

Abstract— System-on-Chip (SoC) design is an integration of

multi million transistors in a single chip for alleviating time to
market and reduce the cost of the design. It uses the concept of
design reuse to increase the productivity with reduction in time.
In this paper we present a platform for a low cost SoC design
using Open Core SoC design methodology. It offers flexible
way of using reusable cores with low cost. In this proposed
design a set of cores from Open Core is collected and integrated
using Open Core WISHBONE interfacing for an audio
processing application. The first primary result shows that the
SoC can be implemented using field programmable gate array
(FPGA).

Index Terms— Open Core SoC Design, WISHBONE bus

interface, Point-to-Point interconnection.

I. INTRODUCTION
 The rapid development in the field of mobile
communication, digital signal processing motivated the
design engineer to integrate complex systems of multimillion
transistors into a single chip. The integration of the transistor
in a single chip greatly increases the performance of the
system while reduction in system size. There is a
considerable increase in the application front in recent time.
Moore’s law states that integration density gets doubled
every two years so the complexity of the integrated systems
also increases by keeping the used chip area constant. In
order to keep pace with the levels of integration available,
design engineers have developed new methodologies and
techniques to manage the increased complexity in these large
chips [1]. System-on-Chip (SoC) design is proposed as an
extended methodology to this problem where IP cores of
embedded processors, memory blocks, interface blocks, and
analog blocks are combined on a single chip targeting a
specific application.

The increased density of transistor increases the
complexity of the system. The design requires a standard
interface and reduction in power requirement of the circuit.
The design again needs an expertise in both hardware and
software levels for proper hardware and software co-design.
Another important aspect of SoC integration is the
development of a proper test methodology for post

Manuscript received November 1, 2009. This work was supported by the
Ministry of Communication and Information Technology, Government of
India.

Ayas Kanta Swain is a Research Scholar at ECE Department, at National

Institute of Technology, Rourkela, INDIA. (Phone: +91-9437341298;
e-mail: swain.ayas@ gmail.com).

Kamala Kanta Mahapatra is Professor at ECE Department, at National

Institute of Technology, Rourkela, INDIA. (Phone: 0661-2462454; e-mail:
kmaha2@ gmail.com).

manufacturing test. All these integration issues makes the
design time consuming and also expensive.

To deal with this inherent integration problems and
reduction in design cycle time, platform based SoC design
was proposed where new designs could be quickly created
from the original platform over many design derivatives.

More specifically a platform is an abstraction level that
covers a number of refinements to a lower level resulting in
improvement of the design productivity [1].

In other side, a new concept that is gaining interest is the
Open Core Soc design methodology which is based on
publishing all necessary information about the hardware [2].
Open Core [3] group has provided many pre-synthesized and
pre-verified hardware core for the designer under GPL/LGPL
license. These cores are well documented with design
specifications, RTL codes, and simulation test benches. Most
of the designs are WISHBONE bus compatible for
interfacing with other cores.

This paper is the result of the first step of the author’s
research activities towards SoC design area. The main
objective of this paper is to explore the SoC design flow. A
set of reusable IP cores supplied in “Aquarius” [4] project in
the Open Cores has been used for exploring SoC design flows
targeting a SoC architecture design for audio processing. The
open cores bus protocol WISHBONE [5] has been used as the
key communication interface between chosen IP cores.
Finally, Xilinx FPGA is chosen for the implementation of the
SoC architecture.

The rest of this paper is compiled as follows. A brief
background of Open Core SoC design using WISHBONE
bus interface is discussed in section II. Design methodology
including hardware and software design flow is presented in
section III. Soc Architecture for audio processing, synthesis
and FPGA implementation results are presented in section IV
and V respectively. Application example is demonstrated in
section VI. Finally a conclusion is drawn in section VII.

II. BACKGROUND
This section presents a brief background of Open Core

SoC design and its WISHBONE bus interfacing. In order to
bridge the technological, educational, and cultural gaps
between developing countries new concept Open-Source
hardware was proposed. It allows interaction of high-tech
talents and qualifications in developing countries that are
hidden due to market constraints. The application of Open
-Source to hardware brings new benefits to the hardware
development process. Open-Source hardware would reduce
development time and design cost.

Open source IP cores could be reused, in black box or
white box modes. The white box model allows designers to
customize a particular core to their own requirements [5].

Low Cost System on Chip Design for Audio
Processing

1Ayas Kanta Swain, 2Kamala Kanta Mahapatra

Open source hardware can be well implemented in
CPLDS, FPGAs, and FPAAs. There are many organizations
working to produce open hardware such as Open Core and
Open Collector [6].

Open Core has published synthesizable IP cores for design
reuse under GPL like licensing. The WISHBONE system on
chip interconnection is proposed as the communication
interface between these IP cores to foster design Reuse by
alleviating system-on-chip integration problems. This
improves the portability and reliability of the system, and
results in faster time-to-market for the end user [7].

The WISHBONE architecture used to connect circuit
functions together in a way that is simple, flexible and
portable. The circuit functions are generally provided as IP
Cores (Intellectual Property Cores), which are the functional
building blocks in the system. Generally, the IP cores are
developed independently from each other and are tied
together and tested by a third party system integrator.
WISHBONE aides the system integrator by standardizing the
IP Core interfaces. This makes it much easier to connect the
cores, and therefore much easier to create a custom
System-on-Chip [7].

WISHBONE uses MASTER/SLAVE architecture for
communicating between functional modules. Master can
initiate data transaction to SLAVE interface through an
interconnection. Figure.1 shows the types of interconnections
supported are point-to-point, dataflow, shared bus and
crossbar switch interconnection. The point-to-point
interconnection is the simplest one that allows a single
MASTER interface to connect to a SLAVE interface. The
dataflow interconnection is needed for sequential data
processing. In the shared bus interconnection two or more
MASTERs can be connected with one or more SLAVEs and
MASTER initiates a bus cycle to a target SLAVE. The target
SLAVE then participates in one or more bus cycles with the
MASTER. An arbiter is used to allow the MASTER to gain
access to the shared bus. In the crossbar switch
interconnection two or more WISHBONE MASTERs can
access two or more SLAVEs at the same time.

(a) Point-to-Point Interconnection

(c) Shared Bus Interconnection

More than one MASTER can use the interconnection as
long as two MASTERs don’t access the same SLAVE at the
same time. WISHBONE supports all the popular data transfer
bus protocols such as Single Read/Write, Block Read/Write
and Read-Modify-Write (RMW). BIG ENDIAN and
LITTLE ENDIAN data ordering are also supported by
WISHBONE.

All designer using WISHBONE bus interface are allowed
to upload their design in Open Core site and depending upon
the design specification the designer can select the IP cores
from the site and glue them to the WISHBONE bus
architecture to design the final SOC. Other bus protocols
available in market are AMBA [8], and Core Connect [9].
WISHBONE offers almost free royalty, hence reducing the
overall cost of the system design.

III. DESIGN METHODOLOGY
This section presents a description of design methodology

to implement SoC using WISHBONE bus interface. The
complete SoC design flow shown in Figure.2 is divided in
two main categories. One of them is hardware design flow
and another one is software design flow. These flows are
described individually in the next section.

The hardware design flow is started with a collection of a
set of IP cores and integrating them for a chosen application,
then arriving at the simulation step for verification of the
entire SoC design.

Next synthesis and implementation is being done for
ensuring the proper hardware mapping & routing of SoC in
FPGA.

A software application required to run in the SoC hardware
is being done by the software design flow. This can be run on
parallel with the hardware platform.
Finally, the hardware model and software applications both
implemented in the real hardware. A complete verification
and monitor checking is being done for ensuring proper
functionality of the system.

(b) Data flow Interconnection

(d) Crossbar Switch Interconnection

WISHBONE

MASTER

WISHBONE

SLAVE

WISHBONE
MASTER

 A

WISHBONE
MASTER

 B

WISHBONE
SLAVE

 A

WISHBONE
SLAVE

B

WISHBONE
SLAVE

C

W
IS

H
B

O
N

E
SL

A
V

E
 W

IS
H

B
O

N
E

M
A

ST
ER

W
IS

H
B

O
N

E
SL

A
V

E
 W

IS
H

B
O

N
E

M
A

ST
ER

W
IS

H
B

O
N

E
SL

A
V

E
 W

IS
H

B
O

N
E

M
A

ST
ER

WISHBONE
MASTER

A

WISHBONE
SLAVE

A

WISHBONE
SLAVE

B

WISHBONE
MASTER

B

WISHBONE
SLAVE

C

Figure.1 Types of WISHBONE Interconnection

A. Hardware design flow
The SoC research activities at author’s group began with a

collection of Open Core Project Aquarius aiming initially for
an implementation of simple SoC design consisting of a 32
bit RISC processor (SuperH-2 [10] compatible) and a set of
peripherals for data transmission with PC. The first step is to
configure and adoption of the processor model and the
selection of any additional peripherals needed for the design.
A set of IP cores of 32 bit RISC CPU, RAM, parallel input
output (PIO), memory and UART, were collected from the
project and are kept back for the future applications.

Figure.2 Design Methodology

An AC97 controller core is also selected for audio

processing application. All these cores provided with the
synthesis and verification results; hence a proper grasp on
this code has done initially to ensure a complete control on
the design.

After the selection of IP cores different steps of the
hardware design can be achieved in parallel, such as external
hardware interfacing, simulation and synthesis of the design.
A set of test bench have been developed in order to simulate
the hardware model. Aquarius developer has given a test
bench with the project. Icarus Verilog [11] tool is used to run
this test bench to check the results obtained are accurate to
our application.

A gate level net list is generated from a set of given RTL
code for modeling the SoC architecture into hardware. This
can be achieved by the synthesis step. Xilinx-Synthesis-Tool
[12] is used to compile the RTL behavior of SoC to generate a
gate level net list for the FPGA.

Finally, implementation step is done where the gate level
net list generated in the previous step is used by Xilinx place
and route tools to do mapping, placing & routing for target
FPGA. A bit-stream file is generated to program the FPGA
with the hardware model obtained in the complete flow. The
additional hardware needed for the application is developed
and interface with the FPGA.

B. Software design flow
Software design flow usually runs in parallel to the hardware
design flow. This section explains the design flow for
software applications and the tools provided for designer to
choose for the work.

The simulator of Verilog-HDL codes and the

compiler/assembler of the application code development run
on the UNIX environment. Cygwin [13] is selected as the
preferred environment for this purpose. To simulate
verification program and to develop the application program,
the SuperH-2 assembler and compiler are necessary. GNU
tool chain is preferred which can be used by the designer for
software development. The other steps involve compilation,
debugging and implementation of the software on the
hardware.

The project in Open Core provided with simple and useful
resources for logic verification and application code
development. Application codes are developed in C and
compiled with GCC compiler. Debugging the application is
an important step in the software development flow, to
validate the results obtained with the program in the SoC.
This is done by GNU GDB debugger. Finally, the code is
downloaded to SoC model using monitor program dumped in
the FPGA.

IV. SOC ARCHITECTURE FOR AUDIO PROCESSING
APPLICATION

Figure.3 shows the proposed architecture for speech
processing application. This architecture utilizes processor
and peripherals from the Aquarius [4] project designed by
Thorn Aitch published in Open Core [3] under GPL license.
This section describes about the IP cores and their
specifications used for building this SoC architecture. The
architecture consists of a 32 bit Super-H compatible CPU
MASTER, a memory unit, a universal asynchronous receiver
transmitter, a system controller, an audio codec for voice
coding and a parallel input output. The cores are connected to
each other through WISHBONE interface with a point to
point interconnection scheme.

The CPU is a RISC processor based on superH-2 Instruction
set Architecture..This synthesizable core written in Verilog
and can be implemented in FPGA. This is published under
GPL license in opencore.org. The SuperH-2 is a 5-stage
pipelined architecture with 16 32bit general registers. It can
handle interrupt requests like (NMI) non-maskable interrupt
and (IRQ) interrupt request. In a lower module it comprises
memory access controller, a data path unit, a multiply unit
and a decoder unit.

Design
Directory

IP IP IP

SoC
Project

Hardware Software

Simulation Synthesis
External

Hardware
Interface

Implementation
(Xilinx Place & Route)

Programming FPGA
(Xilinx IMPACT)

Xilinx XST Icarus Verilog Application
Code

Compilation

Debugging

Download to
FPGA using

(monitor)

GNU gcc

GNU gdb

Figure.3 Soc Architecture for Audio Processing Application

The memory access controller sends fetched instruction bit
field to the decoder unit, in turn decoder unit decode the
instruction bit fields and throws many control signals for
execution and data read/write access towards data path unit,
multiplication unit and memory access controller. The data
path unit has sixteen general registers, Status Registers,
Global Base Registers, Vector Base Register, Procedure
Register, and Program Counter. The CPU also has 32 bit
architecture for enhanced data processing ability as multiply
and accumulation like DSP functionality.

The System Controller (SYS) is used to generate and
emulate exceptions of hardware event like NMI, IRQ and
CPU address error and manual reset. It has 12 bit Interval
Timer to generate IRQ. It also controls the priority level
among the requests of hardware exception. The SYS has 2
32bit length registers which reset to 0x00000000 when power
on reset.

The Parallel I/O (PIO) has two 32-bit registers to control
Port Pins. There are 4 byte-size registers for PORT Output
and 4 byte-size registers for PORT Input. In order to access
PORT input the registers have to read and to access PORT
Outputs the registers have to be written. Each registers can be
accessed by byte, word or long operand size.

The on chip memory is a simple memory module used as
ROM and RAM. The total size is 16 kb. Xilinx BRAM is
used as a memory module during FPGA implementation.

The A97 Controller supports AC97 audio codec that converts
analog voice from microphone to digital data for processing.
The features includes variable and fixed sample rate support
up to 48 KHz , 16, 18 and 20 bit Sample Size. This is a fully
WISHBONE compatible IP core available in Open Core.

V. SYNTHESIS AND FPGA IMPLEMENTATION OF SOC
After the completion of both the hardware flow and the

software flow, we have obtained a hardware model. The next
step is to implement the SoC model on the target FPGA and
to run the application software on the SoC to verify the result.

One of the most important tasks is to integrate all the cores
provided. Hence there is a need of a top module HDL code
which comprises of a structural modeling of the IP cores used

for the implementation. A top module HDL code is provided
where WISHBONE is the main communicating interface
between the IP cores and all the IP cores are interconnected
with the point to point interconnection. The 32 bit RISC
processor is the master for all the components. All other
component cores are configured as a slave to this master
processor. At this time only CPU, UART, on chip memory,
System controller and PIO are integrated. Every slave
component is defined by a specific address map and an
address decoder has used for decoding which slave will be
accessed by the master. We synthesize the architecture using
Xilinx 9.1i XST tool. The synthesis result is shown in Table.
I.

TABLE. I

SYNTHESIS RESULT

Final implementation of SoC architecture has done in a

Virtex-II Pro (xc2vp30) FPGA evaluation board. ISE place
and route tool has been used for mapping and implementing
the SoC in the FPGA. At the end of the hardware design flow
we obtained a bit stream file which is used by XILINX [12]
Impact programming tool to program the FPGA. The running
of the application code of the SoC architecture is described in
the next section. Table-1 shows the synthesis result which
shows the SoC occupies 23% of the number of slices,
available in the FPGA. The number of input / output used is
6%.

VI. SIMULATION RESULTS
A verification step plays an important role in SoC design

flow. The peripheral cores used are pre-verified cores that
function accurately. Hence, a test bench was written in
Verilog that verifies the CPU’s operation. The instructions of
the CPU are simulated considering bus transactions, signal
levels and register contents, etc. This is done by using an
open source simulator Icarus Verilog [11]. Icarus Verilog
supports only text mode of output viewer. Hence to view the
output wave form GTKWave [14] is used. Upon simulation
the Icarus Verilog generates a Value Change Dump (VCD)
file. GTKWave open this VCD file to show the wave form of
the simulation. GTKWAVE is supported by all the platforms
including Linux and Windows.

Design Information
Target Device: xc2vp30-7fg896

Device Utilization Summary

Logic Utilization used available utilization
Number of Slices 2,847 13,696 23%

Number of Slice Flip
Flops 1,378 27,392 5%

Number of 4 input LUTs 5,131 27392 18%

Number of bonded IOBs 37 556
6%

Number of GCLKs 2 16
12%

Number of Block RAMs 32 136 24%

Number of MULT18X18s 2 136 1%

Number of DCMs 1 8

12%

Figure.4 shows the simulation result, which shows the
WISHBONE signals and internal signals of CPU for
assembly language instructions. The bus transaction and
internal signal behavior for a multiplication instruction is
presented in the simulation waveform.

It was observed from the waveforms that, the system
works on positive edge of clock pulse (CLK) when reset
(RST) is active low. The cycle (CYC) indicates the single and
block Read/Write cycles. CYC high indicates a block
Read/Write cycle is initiated. During CYC is high, CPU
makes strobe (STB) high to inform Slave that a valid bus
transaction is initiated. Write enable (WE) high indicates a
write operation else a read operation is initiated. As a
response Slave responds the CPU Master by asserting the
ACK signal as shown in the Figure.4. The select signal SEL
is continuously high indicating “F” in the SEL bus of the
waveform. The address signal (ADR) show the 32-bit address
bus of the system, and DATI show the 32-bit data bus of the
system.

IF_ISSUE =”1” indicates instruction fetch started and
memory access controller sends the instruction code “0517”
to instruction register IR [15:0] of the decoder unit. For the
MUL instruction R1 and R5 are multiplied. The R1 value
from YBUS and R5 value from XBUS are transferred to
multiplier latch M1 and M2. Hence, M1= “89ABCDF3” and
M2=”01234567”. In the next clock pulse when ACK is high
M1 and M2 multiplied and the output register MACL
contains the multiplication value of “CDDB5BC5”.

VII. APPLICATION
In this final section we use all the steps in the proposed

methodology to implement SoC architecture in the FPGA. A
set of application code is provided with the project which was
developed by GNU C compiler.

During FPGA implementation, ROM is configured by
BRAM to reduce the consumption of logic cells. A “genram”
utility is given in the Aquarius project that converts the object
file to Block RAM’s INIT statements. FPGA operating clock
frequency is set to 20 MHz. A set of LCD and key board is
interfaced with the FPGA. Finally UCF file is written with
the BRAM INIT statements.

After the implementation of SoC in the FPGA, a monitor
program is run on the SoC platform which has very basic
functionality as memory editor, program loader from PC,
jumping to program, setting break point and reading
registers. To test the peripherals application code such as
LCD test, and interrupt clock are compiled in C and verified
in the hardware architecture.

VIII. CONCLUSION
We have successfully implemented a SoC Platform by
adopting the Open Cores design methodology. The first
primary results show that the part of the architecture can be
mapped into an FPGA . The corresponding simulation result
demonstrates the accurate functionality of WISHBONE bus
signal and CPU internal signals for a multiplication
instruction. The future work is to integrate the AC97
controller with the processor, adopt a filter algorithm and to
check the result with audio processing application.

REFERENCES
[1] Resve Saleh,Steve Wilton ,System-on-chip: Reuse and integration,

Proceedings of the IEEE| vol.94 ,No.6, June 2006.
[2] S.Titri, N.Izebdjen, L.Sahli, D.Lazib, F.Louiz, Open Cores based

System on Chip Platform for Telecommunication Applications: VOIP ,
IEEE conference 2007

[3] OpenCores project site http://www.opencores.org
[4] Aquarius project site http://www.opencores.org/project,aquarius
[5] Mohamed A. Salem,Jamil Khatib, “An introduction to open-source

hardware development”, EEDesign.com

Figure.4 Simulation Results in GTK wave form viewer

[6] OpenCollector site http://collector.hscs.wmin.ac.uk
[7] WISHBONE Specification site

www.opencores.org/downloads/wbspec_b3.pdf
[8] www.arm.com
[9] http://www-03.ibm.com/technology/index.html
[10] http://sg.renesas.com/
[11] Icarus Verilog Manual, http://www.icarus.com/eda/verilog/
[12] Xilinx user manual www.xilinx.com
[13] www.cygwin.com
[14] GTK Wave User Manual, http://gtkwave.sourceforge.net./

