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Abstract: Nowadays, low-cost accelerometers are getting more attention from civil engineers to
make Structural Health Monitoring (SHM) applications affordable and applicable to a broader range
of structures. The present accelerometers based on Arduino or Raspberry Pi technologies in the
literature share some of the following drawbacks: (1) high Noise Density (ND), (2) low sampling
frequency, (3) not having the Internet’s timestamp with microsecond resolution, (4) not being used in
experimental eigenfrequency analysis of a flexible and a less-flexible bridge, and (5) synchronization
issues. To solve these problems, a new low-cost triaxial accelerometer based on Arduino technology is
presented in this work (Low-cost Adaptable Reliable Accelerometer—LARA). Laboratory test results
show that LARA has a ND of 51 µg/

√
Hz, and a frequency sampling speed of 333 Hz. In addition,

LARA has been applied to the eigenfrequency analysis of a short-span footbridge and its results are
compared with those of a high-precision commercial sensor.

Keywords: Arduino Due; Raspberry Pi; accelerometers; low-cost sensors; eigenfrequency analysis;
short-span footbridge

1. Introduction

Civil infrastructures and structures might be considered the leading basis of modern
society; consequently, their health state is of the highest importance [1]. However, data
provided by the American Society of Civil Engineers (ASCE) infrastructure indicates about
9.1% of bridges in the United States of America are structurally inefficient. Every day, over
188 million trips are taken across structurally deficient bridges. In addition, in average, a
bridge in the United States of America is 43 years old, which is close to its expected life
span [2].

Evaluating these structures along with their health-state assessment is needed to re-
duce reparation costs, maintenance, and, eventually, for certifying infrastructure/structure
safety [3–5]. Structural Health Monitoring (SHM) applications issue statistics on structures’
functioning states and their structural responses [6–8].

For measuring the structural responses (such as deflections, strains, rotation, tempera-
ture, humidity, and accelerations) over time, sensors are widely used in SHM systems [9,10].
The recorded information of the sensors is then used for structural performance estima-
tions [11–13]. In fact, natural phenomena can be categorized as static or quasi-static and
dynamic [14–16]. On the one hand, some environmental elements (such as temperature or
humidity) change very slowly, so they can be considered to perform either as quasi-static or
static [17,18]. On the contrary, some events (such as traffic-induced vibrations, ambient ac-
tivities, and waves from seismic activities) are considered dynamic because their changing
rate is significantly affected by the time [19–21].

Accelerometers are force-sensors that are broadly used for measuring vibrations [22].
According to [23], accelerometers are frequently set up on one of the following principles:
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(1) Piezoelectricity: This is one of the most popular types of accelerometers in the industry
for measuring [24], based on specific materials’ piezoelectric effect. For measuring
the dynamic changes in mechanical variables, the piezoelectric effect of particular
materials is used [25]. The main advantage of these devices is that they can operate
on a wide range of frequencies (up to 12 kHz) [26];

(2) Piezoresistivity: The second most popular vibration acquisition sensors are piezoresis-
tive (strain gauge) accelerometers. This kind of accelerometer measures the change
in electrical resistance of a particular piezoresistive element when vibrations are
induced [23];

(3) Differential capacitive measurement: These accelerometers identify vibrations by
measuring the capacitance changes of a seismic mass [23];

(4) Micro-Electro-Mechanical Systems (MEMS) are silicon-based microsensors built from
any principles mentioned above [23].

It is essential to mention that the use of accelerometers varies in different SHM appli-
cations [27,28]. According to the literature (see, e.g., [29]), most civil structures’ significant
natural frequencies vary between 0.2 and 100.0 Hz. The eigenfrequency range of short-span
bridges (up to 40 m of span length [30]) usually ranges between 3 and 30 Hz [31–33].
Medium- and long-span bridges have eigenfrequencies ranging between 0.1 and 8.0 Hz
(such as [34–36]). It should also be noted that most of the ambient vibrations in civil struc-
tures are characterized by low amplitudes [37,38]. In fact, the acceleration amplitude of
these structures can be as low as 0.04 g. This characteristic shows the necessity of using
accelerometers with low noise density and high sensitivity for SHM of bridges [39]. The
commercial MEMS accelerometers have a bandwidth of a few kHz. However, their design
for higher frequencies has a lower noise density [23,40]. Finally, it should be highlighted
that the sensitivity of an accelerometer has an indirect ratio with the squared value of the
resonant frequency. For that reason, the higher the accelerometer’s sampling frequency,
the lower its sensitivity [41]. For that, many researchers tried to develop low-cost MEMS
accelerometers with limited sampling frequency and vibration amplitude range for civil
SHM [42].

A literature review on various low-cost MEMS accelerometers is organized in the
following paragraphs. Even though many applications use low-cost accelerometers, only a
handful of them were used in civil engineering.

1. Grimmelsman et al. [43] studied a low-cost accelerometer (ADXL335). In their work,
this low-cost accelerometer’s performance and capability were compared with con-
ventional instrument-grade accelerometers (PCB 393A03 and 3741E122G);

2. For providing the structural modal analysis from several synchronized low-cost ac-
celerometers (LIS344ALH) distributed along with a structure, a system was proposed
by Girolami et al. [44];

3. The research of Ozdagli et al. [45] used the accelerometer MPU6050 for a real-time,
Low-cost, Efficient Wireless Intelligent Sensor (LEWIS). In the performed experiments,
LEWIS was placed on a breadboard for signal acquisition. Moreover, its measurements
were compared with a Linear Variable Differential Transformer (LDVT) sensor and a
commercial accelerometer (PCB 3711B1110G);

4. An updated version of LEWIS is proposed by Aguero et al. [46]. This work describes
LEWIS 2, which solved three main drawbacks of the first LEWIS. It is mentioned
in the introduction that LEWIS 2 has data storage, is battery-powered, and is more
accurate than LEWIS. The measurements were compared to those of a LDVT sensor;

5. Meng et al. [47] propose a low-cost acquisition system composed of a LSM9DS1
accelerometer and a Raspberry Pi 4. This system was evaluated with a commercial
accelerometer (PCB 356B18);

6. Recently a Cost Hyper Efficient Arduino Product (CHEAP) was introduced by Koma-
rizadehasl et al. [23]. Different laboratory tests were performed to validate CHEAP’s
performance, and the results of CHEAP were compared with those of two commercial
seismic accelerometers (PCB 393A03 and PCB 356B18).
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Table 1 summarizes the essential characteristics of the reviewed accelerometers. It
includes the following information collected in columns (1) sensor number, (2) the name of
the accelerometer, (3) acceleration range: the maximum acceleration amplitude capacity of
the sensors, (4) sampling frequency: the sampling speed rate of the accelerometer—also, half
of this amount corresponds to the accelerometer’s bandwidth, (5) spectral Noise Density
(ND), (6) NTP: the capability of the sensor’s clock for getting constantly synchronized with
the exact time of the Internet, and (7) Internet access: being connected to the Internet for
data uploading or wireless access.

Table 1. Low-cost solutions in the literature to measure accelerations.

No. Accelerometer Acceleration
Range (g)

Sampling
Frequency

(Hz)

Spectral
Noise

(µg/
√

Hz)
NTP Internet

Access

1 [43,48] ADXL335 ±3 g 100 300 No No
2 [44,49] LIS344ALH ±2 g 100 50 No Yes
3 [45,50] MPU6050 ±2 g 100 400 No No
4 [46,51] MPU9250 ±2 g 500 300 No No
5 [47,52] LSM9DS1 ±2 g 952 No data Yes Yes

6 [23] CHEAP ±2 g 85 No data No No

The analysis of Table 1 shows that almost all the systems have more or less the same
acceleration range and sampling frequency. LSM9DS1 (No. 5) is the only accelerometer
with a very high sampling frequency that needs further investigation. Furthermore, the
shown ND in Table 1 is reported from the datasheets provided by the sensor producer
company. This has been calculated in a standard temperature (25 degrees Celsius for
MPU6050) and perfect laboratory conditions. The presented low-cost solutions of Table 1
have not tested the ND of their representatives after they have wired them up. The device
of Meng et al. [47] is the only intelligent system with the ability to synchronize its internal
clock with the exact time of the Internet through the NTP procedure. The analysis of Table 1
further shows that only sensors numbered 2 and 5 can access the Internet for uploading
their results in a cloud server.

Further study of the information as mentioned earlier presented in the literature review
shows a lack of consistent work, including all the following points in single inception for
a low-cost accelerometer: (1) access to the time through Internet, for accurate sensor
synchronization, (2) wireless control, (3) scheduling for a synchronized data acquisition
experiment, and, finally, (4) measuring the ND and data resolution after the system was
wired and (5) performing experimental eigenfrequency analyses on actual infrastructures.

This paper aims to adapt CHEAP to solve all the detected problems and to develop a
new Low-cost Adaptable Reliable Accelerometer (LARA). LARA has the following main
improvements: (1) higher bandwidth: achieving a faster sampling frequency (333 Hz)
by efficiently rewriting all the library codes, (2) independency: this accelerometer is not
dependent on any connected computer for data acquisition—LARA has an attached low-
cost microprocessor that allows the acquired data to be saved on an SD card or any portable
flash or hard drive, (3) triaxial data acquisition: having all the accelerometers of LARA in
x, y, and z direction aligned makes the final product suitable for triaxial data acquisition—
besides, if needed, it can work as a uniaxial, biaxial accelerometer, (4) low Noise Density,
(5) Internet timestamp and synchronization: the Network Time Protocol (NTP) of LARA
is activated. Firstly, NTP synchronizes the clock of each LARA with the accurate time of
the Internet constantly. Secondly, each acquired vibration receives an accurate timestamp.
This is the feature that makes post-processing of sensor synchronization possible. The
literature review reveals no other proper sensor synchronization solution that uses free
software. Instead of having Data Acquisition (DAQ) system, LARA uses python software
for scheduling a measurement. This way, different LARAs can start acquiring information
simultaneously in other parts of a structure, (6) experimental analysis: in this paper, a
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short-span was instrumented and the eigenvalue analyses of LALA are compared with
those of certified vibration sensing devices, and (7) wireless accessibility: the user can have
access to the saved data wirelessly through the Internet. Therefore, LARA can be controlled,
get upgraded through online commands and data can be recorded. In addition, LARA’s
weight is around 207 g which makes it 150 g or 58% lighter than CHEAP.

A laboratory test campaign was designed to validate LARA’s performance against its
older version. In this set of experiments, frequencies ranging from 0.1 Hz to 32 Hz and
acceleration amplitudes in the range of [0.001–9.806 m/s2] were tested.

Furthermore, in this paper, another field test is performed on a short-span footbridge
in Barcelona. In this experiment, the eigenfrequencies of LARA are compared with a
commercial dynamic sensor (HI-INC) [53]. HI-INC is a dynamic inclinometer with a
sampling frequency of 250 Hz. This sampling frequency is enough for acquiring the main
mode shapes of the footbridge under study. It should be noted that the reported noise
density of the used commercial sensor (HI-INC) in its datasheet is 0.0004 degrees/

√
Hz.

As in other works in the literature (see, e.g., [54]), this MEMS inclinometer was only used
for comparing the eigenfrequency analysis of LARA.

This paper is organized as follows: in Section 2, LARA (the updated version proposed
by this paper) is presented with its detailed characteristics. In Section 3, the validating
laboratory tests of CHEAP, LARA, and MPU9250 are presented together with their results.
In Section 4, the eigenfrequency validation of LARA on a short-span bridge is presented.
Finally, the main conclusions are drawn in Section 5.

2. Triaxle Wireless Low-Cost Adaptable Reliable Accelerometer (LARA) with
Post-Synchronization Capability

In this section, the main features and innovations of the Low-cost Adaptable Reliable
Accelerometer (LARA) in terms of software and hardware are detailed.

LARA is an updated CHEAP version, a wireless triaxial accelerometer that can be
controlled, monitored, and programmed wirelessly.

This new accelerometer has a frequency sampling of 333 Hz, an acceleration range of
±2.0 g, and effective bandwidth of 165 Hz. LARA is built into two parts: (1) A sensing part:
this contains the aligned accelerometers and the multiplexor, which is shown in Figure 1a.
It should be noted that, the same as CHEAP, LARA consists of five aligned low-cost MEMS
accelerometers. It is due to the fact that when the results of a few accelerometers with
unique inherent dynamic noises are averaged, the signal under study remains invariable.
However, the dynamic noises of individual sensors are divided by the square root of the
number of averaged sensors, and (2) an acquisition part: consisting of an Arduino and
a Raspberry Pi. The sensing and acquisition parts of LARA are shown in Figure 1b. In
addition to the CHEAP components, LARA includes:

A Raspberry Pi: Raspberry Pi is a small size Linux-based computer that can be
connected to Arduino microcontrollers. This way, the operator can access the Arduino
codes for modifying or upgrading purposes. To save and acquire provided data of the
accelerometers, a python code was written to save the acquisition data on the Raspberry
Pi memory card. For synchronizing different LARAs for future SHM applications, the
Arduino’s acquired data were saved with an accurate timestamp. The timestamp is reported
from the inner clock of the Raspberry Pi. For constantly synchronizing the inner clock of
the Raspberry Pi with the accurate time of the Internet, the Raspberry Pi’s NTP protocol
was activated. Figure 1c shows the connection between the Arduino and the Raspberry
Pi. Arduino gets its needed power from a USB port of the Raspberry Pi. Raspberry Pi can
be powered up by using an adaptor or a power bank. It is also noteworthy to mention
that the time keeping accuracy when using a Raspberry Pi model 3b+ with a NTP server
was already published in the literature [48]. In this work, an overall deviation of 0.01 s
was measured after a 40 h test. This value corresponds to a time accuracy of 0.07 Parts Per
Million (PPM).
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A PCB board: a Printed Circuit Board (PCB) was used to place the sensors in the
targeted location with all their axes aligned. The sensors used the shortest possible wire
lengths for connections between the multiplexor the accelerometers. In Figure 1a, the
adjustment of sensors on LARA by the PCB is shown. In fact, it can be seen in Figure 1a,c
that the PCB board has aligned x, y, and z axes of the MPU9250 accelerometers.
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Figure 1. LARA elements: (a) the adjustments and wire connections of the sensing part, (b) the
sensing and acquisition part, and (c) LARA in detail.

An aluminum box: the sensors are placed inside a box to preserve the accelerometers
from environmental conditions (such as humidity, dust, and environmental activities). A
very rigid and stiff material was needed to reach the same input signal to all the accelerom-
eters [55]. Aluminum material was chosen to hold the accelerometers because it is very
stiff, but, at the same time, it is a very light and conductive material. The conductivity
helps the sensor’s grounding. Besides, in Figure 1b, the boxing of LARA is illustrated. The
dimensions of this element are 52 × 72 × 44 mm.

A USB 4G dongle: this device included a modem with a USB dongle with 4G Inter-
net connection connected to the Raspberry Pi that was used for the following purposes:
(1) providing the accurate time of the Internet for the data acquisition timestamp, (2) con-
trolling remotely the data acquisition process, and (3) transferring wirelessly the acquired
data from the memory card of the Raspberry Pi to another computer.
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A plastic box for the acquisition equipment: a plastic box was used to preserve the
Arduino, Raspberry Pi part, and the Internet dongle. The connection between two boxes is
within four sets of wires. The red, black, green, and orange wires connect the 5-volt Voltage
Common Controller (VCC), GrouND (GND), Serial Clock Line (SCL), and Serial Data Line
(SDA) of the sensing part to the acquisition part.

Besides the extra hardware parts that LARA possesses compared with CHEAP, LARA
uses a new code and a library code that makes it faster and triaxial. The software enhance-
ment of LARA refers to:

(1) Increasing sampling frequency: frequency sampling of LARA is increased by rewriting
the old library code and using a faster communication clock along with the main code;

(2) No coding error: increasing the frequency sampling of a system can result in error
reporting, interruptions, data loss, or fluctuation in the frequency sampling speed. In
an experiment, LARA worked for an entire week and saved data with no errors or
interruptions or data loss;

(3) Schedule data acquisition: a code has been prepared on python to schedule and end
vibration acquisition. This scheduling has two benefits. Firstly, it makes wireless
sensor synchronization possible with free software. Secondly, it can be used for OMA
applications. It should be noticed that when a structure is heavily excited by ambient
causes, the accelerometers can extract more valuable data. Therefore, an accelerometer
with schedule capability can help acquire data only when the structure is under high
traffic or extreme activity;

(4) Internal sensor synchronization lag enhancement: the accelerometers inside each
LARA are not 100% synchronized. In fact, the Arduino executes codes one line at a
time. When the main code is executed, the Arduino opens the library code and uses
the information to get the first sensor’s acceleration, and after the second one, and
so on. This operation takes time. In the CHEAP, the lag between each sensor-print
was about 2200 microseconds. By the hardware and software improvement, the
corresponding lag of LARA is decreased to 210 microseconds, which is 10.47 less than
the lag of CHEAP. In fact, a lower lag time contributes to a better sensitivity of LARA
for acquiring higher frequencies;

(5) Post-synchronization of several LARAs: to use LARA’s outputs in the OMA appli-
cation, various accelerometers’ data must first be synchronized and have the same
sampling frequency. Since LARA has access to the accurate time of the Internet, the
acquired data can be stamped with the precise time of the Internet with microsecond
resolution. This timestamp helps calculate the sampling frequency of each LARA
precisely and, more importantly, the fluctuation of the vibration acquisition process.
Even though the reported sampling frequency of each LARA is calculated by mea-
suring the number of acquired data during the acquisition process, the fluctuation
is calculated by measuring the needed time for saving 100 data. It is seen through
laboratory experiments that when the input power is insufficient, the fluctuation is
unsteady. This insufficient input power can be due to low speed of the used USB wire,
the long length of the USB cable, the imperfection of the used power bank, or simply
using a power source that cannot provide 2.5 A and 5 V [9].

3. Laboratory Tests and Results

This section aims to validate the performance of LARA. Firstly, the resolution, sen-
sitivity, and ND of a single MPU9250, CHEAP, and LARA are presented. For that, an
extended duration test was performed in an office. Secondly, a test has been carried out
on the hydraulic jack of the laboratory. In that test, LARA was validated and compared
with CHEAP. Next, the performed tests for validating LARA’s accuracy in terms of various
frequencies are investigated. Finally, the acceleration amplitude evaluation is shown.

It should be noted that the performance of CHEAP was validated using two high-
precision accelerometers (PCB 393A03 and 356B18) [23] in several laboratory experiments
for a range of frequencies from 0.5 to 10 Hz. These tests were performed on the same
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shaking platform used in this work. This platform is an INSTRON 8803 model located at
the Structural Laboratory Lluís Agulló of the Technical University of Catalonia (Barcelona,
Spain). In addition, it is essential to mention that LARA was calibrated in the laboratory of
the Applus company. In that certification, the acceleration amplitude accuracy of LARA
was studied in several experiments with a fixed RMS acceleration amplitude of 0.5 g within
the range of 5 to 160 Hz.

3.1. Sensitivity, ND, and Resolution Evaluation

This section compares the sensitivity, ND, and resolution of a single MPU9250 ac-
celerometer with CHEAP and LARA.

The accelerometers’ sensitivity can be defined as the ratio of the input (induced vibra-
tions of the shaking table) to the output (the information reported by the accelerometer).
This concept is measured and calculated differently for analog and MEMS sensors. Al-
though an analog accelerometer usually produces electronic pulses related to the input
vibrations, MEMS accelerometers convert these electronic pulses into digital signals. While
the sensitivity of analog sensors is reported as V/g (Voltage per gravitational acceleration),
MEMS accelerometers report their sensitivity in the Least Significant Bit per gravitational
acceleration (LSB/g) [56]. Since this value is a characteristic of a sensor, it should be
the same for MPU9250, CHEAP, and LARA. The datasheet of MPU9250 reports a sensor
sensitivity for the acceleration amplitude range of ±2.0 g of 16,384 LSB/g. MPU9250
accelerometers work with an operating voltage of 2.5 volts and their scale for converting
data from analog to digital (Analog to Digital Converter ADC) is 16 bits [47]. The ADC
formula for calculating the LSB is shown in Equation (1) [56].

LSB =
Input voltage
2(number of bits)

(1)

In Equation (1), with an input voltage of 2.5 and an ADC scale of 16, each unit of LSB
is equivalent to 0.03814 mv. In this way, with 16,384 LSB/g for acceleration amplitude
range of ±2.0 g, the comparable sensitivity of MPU9250, CHEAP, and LARA is calculated
as 625 mV/g.

To calculate ND and resolution of the devices, a long-term test was performed. The
ND results of the different accelerometers are calculated using Equation (1) [57]. It should
be noted that CHEAP was located to read the signals from the Z direction. For validating
this test and the used formula, an MPU9250 accelerometer was tested. In addition, the
reported results of its datasheet are compared with the results of the tests. It should be
noted that the presented noise-density measurement of this work is a standard procedure
to characterize the noise of the developed accelerometer [58]. This, typically, appears on
the datasheet of commercial accelerometers [59]. However, it should be noted that those
applications that aim to characterize the noises throughout time (such as Allan variance or
Allan deviation) are out of the scope of this paper. Typically, these applications are used to
investigate the noises of sensors (such as gyroscopes) which data drift throughout time in
the time-domain series.

ND =

√
∑N

1 (xi − µ)2

N ∗ f
(2)

In Equation (2), the xi is the reported values of the accelerometers in the time-domain,
µ is the average of all xi values, N is the number of used samples, and f is the sampling
frequency of the accelerometer.

The calculated ND of MPU9250, CHEAP, and LARA for the z-directions are 390, 162,
and 81 µg/

√
Hz, respectively. In addition, the ND of LARA for both x and y directions is

51 µg/
√

Hz.
The datasheet of MPU9250 reports its ND as 300 µg/

√
Hz. In fact, the illustrated

information of datasheets is usually acquired under the best possible circumstances. It can
be deducted from the calculated ND that using shorter wires and better connections made
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LARA 50% less noisy than CHEAP by reducing the ND value from 162 to 81 µg/
√

Hz
in the z-direction. The calculated ND values also shows that LARA has almost 79% less
ND on the z axes than a single MPU9250 accelerometer by reducing the ND value from
390 to 81 µg/

√
Hz. Further studying of these values shows a lower ND of LARA on the

x and y axes. These two axes do not measure the gravitational acceleration of the earth;
subsequently, the ND of LARA is 51 µg/

√
Hz.

Since the evaluation of the accelerometer’s resolution depends on the number of
samples [60], for a fair comparison between devices with various sampling frequencies, the
same number of the acquired samples were used in the test. For illustrating the resolution
of the accelerometers, their reported data have been transformed from time-domain to
frequency-domain by a Fast Fourier Transform (FFT). The results for different sensors are
reported in Figure 2.
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Analysis of Figure 2 shows that while LARA and CHEAP resolution are almost
equal, the resolution of a single MPU9250 is almost twice as the CHEAP or LARA. By
studying Figure 2, MPU 9250’s resolution, CHEAP and LARA for the z-axis are reported as
0.00016 m/s2, 0.00009, and 0.00009, respectively. It is to be considered that this test needed
a long duration of data capture; consequently, it was done in an office at midnight. The FFT
method reports more accurate outputs when it has a higher number of inputs [60]. For a fair
comparison between MPU 9250, CHEAP, and LARA, the same number of data had to be
evaluated by the FFT method. Although sampling two million sets of data took MPU9250
and CHEAP 6.5 h, LARA acquired two million sets of data in about 1.7 h. Figure 3 shows
the frequency domain diagrams of acquired data of LARA for all the axes.
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Analysis of Figure 3 shows that the resolution of LARA for x and y axes is 0.00005 m/s2.
The resolution for x and y-directions is 44% better than the z-axis because of the absence of
gravitational acceleration of the earth in those directions. As a result, the resolution of this
accelerometer is evaluated as 0.00005 m/s2.

After calculating LARA’s sensitivity, ND, and resolution, LARA can be compared
with instrument-graded accelerometers. In Table 2, various commercial triaxial MEMS
applications are presented. The contents of this table are ordered by the noise density of
the accelerometers. This table includes the following information, which is reported by the
datasheets provided by the producers or measured in this paper, organized in columns:
(1) sensor number, (2) sensor name, (3) acceleration range, (4) sampling frequency speed,
(5) Noise Density (ND): the RMS resolution can be calculated by multiplying the ND by
the square root of the sampling frequency, (6) sensitivity: for a better comparison, the
analog converted sensitivities by the producer companies are reported for each product,
(7) price of the sensor (VAT excluded): prices are based on the recent declaration of the
producer. The reported price of LARA, CHEAP, and MPU9250 refers to research prototypes
and includes the used inceptions (such as accelerometer, Arduino, wires, multiplexor, and
Arduino) in them. It should be noted that the rest of the sensors are commercial solutions.
The information in this column is to illustrate the price ranges and not to compare the price
of the prototype sensors with the commercial ones, and (8) acquisition equipment.
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Table 2. Comparison of commercial triaxial MEMS accelerometers with LARA.

No. Name
Acceleration

Range
(G)

Sampling
Frequency

(Hz)

Spectral
Noise

(µg/
√

Hz)

Sensitivity
(V/G)

Price
(€)

Acquisition
System

1 IAC-Hires [61] ±2.0 800 8 2.000 1192 Recovib
Monitor

2 3713F112G [62] ±2.0 500 10 0.675 2130 482C27
3 Unquake [63] ±2.0 500 25 0.400 2500 Independent
4 Recovib Tiny [64] ±2.0 500 30 0.600 1125 Independent
5 LARA ±2.0 333 51 0.625 * 140 Independent
6 CHEAP ±2.0 85 162 0.625 † 84 A computer
7 MPU9250 ±2.0 85 390 0.625 ‡ 50 A computer

* Research prototype; † Research prototype; and ‡ Research prototype.

Analysis of Table 2 shows that noise level of the commercial solutions (IAC-Hires [61],
3713F112G [62], Unquake [63], and Recovib Tiny [64]) ranges from 8 to 30 µg/

√
Hz. In

addition, analyzing Table 2 indicates that LARA has a more comparable ND with the intro-
duced commercial accelerometers in Table 2 than with any of the low-cost accelerometers
(5–7) presented in Table 1. The noise level of the commercial solutions (IAC-Hires [61],
3713F112G [62], Unquake [63], and Recovib Tiny [64]) ranges from 8 to 30 µg/

√
Hz.

It is shown in Table 2 that 3713F112G and IAC-Hires need extra data acquisition
equipment for acquiring the vibrations. In fact, 3713F112G needs a signal conditioner
such as 482C27 with a price of 5070 € with four channels, and the IAC-Hires requires a
data acquisition such as Recovib Monitor with a price of 3700 €, which can provide up to
eight reading channels. Moreover, CHEAP and MPU9250 are dependent on an attached
computer for their signal monitoring and saving.

However, Unquake, Recovib Tiny, and LARA do not need any acquisition system for
their data acquisition. Accelerometer Unquake samples internally, and the measurements
are timestamped with absolute time from GPS. The measurements are synchronized in the
post-processing stage based on the timestamps by using the software that comes for free
from the company. In addition, Recovib Tiny and LARA are both wireless sensors.

Further analysis of Table 2 shows a wide range of prices (varying between 1192 € up
to 2500 €) of commercial solutions. In fact, as stated in [65], the cost of accelerometers is
known to be one of the critical limitations of SHM analysis and long-term monitoring.

3.2. Frequency Validation

This subsection illustrates the experiments aiming at the frequency measurement
accuracy of MPU9250, CHEAP, and LARA on a vibration platform.

An experiment to validate the frequency report of LARA is presented in this section. A
jack that could induce displacements with a known frequency was used. Although the jack
is very accurate in reproducing a specific frequency, its performance is limited in movement.
Therefore, for every experiment, the jack presents a report. This report is the time-domain
information of the activities of its lower jaw.

It should be noted that the vibration platform used in this paper (INSTRON 8803) was
programmed using WaveMatrix2 Dynamic Software This jack can create various waveform
types with the frequency range of 0.1 to 100 Hz and its resonant frequency is 134 Hz. The
movement direction of this vibration platform (z-direction) is shown in Figure 4b.

In this work, the waveform is set to a sine wave. All the additional technical features
of this hydraulic jack, its programming software, and its datasheets are presented in [23].

Figure 4 shows the placement of the CHEAP and LARA on the hydraulic jack.
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It can be seen from Figure 4 that both CHEAP and LARA are attached to a rigid metal
plate. This attachment was carried out by using an industrial adhesive (X60). X60 made
by HBM company, is a two-component methyl-methacrylate adhesive that is widely used
for accelerometer mounting [66]. Moreover, the metal plate containing CHEAP and LARA
is bolted to the shaking table. For validating the accelerometers’ accuracy, 11 tests with
various frequency ranges (from 0.1 Hz to 32 Hz) were performed. For finding the frequency
report of the accelerometers, the accelerometers’ time-domain raw data were converted
to the frequency domain by an FFT program written in the MATLAB software. To show
the methodology of the calculation of the accelerometer’s frequency errors from the jack’s
results, four frequency domain plots of LARA for 0.1 Hz (Figure 5a), 0.2 Hz (Figure 5b),
0.3 Hz (Figure 5c), and 0.5 Hz (Figure 5d) are presented in Figure 5.
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The accelerometer’s frequency error is estimated by calculating the percentage error
of the plot value from the reference value of the excitation device. Table 3 compares the
frequency errors of LARA, CHEAP, and MPU9250 with the jack’s reference values. Table 3
is organized in columns: (1) Frequency (Hz): the reference value of the excitation device,
(2) LARA’s error (%), (3) CHEAP’s error (%), and (4) MPU9250’s error (%).

Analysis of Table 3 shows that a single MPU9250 is reporting the same frequency
error as the CHEAP from 2 Hz on. Since this particular MPU9250 is one of the CHEAP
accelerometers, its frequency report is synchronized with CHEAP. It can also be deduced
from this table that a single MPU9250 has not enough resolution for frequencies smaller
than 2 Hz. Further analysis of Table 3 shows that CHEAP cannot visualize signals with a
frequency smaller than 0.4 Hz either. In fact, LARA has a broader range of frequency than
MPU9250 and CHEAP and can locate signals up to 0.1 Hz with 0.5% of error. In fact, the
frequency range of LARA, based on the presented information, is between 0.1 Hz and its
bandwidth (165 Hz).
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Table 3. Frequency validation of the accelerometers.

Frequency (Hz) LARA’s
Error (%)

CHEAP’s
Error (%)

MPU9250’s
Error (%)

0.1 0.450
0.2 0.295
0.3 0.260
0.4 0.050 0.470
0.5 0.006 0.011
2 0.005 0.025 0.025
4 0.000 0.000 0.000
8 0.003 0.003 0.003
10 0.004 0.004 0.004
16 0.001 0.001 0.001
32 0.003 0.003 0.003

Further investigation of Table 3 illustrates that MPU9250, CHEAP, and LARA have
similar errors for signals with frequencies bigger than 2 Hz, but the error is still not 0.000%.
In fact, the FFT evaluation can be influenced by irregularities, such as the number of
sampled data and the sampling frequency speed [60]. However, controlling all the data for
such accuracy is not the aim of this paper.

3.3. Acceleration Amplitude Validation

This subsection first compares the acceleration amplitude accuracy of MPU925, CHEAP,
and LARA using a sine wave with a known frequency and acceleration amplitude. Then,
to check the ultimate acceleration range of LARA, a laboratory experiment using a sine
wave with the RMS value of 1 g was performed.

An experiment was carried out with the jack to compare the acceleration acquisition
of MPU925, CHEAP, and LARA. The jack was calibrated to move with a frequency of 4 Hz
and a displacement range of 0.1 mm from its null axis. During each test, the jack reported
its time-domain information with a sampling frequency of 500 Hz. Figure 6 illustrates
jack’s report for this experiment in the frequency-domain diagram.
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Analyzing Figure 6 shows that the jack was moving with a frequency of 4 Hz and an
averaged displacement of 0.10181 mm; consequently, the jack was working with a 1.81%
error rate from 0.1 mm that the programmed displacements.

For validating the accelerometers’ accuracy, their acceleration amplitude report of the
sensors was converted to displacements. Then, high-pass and low-pass filters removed
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signals with frequencies smaller than 0.1 Hz and bigger than 1/10 of the accelerometer’s
bandwidth. These filters are MATLAB functions that can filter the signals out of the
interest range.

Finally, the FFT analysis was carried out, and obtained results are presented in Figure 7.
Figure 7a–c show the reported displacement of MPU9250, CHEAP, and LARA, respectively.
It should be noted that the accuracy of the accelerometers for measuring the magnitude
of the induced vibration is analyzed in the frequency domain representation. It is due
to the fact that making a unique noiseless signal on a shaking table or an actuator is
significantly challenging [67]. In addition, for the OMA of bridges, accelerometers are
mounted to measure the structural response of the bridges under ambient vibrations, such
as those induced by traffic, wind, and temperature variation. Therefore, this sum of ambient
vibrations is usually evaluated in the frequency domain representation [34].
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Analysis of Figure 7 shows that even though all accelerometers are reporting the same
frequency, they measure the induced signal’s magnitude inconsistently. MPU9250, CHEAP,
and LARA have measured the jack’s displacement as 0.098913, 0.10023, and 0.10068 mm.
The MPU9250’s displacement measurement is off by 1.31% from the CHEAP’s report and
2.85% off from jack’s report (Figure 6). Further analysis of Figure 7 shows that CHEAP
and LARA’s magnitude report has less than 0.5% error from each other. In fact, CHEAP
and LARA have measured the jack’s displacements with 1.55% and 1.2% errors from the
introduced displacement measurement of the jack in Figure 6.

It should be pointed out that the shown displacement magnitude of Figure 7c cor-
responds to a measured acceleration amplitude of 0.006 g. Furthermore, for measuring
the top acceleration amplitude range of LARA, another test is carried out on a dynamic
actuator. This time, the used dynamic actuator was programmed to induce vibrations
with a Root Mean Square (RMS) value of one g. This test was performed for one minute,
and, after that, the RMS value of the acquired vibrations was calculated. The time-domain
representation of this test for a time duration of one second is presented in Figure 8. The
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calculated RMS value of the acquired data of LARA for one minute is 0.991 g. This value
shows a 0.9% error from the reference RMS value of the test.
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It should be noted that LARA, such as any other accelerometer, has an acceleration
amplitude range for each of its axes. The sensor gets overloaded when a signal has an
acceleration amplitude that exceed a certain range. It should be noted that when MEMS
accelerometers reach their saturation level (get overloaded) [68], they are not able to
measure the magnitude of the impact anymore [69]. In fact, LARA, unlike piezoelectric
solutions, does not require a parametric analysis as it does not experience a drift after
saturation [21]. More information about the saturation of MEMS accelerometers can be
found in [68].

LARA is set to have an acceleration amplitude range of ±2 g. It should be noted that
the LARA is calibrated in Applplus [70] under RMS acceleration amplitude of 0.5 g and
frequency range of between 5 and 160 Hz. In addition, Figure 8 presented acceleration
amplitude verification of LARA for 1 g where the maximum measured impact was 1.42 g. In
order to investigate its theoretical saturation level (±2 g), an experiment with an acceleration
amplitude higher than 2 g was performed. Figure 9 shows the time-domain representation
of this experiment.
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The analysis of Figure 9 shows that LARA could not measure the acceleration ampli-
tude of the produced signal beyond the ±2 g magnitude as the top and bottom of the signal
are cut. This means that LARA is overloaded. It is also noted in the literature that when sub-
stantial impact happens, the output voltage of MEMS accelerometers (such as LARA) reach
a fixed value that does not vary (saturation) [71]. To decrease the chance of overloading of
accelerometers (saturation), low-pass filters are traditionally recommended [72].

To summarize the collected information of the laboratory tests in Sections 3.2 and 3.3,
LARA accurately measured frequencies of sine waves within the range of 0.4 and 32 Hz.
Furthermore, LARA accurately measured the acceleration amplitude of a sine wave with a
magnitude of 0.006 g. Moreover, LARA’s maximum acceleration amplitude measurement
was investigated using an induced sine wave with RMS acceleration amplitude of 1 g.
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4. Real Structure Test and Results

This section presents a field test carried out on a short-span bridge for comparing the
measured eigenfrequencies of LARA with those of a high-precision sensor.

In the first place, the footbridge is shown in Figure 10a. As shown, it is connected to
an elevator box and from the other side, it is located on an abutment. Figure 10b,c show the
plan and section of the bridge, respectively.
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After mounting the sensors to the bridge, they were connected to the rest of the moni-
toring components (power bank, USB 4G dongle, Arduino, and Raspberry Pi) manually.
It is important to highlight that to enable its communication throughout the Internet, the
Raspberry Pi was previously configured with a WiFi hotspot. In fact, after its assemblage
on site the Raspberry Pi was used to initiate the data acquisition process remotely, using
the Virtual Network Computing (VNC) software [73]. The acquired data was first collected
on the memory card of the Raspberry Pi. Then, when the data acquisition process finished,
the obtained data were moved to a computer using the VNC software. Figure 11a presents
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the diagram of LARA setup on the bridge. The location of the commercial dynamic sensor
(HI-INC) and LARA on the mid-span of the bridge is shown in Figure 11b.
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It is also important to mention that the cables shown in Figure 11b are not for connect-
ing LARA or HI-INC to a laptop. Both systems were controlled remotely. These cables are
either for power-source connection or for connecting the Arduino and the Raspberry Pi.

The outputs of the eigenfrequency analysis of LARA are shown in Figure 12a–c for x,
y, and z axis, respectively.

Analysis of Figure 12 shows that the bridge is not significantly excited about its x-axis
(longitudinal direction). It is appeared that the bridge is excited very well about y and
z axes.

Table 4 presents results of the eigenfrequency analysis of LARA and the used high-
precision inclinometer dynamic (HI-INC). This table also presented the difference percent-
age of the measured frequencies with LARA from those of the HI-INC sensor.
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Table 4. Comparison of the first three mode steps frequencies of LARA with HI-INC.

Mode Number HI-INC LARA Difference

1 3.90 Hz 3.85 Hz 1.28%
2 7.91 Hz 7.91 Hz 0.20%
3 9.94 Hz 9.93 Hz 0.88%
4 26.25 Hz 26.01 Hz 0.91%
5 42.81 Hz 41.70 Hz 0.27%

Comparing the measured eigenfrequencies of LARA with those of HI-INC shows a
maximum error of 1.28%.

5. Conclusions

Developing low-cost sensors is essential for Structural Health Monitoring (SHM) of
structures with a low budget for their SHM assessments. These sensors can allow engineers
to leave the equipment on the structure for monitoring. In previous works, a Cost Hyper
Efficient Arduino Product (CHEAP) was introduced, and its performance was validated
in laboratory experiments. This device was a uniaxial accelerometer with a sampling
frequency of 85 Hz. The main novelty of CHEAP was to improve the resolution, accuracy,
and noise level by using the averaged result of five low-cost digital accelerometers located
on the same spot for sampling the same signal from the same direction. However, CHEAP
presented a few drawbacks such as a low sampling frequency, not being independent of
a computer, being uniaxial, being heavy, having a high Noise Density (ND), not having
access to the time of the Internet for future sensor synchronizations, and not being able to
be controlled entirely wireless. By upgrading both hardware and software of the CHEAP,
a new triaxial Low-cost Adaptable Reliable Accelerometer (LARA) is introduced. The
advantages of LARA with respect to CHEAP are:

(1) By rewriting codes, LARA achieved a faster sampling frequency;
(2) Having a connected Raspberry Pi to the Internet made LARA independent of any

attached computer for data sampling;
(3) Having aligned correctly, its accelerometers made LARA triaxial;
(4) Having a better and more efficient connection reduced LARA’s ND;
(5) Having the time of the Internet for future data synchronization;
(6) Being completely wireless excluded the need for an engineer’s presence on the site

for data acquisition.

To evaluate the LARA performance, resolution, and ND, a set of laboratory exper-
iments was performed. These obtained results show that LARA has less ND ratio than
MPU9250 and CHEAP for the same number of acquired data. Furthermore, comparing
the effects of MPU9250, CHEAP, and LARA with the reports of the shaking table show
that LARA is more accurate in reporting both frequency and acceleration amplitude than
MPU9250 and CHEAP in a laboratory experiment with the same time duration.

A field test on a footbridge in Barcelona with a span length of 14 m has been carried
out using LARA accelerometer. The generated frequencies of the eigenfrequency analysis
from LARA have been validated with a commercial high-precision sensor (HI-INC).
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