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Low-count whole-body PET with deep learning in a

multicenter and externally validated study
Akshay S. Chaudhari 1,2,3,7✉, Erik Mittra4,7, Guido A. Davidzon 1,7, Praveen Gulaka3, Harsh Gandhi3, Adam Brown4, Tao Zhang3,

Shyam Srinivas5, Enhao Gong3, Greg Zaharchuk 1,3 and Hossein Jadvar 6

More widespread use of positron emission tomography (PET) imaging is limited by its high cost and radiation dose. Reductions in

PET scan time or radiotracer dosage typically degrade diagnostic image quality (DIQ). Deep-learning-based reconstruction may

improve DIQ, but such methods have not been clinically evaluated in a realistic multicenter, multivendor environment. In this study,

we evaluated the performance and generalizability of a deep-learning-based image-quality enhancement algorithm applied to

fourfold reduced-count whole-body PET in a realistic clinical oncologic imaging environment with multiple blinded readers,

institutions, and scanner types. We demonstrate that the low-count-enhanced scans were noninferior to the standard scans in DIQ

(p < 0.05) and overall diagnostic confidence (p < 0.001) independent of the underlying PET scanner used. Lesion detection for the

low-count-enhanced scans had a high patient-level sensitivity of 0.94 (0.83–0.99) and specificity of 0.98 (0.95–0.99). Interscan kappa

agreement of 0.85 was comparable to intrareader (0.88) and pairwise inter-reader agreements (maximum of 0.72). SUV

quantification was comparable in the reference regions and lesions (lowest p-value=0.59) and had high correlation (lowest CCC=

0.94). Thus, we demonstrated that deep learning can be used to restore diagnostic image quality and maintain SUV accuracy for

fourfold reduced-count PET scans, with interscan variations in lesion depiction, lower than intra- and interreader variations. This

method generalized to an external validation set of clinical patients from multiple institutions and scanner types. Overall, this

method may enable either dose or exam-duration reduction, increasing safety and lowering the cost of PET imaging.
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INTRODUCTION

Positron emission tomography (PET) imaging is used for a wide
range of clinical indications, including detecting, staging, and
restaging tumors, dementia, and epilepsy, despite its relatively
high cost and its use of radioactivity1. PET images are obtained by
injecting patients with a standardized dose of a radiopharmaceu-
tical (e.g., 18F-fluorodeoxyglucose [FDG]). The image quality is
proportional to the number of coincidence events in the PET
detector following radiopharmaceutical positron annihilation.
Using the PET images, a quantitative standardized uptake value
(SUV) can be calculated by normalizing the radiotracer uptake
with its dosage and patient weight or lean body mass2,3. The
maximum SUV (SUVmax) is widely used as a semiquantitative
measure of the tumor glucose metabolism4.
PET is commonly used in conjunction with computed tomo-

graphy (CT) imaging to provide attenuation correction and
anatomic localization. However, whole-body PET/CT scans can
require upward of 30 min of table time, depending on the field of
view and patient’s height. This can cause patient discomfort and
anxiety, and may potentially lead to motion artifacts that degrade
image quality and SUV quantitation5,6. Additionally, exposure to
radiation during diagnostic imaging can increase cancer risk,
especially in pediatric populations7,8, and raises concerns about
exposure to technologists9. While such concerns make scanning
with reduced bed times or lower radiotracer dose appealing, both
actions lower detection of PET annihilation events, which reduces
image quality and SUV accuracy. Consequently, reducing PET scan
durations or using lower radiotracer dose without reducing the

diagnostic image quality (DIQ) or biasing SUV measurements
would be clinically valuable and would enable a higher
throughput of patients for diagnostic imaging10. Recently, with
the looming burden of COVID-19, which necessitates additional
cleaning and sanitization of PET scanners, increased scanning
efficiency will limit the bottlenecks in PET imaging for maintaining
an adequate patient throughput.
Advances in deep learning and convolutional neural networks

(CNNs) have presented an exciting opportunity in medicine,
primarily for solving a variety of image-classification problems in
radiology, pathology, and dermatology11–14. These methods
have also been used to improve the quality of diagnostic
radiology images for several imaging modalities15,16, and
specifically, for synthesizing high-quality PET images from input
images acquired either with a low radiotracer dosage or
acquired over a shorter duration17,18. A handful of recent studies
have demonstrated the denoising capabilities of CNNs to
enhance PET image quality in small patient cohorts19–21. While
most of the preliminary studies have focused on enhancing
image quality, they have not been deployed in a realistic clinical
setting and the impact on quantitative SUV measurements has
not been robustly validated across vendors and reconstruction
algorithms. Unlike other imaging modalities, to our knowledge,
there have been no studies evaluating the clinical utility of low-
count-enhanced PET scans22,23.
There are also many PET imaging vendors, each with unique

hardware and software that can considerably affect overall image
quality24. CNNs trained on a specific domain of inputs have
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consistently demonstrated limited generalizability when data from
a different domain are presented to the network25. In medical
imaging, it is becoming increasingly well-known that models
developed in specific, narrow populations fail to generalize well to
data from different institutions and scanner types26,27. Thus, a key
question that has not been addressed with current low-count PET
CNNs is that of model generalizability, i.e., how well can a model
trained on one subset of data generalize to new unseen patients
from different institutions and different scanners28.
To overcome the aforementioned challenges, in this study, we

utilize deep learning to enhance the quality and maintain
quantitative SUV accuracy of FDG PET scans acquired or simulated
with 4x lower counts (i.e., equivalent to either four-fold faster or
fourfold reduced dose). We evaluate both qualitative and
quantitative performance in an external validation cohort drawn
from cancer patients at multiple institutions scanned with a
variety of PET scanner devices under typical clinical conditions. We
hypothesize that deep-learning-enhanced fourfold reduced-count
PET is noninferior to current standard-dose FDG PET for clinical
evaluation purposes and is equivalent for SUV-based quantifica-
tion of tumor burden.

RESULTS

Low-count-enhanced images

Representative whole-body PET images for the 25% low-count
images, the 25% low-count-enhanced images using the CNN, and
the corresponding 100% dose-standard images for all three
scanners used in this study are shown in Figs. 1–3. Figure 1 shows
three different patients all with a BMI of less than 30, with
oropharyngeal cancer (Fig. 1a), lymphoma (Fig. 1b), and lung
cancer (Fig. 1c). Similar images are shown for subjects with BMI
over 30, with colon cancer (Fig. 2a), lymphoma (Fig. 2b), and
metastatic carcinoma of the head and neck (Fig. 2c). The
effectiveness of the deep-learning enhancement technique in
improving image quality and lesion conspicuity compared with
the low-count scans is shown in Fig. 3. Images from an example
subject with a stump were also successfully enhanced using
the enhancement model without creating any artifacts, despite
the images being out-of-distribution compared with the training
data (Supplementary Fig. 1).

Image quality assessment

The DIQ ratings for the standard and low-count deep-learning
enhanced scans were 4.0 ± 0.7, and 3.7 ± 0.7 respectively, while
the ODC ratings were 4.5 ± 0.6 and 4.2 ± 0.8, respectively. DIQ and
ODC values assigned by all three readers (Fig. 4) were comparable
between the standard and low-count-enhanced PET scans, and
were consistently higher than the minimum diagnostically
acceptable quality (score of 3). Both the overall DIQ (p= 0.77)
and ODC (p= 0.44) scores did not significantly vary as a function
of the scanner used, but they did vary as a function of reader for
both DIQ and ODC (both p < 0.01). The reader-based overall score
heterogeneity was a random variable and was accounted for in
the noninferiority analysis using the RMSE of the model. The
interaction term between the imaging method (low-count-only
and low-count-enhanced scans) and the scanners was nonsigni-
ficant for both DIQ (p= 0.59) and ODC (p= 0.28), showing that the
difference in scores and image-quality enhancement between the
low-count-only and low-count-enhanced images did not depend
on the underlying scanner used.
The point estimate for differences between the standard and

low-count-enhanced methods and their 95% confidence intervals
(CI) for DIQ was 0.35 (95% CI of 0.21-0.49) and for ODC was 0.25
(95% CI of 0.14–0.36), with the respective p-values of 0.02 and
<0.001 (Supplementary Figure 2). The results demonstrated the
noninferiority for both DIQ and ODC with the proposed technique.

The standard deviations for ODC and DIQ differences between the
two imaging methods were 0.67 and 0.81, respectively, both of
which were within the maximum tolerable standard deviation for
a sample size of 50 patients29.
All standard PET scans maintained a DIQ and ODC of three

(clinically acceptable) or higher. In total, 8/180 (3.9%) and 2/180
(1.1%) of the reads of the low-count-enhanced scans were scored
as 2 (poor) for DIQ and ODC, respectively. None were scored as 1
(nondiagnostic). On an individual reader basis, this was distributed
in the following manner: DIQ (two cases for reader 1, five cases for
reader 2, and one case for reader 3) and ODC (one case each for
readers 1 and 3).

Repeatability assessment

ICC values for interreader repeatability of DIQ and ODC were
0.25 and 0.33, respectively. The interreader rating confusion
matrices (Supplementary Tables 1 and 2) demonstrated that
although the readers had different proclivities in providing
scores of 3, 4, and 5 (Supplementary Fig. 3), all readers
consistently graded the standard scans as similar to the low-
count-enhanced ones. For the 10 cases that were read twice,
there were no significant intrareader variations for any reader for
both DIQ and ODC (DIQ p-values of 0.62, 0.12, and 0.02 and ODC
p-values of 0.71, 0.05, and 0.32 for readers 1–3, respectively, with
a Holm–Bonferroni-adjusted critical p-value of 0.017). Confusion
matrices for intrareader repeatability are provided in Supple-
mentary Tables 3 and 4.

Lesion detection

A combined total of 491 hypermetabolic lesions were detected in
92 total standard scans read by the three readers. There were no
hypermetabolic lesions detected in the brain. The number of
hypermetabolic lesions detected on the standard and low-count-
enhanced scans were not statistically different (p= 0.30) and there
was a strong correlation in the number of lesions detected on the
two scans (CCC 0.88, more detail in Table 1). There were no
systematic biases in up-staging or downstaging subjects based on
the number of lesions detected on the low-count-enhanced scans
compared with the standard scans for all organs evaluated
(Table 1). An example case of a subject receiving a higher DIQ
score on the LCE scan than the standard scan in the case of a lung
nodule is shown in Supplementary Fig. 4.
The overall patient-level sensitivity and specificity for detecting

lesions on the low-count-enhanced scan compared with the
standard scan was 0.94 (0.83–0.99) and 0.98 (0.95–0.99) (Table 1).
There were no significant differences in the total and organwise
number of hypermetabolic lesions detected between the
repeated reads pooled across all readers (lowest p-value= 0.48),
indicating high repeatability of the readings. Example images from
a subject with subtle liver lesions and a noisy low-count scan
depicted that the low-count-enhancement technique successfully
maintained high lesion conspicuity, despite starting with noisy
images (Supplementary Fig. 5). Overall, there were eight instances
of false positives or false negatives across 50 patients and six
tissue types as assessed by the three readers. The distribution of
these deviations did not follow any specific pattern as a function
of the tissue of institution—bone (one false positive from
Institution B), lymph nodes (one false negative from Institution
C), lung (one false positive and false negative each from Institution
A), spleen (two false positives from Institution B), and muscle (one
false positive and false negative each from Institution C).
The Cohen’s kappa value of 0.85 (95% confidence interval

0.81–0.90) for inter-scan agreement between the lesions detected
by the standard and low-count-enhanced scan was nearly identical
to the kappa of 0.88 (0.82–0.95) for intrareader agreement
between repeated readings for the same patient by the same
reader. Similarly, the agreement between the low-count-enhanced
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Fig. 1 Example 25% low-count PET images, the 25% low-count-enhanced images, and the corresponding standard images for all three
scanners for subjects with body mass index (BMI) under 30. A A 66-year old male with BMI of 27 scanned on a Siemens Biograph64
Truepoint for oropharyngeal cancer (solid arrow pointing to a distant lung metastasis). B A 34-year-old female with BMI of 20 scanned on a
Siemens Biograph mCT for lymphoma (solid arrow pointing to metastatic lymph nodes and dashed arrow pointing to lesion in the spleen).
C A 58-year-old male with BMI of 23 scanned on a GE Discovery MI with lung cancer (solid arrow). For all subjects, all low-count images appear
considerably noisier compared with the low-count-enhanced and standard images. Note: SUV display scale is 0–7.
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3

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021) 127



Fig. 2 Example 25% low-count PET images, the 25% low-count-enhanced images, and the corresponding standard images for all three
scanners for subjects with BMI over 30. A A 31-year-old female with BMI of 32 scanned on a Siemens Biograph64 Truepoint for colon cancer
(solid arrow pointing to a distant lung metastasis). B A 38-year-old female with BMI of 36 scanned on a Siemens Biograph mCT for lymphoma
(solid arrow pointing to parotid lymph nodes). C A 56-year-old male with BMI of 43 scanned on a GE Discovery MI with metastatic carcinoma
of the head and neck (solid and dashed arrows pointing to separate metastatic lymph nodes). In the case of subjects with high BMI, the
images are noisier for all scan types. The low-count-enhancement successfully denoises the low-count images and provides similar diagnostic
conspicuity as the standard images. Note: SUV display scale is 0–7.
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Fig. 3 An example case showing the effectiveness of deep-learning enhancement of low-count PET in a 65-year-old female with BMI of
31 and an occult malignancy scanned on a GE Discovery MI scanner. A coronal slice and two axial slices through the liver are displayed for
A 25% low-count, B 25% low-count-enhanced, and C standard PET images. The low-count PET images are noisy and lesions (arrows) are
obscured by noise. The low-count-enhanced images are effectively denoised by the low-count-enhancement algorithm and the lesion
conspicuity is similar to standard PET images. Note: SUV display scale is 0–7.
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and standard scans was higher than that for inter-reader
agreement for all pairs of readers: Cohen’s kappa for readers 1
and 2= 0.58 (0.50–0.66); readers 1 and 3= 0.69 (0.62–0.76);
readers 2 and 3= 0.72 (0.65–0.79) (Table 2).

SUV equivalence

In total, 99 hypermetabolic lesions were identified on the standard
PET scans by the fourth reader. CCC and Bland–Altman plots for

SUVmean of aortic blood pool, liver, and right gluteus muscle
reference regions and the SUVmax of the lesions showed minimal
variation among the standard and low-count-enhanced scans
(Fig. 5). The mean difference of the SUVs was approximately zero
(ranging from −0.05 to 0.01 for the different regions), with tight
95% confidence limits of agreement (0.10–0.20 for the SUVmean of
the reference regions, and 1.8 for the SUVmax of the lesions)

(Table 3). Correlation coefficients were very high between the two
scans: aortic blood pool (CCC= 0.94), liver (CCC= 0.98), gluteus
muscle (CCC= 0.96), and lesions (CCC= 0.99). No statistically
significant differences were found for SUV values for the aortic
blood pool (p= 0.91), liver (p= 0.80), gluteus muscle (p= 0.59),
and lesions (p= 0.79). Using an SUVmax threshold of 2.5, the
sensitivity and specificity of lesion detection on the low-count-
enhanced scans was 0.98 (0.93–1.00) and 1.0 (1.0–1.0). For the
determination of a lesion as a function of its SUV, two false
negatives occurred when the SUVmax values on the standard
scans were 2.8 and 2.7, but on the low-count-enhanced scans
were 2.4 and 2.1, respectively. Both cases arose from different
subjects from Institution C.

DISCUSSION

In this study, we demonstrated noninferiority of deep learning to
enhance noisy PET images acquired with 4-times fewer counts for
clinical purposes in a blinded, multicenter study. Quantitative
accuracy for SUV measurements and depiction of hypermetabolic

Fig. 4 Diagnostic image quality (DIQ) and overall diagnostic confidence (ODC) scores (mean ± standard deviation) for the standard and
low-count-enhanced (LCE) PET scans. The dashed line indicates clinically acceptable DIQ and ODC.

Table 1. Patient-level sensitivity and specificity with 95% confidence

intervals (CI) along with lesion-level prevalence of hypermetabolic

lesions and concordance correlation coefficient (CCC) as detected by

the three readers (pooled) between the low-count-enhanced scans

compared to the standard scans.

Organ Sensitivity: Specificity CCC (All
Lesions)

MW U-Test
P-Valuea

(All Lesions)

Homogeneity
P-Valueb

Bone 1.00
7/7

0.98 (0.88–1.00)
42/43

0.92 0.77 0.93

Lymph
nodes

0.96
(0.80–1.00)
24/25

1.00
25/25

0.85 0.49 0.75

Liver 1.00
3/3

1.00
47/47

0.96 0.99 1.00

Lung 0.89
(0.52–1.00)
8/9

0.98 (0.87–1.00)
40/41

0.59 0.98 0.92

Muscle 0.75
(0.19–0.99)
3/4

0.98 (0.88–1.00)
45/46

0.77 0.93 0.99

Spleen 1.00
2/2

0.96 (0.86–0.99)
46/48

0.17 0.77 0.98

Overall 0.94
(0.83–0.99)
47/50

0.98 (0.95–0.99)
245/250

0.88 0.97 0.88

aMann–Whitney (MW) U-tests evaluated whether the number of lesions

detected using the two sets of images were statistically different.
bHomogeneity test evaluated whether there was a systematic bias in up-

staging or down-staging patients.

Table 2. Cohen’s kappa comparing interreader lesion detection

agreement between pairs of readers, intrareader agreement between

repeated reads of the same subject, and interscan agreement between

the standard and low-count-enhanced scans, stratified by the type of

scans and readers.

Interreader agreement
(N= 120)

Reader pairs

1 and 2 1 and 3 2 and 3

Low-Count-Enhanced 0.55 (0.42–0.67) 0.66 (0.55–0.77) 0.72 (0.61-0.83)

Standard 0.65 (0.53–0.76) 0.71 (0.61–0.81) 0.75 (0.65-0.85)

Overall 0.60 (0.51–0.68) 0.69 (0.61–0.76) 0.73 (0.66-0.81)

Intrareader Agreement
(N= 20)

Reader number

1 2 3

Low-Count-Enhanced 0.74 (0.5–0.98) 0.74 (0.46–1.0) 0.95 (0.85-1.0)

Standard 1.0 (1.0–1.0) 0.84 (0.62–1.0) 0.84 (0.88-1.0)

Overall 0.88 (0.76–0.99) 0.79 (0.46–1.0) 0.95 (0.88-1.0)

Total Intrareader 0.88 (0.82–0.95)

Interscan Agreement
(N= 60)

Scan-pairs

Low-count-enhanced and standard

Reader 1 0.84 (0.76–0.91)

Reader 2 0.85 (0.76–0.93)

Reader 3 0.88 (0.81–0.95)

Overall 0.85 (0.81–0.90)
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lesions were also maintained. Compared with other low-count
PET-enhancement methods using CNNs, the findings in this study
were demonstrated in a clinically relevant, external validation
cohort that consisted of subjects with varying pathological
findings that were assessed by board-certified nuclear medicine
physicians. Moreover, the patients were scanned at different
institutions on different vendor hardware that used different
image-reconstruction algorithms, none of which was used to train
the CNN model. We therefore conclude that the low-count-
enhancement algorithm enabled the acquisition of PET data four-
times faster or at fourfold reduced dose while providing similar
diagnostic information as a standard PET examination in a
generalizable manner across PET vendors and scanner models.
Since faster and lower-dose scans lead to similar image quality

in this regime, the method demonstrated could be used either to
increase efficiency or to reduce dose30,31. Increased efficiency is
beneficial, given the potential to reduce the cost of PET and
enhance patient throughput by scanning more patients on a
single scanner. Decreased bed times for PET imaging would also
allow for additional duration for sanitization protocols in trying to
mitigate the spread of COVID-19. It may also have beneficial

effects for patients who cannot tolerate longer scans and are
susceptible to motion artifacts, which further degrades images.
The use of lower dose may be beneficial to populations in which
secondary malignancies might occur, and particularly for pediatric
patients who are more sensitive to radiation and may receive
many PET scans over their lifetime8.
The images included in the nuclear-medicine physician-reader

study to evaluate lesion conspicuity, image quality, and diagnostic
confidence consisted of the standard and LCE PET scans since low-
count-only PET has previously demonstrated nondiagnostic image
quality31–33. All three readers who analyzed the diagnostic utility
of the two sets of PET scans consistently rated the low-count-
enhanced scans as noninferior to the standard scans. These
findings were consistent, despite the scans being acquired from
PET/CT scanners of different vendor makes and models. The
relative differences in ratings between the full-dose and low-
count-enhanced scans were consistent across all three scanners,
showing that the CNN was capable of consistently enhancing the
low-count images independent of the scanner hardware and
software. The intrareader repeatability on the blinded repeatability
set of 10 subjects was also high, which indicated reader reliability

Fig. 5 Quantitative SUV accuracy evaluation. Bland–Altman and regression plots showing the variations between in the SUVmean for the
aortic blood pool (A, B), liver (C, D), and right gluteus muscle (E, F) between the full-dose standard PET scans and the 25% LCE scans, along
with SUVmax variations between hypermetabolic lesions (G, H). The Bland–Altman bias (dotted line) is nearly 0 for all anatomic structures and
the 95% limits of agreement (dashed lines) were considerably lower than the average Bland–Altman values. The regression plots demonstrate
a strong correlation between the SUV metrics for the standard and LCE scans. No statistically significant differences were observed for any of
the four anatomic structure SUV values between the two scans. The largest absolute differences in SUVmax are seen at very high levels that
represent very highly metabolic regions.

Table 3. Comparison of quantitative SUV metrics between the standard and low-count-enhanced PET scans. SUVmean was computed for the aortic

blood pool, gluteus muscle, and liver, while SUVmax was computed for hypermetabolic lesions.

Organ Count Concordance RMSE-CVa Bias 95% CI Limits of Agreement MW U-Test P-Value

Aortic Blood Pool 50 0.93 4.3% 0.01 ±0.10 0.91

Gluteus Muscle 50 0.96 3.1% −0.05 ±0.19 0.59

Liver 50 0.98 2.4% −0.03 ±0.20 0.80

Lesions 99 0.99 5.7% −0.05 ±1.83 0.79

aAbbreviations: root-mean-square error coefficient of variation (RMSE-CV).

A.S. Chaudhari et al.
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in assessing the low-count-enhanced and standard scans. The
three different readers in this study hailed from three different
institutions with different PET scanner hardware and reconstruc-
tion algorithms. Consequently, intrareader variations in the
assignment of DIQ and ODC scores may be reflective of their
experience and comfort in interpreting different images with
specific image quality created from different PET scanners.
The depiction of hypermetabolic lesions had a high sensitivity,

specificity, and correlations between the two sets of images.
Moreover, the combination of regression metrics such as CCC with
classification metrics such as the presence/absence of lesions
provided a good indication of the overall accuracy. In particular,
the patient-level detection of lesions in the lymph nodes, a
primary indication of cancer metastasis, was near-perfect between
the low-count-enhanced images and the standard images. The
prevalence rates for lesions in the muscle were low, with three out
of the four lesions correctly being identified in the low-count-
enhanced scans. In several instances with other subjects, the
readers commonly reported diffuse regions of increased uptake as
opposed to a focal uptake that could not be categorized as a
lesion. Significantly, the variation observed in the lesion depiction
between the standard and low-count-enhanced scans was
comparable to the observed intra- and interreader variation. This
suggests that the lesion conspicuity between the two scans was
dependent on readers’ proclivities in addition to the images
themselves, further demonstrating the noninferiority and lack of a
systematic bias in the lesion-depiction capability of the low-count-
enhancement technique.
While maintaining image quality is vital, PET is a quantitative

technique, and thus it is essential to maintain SUV accuracy. We
found high concordance for SUVmean in the aortic blood pool,
liver, and right gluteus muscle—organs typically used as internal
references. Similarly, SUVmax was comparable for hypermeta-
bolic lesions also. Maintaining comparable SUV quantitation
between the low-count-enhanced and standard PET images is
important to assess tumor avidity and response to therapy.
Coupled with the high concordance in the depiction of lesions
and the SUV quantification between the standard and low-
count-enhanced scans, the proposed method maintained
pixelwise accuracy and imagewise quality, two criteria important
for prospective image-acquisition studies34. Overall, this shows
that the proposed method can be used for accurate staging and
prognostication.
The study has the following limitations. During the reader study

for determining hypermetabolic lesions, the three blinded readers
only indicated the organs of involvement but did not indicate
specific lesions. Correlating the diagnostic performance of the
low-count-enhanced images as a function of lesion, VOI volume
may be beneficial for staging and prognostication. Additionally,
the subjects that were included in this study underwent a whole-
body PET/CT protocol. The performance of the deep-learning
model for other types of studies (such as for neuroimaging) was
not performed. Moreover, this study only included patients
scanned with FDG, while this is by far the largest clinical use
case for PET-CT; the use of the deep-learning enhancement with
non-FDG radiotracers may have different performance dependent
upon signal-to-noise ratios and the uptake dynamics and
locations. Ethnicity information was also not collected in this
initial proof-of-concept study; however, future work will be
necessary to determine whether there exist systematic ethnicity-
based biases in model performance.
In conclusion, we have evaluated the use of a deep-learning

technique to enhance image quality of fourfold count-reduced
PET images in a multicenter and multivendor study. The low-
count-enhanced PET scans maintained image quality and SUV
accuracy as assessed by nuclear-medicine physicians from three
different institutions. The testing datasets used in this study
included PET images from three institutions and three different

PET-CT scanners, previously unseen by the CNN, demonstrating
generalizability in an external validation cohort. The variations in
lesion depiction between the standard and low-count-enhanced
scans were lower than intra- and interreader variation. Thus, the
proposed low-count-enhancement technique is promising to
enable lower radiotracer dose and to improve the efficiency of
diagnostic PET imaging.

METHODS

Patient population

In total, 50 subjects from three separate hospitals (20 from Institution A, 10
from Institution B, and 20 from Institution C) referred for a whole-body FDG
PET/CT examination (between September 2018 and April 2019) were
included in this prospective study. All subjects were scanned with
Institutional Review Board approval, informed consent, and Health
Insurance Portability and Accountability Act compliance. IRB approvals
were obtained from the University of Southern California and Oregon
Health Sciences University, while a research ethics board (REB) approval
was obtained from the University of Toronto. Consecutive adult,
nonpregnant patients undergoing a standard skull-base to mid-thigh
FDG PET-CT were eligible. The clinical indications for the studies were for
cancer diagnoses, with full demographic information presented in Table 4.
In total, 26 male patients (mean age: 58 ± 17 years, range:19-90 years) and
24 female patients (mean age: 58 ± 17 years, range: 26–85 years)
undergoing PET imaging with a mean FDG dose of 12.0 ± 1.9 mCi were
evaluated in this study.

Low-count PET enhancement

The FDG dose and the uptake time for the PET scans was based on the
standard protocol at each institution (Siemens Biograph64 Truepoint with
3min/bed acquisition at Institution A, Siemens Biograph mCT with 2min/
bed acquisition at Institution B, and GE Discovery MI with 3mins/bed at
Institution C). The details of the reconstructions, which did not vary
between the standard and low-count scans, are shown in Table 4. Low-
count scans were either captured from a separate scan with fourfold
shorter bed durations performed immediately following the standard scan
(Institution A) or created by reconstructing shorter bed durations from the
standard scan using list-mode data (Institutions B and C), which have
shown image-quality equivalence previously31,35. An FDA-cleared, com-
mercially available software product (SubtlePET, Subtle Medical, Menlo
Park, CA) was used to enhance the low-count scans. This software uses a
2.5D encoder–decoder U-Net deep convolutional neural network (CNN) to
perform denoising, and was trained on pairs of low- and high-count PET
studies36. None of the subjects nor the institutions in this study
contributed to the training of the deep network, making this a true
external validation test.

Reader study for low-count-enhanced scans

Previous studies have demonstrated considerably reduced diagnostic
conspicuity for hypermetabolic lesions and biased SUV measurements for
fourfold low-count PET31–33. Consequently, the goal of this reader study
was to investigate whether the low-count-enhanced PET scans using deep
learning were noninferior to the standard of care. Moreover, such an
approach would also lower reader fatigue and case-memorization effects
that may arise if readers assessed the standard of care scans, low-count
scans, and low-count-enhanced scans.
For the reader study, three board-certified nuclear-medicine physicians

from three separate academic institutions evaluated the efficacy of the
low-count-enhanced PET scans (G.D., E.M., and J.H. with 7, 12, and 22 years
of experience). The readers evaluated two sets of PET scans per patient.
One set consisted of the original 100% full-count PET scans (“standard”)
and one set consisted of 25% low-count PET scans enhanced using the
CNN (“low-count-enhanced”). The readers were blinded to the scan type
(standard or low-count-enhanced). In addition, 10 patients were randomly
chosen from the 50 original patients (4, 3, and 3 from each institution) and
represented to the readers for a duplicate read to evaluate intrareader
repeatability. None of the readers were made aware of this subject
repetition. Overall, the 3 readers read 120 scans each (60 standard scans
and 60 low-count-enhanced scans), which led to a total of 360 individual
assessments.
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All readers viewed the PET scans and the corresponding CT series using
MIM Encore (MIM Software Inc., Cleveland, Ohio) to replicate their
standard clinical reading environment. For each subject, the readers were
allowed to generate multiplanar reformats and maximum-intensity
projections (MIPs) as desired. After reviewing all images in the PET series,
the readers were asked to score the diagnostic image quality (DIQ) on a
5-point Likert scale (1= nondiagnostic, 2= poor, 3= acceptable, 4=
good, 5= excellent image quality). The readers were also asked to
indicate the number of hypermetabolic lesions depicted in the PET scan in
the following organs: brain, lymph nodes, lung, liver, spleen, bone, and
muscle. If more than five lesions were found in any region, the readers
were instructed to report 5+ lesions. The readers were also asked to
provide their overall diagnostic confidence (ODC) in interpreting the
images on a Likert scale of 1–5 (1= none, 2= poor, 3= acceptable, 4=
good, 5= excellent diagnostic confidence).
A separate fourth reader (S.S., a board-certified nuclear-medicine

physician with 13 years of experience) separately reviewed the standard
PET scans from the 50 subjects. This reader drew volumes of interest
(VOI) in the several reference regions (aortic blood pool, liver, and right
gluteus muscle) and up to five abnormal lesions. For the liver, a 3-cm-
diameter VOI was placed in segment VII. VOIs for up to five lesions were
placed on a mix of higher- and lower-uptake lesions, to account for those
with lower SUVmax. All VOIs were subsequently copied from the standard
scans to the low-count-enhanced scans. The SUVmean of the VOIs was
evaluated for the aortic blood pool, liver, and the right gluteus muscle as
internal organ reference regions37–39, while the SUVmax was evaluated
for the hypermetabolic lesions on the standard and low-count-
enhanced scans.

Statistical analysis

DIQ and ODC for both the low-count-enhanced and standard images were
analyzed using a general linear model taking into account the following
sources of variation: the two different imaging methods (within subjects),
the three scanners, the three readers, 50 subjects, and interaction between
the imaging method and scanners. We sought to investigate both the

possibility of scanner variability and the presence of heterogeneity in the
difference between both imaging methods due to an interaction with the
underlying scanner model. The residual standard deviation (root mean
square error), with its degrees of freedom, was used as an estimate of the
variability of the scores. The model for noninferiority was chosen once the
sources of noise were discarded. It was used to compute 95% confidence
intervals for the difference between the means of the standard and low-
count-enhanced methods, and the test of noninferiority, using a
noninferiority margin of 0.5 points on the DIQ and ODC Likert scales.
The noninferiority margin was chosen as a midpoint between two
consecutive points on the 1–5 Likert scale and using prior qualitative
reader studies for PET image quality assessment40. For a significance level
of 5% and a power of 90%, a noninferiority limit of 0.5 for a sample size of
50 patients would allow the standard deviation of the DIQ and ODC score
differences between methods to be as large as 0.8529.
Interreader variation for DIQ metrics was assessed using an interclass

correlation coefficient (ICC). Statistical significance for intrareader variation
between the first and second reads was tested using Wilcoxon signed-rank
tests for comparing the paired DIQ, ODC, and number of hypermetabolic
lesions values in the 10 repeated cases. The number of instances where the
low-count-enhanced scans did not meet a DIQ or ODC of three or higher
(clinically acceptable) were tallied.
Variations between the number of hypermetabolic lesions detected by

the readers between the sets of scans were evaluated using
Mann–Whitney U-tests and quantified using concordance correlation
coefficients (CCC). For quantitative analysis, any scans marked with 5+
lesions were treated as a scan with six lesions. A homogeneity test was
performed using contingency tables using the low-count-enhanced and
standard scans to assess for any systematic bias to up-stage or down-stage
patients based on lesion count.
The sensitivity and specificity of the low-count-enhanced PET scans to

depict lesions was evaluated at the patient level, with respect to the
lesions depicted in the standard scans. The number of lesions depicted by
the readers was set at a clinically relevant threshold value of one (one class
for zero lesions and another class for 1+ lesions). To minimize the noise

Table 4. Demographics of subjects included in this study and the corresponding positron emission tomography (PET) scanner specifications for a

PET/ CT (computed tomography) scanner with a whole-body fluorodeoxyglucose (FDG) protocol and a 75% reduction in bedtime.

Institution # A B C

Number of patients 20 10 20

Age (years) 61 ± 17
Range: 19 − 80

50 ± 19
Range: 24 − 77

58 ± 16
Range: 26 − 90

Sex 9M: 11 F 6M: 4 F 11M: 9 F

Body mass index 26.5 ± 4.0 23.5 ± 5.5 28.5 ± 6.3

Standard FDG dose (mCi) 13.0 ± 1.6 10.8 ± 2.2 11.6 ± 1.4

Scanner model Siemens Biograph64 Truepoint Siemens Biograph mCT GE Discovery MI

Standard scan time 3mins/bed 2mins/bed 3mins/bed

Average number of bed
positions

7 7 7

Reconstruction techniquea OSEM+ PSF 3i 21 s OSEM+ PSF+ TOF 3i 21 s OSEM+ TOF+ SharpIR 2i 24 s

Low-count methodology 2nd Fast scan List mode reconstruction of shorter
duration

List mode reconstruction of shorter
duration

Indications Colon cancer (7)
Lymphoma (4)
Cholangiocarcinoma (1)
Esophageal cancer (1)
Leiomyosarcoma (1)
Lung cancer (1)
Melanoma (1)
Renal cancer (1)
Sarcoma (1)
Spinal fusion (1)
Unknown/Declined (1)

Lymphoma (5)
Lung cancer (2)
Esophageal cancer (1)
Occult malignancy (1)
Unknown/Declined (1)

Lymphoma (4)
Esophageal cancer (2)
Breast cancer (2)
Occult malignancy (2)
Chronic lymphocytic leukemia (1)
Dedifferentiated Chondrosarcoma (1)
Gastric cancer (1)
Head & neck Cancer (1)
Lung cancer (1)
Melanoma (1)
Neoplasm of unspecified etiology (1)
Pancreatic Neuroendocrine tumor (1)
Rectal cancer (1)
Urethral cancer (1)

aOSEM ordered subset expectation maximization, PSF poin t spread function, TOF time of flight.
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introduced by intrareader and inter-reader variation, a lesion in a subject
was considered positive if it was detected by a majority of the readers (2
out of 3). To compare the variability of lesion detection between the
standard and low-count-enhanced scans versus the inherent repeatability
of the readers themselves between successive reads for the same patients,
Cohen’s kappa was computed to compare interscan agreement (standard
versus low-count-enhanced) and intrareader agreement between reads
(reading 1 versus 2 for the duplicated cases). Additionally, interreader
agreement and Cohen’s kappa was also computed between lesions
depicted by pairs of readers (reader pairs consisting of readers 1 and 2,
readers 1 and 3, and readers 2 and 3)
To evaluate equivalence for quantitative SUV between the standard and

low-count-enhanced scans, the CCC and Bland–Altman plots were
generated for comparing SUVmax and SUVmean for lesions and reference
regions, respectively. Additionally, Mann–Whitney U-tests were used to
compare systematic biases between the two scans. Finally, sensitivity and
specificity analysis was performed between the standard and low-count-
enhanced scans for identifying lesions above or below an SUVmax

threshold of 2.541.
Overall, measures of noninferiority of image quality for the low-count-

enhanced images as assessed by the DIQ and ODC metrics were the
primary outcomes of this study. The assessment of nonstatistically
significant SUV and lesion-detection metrics were the secondary outcomes
of this study. All statistical analysis was performed using Python (version
3.6.7) using the NumPy (version 1.16) and SciPy (version 1.3) libraries. All
plotting of figures’ graphical data was performed using the Python
matplotlib (version 3.1) and seaborn (version 0.8.1) libraries. All statistical
significance levels were set to an α=0.05 with a Holm–Bonferroni
correction to adjust for multiple comparisons between multiple readers
or scanner types, where necessary.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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