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LOW-DEGREE POINTS ON HURWITZ-KLEIN CURVES

PAVLOS TZERMIAS

Abstract. We investigate low-degree points on the Fermat curve of degree
13, the Snyder quintic curve and the Klein quartic curve. We compute all
quadratic points on these curves and use Coleman’s effective Chabauty method
to obtain bounds for the number of cubic points on each of the former two
curves.

1. Introduction

Let Q be the field of rational numbers and let Q be a fixed algebraic closure of
Q. For a curve C of genus g ≥ 2 defined over Q, let J denote the Jacobian of C.
Assuming that C has a Q-rational point P0, we fix an Albanese embedding of C
in J by choosing P0 as a base point. For a positive integer d, let Wd denote the
image of the d-th symmetric power C(d) of C in J under the map induced by the
fixed Albanese embedding of C in J . Recall that the gonality γ of C is defined as
the smallest degree of a morphism from C to P1. Let us recall the following special
case of a celebrated theorem of Faltings ([7]):

Theorem 1.1 (Faltings). If d < γ and Wd does not contain a translate of a non-
trivial abelian subvariety of J , then there are only finitely many Q-points on C
whose field of definition has degree at most d over Q.

We refer to such points as low-degree points on C. In the case of a smooth
plane curve C of degree N ≥ 7, Debarre and Klassen ([5]) have shown that the
conclusion of the above theorem holds for d ≤ N − 2. Explicit versions of such
results for specific curves are hard to obtain. In this paper, we will be concerned
with two special types of curves, namely the Fermat curves and the Hurwitz-Klein
curves whose definition we now recall:

Let p be a fixed prime, such that p ≥ 5. We denote by Fp the Fermat curve of
degree p, i.e. the complete plane curve over Q given by the projective equation

Xp + Y p + Zp = 0.

Suppose that, in addition, p ≡ 1 mod 3. Let Fp,r denote a smooth projective model
of the singular affine curve

yp = xr(1 − x),
where r is a primitive cube root of unity mod p. It was observed by Lefschetz ([13])
that Fp,r has a cubic automorphism ρ. Note that Fp,r arises as a quotient of Fp
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by a certain group of automorphisms of Fp (see [8]). Also the Jacobian Jp,r of Fp,r
has complex multiplication by a primitive p-th root of unity ζ in Q. Let K denote
the cyclotomic field Q(ζ). It is well known from the work of Hurwitz ([9]) that Fp,r
is also given by the (singular) model

xmyn + ym + xn = 0,

where m and n are positive integers such that m2 − mn + n2 = p (the existence
of such integers follows from the fact that p splits completely in Q(

√
−3)). In this

model, the cubic automorphism of Fp,r is given by ρ (x, y) = (1/y, x/y). Both
models of Fp,r will be used in this paper. We will refer to Fp,r as a Hurwitz-Klein
curve. Two of these curves, namely F7,2 (the Klein quartic) and F13,3 (the Snyder
quintic), will be extensively studied in this paper.

While all Q-rational points on Fp are now known thanks to Wiles and Taylor
([21], [18]), analogous results for low-degree points on Fp have only been obtained
in special cases. Gross and Rohrlich ([8]) computed all points of degree at most
(p− 1)/2 on Fp for p ≤ 11. Debarre and Klassen ([5]) asked whether all points of
degree at most p− 2 on Fp lie on the line X + Y +Z = 0 (for all p ≥ 5). A similar
question has been raised by Ribenboim ([17]). The former question has been settled
affirmatively for p = 5 ([10]) and for p = 7 ([19]). The points of degree at most 5 on
F11 have been computed by Gross and Rohrlich in [8]. Also the main result of [20]
is that there are at most 120 points of degree 6 on F11. A closer look at the latter
results and their proofs leads to the following observation: in all the known cases,
the Gal(Q/Q)-orbit of a low-degree point R on Fp is contained in the S3-orbit of
R, where we identify S3 with the obvious subgroup of the automorphism group of
Fp. In this paper we verify part of the same assertion for p = 13. Our main result
is as follows:

Theorem 1.2. There are exactly 3 rational points, 2 quadratic points and at most
27 cubic points on F13. Moreover, the Galois orbit of any of these points is contained
in its S3-orbit.

We of course claim no novelty for the result about rational points; we have
included it in the statement of the above theorem only for the sake of completeness.
To our knowledge, the result about quadratic and cubic points is the first example
of a result of this type for a Fermat curve whose Jacobian conjecturally has no
Faddeev factor (i.e. a factor of the form Jp,r) with finite Mordell-Weil group (the
predictions of the Birch and Swinnerton-Dyer conjecture regarding Mordell-Weil
ranks of Fermat Jacobians are discussed in [8]). The proof of Theorem 1.2 uses the
geometry of J13,3 (studied by Lim in [14]), Coleman’s effective Chabauty bound ([2])
and a technical device (Theorem 1.3 below) which is valid only under a strong (and
difficult to settle in general) Mordell-Weil rank condition. Following Lim ([14]), let
C0 denote the quotient of Fp,r by the group of automorphisms generated by ρ. Let
J0 denote the Jacobian of C0. Note that the Mordell-Weil ranks of J0 and Jp,r over
Q satisfy rk(J0(Q)) ≤ rk(Jp,r(Q)). The technical device mentioned above is the
following theorem:

Theorem 1.3. Suppose that rk(J0(Q)) ≥ rk(Jp,r(Q)) − 1. Then there are exactly
3 rational points and 2 quadratic points on Fp,r. In particular, if the above rank
condition is satisfied, there are exactly 3 rational points and 2 quadratic points on
Fp.
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The fact that Fp,r has exactly 3 rational points for all p and r (unconditionally)
follows from the work of Wiles and Taylor ([21], [18]). We should therefore point
out that we include a statement about rational points in Theorem 1.3 only for the
sake of completeness. Also the Mordell-Weil rank condition in Theorem 1.3 is a
strong restriction. By Corollary 2.2 in the next section, it is always satisfied if
rk(Jp,r(Q)) ≤ 2 and, in particular, for p = 7 and p = 13. For the case p = 7,
we thus obtain a generalization of the classical theorem of Hurwitz in [9] (see also
[3] for a different proof by Coleman) describing the rational points on the Klein
quartic. We should also point out that the determination of the quadratic points
on F7,2 also follows from the work of Gross and Rohrlich in [8], as shown in the
Ph.D. thesis of Oumar Sall. In the next section we discuss the Mordell-Weil rank
condition of Theorem 1.3 in more detail (see in particular the remark following
Corollary 2.2). Joint work in progress with William McCallum may provide some
answers regarding the extent to which it might be true more generally.

Remark. The computation of all rational and quadratic points on the curves F7,2

and F13,3 easily provides similar results for curves which cover one of them over Q.
The example of Hurwitz-Klein curves of the form XmY +Y mZ+ZmX = 0, where
m ≥ 3 is an integer such that m ≡ 3 mod 7 or m ≡ 5 mod 7 or m ≡ 4 mod 13
or m ≡ 10 mod 13, is discussed in section 3 (see the remark at the end of that
section).

2. The geometry of Jp,r

Following the notation of Theorem 1.3, p is a prime such that p ≡ 1 mod 3 and
r is a primitive cube root of unity mod p. Recall that ζ is a fixed primitive p-th
root of unity in Q, K is the cyclotomic field Q(ζ) and Jp,r is the Jacobian of the
Hurwitz-Klein curve Fp,r defined in the Introduction.

Koblitz and Rohrlich ([12]) showed that Jp,r is isogenous to a cube of an ab-
solutely simple abelian variety. Lim ([14]) explicitly computed the endomorphism
ring of Jp,r and proved that Jp,r is K-isomorphic to a cube of an abelian variety.
We now describe Lim’s result:

For i = 0, 1, 2, let Ci denote the quotient curve of Fp,r by the action of the
automorphism group 〈ζ−i ρ ζi〉. Let Ji be the Jacobian of Ci. Note that C0 is
defined over Q and the curves Ci are all isomorphic over K. Lim showed that the
natural projection maps

φi : Fp,r −→ Ci

give rise, by Albanese functoriality, to a K-isogeny

φ =
2∏
i=0

φi : Jp,r −→
2∏
i=0

Ji

whose kernel equals Jp,r[π], where π = ζ−1. He then proceeded to show that there
exists an isomorphism

f =
2∏
i=0

fi : Jp,r −→
2∏
i=0

Ji

defined over K such that φi = fi π, for i = 0, 1, 2.
For the specific case p = 7, this result was established by Prapavessi ([16]).
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The fact that φ is only defined over K makes it difficult to compare the Mordell-
Weil ranks of Jp,r and J0 over Q. Identifying J0 and Jp,r with their duals, it follows
immediately from the definition that the dual homomorphism

(φ0)∗ : J0 −→ Jp,r

satisfies the equalities

φ0 (φ0)∗ = 3,

(φ0)∗ φ0 = 1 + ρ+ ρ2.

In particular, (φ0)∗ has finite kernel and the rank of J0(Q) equals the dimension of
the kernel of the endomorphism ρ− 1 of the Q-vector space Jp,r(Q)⊗Q.

The following proposition shows in particular that the rank condition in Theorem
1.3 is equivalent to the following assertion:

rk(Jp,r(Q)) ?= rk(J0(Q)).

Proposition 2.1. Let M be any number field. Then

rk(Jp,r(M)) ≡ rk(J0(M)) mod 2.

Proof of Proposition 2.1. We look at the isogeny decomposition of Jp,r over Q.
Clearly, J0 is a factor. Consider the abelian subvariety B = (ρ − 1)Jp,r of Jp,r. It
is easy to show that the map

Jp,r
φ0×(ρ−1)−→ J0 ×B

is an isogeny defined over Q. Hence, it suffices to show that rk(B(M)) is even. The
automorphism ρ of Jp,r induces an endomorphism θ of B such that θ2 + θ+ 1 = 0.
Since the polynomial X2 +X+ 1 is irreducible over Q, the elementary divisors of θ
acting on the Q-vector space B(M)⊗Q are all equal to X2 +X + 1. In particular,
B(M)⊗Q is a direct sum of two-dimensional cyclic θ-invariant subspaces, and this
completes the proof.

Corollary 2.2. If rk(Jp,r(Q)) ≤ 2, then the Mordell-Weil rank condition in Theo-
rem 1.3 is satisfied.

Remark. It remains an open problem whether the inequality rk(Jp,r(Q)) ≤ 2 holds
in general. One possible approach is to perform a (ζ − 1)-descent on Jp,r using its
isogeny decomposition overK combined with results of Faddeev ([6]) and McCallum
([15]). For some time, the author was under the impression that the information on
the corresponding Selmer and Shafarevich-Tate groups obtained by this approach
produces examples where the inequality rk(Jp,r(Q)) ≤ 2 fails. It turns out that this
is not the case. At present, no counterexample to the latter inequality is known.
We hope to address this question in joint work (in progress) with McCallum.

Proof of Corollary 2.2. By Proposition 2.1, we only need to show that we cannot
have rk(Jp,r(Q)) = 2 and rk(J0(Q)) = 0. If p ≥ 13, this follows from the work
of Gross and Rohrlich ([8]) together with the observation that the Gross-Rohrlich
divisor class projects to a point of infinite order on J0 (the Gross-Rohrlich divisor
class is, up to torsion, ρ-invariant, therefore its image under 1 + ρ + ρ2 is also of
infinite order). If p = 7, then both ranks are equal to 0 by a result of Faddeev ([6]).
This proves the corollary.
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We now want to take advantage of the fact that Jp,r and J0 have complex
multiplication by Z[ζ] and Z[ζ+ ζr + ζr

2
], respectively (note that ρ ζ = ζr ρ, so the

endomorphism ζ+ζr+ζr
2

of Jp,r commutes with ρ, hence induces an endomorphism
of J0). Let L = Q(ζ + ζr + ζr

2
). Then [K : L] = 3. The following result is well

known. We have not been able to find a reference, so we give a proof of it below.

Lemma 2.3. We have the following equalities:
(a) rk(Jp,r(K)) = (p− 1)rk(Jp,r(Q)).
(b) rk(Jp,r(L)) = (p− 1)rk(Jp,r(Q))/3.
(c) rk(J0(L)) = (p− 1)rk(J0(Q))/3.

Proof of Lemma 2.3. We only prove part (a). The proofs of the remaining parts
are similar. Let G = Gal(K/Q). Since ζ acts as complex multiplication on Jp,r(K),
the Q-vector space V = Jp,r(K)⊗Q has a K-vector space structure. With respect
to this structure, the Galois action of G on V is semi-linear. Choosing a K-basis of
V , we can thus interpret the action of G as an element of the Galois cohomology
group H1(G,GLn(K)), where n = dimKV . By Hilbert’s Theorem 90, the latter
group is trivial, therefore V is isomorphic to V G ⊗K. In particular,

rk(Jp,r(K)) = dimQV = (dimQV G)(dimQK) = (p− 1)rk(Jp,r(Q)).

Using Proposition 2.1, Lemma 2.3 and Lim’s results on the geometry of Jp,r
over K, one sees that the rank condition in Theorem 1.3 is reduced to any of the
following equivalent assertions:

rk(φ0(Jp,r(L))) ?= rk(Jp,r(L)),

rk(f0((ζ − 1)Jp,r(L))) ?= rk(Jp,r(L)).

We can only prove the following statement, which, nevertheless, will be used in the
proof of Theorem 1.3:

Lemma 2.4. We have:
(a) rk(φ0(ζkJp,r(L))) = rk(Jp,r(L)), for all k ∈ {1, · · · , p− 1}.
(b) rk(f0((ζk − 1)Jp,r(L))) = rk(Jp,r(L)), for all k ∈ {2, 3, · · · , p− 1}.

Proof of Lemma 2.4. (a) Fix k ∈ {1, · · · , p − 1}. Suppose that the claim is false.
Then there exists a point of infinite order D ∈ J(L) such that φ0(ζkD) = 0.
Therefore (1 + ρ+ ρ2)(ζkD) = 0. Consider the abelian group

G = {ζkD1 + ζkrD2 + ζkr
2
D3 : Di ∈ Jp,r(L), i = 1, 2, 3}.

Since Jp,r isK-isomorphic to J3
0 , we have 3rk(J0(K)) = rk(Jp,r(K)) and, by Lemma

2.3, rk(Ker(φ0)) = 2rk(Jp,r(L)). Note that, by the proof of Lemma 2.3, we have
G ⊗ Q = Jp,r(K) ⊗ Q. Therefore, rk(Ker(φ0) ∩ G) = 2rk(Jp,r(L)). Now consider
the following subgroup H of G:

H = {ζkD1 + ζkrD2 + ζkr
2
D3 : D1 +Dρ2

2 +Dρ
3 = λD, λ ∈ Z}.

H has rank strictly greater than 2rk(Jp,r(L)), since we can choose D2 and D3 to be
any points of infinite order in Jp,r(L) and we still have infinitely many choices for
D1. However, since ρζ = ζrρ, it is trivial to check that, for F ∈ H , (1+ρ+ρ2)(F ) =
(1+ρ+ρ2)(λζkD) = 0. Hence, H ⊆ Ker(φ0)∩G, which is impossible by the above
discussion regarding the ranks of these groups.
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(b) Fix k ∈ {2, 3, · · · , p− 1}. Set

ηi =
k−1∑
j=0

ζjr
i

,

for i =0, 1, 2. Since φ0 = f0 π, it suffices to show that there is no point D of infinite
order in Jp,r(L) such that (1 + ρ+ ρ2)(η0D) = 0. Suppose this were not the case.
Applying Gal(K/L) to the latter equality we get the system

η0D + η1D
ρ + η2D

ρ2
= 0,

η1D + η2D
ρ + η0D

ρ2
= 0,

η2D + η0D
ρ + η1D

ρ2
= 0.

Eliminating Dρ and Dρ2
from the above system, we get

((η2
0 − η1η2)2 − (η2

1 − η0η2)(η2
2 − η0η1)) D = 0.

It is easy to check that the coefficient of D is a non-zero element in Z[ζ]. Multiplying
the latter equality by an appropriate integer in Z[ζ], we obtain sD = 0, for a non-
zero integer s ∈ Z (we can take s to be the K/Q-norm of the original coefficient).
This implies that D is torsion, which is a contradiction.

3. Algebraic points of low degree

In this section we will prove Theorem 1.3. Consider the cusps on (the first model
of) Fp,r:

a = (0, 0), b = (1, 0), c =∞.
Note that ρ induces a permutation of {a, b,∞} of order 3 and ζ fixes each of these
three points. By the work of Gross and Rohrlich ([8]), the difference between any
two cusps is a p-torsion point on Jp,r. For a point P1 on Fp,r of degree k over Q, let
P1, · · · , Pk be the Galois conjugates of P1. Let D be the following point in Jp,r(Q):

D = [P1 + · · ·+ Pk − k∞].

Lemma 3.1. Let p ≥ 13. Suppose that P1 6= a, b, ∞.
(a) If k ≤ 2, then D is of infinite order.
(b) If k = 3 and the gonality γ of Fp,r satisfies γ ≥ 4, then D is of infinite order.

Proof of Lemma 3.1. Suppose that D is torsion. By the work of Gross and Rohrlich
([8]), D has to be invariant under ζ. In other words, the divisor

P1 + · · ·+ Pk − (ζP1 + · · ·+ ζPk)

is principal.
(a) By a result of Coleman ([3]), Fp,r is not hyperelliptic, hence γ ≥ 3. Therefore,

since k ≤ 2, the latter divisor is equal to 0. If k = 1, this amounts to P1 = ζP1,
which is absurd, since the left-hand side is Q-rational, while the right-hand side is
not. Similarly, if k = 2, the only possibility is

P1 = ζP2, P2 = ζP1.

But then P1 = ζ2P1. Using the first model of Fp,r, this amounts to (x, y) = (x, ζ2y),
so y = 0, hence P1 is a cusp, which is a contradiction.
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(b) By the gonality assumption, we have

3∑
i=1

Pi =
3∑
i=1

ζPi.

As in part (a), we cannot have Pi = ζPi, for any i. Therefore, P1 = ζP2, P2 = ζP3

and P3 = ζP1 or P1 = ζP3, P2 = ζP1 and P3 = ζP2. In either of these cases,
P1 = ζ3P1, which is absurd, as in part (a).

Proof of Theorem 1.3 for p ≥ 13. Assume that the Mordell-Weil rank condition in
Theorem 1.3 is satisfied. By Proposition 2.1, we have rk(J0(Q)) = rk(Jp,r(Q)). By
the discussion preceding Proposition 2.1, this means that Dρ − D is torsion, for
every D ∈ Jp,r(Q).

Now let P1 be a point on Fp,r of degree k over Q (where k=1 or 2). Suppose
that P1 6= a, b, ∞. Form the corresponding Q-rational point D in Jp,r(Q), as in
Lemma 3.1. It follows from Lemma 3.1 that D is of infinite order. Also, by the
preceding paragraph, Dρ−D is torsion. Since the difference between any two cusps
is also torsion, we get that

[P1 + · · ·+ Pk − P ρ1 − · · · − P
ρ
k ]

is torsion. We now distinguish two cases:
Case 1: Suppose that p ≥ 19. By [8], the latter divisor class is invariant by ζ.

In other words, there exists a rational function on Fp,r whose divisor equals

P1 + · · ·+ Pk + ζP ρ1 + · · ·+ ζP ρk − (P ρ1 + · · ·+ P ρk + ζP1 + · · ·+ ζPk).

If k = 1, then, since the gonality γ of Fp,r satisfies γ ≥ 3, we get that

P1 + ζP ρ1 = P ρ1 + ζP1.

We cannot have P1 = ζP1, because the left-hand side is defined over Q, while the
right-hand side is not. Hence, P1 = P ρ1 . In terms of coordinates (using the second
model of Fp,r), this means xy = 1 and x = y2. Hence, since x, y ∈ Q, we get
x = y = 1, which is impossible because (1, 1) is not a point on Fp,r.

Now suppose that k = 2. Since φ0(Pi) = φ0(P ρi ), we get that the divisor

φ0(ζP ρ1 ) + φ0(ζP ρ2 )− φ0(ζP1)− φ0(ζP2)

on C0 is principal. Let E be the divisor φ0(ζP1)+φ0(ζP2). Since p ≥ 19, the genus
of C0 (which equals (p− 1)/6) is at least 3. Hence, by Riemann-Roch (notation as
in [1]), we get l(E) ≤ l(K − E), so E is a special divisor. By Clifford’s theorem,
dim|E| = 0 unless C0 is hyperelliptic and |E| equals the unique g1

2 on C0.
In the latter case, the points φ0(ζP1) and φ0(ζP2) are conjugate under the hy-

perelliptic involution of C0. Since the latter involution acts as multiplication by −1
on J0, we see that

[φ0(ζP1) + φ0(ζP2)− 2φ0(∞)] = 0.

In other words, the divisor class ζ[P1 +P2−2∞] ∈ ζJp,r(Q) projects to 0 under φ0.
By Lemma 2.4(a), this means that [P1 + P2 − 2∞] is torsion, which is impossible,
by Lemma 3.1.

Therefore, we must have dim|E| = 0. This implies that

φ0(ζP ρ1 ) + φ0(ζP ρ2 ) = φ0(ζP1) + φ0(ζP2).
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If φ0(ζP ρ1 ) = φ0(ζP1), then we have the following possibilities:
(i) ζP ρ1 = ζP1. Then P ρ1 = P1, so, in terms of the second model of Fp,r, we

have xy = 1 and x = y2. This implies that (x, y) = (η, η2) or (η2, η), where η is a
primitive cube root of unity in Q. So we have recovered the Gross-Rohrlich points
([8]).

(ii) ζP ρ1 = ζrP ρ1 or ζr
2
P ρ

2

1 . Then P ρ1 = ζr−1P ρ1 or ζr
2−1P ρ

2

1 . This is impossible,
since the left-hand side is defined over a quadratic field, while the right-hand side
is not.

The only other option is φ0(ζP ρ1 ) = φ0(ζP2) and φ0(ζP ρ2 ) = φ0(ζP1). As above,
for rationality reasons, we cannot have ζP ρ1 = ζrP ρ2 or ζr

2
P ρ

2

2 . Therefore, we
must have ζP ρ1 = ζP2 and, similarly, ζP ρ2 = ζP1. Hence, P ρ1 = P2 and P ρ2 = P1.
This shows that P1 = P ρ

2

1 and, as before, P1 is a Gross-Rohrlich point. But then
P ρ1 = P1 6= P2, a contradiction.

Case 2: Suppose that p = 13. Note that the curve F13,3 has the smooth plane
model x4y+ y4 +x = 0. Therefore, γ = 4. The proof of Case 1 above goes through
for k = 1. For k = 2, part of the proof goes through, up to the point where we
show that there exists a rational function on Fp,r whose divisor equals

P1 + P2 + ζP ρ1 + ζP ρ2 − P
ρ
1 − P

ρ
2 − ζP1 − ζP2.

Let E = P ρ1 + P ρ2 + ζP1 + ζP2. By Riemann-Roch, E is special. By Clifford’s
theorem, dim|E| ≤ 1, since E is not the canonical divisor (by degree) and F13,3 is
non-hyperelliptic.

Suppose dim|E| = 0. Then

P1 + P2 + ζP ρ1 + ζP ρ2 = P ρ1 + P ρ2 + ζP1 + ζP2.

For rationality reasons, none of P ρ1 or P ρ2 can equal one of ζP ρ1 or ζP ρ2 . Therefore,
we must have P ρ1 + P ρ2 = P1 + P2. If P ρ1 = P1, then, as before, we recover the
Gross-Rohrlich points. If P ρ1 = P2, then also P ρ2 = P1, so P1 = P ρ

2

1 , and, as before,
this is a contradiction.

Otherwise, if dim|E| = 1, then, by a well-known theorem in the geometry of
smooth plane curves (see [1], exercise 18, page 56), there exists a line L in P2 such
that

E = L.F13,3 − P,
where P is a point on F13,3.

Using the fact that [P1 + P2 − P ρ1 − P
ρ
2 ] is also invariant under ζ2 and arguing

exactly as above, we get that for the divisor E′ = P ρ1 + P ρ2 + ζ2P1 + ζ2P2 there
exists a line L′ in P2 such that

E′ = L′.F13,3 −Q,
where Q is a point on F13,3 (if dim|E′| = 0, we are done by the previous analysis).

But then L and L′ have the points P ρ1 and P ρ2 in common, so they must coincide.
Therefore, one of the points ζ2P1 or ζ2P2 has to equal one of the points ζP1 or ζP2.
As before, this is impossible for rationality reasons.

Proof of Theorem 1.3 for p = 7. Our curve F7,2 is the Klein curve x3y+y3+x = 0.
It is a smooth plane quartic, hence has gonality 3. We will temporarily use the
model y7 = x(1 − x)2 of F7,2. Let us first recall that, by a result of Faddeev ([6]),
J7,2(Q) is finite. Also, let P and P be the two quadratic points on F7,2 that Gross
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and Rohrlich described. In fact, it follows from [8] that 2 divides the order of
[P +P −2∞]. Therefore, by [8], any Q-rational point on J7,2 can be expressed as a
Z-linear combination of [3P + 3P −2a−2b−2∞] and [a− b]. Since the first divisor
class is invariant under ρ, it follows that for D ∈ J7,2(Q), we have Dρ −D ∈ J7,2

[7]. Following the notation in [8], we conclude that, in particular,

[P1 + · · ·+ Pk − P ρ1 − · · · − P
ρ
k ] = l[D1 −D∞],

where 0 ≤ l ≤ 6, D1 = a− b and D∞ = a−∞. From the given model of F7,2 and
the discussion in [8] (pages 203-204), it follows that

3[D∞] = 2[D1].

Using the latter equality, we get the following cases:
If l = 6, then P1 + · · ·+Pk −P ρ1 − · · · −P

ρ
k ∼ 6D1− 6D∞ ∼ D∞−D1 = b−∞.

If l = 5, then P1 + · · ·+ Pk − P ρ1 − · · · − P
ρ
k ∼ 2D∞ − 2D1 ∼ −D∞ =∞− a.

If l = 4, then P1 + · · ·+ Pk − P ρ1 − · · · − P
ρ
k ∼ 3D∞ − 3D1 = −D1 = b− a.

If l = 3, then P1 + · · ·+ Pk − P ρ1 − · · · − P
ρ
k ∼ 3D1 − 3D∞ = D1 = a− b.

If l = 2, then P1 + · · ·+ Pk − P ρ1 − · · · − P
ρ
k ∼ 2D1 − 2D∞ = D∞ = a−∞.

If l = 1, then P1 + · · ·+ Pk − P ρ1 − · · · − P
ρ
k ∼ D1 −D∞ ∼ ∞− b.

If l = 0, then P1 + · · ·+ Pk − P ρ1 − · · · − P
ρ
k ∼ 0.

Now, if k = 1, the above equivalences are equalities, because the gonality of F7,2

equals 3. Since P1 is not a cusp, we reach a contradiction.
Otherwise, suppose k = 2. We now use the smooth plane model of F7,2. In all

of the above cases, we can write

P1 + P2 +Q ∼ P ρ1 + P ρ2 +R,

where R and Q are cusps. Let E = P1 + P2 +Q. By Riemann-Roch and Clifford’s
theorem, either dim|E| = 0 or E is special and dim|E| = 1.

In the former case, we get

P1 + P2 +Q = P ρ1 + P ρ2 +R.

Since P1 is not Q-rational, we necessarily have Q = R, so P1 + P2 = P ρ1 + P ρ2 , so,
as before, we recover the Gross-Rohrlich points.

In the latter case, we can argue again by means of exercise 18, page 56 in [1].
We can find a line L in P2 and a point Q′ on F7,2 such that

P1 + P2 +Q+Q′ = L.F7,2.

Since two points determine a line and the divisor P1 + P2 + Q is Q-rational, we
conclude that L = Lσ for all σ ∈ Gal(Q/Q), so L is a Q-rational line, hence Q′ is
also a Q-rational point.

Now if Q = Q′, then L is the tangent line to F7,2 at Q, so an easy calculation
shows that P1 and P2 are cusps, which is impossible since P1 is not Q-rational.
Therefore, Q 6= Q′, in which case L connects two cusps. Therefore, both P1 and P2

have to be cusps, a contradiction.
This completes the proof of Theorem 1.3. Note that since Fp,r is covered by Fp

by means of an explicit map (see [8]), the results automatically transfer to Fp (a
point of degree ≤ k on Fp necessarily projects to a point of degree ≤ k on Fp,r and
knowing the latter determines the former).

Remark. The rank condition in Theorem 1.3 is satisfied for p = 7, since Faddeev
showed in [6] that rk(J7,2(Q)) = 0. The rank condition is also satisfied for p = 13.
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In that case, we know that rk(J13,3(Q)) = 1, by the work of Faddeev and Gross-
Rohrlich (see [8], second table on page 219). Therefore, by Theorem 1.3, we know
all the points of degree ≤ 2 on F7,2 and F13,3. We now describe how similar results
can be obtained for the Hurwitz-Klein curves mentioned in the Introduction. For
an integer m ≥ 3, the curves

Hm : xmy + ym + x = 0, Gm : ym
2−m+1 = x(1 − x)m−1

are birationally isomorphic by means of the maps

Hm −→ Gm, Gm −→ Hm,

(x, y) 7→ (
−x
ym

,
(−1)mx

y
), (a, b) 7→ (

a− 1
bm−1

,
(−1)m(a− 1)

bm
),

respectively.
(i) Suppose m is of the form 7s+ 3 or 7s+ 5, with s ∈ Z. Then m2−m+ 1 = 7t

for some integer t. Consider the maps Gm → G3 and Gm → G′3 given by

(x, y) 7→ (x,
yt

(1 − x)s
),

where G′3 is the curve y7 = x(1 − x)4. Since we know all the points of degree ≤ 2
on F7,2 and G3, G′3 are isomorphic to F7,2 (see [3]), the only possible quadratic
points on Hm are the Gross-Rohrlich points which lie on Hm if and only if 3 does
not divide m− 2.

(ii) Supposem is of the form 13s+4 or 13s+10, with s ∈ Z. Thenm2−m+1 = 13t
for some integer t. Consider the maps Gm → G4 and Gm → G′4 given by

(x, y) 7→ (x,
yt

(1 − x)s
),

where G′4 is the curve y13 = x(1 − x)9. As in the previous case, since we know all
the points of degree ≤ 2 on F13,3 and G4 and G′4 are isomorphic to F13,3 (see [3]),
the only possible quadratic points on Hm are the Gross-Rohrlich points which lie
on Hm if and only if 3 does not divide m− 2.

4. Proof of the main result

The statement about points of degree ≤ 2 on F13 follows from Theorem 1.3, since
the hypothesis of Corollary 2.2 is satisfied in this case by the results of Faddeev
(see [6], paragraph 8, page 68). We will first describe all points of degree 3 on the
curve F13,3. Let P1 be such a point. We will argue as in the proof of Theorem 1.3
for p = 7. We use the model y13 = x(1 − x)3 of F13,3. As in the latter proof, we
have that

[P1 + P2 + P3 − P ρ1 − P
ρ
2 − P

ρ
3 ] = l[D1 −D∞],

where 0 ≤ l ≤ 12, D1 = a− b and D∞ = a−∞. By [8], we have

4[D∞] = 3[D1].

We have the following cases:
If l = 12, then P1 + P2 + P3 − P ρ1 − P

ρ
2 − P

ρ
3 ∼ D∞ −D1 = b−∞.

If l = 11, then P1 + P2 + P3 − P ρ1 − P
ρ
2 − P

ρ
3 ∼ 2D∞ − 2D1 = 2b− 2∞.

If l = 10, then P1 + P2 + P3 − P ρ1 − P
ρ
2 − P

ρ
3 ∼ 3D∞ − 3D1 = −D∞ =∞− a.

If l = 9, then P1 + P2 + P3 − P ρ1 − P
ρ
2 − P

ρ
3 ∼ −D1 = b− a.

If l = 8, then P1 + P2 + P3 − P ρ1 − P
ρ
2 − P

ρ
3 ∼ D∞ − 2D1 = 2b− a−∞.
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If l = 7, then P1 + P2 + P3 − P ρ1 − P
ρ
2 − P

ρ
3 ∼ −2D∞ = 2∞− 2a.

If l = 6, then P1 + P2 + P3 − P ρ1 − P
ρ
2 − P

ρ
3 ∼ 2D∞ = 2a− 2∞.

If l = 5, then P1 + P2 + P3 − P ρ1 − P
ρ
2 − P

ρ
3 ∼ 2D1 −D∞ = a+∞− 2b.

If l = 4, then P1 + P2 + P3 − P ρ1 − P
ρ
2 − P

ρ
3 ∼ D1 = a− b.

If l = 3, then P1 + P2 + P3 − P ρ1 − P
ρ
2 − P

ρ
3 ∼ D∞ = a−∞.

If l = 2, then P1 + P2 + P3 − P ρ1 − P
ρ
2 − P

ρ
3 ∼ 2D1 − 2D∞ = 2∞− 2b.

If l = 1, then P1 + P2 + P3 − P ρ1 − P
ρ
2 − P

ρ
3 ∼ D1 −D∞ =∞− b.

If l = 0, then P1 + P2 + P3 − P ρ1 − P
ρ
2 − P

ρ
3 ∼ 0.

In the last case (l = 0), the equivalence must be an equality because the gonality
of F13,3 equals 4. We cannot have P1 = P ρ1 because then, as before, P1 would be
one of the Gross-Rohrlich points. Hence, the Galois conjugates of P1 are given by
the action of 〈ρ〉 on P1.

In each of the remaining 12 cases (l 6= 0), we can add (if necessary) a cusp to
both sides of the equivalence to get

P1 + P2 + P3 + 2R ∼ P ρ1 + P ρ2 + P ρ3 + R′ +R′′,

where R, R′ and R′′ are cusps. Now let E = P1 +P2 +P3 +2R. By Riemann-Roch,
l(E) = l(K − E), so E is special. By Clifford’s theorem, dim|E| ≤ 2.

If dim|E| = 0, we conclude, as above, that the Galois conjugates of P1 are given
by the action of 〈ρ〉 on P1.

If dim|E| = 2, then, by [1], |E| is the unique g2
5 on F13,3 and is cut out by lines

in P2 (recall that F13,3 is a smooth plane quintic). In particular, there exists a
line L in P2 such that E = L.F13,3. If dim|E| = 1, then, by a result of Coppens
([4]), there exists a line L in P2 such that E = L.F13,3. In both cases, the line L
is therefore the tangent line to F13,3 at R. Since R is a cusp, we conclude that P1,
P2 and P3 are also cusps, which is impossible.

We have thus proved that the Galois orbit of a cubic point on F13,3 is contained
in its 〈ρ〉-orbit. It turns out that we get cubic points on F13,3 by intersecting the
smooth plane model of the curve with the line x + y + 1 = 0 or with the conic
xy + x + y = 0. Hence there are at least 6 cubic points on F13,3. We now want to
give an upper bound for the number of such points. This can be done as follows:

Let P1 be a cubic point on F13,3. Consider the projection map

F13,3
φ0−→ C0.

Since Galois conjugation acts by 〈ρ〉 on P1, it is immediate that φ0(P1) is Q-rational.
Since C0 has genus 2 and Mordell-Weil rank 1 over Q, we can apply Coleman’s
effective Chabauty ([2]): C0 has good reduction at 3, therefore, by [2], Corollary
4b(i), we get #C(Q) ≤ 12. One of the Q-rational points on C0 is the projection of
a cusp on F13,3, so it must be discarded. Therefore there are at most 11 remaining
Q-rational points and they can be obtained by at most 33 cubic points on F13,3,
and this is our upper bound.

Now let us see how to transfer the above information to cubic points on F13.
First note that the map

F13
g−→ F13,3

given by
(x, y) 7→ (−x13, x3y)

(using the first model of F13,3) is injective on cubic points, because if for two cubic
points (a, b) and (c, d) on F13 we have g(a, b) = g(c, d), then a/c = ζl for some l.
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If 13 does not divide l, we have a contradiction, since the field of definition of a/c
cannot exceed 9. Therefore, a = c, so b = d also.

Also the six known cubic points on F13,3 (obtained by intersecting the smooth
plane model of F13,3 with the line x+ y + 1 = 0 or with the conic xy + x+ y = 0)
do not lift to cubic points on F13. Hence there are at most 27 cubic points on F13.
The assertion about their Galois orbits is established as follows:

Let P1 = (x, y) be a cubic point on F13. Consider the automorphism (also
denoted by ρ) of F13 given by ρ (x, y) = (1/y, x/y). By what we saw above we have

g(P1) + g(P2) + g(P3) = g(P1)ρ + g(P1)ρ + g(P1)ρ.

Let σ and τ be the non-trivial embeddings of the field of definition of P1 in Q.
Using the first model of F13,3, the automorphism ρ is given by

(x, y) 7→ (1/(1− x),−x/y4).

Therefore,

(−x13, x3y) + (−(xσ)13, (xσ)3yσ) + (−(xτ )13, (xτ )3yτ )

= (−x13, x3y) + (−1/y13, x/y4) + (−y13/x13, y3/x4).

Without loss of generality, we may assume that the second summands of the left-
and right-hand side are equal. Then (xσy)13 = 1 and (xσ)3y4yσ = x. But xσy lies
in the Galois closure of the field of definition of P1, hence has degree at most 6 over
Q. Therefore, we get xσy = 1 and yyσ = x. In other words,

(xσ, yσ) = (1/y, x/y) = ρ (x, y),

and the assertion is proved.
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