+', help='files to process') 

    args = parser.parse_args(argv) 

    run_aggregate(sources=args.sources, filename=args.output, interval=args.interval, units=args.units, 

min_size=args.min_size) 

 

 

if __name__ == '__main__': 

    main() 

 

 

8.2.3 Mechanical system design for the AirSENCE sensor device 

 

The key considerations for the AirSENCE mechanical design included: 1) Ensuring consistent and 

unobstructed airflow through the device, 2) reducing particle sample losses and reactions on the device 

surface, and 3) providing a rugged and weatherproof design for device deployment in field.  

The AirSENCE device consisted of two inlets at the bottom of the device and two outlets at the top of 

the device. The inlets were positioned at the bottom section of the device to take advantage of 
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convection as an additional mechanism for air circulation through the device. Two fans at the top of the 

device were used to sample the air by generating negative pressure within the device and thereby 

drawing the air through the inlets. The negative pressure sampling was used to avoid particle sample 

losses through impaction on fan blades. The particle sensors were also positioned close to inlets to 

ensure reliable sample. 

 

The inlets and fans were positioned along the two sides of the device such that the laminar airflow was 

directed in two channels along the two sensor boards, while minimizing the contact with other circuits. 

Since humidity and salts in the air can cause corrosion, it was important to reduce the contact between 

the sensitive circuits and ambient air. Furthermore, it was important to ensure sufficient clearance for 

unobstructed airflow through pollution sensors, while keeping the design compact and reducing dead 

air pockets to ensure quick response time. The inlets were positioned perpendicular to the outlets to 

enable the device to be mounted on windowsill while providing for the vertical airflow.  

 

Modular design was used for the enclosure and mounting fixtures to enable easy maintenance while 

ensuring rugged enclosure (Figure 81). The case consisted of 8 aluminum parts joined together by 

screws. The device was composed of two internal compartments: a sensor compartment and a 

microcontroller compartment. Two bent aluminum sheets were used as device walls and a top panel 

was used to protect the device from the rain. The top panel also contained a hook to enable mounting 

from a tripod. 
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Figure 81. A sketch of mechanical design as well as implemented device and image of deployment at a 

site. 

 

Two small and lightweight versions of the container were also designed to accommodate the original 

sensor boards, making them interchangeable between stationary and portable versions of the device 

(Figure 82). The airflow was generated by a fan as in the original design. The design included a portable 

11Ah battery pack that ensured that the device could be powered continuously for six hours. The 

dimensions of the new portable versions of the device were 38x15x15cm (device version 1) and 

27x19x9cm (device version 2) compared to the original device dimensions of 45x19x19cm. 

 

Figure 82. Two small versions of the device enclosure were designed and built. Version 1 was designed 

to be included in backpack used to monitor the exposure of runners. Version 2 contains a bigger range 

of sensors and was designed to fit into the lung transplant patient exposure assessment kit. 
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8.3 Appendix 3: Finalized calibration model predictor subsets and coefficients 

Sample calibration coefficiencts for slected air pollutant regression models are provided in Table 

19. 

Table 19. Calibration model coefficients for each of the target pollutants for a typical AirSENCE device. A 

mode of five AirSENCE devices is shown for each predictor. Data source: Fall 2015, AirSENCE Rev2. 
 

CO CO2 NOx O3 PM2.5 

Temperature -9.2 -2.1 -1.3 1.3 
 

Humidity -2.4 -0.6 -0.4 0.0 
 

TGS2600 
    

-7.7 

TGS2620 275.4 
   

31.4 

TGS822 695.8 
 

58.9 
 

24.8 

TGS880 
    

19.9 

P/N706 273.9 116.4 48.9 -88.0 -26.5 

GP2Y1010AU0F  
   

11.1 

PPD42 
    

-0.4 

Intercept 278.3 481.8 30.9 23.2 -6.9 

 

8.4 Appendix 4: Precision and accuracy analysis 

 

An overview of pollutant model performance with respect to accuracy and precision is provided in 

Figure 83, Figure 84, Figure 85 and Figure 86. 

 



200 

 

 

Figure 83. Evaluation of accuracy and precision of NOx model with change in NOx concentration. A) 

Accuracy is expressed as the percent difference from reference instruments as a function of pollutant 

concentration. Error bars represent variation between devices (SD between devices). B) Precision 

expressed as the relative standard deviation between replicate devices (n=4) as a function of pollutant 

concentration. Error bars represent variation between devices (SD between %RSD of devices). Original 

data was collected between August 15, 2013 and May 10, 2014, sampled at 30-minute resolution, 6561 

observations, 70% of data used. Data source: 2013-2014, AirSENCE Rev1. 

 

 

Figure 84. Evaluation of accuracy and precision of CO model with change in CO concentration. A) 

Accuracy is expressed as the percent difference from reference instruments as a function of pollutant 

concentration. Error bars represent variation between devices (SD between devices). B) Precision 

expressed as the relative standard deviation between replicate devices (n=4) as a function of pollutant 

concentration. Error bars represent variation between devices (SD between %RSD of devices). Original 

data was collected between August 15, 2013 and May 10, 2014, sampled at 30-minute resolution, 6561 

observations, 70% of data used. Data source: 2013-2014, AirSENCE Rev1. 
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Figure 85. Evaluation of accuracy and precision of CO2 model with change in CO2 concentration. A) 

Accuracy is expressed as the percent difference from reference instruments as a function of pollutant 

concentration. Error bars represent variation between devices (SD between devices). B) Precision 

expressed as the relative standard deviation between replicate devices (n=4) as a function of pollutant 

concentration. Error bars represent variation between devices (SD between %RSD of devices). Original 

data was collected between August 15, 2013 and May 10, 2014, sampled at 30-minute resolution, 6561 

observations, 70% of data used. Data source: 2013-2014, AirSENCE Rev1. 

 

 

Figure 86. Evaluation of accuracy and precision of PM2.5 model with change in PM2.5 concentration. A) 

Accuracy is expressed as the percent difference from reference instruments as a function of pollutant 

concentration. Error bars represent variation between devices (SD between devices). B) Precision 

expressed as the relative standard deviation between replicate devices (n=4) as a function of pollutant 

concentration. Error bars represent variation between devices (SD between %RSD of devices). Original 
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data was collected between August 15, 2013 and May 10, 2014, sampled at 30-minute resolution, 6561 

observations, 70% of data used. Data source: 2013-2014, AirSENCE Rev1. 

 

8.5 Appendix 5: Wind impact analysis 

 

It was found that at SOCAAR site, north-west wind was associated with higher traffic-related pollutant 

levels, while lower pollutant levels are generally associated with wind from the south (Figure 87). The air 

dynamics in the College street canyon is likely responsible for the increased level of air pollution 

associated with wind from north-west. Despite the fact that College street is directly south of the 

SOCAAR sampling site, wind from the south is deflected down the side of the building reaching the 

sampling port before interacting with the local traffic emissions. As a result, the influence of local traffic 

pollution is generally lower when the wind is blowing from the south. The consistent nature of this 

finding suggests that wind direction analysis is important for understand the impact of local sources on 

sensor response. 

 

 

Figure 87. Assessment of the impact of wind direction on NOx concentration measured by AirSENCE 

devices and reference instruments. The graph is split into panels to show the dominant wind direction 

and speed for different ranges of reference NOx observations (Nox_Out): very low, low, medium and 

high. The NOx_lm colour sale indicates the NOx concentration measurements by the sensor device. 

Wind speeds are split into the intervals shown by the scale in each panel. The grey circles show the % 

frequency occurrence based on 1 min data. The plots show the proportion (here represented as a 

percentage) of time that the wind is from a certain angle and wind speed range. Mean values in each 

panel indicate the mean sensor NOx output for each panel (each bin of reference NOx observations). 

Original data was collected between September 20, 2015 and January 15, 2016, sampled at 1-minute 
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resolution, 139742 observations, 90% of data used. Data source: Multi-site validation study, Summer 

2015, AirSENCE Rev2. 

 

8.6 Appendix 6: CO/NOx ratio analysis 

 

In order to assess the similarity in source composition of SOCAAR site and other SCULPT sites, CO/NOx 

ratios were then calculated for a set of representative peaks, which were coincident for the two 

pollutants. Background-subtracted data was used for calculating the ratios. Peaks were identified by 

calculating a smoothed first derivative and identifying when it crosses zero. In order to ensure that the 

selected peaks correspond to actual vehicle plumes, amplitude and slope thresholds were also applied 

to filter out the peaks that were too small or too wide. The peaks which were coincident for CO and NOx 

were then selected and CO/NOx ratios were found for each peak. CO/NOx ratios were calculated for 

each site and ratio distributions were compared for different sites to test whether the contributions of 

NOx and CO differ between sites and whether this difference is significant. 

 

Before the CO/NOx ratio was calculated for all sites, the average CO/NOx ratios were compared for 

AirSENCE devices and reference instruments at the SOCAAR in order to establish the accuracy of sensor 

estimates. AirSENCE devices were found to underestimate the CO/NOx ratios at by 30% on weekdays 

and 50% on weekends. The underestimation of the ratio was mostly caused by underestimation of CO 

concentration and was consistent over time. Therefore, the comparison of distributions of the ratios 

could still be useful for relative site comparison with respect to traffic pollution.  

 

The differences in ratio distributions at central site and all other sites were found to be statistically 

significant (Kolmogorov-Smirnov p value < 0.05) but were especially pronounced for sites 12 and 18 

(Figure 88). Based on this analysis, sites 12 and 18 were found to have highest CO/NOx ratios.  This 

suggests that these sites might be more influenced by gasoline emissions compared to diesel emissions. 

Site 10 was excluded from the analysis due to unreliable performance of CO calibration model.  
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Figure 88. The comparison of CO/NOx ratios (medians and distributions) for different sites (1 min 

average data). Original data was collected between August 8, 2013 and August 25, 2013, sampled at 30-

minute resolution, 818 observations, 90% of data used. Data source: SCULPT Campaign, Summer 2013, 

AirSENCE Rev1.
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