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Low coverage whole genome sequencing
enables accurate assessment of common
variants and calculation of genome-wide
polygenic scores
Julian R. Homburger1, Cynthia L. Neben1, Gilad Mishne1, Alicia Y. Zhou1, Sekar Kathiresan2 and Amit V. Khera3,4,5*

Abstract

Background: Inherited susceptibility to common, complex diseases may be caused by rare, pathogenic variants
(“monogenic”) or by the cumulative effect of numerous common variants (“polygenic”). Comprehensive genome
interpretation should enable assessment for both monogenic and polygenic components of inherited risk. The
traditional approach requires two distinct genetic testing technologies—high coverage sequencing of known
genes to detect monogenic variants and a genome-wide genotyping array followed by imputation to calculate
genome-wide polygenic scores (GPSs). We assessed the feasibility and accuracy of using low coverage whole
genome sequencing (lcWGS) as an alternative to genotyping arrays to calculate GPSs.

Methods: First, we performed downsampling and imputation of WGS data from ten individuals to assess
concordance with known genotypes. Second, we assessed the correlation between GPSs for 3 common diseases—
coronary artery disease (CAD), breast cancer (BC), and atrial fibrillation (AF)—calculated using lcWGS and
genotyping array in 184 samples. Third, we assessed concordance of lcWGS-based genotype calls and GPS
calculation in 120 individuals with known genotypes, selected to reflect diverse ancestral backgrounds. Fourth, we
assessed the relationship between GPSs calculated using lcWGS and disease phenotypes in a cohort of 11,502
individuals of European ancestry.

Results: We found imputation accuracy r2 values of greater than 0.90 for all ten samples—including those of
African and Ashkenazi Jewish ancestry—with lcWGS data at 0.5×. GPSs calculated using lcWGS and genotyping
array followed by imputation in 184 individuals were highly correlated for each of the 3 common diseases (r2 =
0.93–0.97) with similar score distributions. Using lcWGS data from 120 individuals of diverse ancestral backgrounds,
we found similar results with respect to imputation accuracy and GPS correlations. Finally, we calculated GPSs for
CAD, BC, and AF using lcWGS in 11,502 individuals of European ancestry, confirming odds ratios per standard
deviation increment ranging 1.28 to 1.59, consistent with previous studies.

Conclusions: lcWGS is an alternative technology to genotyping arrays for common genetic variant assessment and
GPS calculation. lcWGS provides comparable imputation accuracy while also overcoming the ascertainment bias
inherent to variant selection in genotyping array design.

Keywords: Genome-wide polygenic score, Low coverage whole genome sequencing, Coronary artery disease,
Breast cancer, Atrial fibrillation
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Background
Cardiovascular disease and cancer are common, complex

diseases that remain leading causes of global mortality

[1]. Long recognized to be heritable, recent advances in

human genetics have led to consideration of DNA-based

risk stratification to guide prevention or screening strat-

egies. In some cases, such conditions can be caused by

rare, “monogenic” pathogenic variants that lead to a

several-fold increased risk—important examples are

pathogenic variants in LDLR that cause familial hyper-

cholesterolemia and pathogenic variants in BRCA1 and

BRCA2 that underlie hereditary breast and ovarian can-

cer syndrome. However, the majority of individuals

afflicted with these diseases do not harbor any such

pathogenic variants. Rather, the inherited susceptibility

of many complex traits and diseases is often “polygenic,”

driven by the cumulative effect of numerous common

variants scattered across the genome [2].

Genome-wide polygenic scores (GPSs) provide a way

to integrate information from numerous sites of com-

mon variation into a single metric of inherited suscepti-

bility and are now able to identify individuals with a

several-fold increased risk of common, complex diseases,

including coronary artery disease (CAD), breast cancer

(BC), and atrial fibrillation (AF) [3]. For example, for

CAD, we previously noted that 8% of the population

inherits more than triple the normal risk on the basis of

polygenic variation, a prevalence more than 20-fold

higher than monogenic familial hypercholesterolemia

variants in LDLR that confer similar risk [3].

Comprehensive genome interpretation for common,

complex disease therefore could involve both high-

fidelity sequencing of important driver genes to identify

rare monogenic risk variants and a survey of all common

variants across the genome to enable GPS calculation.

High coverage whole genome sequencing (hcWGS; for

example, 30× coverage) will likely emerge as a single

genetic testing strategy, but current prices remain a

barrier to large-scale adoption. Instead, the traditional

approach has mandated use of two distinct genetic test-

ing technologies—high coverage next generation sequen-

cing (NGS) of important genes to detect pathogenic

variants and a genome-wide genotyping array followed

by imputation to calculate GPSs.

Low coverage whole genome sequencing (lcWGS; for

example, 0.5× coverage) followed by imputation is a po-

tential alternative to genotyping arrays for assessing the

common genetic variants needed for GPS calculations.

Several recent studies have demonstrated the efficiency

and accuracy of lcWGS for other applications of statis-

tical genetics, including local ancestry deconvolution,

and complex trait association studies [4–7].

We developed a pipeline for common genetic variant

imputation using lcWGS data on samples from the 1000

Genomes Project (1KGP) [8] and Genome in a Bottle

(GIAB) Consortium [9] and herein demonstrate imput-

ation accuracy for lcWGS similar to genotyping arrays.

Using three recently published GPSs for CAD [3], BC

[10], and AF [3], we show high technical concordance in

GPSs calculated from lcWGS and genotyping arrays.

Finally, using our pipeline in a large European population

seeking genetic testing, we observe similar GPS risk strati-

fication performance as previously published array-based

results [3, 10].

Methods
Study design

The study design is summarized in Fig. 1 and described

in detail below. The pipeline validation data set (n = 10)

was used to assess imputation accuracy for common

genetic variants (Fig. 1a). The technical concordance co-

hort (n = 184) was used to assess the correlation between

three previously published GPSs for CAD [3], BC [10],

and AF [3] from lcWGS and genotyping arrays (Fig. 1b).

The diverse ancestry data set (n = 120) was used to assess

imputation accuracy for common genetic variants and

performance of GPSCAD, GPSBC, and GPSAF (Fig. 1b). The

clinical cohort (n = 11,502) was used to assess perform-

ance of GPSCAD, GPSBC, and GPSAF in a large European

population seeking genetic testing (Fig. 1b).

Data set and cohort selection

The pipeline validation data set included seven globally

representative samples from 1KGP populations (HG02155,

NA12878, HG00663, HG01485, NA21144, NA20510, and

NA19420; Additional file 1: Table S1) [8] and a trio of Ash-

kenazi samples (NA24385, NA24143, and NA24149) from

the GIAB Consortium (Fig. 1a) [9].

The technical concordance cohort included DNA sam-

ples from 184 individuals whose healthcare provider had

ordered a Color multi-gene panel test (Fig. 1b). All indi-

viduals (1) had 85% or greater European genetic ancestry

calculated using fastNGSadmix [11] using 1KPG as the

reference panel, (2) self-identified as “Caucasian,” and

(3) did not have pathogenic or likely pathogenic variants

in the multi-gene NGS panel test, as previously described

[12] (Additional file 2: Supplementary Methods). Demo-

graphics are provided in Additional file 1: Table S2. All

phenotypic information was self-reported by the individ-

ual through an online, interactive health history tool. Of

the 184 individuals, 61 individuals reported having a per-

sonal history of CAD (defined here as a myocardial infarc-

tion or coronary artery bypass surgery), 62 individuals

reported no personal history of CAD, and 61 individuals

reported no personal history of CAD but were suspected

to have a high GPSCAD based on preliminary analysis. This

preliminary analysis included imputation from multi-gene

panel and off-target sequencing data, which has been
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shown to have similar association statistics and effect sizes

compared to genotyping arrays [4]. These individuals were

included in the technical concordance cohort to artificially

create a relatively uniform distribution of GPSCAD in the

data set. Correlation coefficients between GPSCAD from

lcWGS and genotyping array were calculated after remov-

ing the 61 individuals who were suspected to have a high

GPSCAD based on multi-gene panel and off-target sequen-

cing data to avoid artificial inflation of the correlation

coefficient. Two individuals who reported no personal his-

tory of CAD but were suspected to have a high GPSCAD
failed genotyping (quality control call rate of < 97%) and

lcWGS (overall coverage of < 0.5×), leaving a total of 182

individuals for analyses.

The diverse ancestry data set included a total of 120

samples from the following populations from 1KGP:

Han Chinese in Beijing, China (CHB); Yoruba in Ibadan,

Nigeria (YRI); Gujarati Indian from Houston, Texas

(GIH); Americans of African Ancestry in Southwest

USA (ASW); Mexican Ancestry from Los Angeles, USA

(MXL); and Puerto Ricans from Puerto Rico (PUR)

(Additional file 1: Table S3 and Additional file 3: Figure S1)

[8]. Four samples, including NA18917 and NA19147 from

the YRI population and NA19729 and NA19785 from the

Fig. 1 Study design and imputation pipelines. The study design has four groups: a pipeline validation data set and b technical concordance

cohort, diverse ancestry data set, and clinical cohort. The imputation pipeline for each group is depicted. hcWGS, high coverage whole genome
sequencing; lcWGS, low coverage whole genome sequencing; HWE, Hardy-Weinberg equilibrium; GPS, genome-wide polygenic score; CAD,
coronary artery disease; BC, breast cancer; AF, atrial fibrillation
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MXL population, were below the target 0.5× coverage and

removed from analyses.

The clinical cohort included DNA samples from 11,

502 individuals whose healthcare provider had ordered a

Color multi-gene panel test (Fig. 1b). All individuals (1)

had 90% or greater European genetic ancestry calculated

using fastNGSadmix [11] using 1KPG as the reference

panel; (2) self-identified as “Caucasian”; (3) provided his-

tory of whether they had a clinical diagnosis of CAD,

BC, or AF, via an online, interactive health history tool;

and (4) did not have pathogenic or likely pathogenic

variants detected in the multi-gene sequencing panel

test, as previously described [12] (Additional file 2:

Supplementary Methods). Demographics are provided

in Additional file 1: Table S2.

Whole genome sequencing

DNA was extracted from blood or saliva samples and

purified using the Perkin Elmer Chemagic DNA Extrac-

tion Kit (Perkin Elmer, Waltham, MA) automated on

the Hamilton STAR (Hamilton, Reno, NV) and the Che-

magic Liquid Handler (Perkin Elmer, Waltham, MA).

The quality and quantity of the extracted DNA were

assessed by UV spectroscopy (BioTek, Winooski, VT).

High molecular weight genomic DNA was enzymatically

fragmented and prepared using the Kapa HyperPlus Li-

brary Preparation Kit (Roche Sequencing, Pleasanton,

CA) automated on the Hamilton Star liquid handler and

uniquely tagged with 10 bp dual-unique barcodes (IDT,

Coralville, IA). Libraries were pooled together and

loaded onto the NovaSeq 6000 (Illumina, San Diego,

CA) for 2 × 150 bp sequencing.

For the pipeline validation data set, all samples under-

went WGS with mean coverage of 13.22× (range 7.82×

to 17.30×); downsampling was then performed using

SAMtools [13] to simulate lcWGS. For the technical

concordance cohort, all samples underwent lcWGS with

mean coverage of 1.24× (range 0.54× to 1.76×). Imputed

genotypes were compared with published, high-

confidence known genotypes from 1KGP [8] and the

GIAB Consortium [9]. For the diverse ancestry data set,

all samples underwent lcWGS with mean coverage of

0.89× (range 0.68× to 1.24×). For the clinical cohort, all

samples underwent lcWGS with mean coverage of 0.95×

(range 0.51× to 2.57×).

Downsampling

For the pipeline validation data set, aligned reads were

downsampled using SAMtools [13] to 2.0×, 1.0×, 0.75×,

0.5×, 0.4×, 0.25×, and 0.1× coverage. For the technical

concordance cohort, aligned reads were downsampled to

1.0×, 0.75×, 0.5×, 0.4×, 0.25×, and 0.1× coverage. In a

few cases in the technical concordance cohort, the pri-

mary samples had fewer reads than the target

downsample. In those situations, all of the reads were

retained. For example, if the primary sample only had

0.8× coverage, when downsampled to 1.0×, all reads

were retained. Downsampling was repeated using two

independent seeds in SAMtools. Once the downsampled

data was generated, the imputation was repeated to gen-

erate imputed genotypes using only the downsampled

reads.

Imputation site selection

All data sets and cohorts were imputed to a set of auto-

somal SNP and insertion-deletion (indel) sites from

1KGP with greater than 1% allele frequency in any of

the five 1KGP super populations (African, American,

East Asian, European, and South Asian) [8], for a total of

21,770,397 sites. This is hereafter referred to as the

“imputation SNP loci.” Multi-allelic SNPs and indels were

represented as two biallelic markers for imputation.

Genotype likelihood calculations and imputation

Genotype likelihood calculations and imputation were

performed independently for each sample. Sequence

reads were aligned with the human genome reference

GRCh37.p12 using the Burrows-Wheeler Aligner (BWA)

[14], and duplicate and low quality reads were removed.

Genotype likelihoods were then calculated at each of the

biallelic SNP loci in the imputation SNP loci that were

covered by one or more sequencing reads called using

the mpileup command implemented in bcftools version

1.8 [15]. Indels or multi-allelic sites were not included in

this first genotype likelihood calculation. Reads with a

minimum mapping alignment quality of 10 or greater

and bases with a minimum base quality of 10 or greater

were included. Genotype likelihoods at each observed

site were then calculated using the bcftools call com-

mand with allele information corresponding to the

imputation SNP loci. This procedure discarded calls with

indels or calls where the observed base did not match

either the reference or the expected alternate allele for

the SNP locus.

To convert genotype likelihoods into genotype calls at

all imputation SNP loci, two distinct calculations were

performed. First, genotypes at imputation SNP loci cov-

ered by at least one read were inferred. Genotype calling

was performed using the genotype likelihood option im-

plemented in BEAGLE 4.1 [14]. This step is a reference-

aware genotype calling step and produces posterior

probabilities of genotypes only at sites with at least one

read. This algorithm is implemented only in BEAGLE

4.1 [16]. This inference used default BEAGLE 4.1 [16]

parameters except with a model scale parameter of 2

and the number of phasing iterations to 0. A custom

reference panel was constructed for each sample being

imputed by selecting the 250 most similar samples to
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that sample from 1KGP Phase 3 [8] release using

Identity-by-State (IBS) comparison. A reference panel

size of 250 was selected to best balance imputation run

time and accuracy (Additional file 3: Figure S1). To ensure

that IBS values were comparable across samples, a set of

regions consistently sequenced at high depth (> 20×)

across all samples was utilized. Inclusion of related

samples in an imputation reference panel can artificially

increase imputation accuracy; therefore, when imputation

was performed on samples included in 1KGP Phase 3 re-

lease, that sample and any first and second degree related

samples (as inferred by the 1KGP data release using gen-

etic data) were excluded from the custom reference panel.

To generate genotypes at all of the remaining untyped

sites, a second round of imputation was performed using

BEAGLE 5.0 [16]. This imputation used default settings

and included the full 1KGP as the imputation reference

panel [8]. To note, when performing analysis using 1KGP

samples [8], any related individuals were removed. Each

sample then had imputed genotype calls at each of the

imputation SNP loci. Indels and multi-allelic sites were

included in this second genotype likelihood calculation.

Genotyping array

DNA was extracted from blood or saliva samples and

purified using the Perkin Elmer Chemagic DNA Extrac-

tion Kit (Perkin Elmer, Waltham, MA) automated on

the Hamilton STAR (Hamilton, Reno, NV) and the Che-

magic Liquid Handler (Perkin Elmer, Waltham, MA).

The quality and quantity of the extracted DNA were

assessed by UV spectroscopy (BioTek, Winooski, VT).

DNA was genotyped on the Axiom UK Biobank Array by

Affymetrix (Santa Clara, CA). Genotypes were filtered ac-

cording to the manufacturer’s recommendations, removing

loci with greater than 5% global missingness and those that

significantly deviated from the Hardy-Weinberg equilibrium.

In addition, all A/T and G/C SNPs were removed due to po-

tential strand inconsistencies. After applying the above qual-

ity filtering and filtering for ambiguous SNP sites, 748,187

SNPs out of an original 830,115 polymorphic sites remained.

Each of the remaining SNP orientation was aligned with the

hg19 reference sequence to correctly code the reference

alleles as allele 1, matching the sequencing data.

To generate genotypes at all of the remaining untyped

sites, imputation was performed using BEAGLE 5.0 [16].

This imputation used default settings and included the full

1KGP as the imputation reference panel [8]. To note,

when performing analysis using 1KGP samples, any re-

lated individuals were removed. Each sample then had im-

puted genotype calls at each of the imputation SNP loci.

Imputation accuracy and quality assessment

Imputation accuracy for 1KGP and GIAB samples was cal-

culated by comparing imputation results with previously

released genotypes, excluding regions marked as low confi-

dence by GIAB.

Imputation accuracy on the genotyped samples was

assessed on 470,363 sites that were included in the geno-

typing array and in the imputation SNP loci at different

allele frequency buckets: 257,362 sites with greater than

5% allele frequency, 119,978 sites between 1 and 5% al-

lele frequency, and 93,022 sites with less than 1% allele

frequency. Imputation quality was assessed through site-

specific dosage r2 comparing with genotype values from

the genotyping array.

GPS selection

The GPSs for CAD [3], BC [10], and AF [3] were previ-

ously published and selected based on their demon-

strated ability to accurately predict and stratify disease

risk as well as identify individuals at risk comparable to

monogenic disease. GPSCAD contained 6,630,150 poly-

morphisms, GPSBC contained 3820 polymorphisms, and

GPSAF contained 6,730,541 polymorphisms. All loci in-

cluded in these scores were included in the imputation

SNP loci.

GPS normalization

In the clinical cohort, raw GPSs were normalized by tak-

ing the standardized residual of the predicted score after

correction for the first 10 principal components (PCs) of

ancestry [17]. PCs were calculated by projecting lcWGS

samples into 10 dimensional PC analyses (PCAs) space

using the LASER program [18]. A combination of sam-

ples from 1KGP [8] and the Human Origins [19] project

were used as a reference for the projection.

Results
Development and validation of imputation pipeline for

lcWGS

Previous studies have evaluated the potential use of

lcWGS in local ancestry deconvolution, complex trait as-

sociation studies, and detection of rare genetic variants

[4–6]. To assess the feasibility and accuracy of this

approach for GPSs, we first developed an imputation pipe-

line that reads raw fastq sequence data and generates a vcf

with imputed site information at 21.7 million sites (imput-

ation SNP loci) (Fig. 1a, b). Briefly, reads are aligned to the

reference genome and filtered for duplicates and low qual-

ity. Using this BAM file, we then calculate genotype likeli-

hoods and impute expected genotypes using 1KGP as the

imputation reference panel.

To validate this imputation pipeline, we performed

hcWGS and downsampling on seven samples from dif-

ferent 1KGP populations and a trio of Ashkenazi Jewish

GIAB samples (pipeline validation data set) to varying

depths of coverage from 2.0× to 0.1× (Additional file 1:

Table S1) [9]. We used the published genotype calls for
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each of these samples at all 21 million imputation SNP

loci as truth data and found that imputation accuracy

was above 0.90 r2 for all samples at 0.5× and higher

(Fig. 2). As expected, this was correlated with sequen-

cing depth, with diminishing gains observed at coverages

above 1.0×. While imputation accuracy was similar

across diverse populations, it was slightly reduced in the

Colombian sample (HG01485), likely due to complex

local ancestry related to admixture, and in the Yoruban

sample (NA19240), likely due to the shorter blocks of

linkage disequilibrium and higher genetic diversity in

Africa [8]. Taken together, these data suggest that at se-

quencing depth at or above 0.5×, our pipeline has similar

imputation accuracy to genotyping array-based im-

putation across individuals from multiple populations.

As such, we set 0.5× as a quality control for success and

removed samples with coverage below this threshold in

subsequent analyses.

Technical concordance between GPSs calculated from

lcWGS and genotyping array

To assess the technical concordance of using lcWGS to

calculate GPSs, we performed low coverage sequencing

and used genotyping arrays on DNA from 184 individuals

(technical concordance cohort) (Fig. 1b). This concord-

ance assessment was restricted to individuals of European

ancestry to most closely align with the populations used

for GPS training and validation.

We first compared the lcWGS genotype dosages with a

subset of variants directly genotyped (n = 470,362) on the

genotyping array to assess imputation performance.

Assuming the typed loci called on the genotyping array as

“true,” we observed an average imputation r2 > 0.90 at

0.5× depth for variants with global minor allele frequency

(MAF) greater than 5% and for variants with European

MAF greater than 5% (Additional file 3: Figure S2). As

expected, imputation accuracy was highest for variants

with higher MAF. For lower frequency variants, we saw a

reduction in imputation accuracy, as expected, with r2 > 0.85

for variants at 1 to 5% MAF and r2 > 0.80 for variants less

than 1% global MAF. Taken together, this demonstrates

that lcWGS has high accuracy in this test setting.

We then calculated previously published GPSs for

CAD [3], BC [10], and AF [3] on each sample using

genotyping array data or lcWGS data. We found that

GPSCAD, GPSBC, and GPSAF were highly correlated

(Fig. 3a–c), with the score mean (Student’s t test p =

0.17) and variance (F test p = 0.91) equivalent between

Fig. 2 Assessment of imputation performance in the pipeline validation data set. Downsampling from 30× to 0.1× showed that lcWGS accuracy
was above 0.90 r

2 for all samples at 0.5× (n = 4 independent random seeds for each sample and coverage value; error bars are 95% confidence
intervals). The thick brown dashed line is a smoothed trendline of the average imputation quality while the thin gray dashed line demonstrates

previously reported imputation quality from a genotyping array (r2 = 0.90) [4]. AJ, Ashkenazi Jewish; CDX, Chinese Dai in Xishuangbanna, China;
CEU, Utah residents with Northern and Western European ancestry; CHB, Han Chinese in Beijing, China; CLM, Colombians from Medellin,

Colombia; GIH, Gujarati Indian from Houston, Texas; TSI, Toscani in Italia; YRI, Yoruba in Ibadan, Nigeria
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lcWGS and the genotyping array. The correlations of

GPSCAD and GPSAF (r2 = 0.98 and r2 = 0.97, respectively)

were slightly higher than that of GPSBC (r2 = 0.93). There

are a few key distinctions between the GPSBC and the

GPSAF and GPSCAD, which could be responsible for

these differences. These include (1) the smaller number

of variants in GPSBC (3820 versus 6.6 million), (2) differ-

ences in allele frequencies between SNPs with high

weights, and (3) GPSBC which was trained and validated

on a different genotyping array, the OncoArray, than the

Axiom UK Biobank Array used in this study [10]. To

match published scores, GPS calculation included all

variants regardless of imputation quality. We observed

no strong differences in the distribution of observed dos-

ages at GPS loci between lcWGS and genotyping array

(Additional file 3: Figure S3). In addition, we found no

difference in average difference rates for all three GPSs

between blood- and saliva-derived DNA samples using

lcWGS (p = 0.53 for CAD, p = 0.21 for BC, p = 0.70 for

AF, Additional file 3: Figure S4). We also found no

differences in imputation accuracy at variants with

MAF > 5% (p = 0.23), variants with MAF between 1 and

5% (p = 0.13), and variants with MAF < 1% (p = 0.07).

This is similar to previous results that have demon-

strated no differences in error profiles once coverage

variability is accounted for [20].

The technical concordance cohort ranged in coverage

from 0.54× to 1.76× with a mean coverage of 1.24×, and

we have shown that depth can impact imputation per-

formance—depth increases above 0.5× have a smaller

but measurable effect on imputation performance (Fig. 2;

Additional file 3: Figure S2). To determine the low

coverage sequencing depth required for GPS accuracy,

we used SAMtools [13] to downsample the lcWGS data

in this cohort to 1.0×, 0.75×, 0.5×, 0.4×, 0.25×, and 0.1×.

We found that GPSCAD, GPSBC, and GPSAF are robust

to lcWGS sequencing depth 0.5× and that coverages do

not systematically bias GPS calculations in a specific dir-

ection (Additional file 3: Figures S5, S6, and S7). Inter-

estingly, correlation at 0.1× was still high enough that

GPSs at this coverage may have research utility, suggest-

ing that significant amounts of data regarding common

genetic variation could be recovered from off-target

reads in exome and multi-gene panel sequencing studies

to allow for GPS calculation. Taken together, these data

demonstrate that lcWGS provides equivalent accuracy

for calculation of GPSs, with sequencing coverage as low

as 0.5×.

Assessment of imputation performance and technical

concordance across diverse populations

To further assess the performance of our imputation

pipeline across diverse populations, we performed

lcWGS on 120 additional samples from 6 1KGP pop-

ulations (CHB, GIH, YRI, ASW, MXL, and PUR;

Additional file 1: Table S3) that represent the range

of ancestry observed in admixed populations (diverse

ancestry data set) [8]. We compared genotypes

imputed using our lcWGS pipeline to known 1KGP

WGS data at all 21 million imputation SNP loci and

found that imputation accuracy was above 0.90 r2 for

all samples (range 0.94–0.97) (Fig. 4a). In addition,

we found that GPS calculated from lcWGS data and

GPS calculated from the Phase 3 1KGP WGS data re-

lease have a high correlation, with an r2 value of 0.98,

0.91, and 0.98 for CAD, BC, and AF, respectively

Fig. 3 Correlation of GPSs between genotyping array and lcWGS in the technical concordance cohort. a GPSCAD calculated using lcWGS was
highly correlated (r2 = 0.98) with those calculated using genotyping array (n = 182). b GPSBC calculated using lcWGS was highly correlated (r2 =

0.93) with those calculated using genotyping array (n = 182). c GPSAF was highly correlated (r2 = 0.97) with those calculated using genotyping
arrays (n = 182). x-axis is the raw GPS calculated from the genotyping array, and y-axis is the raw GPS calculated from the lcWGS data; raw GPS

values are unitless. lcWGS low coverage whole genome sequencing; GPS, genome-wide polygenic score; CAD, coronary artery disease; BC, breast
cancer; AF, atrial fibrillation
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(Fig. 4b–d). These results suggest that lcWGS can

enable accurate imputation and calculation of GPSs

in diverse populations.

Association of lcWGS-calculated GPSs with disease

phenotypes in a clinical cohort

Previous studies have demonstrated the association of

GPSs with prevalent disease using genotyping arrays

[3, 10, 21–23] and hcWGS [17]. To observe the perform-

ance of lcWGS-calculated GPSs in a large population, we

performed low coverage sequencing on 11,502 European

individuals (clinical cohort) (Additional file 1: Table S2)

and calculated GPSCAD, GPSBC, and GPSAF for each indi-

vidual. Raw GPSs were normalized by taking the standard-

ized residual of the predicted score after correction for the

first 10 PCAs (Additional file 3: Figure S8) [17, 24]. First,

we note that there are no major outliers (defined as a z-

score greater than 5) in GPSCAD, GPSBC, and GPSAF and

that the normalized scores formed an approximately nor-

mal distribution for each (Additional file 3: Figure S9).

Each of the GPSs was strongly associated with self-

reported history of disease, with effect estimates compar-

able to prior reports using genotyping arrays to calculate

GPS—GPSCAD (OR per standard deviation = 1.59 (1.32–

1.92); n = 11,010), GPSBC (OR per standard deviation =

1.56 (1.45–1.68); n = 8722), and GPSAF (OR per standard

deviation = 1.28 (1.12–1.46); n = 10,303) (Fig. 5).

Area under the curve (AUC) is an additional metric

used to assess the ability of a given risk factor to dis-

criminate between affected cases and disease-free con-

trols. When only the GPS was included in the prediction

model, GPSCAD had an AUC of 0.60, GPSBC had an

Fig. 4 Assessment of imputation performance and technical concordance across diverse populations. a Imputed genotypes calculated using

lcWGS data were highly correlated with genotypes from known 1KGP data (n = 116), with all samples having an imputation quality above 0.90 r2.
The thin gray dashed line demonstrates previously reported imputation quality from a genotyping array (r2 = 0.90) [4]. b GPSCAD calculated using
lcWGS data was highly correlated (r2 = 0.98) with those calculated using known 1KGP data (n = 116). c GPSBC calculated using lcWGS data was

highly correlated (r2 = 0.91) with those calculated using known 1KGP data (n = 116). d GPSAF was highly correlated (r2 = 0.98) with those
calculated using known 1KGP data (n = 116). 1KGP, 1000 Genomes Project; lcWGS, low coverage whole genome sequencing; GPS, genome-wide

polygenic score; CAD, coronary artery disease; BC, breast cancer; AF, atrial fibrillation
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AUC of 0.63, and GPSAF had an AUC of 0.57. The add-

itional inclusion of age and sex increased the AUCs to

0.86 for GPSCAD, 0.78 for GPSBC, and 0.78 for GPSAF.

For each of these three diseases, the magnitude of

associations with clinical disease and AUC metrics was

consistent with previous publications [3, 10]. Taken to-

gether, these results suggest that lcWGS-calculated GPSs

can accurately stratify risk with comparable accuracy to

previously published GPS-disease associations calculated

on the basis of genotyping array data.

Discussion
For the past two decades, genotyping array-based GWAS

and imputation have been the driving force in our dis-

covery of genetic loci predictive of disease and derivation

and calculation of GPSs. In this study, we developed and

validated an imputation pipeline to calculate GPSs from

variably downsampled hcWGS and lcWGS data sets.

While the efficiency of lcWGS has been reported for

other applications of statistical genetics [4–6], we dem-

onstrate that lcWGS achieves similar technical concord-

ance as the Axiom UK Biobank Array by Affymetrix for

determining GPSs. Furthermore, the imputation r2 from

lcWGS was greater than 90%, which is similar to the im-

putation accuracy reported from other commercially

available genotyping arrays [25]. Taken together, these

data suggest that lcWGS has comparable accuracy to

genotyping arrays for assessment of common variants

and subsequent calculation of GPSs.

Our finding that lcWGS can be used for accurate

genotyping and imputation of common genetic variants

has implications for the future of genomic research and

medicine. Currently, disease GWAS are performed using

a variety of genotyping arrays designed to target specific

sets of genes or features, reducing imputation quality in

regions that are not targeted [26]. lcWGS enables less

biased imputation than genotyping arrays by not pre-

specifying the genetic content that is included for assess-

ment, as is necessary for genotyping arrays. Because

initial GWAS focused on populations with high homo-

geneity to reduce noise and increase fit of risk stratifica-

tion, many genotyping arrays were designed to capture

common genetic variants based on the linkage disequi-

librium structure in European populations [27]. How-

ever, this ascertainment bias reduces the imputation

performance from genotyping array data in diverse pop-

ulations [28–30]. Imputation from lcWGS data reduces

this bias by including all SNPs observed in 1KGP popu-

lations as potential predictors. The effects of SNP selec-

tion bias are also not equivalent across genotyping

arrays, and therefore, variants included in a GPS trained

and validated on one genotyping array may not be as

predictive on another genotyping array [31]. lcWGS

systematically surveys variants independent of SNP

selection bias and thus provides one approach to

Fig. 5 Association of lcWGS-calculated GPSs with disease phenotypes in the clinical cohort. lcWGS-calculated GPSCAD was associated with
personal history of CAD (OR = 1.589 (1.32–1.92), n = 11,010, p = 1.32 × 10−6). GPSCAD was adjusted for age and sex. lcWGS-calculated GPSBC was

associated with personal history of BC (OR = 1.56 (1.45–1.68); n = 8722, p = 1.0 × 10−16). GPSBC was calculated only for females and adjusted for
age at menarche. lcWGS-calculated GPSAF was associated with personal history of AF (OR = 1.277 (1.12–1.46); n = 10,303, p = 0.000292). GPSAF was
adjusted for age and sex. lcWGS, low coverage whole genome sequencing; GPS, genome-wide polygenic score; CAD, coronary artery disease; BC,

breast cancer; AF, atrial fibrillation
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overcome this issue. Our findings here demonstrate that

GPSs trained and validated on different genotyping ar-

rays are transferable to lcWGS-calculated GPS. Further-

more, as new genetic associations are discovered, lcWGS

can be re-analyzed with ever more inclusive sets of

identified. By contrast, genotyping arrays are static and

cannot be easily updated or changed without designing a

de novo platform.

lcWGS also has the potential to easily integrate into

current clinical sequencing pipelines. In contrast to

genotyping arrays, which require investment in separate

laboratory technology, lcWGS can be performed on the

same platform as current hcWGS or targeted multi-gene

panel clinical testing. The ease of combining these two

pathways could help to drive GPS adoption into clinical

practice and can likely be achieved at a cost comparable

to genotyping arrays [4]. In addition, lcWGS could be

used to detect large insertions and deletions.

This study should be interpreted in the context of

potential limitations. First, the imputation accuracy

observed in our analysis may have been limited by the

reference panel size. Future efforts using an even larger

reference or more diverse panel may lead to further im-

proved imputation accuracy, particularly for variants

with allele frequency less than 1% [25, 32]. Second, while

lcWGS may ultimately enable derivation of GPSs with

improved predictive accuracy or ethnic transferability,

this was not explicitly explored here. Rather, we demon-

strate the feasibility and accuracy of using lcWGS of

calculating GPSs published in previous studies. Third,

disease phenotypes in our clinical cohort were based on

individual self-report rather than review of health re-

cords. However, several studies have shown that self-

reported personal history data have high concordance

with data reported by a healthcare provider or electronic

health records [33–36], and any inaccuracies would be

expected to bias GPS-disease associations to the null.

Fourth, while lcWGS data provides accurate inference of

common variants, imputation is less accurate for rare

variants. High coverage clinical sequencing of genes,

such as those in the American College of Medical

Genetics and Genomics (ACMG) list of genes in which

pathogenic variants are deemed important and action-

able [33], is essential for accurate detection of rare

pathogenic variants.

Conclusions
In conclusion, this work establishes lcWGS as an alter-

native approach to genotyping arrays for common gen-

etic variant assessment and GPS calculation—providing

comparable accuracy at similar cost while also overcom-

ing the ascertainment bias inherent to variant selection

in genotyping array design.
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