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AbstractÐIn compile-time task scheduling for distributed-memory systems, list scheduling is generally accepted as an attractive

approach since it pairs low cost with good results. List scheduling algorithms schedule tasks in order of their priority. This priority can

be computed either 1) statically, before the scheduling, or 2) dynamically, during the scheduling. In this paper, we show that list

scheduling with statically computed priorities can be performed at a significantly lower cost than existing approaches, without

sacrificing performance. Our approach is general, i.e., it can be applied to any list scheduling algorithm with static priorities. The low-

complexity is achieved by using low-complexity methods for the most time consuming parts in list scheduling algorithms, i.e., processor

selection and task selection, preserving the criteria used in the original algorithms. We exemplify our method by applying it to the

MCP algorithm. Using an extension of this method, we can also reduce the time complexity of a particular class of list scheduling with

dynamic priorities (including algorithms such as DLS, ETF, or ERT). Our results confirm that the modified versions of the list scheduling

algorithms obtain a performance comparable to their original versions, yet at a significantly lower cost. We also show that the modified

versions of the list scheduling algorithms consistently outperform multistep algorithms, such as DSC-LLB, which also have higher

complexity and clearly outperform algorithms in the same class of complexity, such as CPM.

Index TermsÐCompile-time task scheduling, list scheduling, dataflow graphs, distributed-memory multiprocessors.

æ

1 INTRODUCTION

A key issue in obtaining performance from a parallel

program is to efficiently map it to the target system.
The problem is generally addressed in terms of task

scheduling [4], [6], [33], [16], [27], where the tasks are the

schedulable units of a program. As scheduling parallel

applications have been proven to be NP-complete [7]

heuristics are used. In order to be of practical use for large

applications, scheduling heuristics must have a low-com-

plexity. For shared-memory systems, it has been proven

that even a low-cost scheduling heuristic is guaranteed to
produce a performance that ensures linear speedup [10]. In

the distributed-memory case, however, communication

must be taken into account, which significantly complicates

the problem. In this case, the scheduling problem remains a

challenge, especially for algorithms where low cost is of

principal interest.
Distributed-memory scheduling heuristics exist for both

bounded and unbounded number of processors. Although

attractive from a cost perspective, scheduling for an

unbounded number of processors (e.g., DSC [33], EZ [26],

LC [13], or TCS [19]) is not always applicable, because the

required number of processors is usually not available.

Hence, their application is typically found within the

multistep scheduling methods for a bounded number of

processors [25], [26], [32].

Apart frommultistep methods, scheduling for a bounded

number of processors can also be performed in a single step.

Single-stepapproachesusuallyproducebetter results, yet at a

higher cost. Scheduling for a bounded number of processors

can be performed either using duplication (e.g., DSH [14],

BTDH [3], or CPFD [2]), or without duplication (e.g., MCP

[30], ETF [11], DPS [21], DLS [29], ISH [14], TSF [5], orGD [12].

Duplicating tasks results in better scheduling performance

but significantly increases scheduling cost. Nonduplicating

task heuristics have a lower complexity and still obtain good

schedules. However, when compiling very large programs

for large systems, the complexity of current approaches is

often prohibitive.
An important class of scheduling algorithms for a

bounded number of processors is list scheduling (e.g.,

MCP [30], DPS [21], CPND [17], ETF [11], ERT [18], or

DLS [29]). It has been shown that list scheduling algorithms

perform well at a relatively low cost compared to other

higher-cost scheduling algorithms for bounded number of

processors (e.g., ISH [14], or GD [12]) [12], [16], [25]).
In list scheduling, two approaches can be distinguished.

The first approach is list scheduling with static priorities

(LSSP) (e.g., MCP [30], DPS [21], HLFET [1], CPND [17],

CPM [28], or WL [31]). In LSSP, the tasks are scheduled in

the order of their previously computed priorities on the

task's ªbestº processor. Thus, at each scheduling step, first

the task is selected and afterwards its destination processor.

Usually, if the performance is the main concern, the ªbestº

processor is considered the processor enabling the earliest

start time for the given task (e.g., MCP, DPS, or CPND).

However, if the speed is given the emphasis, the selected

processor is the processor becoming idle the earliest when

the task is scheduled (e.g., CPM, or WL).
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The second approach is list scheduling with dynamic
priorities (LSDP) (e.g., ETF [11], ERT [18], DLS [29], or
DCP [15]). In this case, at each scheduling iteration, a ready
task and its destination processor are selected at the same
time. The selection is based on the priorities computed for
pairs of a ready-task and a processor (e.g., the combination
that produces the earliest start or finish time as in ETF and
ERT, respectively). Because it has a more complex task and
processor selection scheme, LSDP is able to produce better
schedules than LSSP, however, at a significantly higher cost.
In Table 1, we summarize the characteristics of some of the
well-known task scheduling algorithms.

In this paper, we prove that any LSSP algorithm can be
performed at a significantly lower cost compared to
existing approaches. Existing LSSP algorithms, such as
MCP or DPS, already have a low time complexity
(O�V log �V � � �E � V �P �, where V and E are the number
of tasks and dependences in the task graph, respectively,
and P is the number of target processors. Using our
approach, we significantly reduce LSSP complexity to
O�V log �P � � E�, yet maintaining comparable performance.
The cost is reduced by 1) considering only two processors
when selecting the destination processor for a given task
(proven to preserve the original processor selection criter-
ion) and 2) maintaining a partially-sorted task priority
queue in which only a fixed number of tasks is sorted.

We generalize our approach to be used for a particular
class of LSDP algorithms, which includes algorithms such as
DLS, ETF, and ERT. The LSDP time complexity is reduced

even more, from O�V �E � V �P � to O�V log �P � � E�, again,
with comparable performance.

This paper is organized as follows: Section 2 defines the
scheduling problem and introduces some definitions used
in the paper. Section 3 describes our approach to reduce
LSSP time complexity; in Section 4, the extention to LSDP is
described. Section 5 presents their performance in some
particular cases. Finally, Section 6 concludes the paper.

2 PRELIMINARIES

A parallel program can be modeled by a directed acyclic
graph (DAG) G � �V; E�, where V is a set of V vertices and E is
a set of E edges. A vertex in G represents a task, containing
instructions that execute sequentially without preemption.
Each task t 2 V is assumed to have a computation cost Tw�t�.
The edges correspond to task dependencies (communication
messages or precedence constraints) and have a communica-
tion cost Tc�t; t

0�. If two tasks t1 and t2 are scheduled on the
same processor, Tc�t1; t2� is assumed to be zero.

The communication to computation ratio (CCR) of a task
graph is a measure of the task graph granularity and can be
defined in various ways [8], [12], [16], [20]. We adopted the
definition used in [16] which defines CCR as the ratio
between the average communication and computation costs
in the task graph.

The task graph width (W ) is defined as the maximum
number of tasks that are not connected through a path.
Usually, W is considerably less than V ; however, in the
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worse case, W can still be equal to V . For this reason, many

papers do not even mention W , but use V instead.
Tasks with no input or no output edges are called entry

and exit tasks, respectively. The bottom level (Tb) of a task is
defined as the longest path from that task to any exit task,

where the path length is the sum of the computation and
communication costs of the tasks and dependences belong-

ing to the path. A task is said to be ready if all its parents
have been scheduled. Note that the number of ready tasks

never exceeds W .
As a distributed system, we assume a set P of P

homogeneous processors, connected in a clique topology in
which inter-processor communication is performed without

contention.
Once scheduled, a task t is associated with a processor

pt�t�, a start time Ts�t� and a finish time Tf�t�. If the task is not

scheduled, these three values are not defined.
A partial schedule is obtained when only a subset of the

tasks has been scheduled. The processor ready time of a
processor p 2 P on a partial schedule is defined as the finish

time of the last task scheduled on that processor:

Tr�p� � max
t2V;pt�t��p

Tf�t�:

Given a partial schedule, we define the processor becoming

idle the earliest (pr) to be the processor with the minimum Tr:

Tr�pr� � min
p2P

Tr�p�:

If there is more than one processors becoming idle at the

same earliest Tr, pr is randomly selected between them. The

last message arrival time of a ready task t is defined as

Tm�t� � max
�t0;t�2E

fTf�t
0� � Tc�t

0; t�g:

The enabling processor of a ready task t, denoted by pe�t�,

is the processor from which the last message arrives. Also,

in this case, if there are more processors for which the same

Tm�t� occurs, the enabling processor pe�t� is selected

randomly between them. The messages sent within the

same processor are assumed to take zero communication

time. Therefore, we define effective message arrival time as

Te�t; p� � max
�t0;t�2E;pt�t0�6�p

fTf�t
0� � Tc�t

0; t�g:

The start time of a ready task t when scheduled to a
processor p is defined as

Ts�t; p� � maxfTe�t; p�; Tr�p�g:

Note that for a scheduled task t, we have

Ts�t� � Ts�t; pt�t��:

A ready task t is said to be EP if Tm�t� � Tr�pe�t�� and
non-EP, otherwise. Thus, an EP task starts the earliest on its
enabling processor.

The scheduling problem objective is to schedule the tasks
in V on the processors in P such that the parallel completion
time (schedule length) is minimized. The parallel comple-
tion time is defined as

Tp � max
p2P

Tr�p�:

Table 2 summarizes the notation used in this paper.

3 GENERAL FRAMEWORK FOR LSSP

Analyzing LSSP algorithms, such as MCP, one can
distinguish three parts (these parts can also be identified
in Fig. 1):

. Task's priority computation, which takes at least
O�E � V � time, since the whole task graph must be
traversed.

. Task selection implies sorting the ready tasks accord-
ing to their priorities and selecting at each iteration
the task with the highest priority. Consequently, task
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selection takes O�V logW� time, since the ready tasks
have to be maintained sorted.

. Processor selection selects the ªbestº processor for the
previously selected task, usually as the processor on
which the task starts the earliest (e.g., MCP, DPS).
Processor selection takes O��E � V �P � time, when to
find the earliest start time of a task, Ts�t; p� must be
computed for each processor.

One can note that the highest-complexity parts of the

LSSP algorithms are the task and processor selection, which

have O�V logW� and O��E � V �P � time complexity, respec-

tively. In the rest of the section, we describe a general

framework to reduce the time complexity of both task and

processor selection to O�V logP � for any LSSP algorithm.

Moreover, in Section 4, we extend this framework to a

particular class of LSDP algorithms. In Section 5, we show

that despite its much lower complexity, this framework

produces results comparable to the higher-complexity

scheduling algorithms.

3.1 Processor Selection

In this section, we prove that selecting the processor on

which a task starts the earliest need not consider all

processors but only two: 1) the enabling processor pe�t�

and 2) the processor becoming idle the earliest pr.

The start time of a task t on a processor p is defined as the

maximum between 1) the effective message arrival time and

2) the time p becomes idle: Ts�t� � max fTe�t; p�; Tr�p�g.

Thus, Ts�t� is minimized on one of the two processors that

minimize the two components of the start time. Conse-

quently, there are only two possible candidates: 1) the

enabling processor pe�t�, because only mapping t on pe�t�

can zero the last message communication cost and 2) the

processor becoming idle the earliest pr. This is formalized in

the following.
First, we prove that for any ready task t and processor

p 6� pe�t�, Te�t; p� � Tm�t�.

Lemma 1. Let t 2 V be a ready task. Then, 8p 6� pe�t� :
Te�t; p� � Tm�t�

Proof. Let t0 2 V be the task that determines pe�t�: pt�t
0� �

pe�t� and �t0; t� 2 E such that Tf�t
0� � Tc�t

0; t� � Tm�t�.
From the definition of Te, it follows that

8p 6� pe�t� : Tm�t� � Te�t; p� � Tf�t
0� � Tc�t

0; t� � Tm�t�

It follows that 8p 6� pe�t� : Tm�t� � Te�t; p�. tu

Next, using the previous lemma, we prove that, indeed,
given a task t, one of the two processors: pe�t� and pr
determines the minimum Ts�t; p�.

Theorem 1. Let t be a ready task. Then, at least one of the
processors p 2 fpe�t�; prg satisfies

Ts�t; p� � min
px2P

Ts�t; px�:

Proof. From Lemma 1, it follows that

8px 6� pe�t� : Te�t; px� � Tm�t�:

As Te�t; pe�t�� � Tm�t�, it follows that

8p 2 P : Te�t; pe�t�� � Te�t; p�: �1�

By its definition, Ts�t; p� is minimized on either 1) the
processor that minimizes Te�t; p� or 2) the processor that
minimizes Tr�p�. Using (1) and pr's definition, Ts�t; p� is
minimized on either 1) pe�t� or 2) pr. tu

From Theorem 1, it follows that restricting the selection
to these two processors indeed does not affect the
performance of the algorithm. However, although essen-
tially similar, there is a minor difference in the processor
selection scheme between our processor selection and the
original processor selection. Throughout the scheduling
process it may happen that a ready tasks can start at the
same earliest time on different processors. Our scheme and
the original scheme have different criteria to break this tie
because our scheme considers only two candidate proces-
sors, while the original scheme considers all processors. As
a consequence, there are few cases in which the two
schemes may still select a different processor for a task to be
scheduled. See Fig. 2 for a pseudocode implementation of
our processor selection scheme.

Even though our processor selection still performs with
the same accuracy as the original processor selection, the
total processor-selection time complexity is significantly
reduced from O��E � V �P � to O�V log �P � � E� (We need
O�E � V � to traverse the task graph O�V logP � to maintain
the processors sorted at each scheduling step).

3.2 Task Selection

The O�V logW� complexity of the task selection step can be
reduced by sorting only a constant number of ready tasks.
Thus, the task priority queue is composed from 1) a sorted
list of a fixed size H and 2) a first-in first-out list (see Fig. 3).
We sort as many tasks as fit in the fixed-size sorted list,
while the others are stored in an unsorted FIFO list which
has an O�1� access time complexity. When a task becomes
ready it is added to the sorted list when there is room to
accommodate it, otherwise it is added to the FIFO list. For
this reason, as long as the sorted list is not full, there cannot
be tasks in the FIFO list. The tasks are always dequeued
from the sorted list. After a dequeue operation, if the FIFO
list is not empty, one task is moved to the sorted list. See
Fig. 4 for a pseudocode implementation of the above
operations on a priority queue of size H.

The time complexity of sorting tasks when using a
priority queue of size H decreases from O�V logW � to
O�V logH� as all the tasks are enqueued and dequeued in
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the sorted list only once, respectively. We still keep H as

part of the complexity, i.e., not drop it as a constant, because

for achieving a good performance, H needs to be adjusted

with P .
A possible drawback of sorting only a limited number of

tasks is that the task with the highest priority may not be

included in the sorted list, but be temporarily stored in the

FIFO list. The size of the sorted list must therefore be large

enough not to affect the performance of the algorithm too

much. At the same time, it should not be too large in view of

the time complexity. In our experiments, we find that a size

of P is required to maintain a performance comparable to

the original list scheduling algorithm (see Section 5.3),

which results in a task-selection complexity of O�V logP �.
By introducing the above techniques for task and

processor selection, the total complexity of the LSSP algo-

rithm is decreased to O�V log �P � � E�, which is clearly a

significant improvement over the typical time complexity

O�V log �W� � �E � V �P � of the current LSSP approaches.

3.3 Complexity Analysis

The complexity of the generic LSSP algorithm described

above is as follows: Computing task priorities (e.g., Tb) takes

O�E � V �. Each task is once added to and once removed

from the ready-task priority queue. For a fully-sorted

priority queue, task selection takes O�V logW�. For a

partially-sorted priority queue of size H, task selection

takes O�V logH�. As a partially-sorted priority queue of size

P yields good results (as shown in Section 5.3), task

selection takes O�V logP �. Selecting the enabling processor

for each task implies scanning all the tasks and edges in the

task graph, which takes O�E � V �. Finding the processor

becoming idle the earliest takes O�logP � for each task,

resulting in O�V logP � time for all tasks. As a result, the

total complexity of LSSP is O�V �log �W� � log�P �� � E� if

the fully-sorted priority queue is used and O�V �log �P �� �

E� if the partially-sorted priority queue is used.

3.4 Case Study

In this section, we illustrate our task and processor selection
techniques by applying them to a slightly simplified version
of MCP (Modified Critical Path) [30]. In MCP, the ready
task with the highest bottom level has the highest priority.
We break the ties randomly (in the original version of MCP,
the ties are broken by also considering bottom levels of the
task's descendents). At each iteration, the task with the
highest priority is scheduled on the processor that can
execute it the earliest.

We modify MCP to use our task and processor selection
techniques and we name the resulted algorithm Fast Critical
Path (FCP) [24]. In Table 3, we present the execution trace of
the FCP algorithm using a partially-sorted priority queue of
size 2 by scheduling the task graph in Fig. 5 on three
processors. The first two columns in the table list the sorted
and FIFO lists within the priority queue. The task's Tb is
included to illustrate their sorting order. The third column
in the table lists the task to be scheduled at the current step.
In the next two columns, the enabling processor and the
processor becoming idle the earliest are listed along with
the current task's start times on each of them. Finally, the
last column shows the scheduling at the current iteration,
including the task's start time and finish time.

At the beginning, there is only one ready task, namely, t0,
which is accommodated by the sorted list. There is no
enabling processor for t0 since it has no parents. Task t0 is
thus scheduled on processor p0 as one of the processors
becoming idle the earliest at time 0.

After scheduling t0, three tasks become ready, namely,
t1, t2, and t3. Tasks t1 and t2 are successively added to the
task priority queue and are accommodated in the sorted
part. Task t3, however, cannot be added to the sorted list
because the sorted list is already filled. Therefore, t3 is
stored in the FIFO list, despite the fact it has the highest
priority.

The next task to be scheduled is the first task from the
sorted list, namely, t1. It starts at time 2 on its enabling
processor p0 and at time 3 on the processor becoming idle
the earliest p1. Consequently, t1 is scheduled on p0 at time 2.
As one task has been dequeued from the sorted list, t3 can
be moved from the top of the FIFO list to the sorted list.
Also t4 and t5 that become ready are added to the FIFO list.

The next task t3 is scheduled on processor p1 which
becomes idle the earliest, as it provides the earliest start
time: 3. In the same manner, t2 is then scheduled on p0.
Next, task t5 achieves the same starting time 6 on both it's
enabling processor and the processor becoming idle the
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earliest. The tie is broken by selecting the processor
becoming idle the earliest p2. The same applies to t4 which
is scheduled next on p0 at 6. The last two tasks t6 and t7 are
similarly scheduled on p1 and p2 at times 7 and 11,
respectively.

4 EXTENSIONS FOR LSDP

In this section, we explore the possibility of extending the
results for LSSP algorithms described in Sections 3.1 and 3.2
to LSDP algorithms.

In LSDP algorithms, priorities are associated to pairs of
a task and a processor. At each iteration, the pair of task
and processor yielding the highest priority is selected. As
priorities change throughout the scheduling process, they
must be recomputed at each iteration. For example, ETF
schedules at each step the ready task that starts the
earliest on the processor where this time is obtained:
�ETF �t; p� � max fTe�t; p�; Tr�p�g [11], ERT schedules the
ready task finishing the earliest on the processor where
this time is obtained: �ERT �t; p� � max fTe�t; p�; Tr�p�g �
Tw�t� [18] and DLS defines its priority (called dynamic
level) as �DLS�t; p� � Tb�t� ÿmax fTe�t; p�; Tr�p�g, the task
and processor with the highest dynamic level being
scheduled [29]. Using a general notation, we have the
following dynamic priority:

��t; p� � ��t� �max fTe�t; p�; Tr�p�g;

where ��t� is a value that is independent of the scheduling
process which can therefore can be computed before the
scheduling is started (e.g., �ETF �t� � 0, �ERT �t� � Tw�t�, and
�DLS�t� � ÿTb�t�). The pair of task and processor with the
lowest value for � has the highest priority.

Using Lemma 1, the priority of task t on processor p is:

��t; p� �
��t� �max fTe�t; p�; Tr�p�g; p � pe�t�
��t� �max fTm�t�; Tr�p�g; p 6� pe�t�:

�

�2�

As for LSSP, we treat separately the two cases of tasks
starting on their enabling processors and tasks starting on a
nonenabling processor. In the EP case, selecting the task
with the highest priority on its enabling processor is
performed in two steps. First, on each processor, the tasks

enabled by that processor are sorted according to their
priority. Second, the processors are sorted by the highest
priority of the tasks enabled by them.

In the non-EP case, selecting the task with the highest
priority on a nonenabling processor is based on the
observation that a task's priority on a nonenabling
processor is minimized by the processor becoming idle
the earliest. To make the selection processor even, we do not
separate the enabling and nonenabling processors in this
case. The selection result is not affected because, if a task
and its enabling processor are selected, the task will have a
priority higher than any task starting on a nonenabling
processor. As a consequence, the EP-case selection will give
the task and processor with the highest priority.

Let

�0�t� � ��t� �max fTm�t�; Tr�pr�g

�
��t� � Tm�t�; Tm�� � Tr�pr�

��t� � Tr�pr�; Tm�� < Tr�pr�:

�

�3�

The task with the lowest �0�t� is one of the two tasks that
minimize the two cases of �0�t�: 1) the task with the
minimum ��t� � Tm�t� or 2) the task with the minimum
��t� � Tr�pr�.

Using the task and processor selection schemes
described above, we are able to find the task and
processor pair having the highest priority in only three
tries, one for the EP case two for the non-EP case. There
are P task priority queues maintained for the EP case two
for the non-EP case. However, each task is added to three
task priority queues, one for the EP case and two for the
non-EP case. Two other processor queues are maintained,
one for the EP case and one for the non-EP case. As a
consequence, the time complexity of the LSDP algorithms,
when using the approach described in this section,
becomes O�V �log �W� � log�P �� �E�. This is already a
significant improvement compared to the original
O�W�E � V �P � time complexity.

We can further reduce this time complexity using the
partially-sorted priority queue described in Section 3.2 for
the task priority queues, in a similar manner as for LSSP
algorithms. Also for LSDP, our experiments show that a size
of P is required tomaintain a performance comparable to the
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original list scheduling algorithm [22]. In this case, the time
complexity is further reduced to O�V �log �P � �E��. Details
about implementing these techniques to modify DLS and
ETF can be found in [22] and [23], respectively.

5 PERFORMANCE RESULTS

To evaluate our scheduling approach, we compare two
algorithms that use our framework with five other well-
known scheduling algorithms. The two algorithms using our
framework are the fast versions of MCP and DLS, which we
call FCP (Fast Critical Path) and FDLS (Fast DLS), respec-
tively. FCP is selected as a representative for the general
framework for LSSP algorithms, while FDLS as a representa-
tive for the extension applicable to the LSDP algorithms.

The five well-known scheduling algorithms included in
our comparison are MCP (Modified Critical Path) [30], DLS
(Dynamic Level Scheduling) [29], DSC-LLB (Dynamic
Sequence ClusteringÐList Load Balancing) [25], [33],
DSC1 (a version of DSC for a bounded number of
processors) [31], and CPM (Critical Path Method) [21]. We
use a slightly simplified version of MCP in which ties
between task priorities are broken randomly instead of
considering all descendants of those tasks. MCP and DLS
have been shown to obtain competitive results for list
scheduling with static and dynamic priorities, respectively
[16], [25]. They are also the original algorithms from which
FCP and FDLS have been derived, therefore, we can see
what are the differences induced by using our techniques.
DSC-LLB, at a relatively low cost, is one of the best
performing multistep scheduling algorithms [25]. DSC1 is a
version of DSC which performs the scheduling for a
bounded number of processors in one step. As in its
original description in [31] the processor selection imple-
mentation is not described, we use the processor selection
scheme described in Section 3.1 to implement DSC1. CPM
has an even lower cost, as its processor selection has the
same complexity as in our framework.

We consider task graphs representing various types of
parallel algorithms. The selected problems are LU decom-
position (ªLUº), a Laplace equation solver (ªLaplaceº) and a
stencil algorithm (ªStencilº) [9]. For each of these problems,
we adjusted the problem size to obtain task graphs of about
2,000 tasks. For each problem, we varied the task graph
granularities, by varying the communication to computa-
tion ratio (CCR). The values used for CCRwere 0.2 and 5.0.
For each problem and each CCR value, we generated five
graphs with random execution times and communication
delays (independent identical distributed uniform distribu-
tion with unit coefficient of variation), the results being the
average over the five graphs (in view of the low overall
variance, five samples are sufficient). For these problems,
we use up to 32 processors, which, given the problem sizes,
is the processor range where speedup is still obtained.

5.1 Running Times

Our main objective is to reduce task scheduling cost (i.e.,
running time), while maintaining performance. In Fig. 6, the
average running time of the algorithms is shown in CPU
seconds as measured on a Pentium Pro/233MHz PC with
64Mb RAM running Linux 2.0.32. DLS is the most costly

among the compared algorithms. Its cost increases from
86 ms for two processors up to 1 s for 32 processors. MCP
also has a runtime proportional with the number of
processors, but its cost is significantly lower. For P � 2, it
runs for 32 ms, while for P � 32, the running time is 206 ms.
DSC-LLB does not vary with P , as its most costly step,
clustering, is independent of number of processors. The
DSC-LLB running times vary around 98 ms. DSC1 has a
running cost comparable to DSC-LLB, because it is a
derivation of DSC and because we use the processor
selection scheme described in Section 3.1 which introduces
marginal extra cost compared to the processor selection in
the unbounded case. The slightly extra cost in DSC-LLB
compared to DSC1 is caused by the extra steps performed in
DSC-LLB for cluster merging and task reordering. The
DSC1 running times vary around 82 ms.

The other three algorithms, CPM, FCP, and FDLS have
considerably lower running times. They do not vary
significantly with the number of processors, varying around
27 ms, 27 ms, and 50 ms, respectively.

5.2 Scheduling Performance

In this section, we first show how the resulting FCP
schedules scale to the number of processors, in terms of
speedup. Then, we show that both FCP and FDLS achieve
performance comparable with the existing list scheduling
algorithms.

In Fig. 7, we illustrate the speedup achieved by FCP for
the considered problems. For LU and Laplace, there is a
large number of join operations. As a consequence, there is
not much parallelism available and the speedup is limited,
especially for high values of CCR. Stencil is more regular
and, therefore, more parallelism can be exploited. As a
consequence, the resulting speedup is almost linear for the
coarse-grain (i.e., CCR = 0.2).

To compare scheduling performance, we use the normal-
ized schedule lengths (NSL), defined as the ratio between the
schedule length of the algorithm under study and the
schedule length of a reference algorithm. In Fig. 8, we
compare the algorithms using our framework with MCP,
DLS, DSC-LLB, and DSC1 using average schedule lengths
normalized to the reference algorithm MCP. In Fig. 9, we
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Fig. 6. Cost comparison of the algorithms using our framework versus

existing algorithms.



compare against CPM using average schedule lengths
normalized to FCP.

FCP has both low cost and good performance. Compared
to the more expensive two algorithms, MCP and DLS, one
can note that FCP usually performs comparable. The only
case in which FCP performs with 10 percent worse is for
fine-grained Stencil, which is caused by the large number of
tasks at each Stencil iteration, all with different priorities,
for which a fully sorted ready task list is requested for best
performance. Compared with DSC-LLB, FCP consistently
produces better schedules (up to 44 percent), while at the

same time running five times faster. DSC1 performs
comparable to FCP (better up to 8 percent, or worse down
to 5 percent depending on the problem). Compared to the
low-cost CPM, FCP has a consistently better performance,
although the running times are comparable. Thus, FCP
outperforms CPM up to 140 percent.

FDLS achieves an even better performance, generally
outperforming all of MCP, DLS and DSC1 up to 22 percent,
16 percent, and 11 percent, respectively. FDLS also consis-
tently outperforms DSC-LLB and CPM up to 34 percent and
152 percent, respectively.

5.3 Priority Queue Size Sensitivity

As mentioned earlier, in our framework, only a fixed
number of tasks is maintained sorted at each scheduling
step. In Fig. 10, we study the influence of the partially-
sorted priority queue size H to the scheduling perfor-
mance of FCP. When computing NSL, we use as a
reference algorithm the FCP version using a P-length
priority queue. For the influence of the priority queue
size on FDLS, see [22].

For problems where there is more parallelism to be
exploited (e.g., Stencil), FCP yields good results, even for
very small sizes of the partially-sorted priority queue.
Moreover, in the fine-grain case, for a zero-length priority
queue, FCP performs even better than for a fully sorted
priority queue. The reason is that Stencil has a regular
task graph which yields a very good schedule simply by
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Fig. 7. FCP speedup.

Fig. 8. Performance comparison of the algorithms using our framework versus existing algorithms. Reference is MCP.



scheduling the tasks in order they become ready (i.e.,

FIFO order).
For problems where there is not so much parallelism,

such as LU, the performance degrades for small sizes of the

priority queue size. However, one can note that for coarse-

grain task graphs, a priority queue size greater than P does

not improve the schedule significantly. For fine-grain LU,

sorting more tasks still improves the schedule, however,

these cases occur when the speedup does not increase

significantly (i.e., S � 4:1 for P � 8, S � 4:7 for P � 16, etc.)

the schedule improvement do not exceed 15 percent.
An informal explanation of the fact that the schedule

improvements are bounded by a priority queue of size P in

the coarse-grain case is the following. If the number of

ready tasks is greater than P , the scheduling process tends

to become a load-balancing scheme. The reason is that after

mapping the first P ready tasks, the communication costs

for the remaining ready tasks tends to be overlapped with
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Fig. 9. Performance comparison of the algorithms using our framework versus existing algorithms. Reference is FCP.

Fig. 10. The influence of priority queue size to the FCP performance.



the execution of the previous P mapped tasks. The task

priorities, used to select the task with the least probable

delay caused by communication costs, therefore become

less important. As a result, a priority queue with a smaller

size can be used. For a small number of ready tasks at each

scheduling step, the task priorities become more important.

In this case, the tasks must be all maintained sorted to

obtain good performance. From the above experiments, it

can be concluded that a priority queue size of P is a good

choice for the FCP algorithm. A smaller size penalizes

problems with limited parallelism, while a greater size does

not yield further improvements.

6 CONCLUSION

In this paper, we show that list scheduling with statically

computed priorities can be performed at a significantly

lower cost than existing approaches, without sacrificing

performance. Our approach is general, i.e., it can be applied

to any list scheduling algorithm with static priorities.

In our framework, the list scheduling algorithms have a

low time complexity because low-complexity methods are

used for the most time consuming parts of them, i.e.,

processor selection and task selection, preserving the

criteria used in the original algorithms. Processor selection

is performed by selecting between only two processors:

either the task's enabling processor or the processor which

becomes idle the earliest. For task selection, instead of

sorting all the tasks, only a limited number of tasks are

sorted at any given time. By using these methods, the time

complexity is reduced to O�V log �P � � E�, which repre-

sents a significant cost improvement over the O�V logV �

�E � V �P � complexity of the original list scheduling

algorithms, while performance is maintained.
Using an extention of this method, we can also

significantly reduce the time complexity of a particular

class of list scheduling with dynamic priorities (including

algorithms such as DLS, ETF, or ERT) from O�W �E � V �P �

to O�V log �P � � E�.
We exemplify our method by applying it to MCP and

DLS. Our results confirm that the modified versions of the

list scheduling algorithms perform comparable to their

original versions, yet at a significantly lower cost. We also

show that the modified versions of the list scheduling

algorithms consistently outperform multistep algorithms,

such as DSC-LLB, which also have higher complexity

clearly outperform algorithms in the same class of complex-

ity, such as CPM.
Especially, in view of the large problem and processor

dimensions involved with real-world high-performance

computing, our results indicate that our approach offer a

superior cost-performance tradeoff compared to current list

scheduling algorithms. Our approach outperforms other

low-cost algorithms and even matches the better perform-

ing, higher-cost list scheduling algorithms. The significant

cost reduction that has been achieved makes, therefore, our

approach a viable option for both compile-time and runtime

scheduling of practical high-performance applications.
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