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Mohammad Karzand, Douglas J. Leith

Abstract—We introduce a random linear code con-
struction for erasure packet channel. We then analyze
its in-order delivery delay behavior. We show that for
rates below the capacity, the mean in-order-delivery
delay of our scheme is better than the mean delay in-
troduced by the scheme which implements the random
linear block coding. We also compute the decoding fail-
ure probability and encoding and decoding complexity
of our scheme.

I. Introduction

It is known that TCP performs poorly in the presence
of interference [1], or when the round trip time is large
or there exist high packet loss rates over the networks
[2]. To overcome the challenges posed by these networks,
a transport layer solution referred to as Network Coded
TCP is proposed in [3]. The adaptation of transport
layer approach ensures backward compatibility with legacy
equipment and easy implementation.

This motivates us to investigate different error correct-
ing approaches tailored to packet streams. The challenges
with real-time constraints on information transmission
are very different from the classical information theory
problem. The fundamental theorems of information theory
are asymptotic in nature and deal with transmission of
sequences of long blocks that introduces long delays in
communication. Recent information theoretic results in [4]
investigate the trade-off between block code length and
reliability for short sequences. However, it is not instantly
obvious that these block coding schemes minimize the
in order delivery delay for communication rates below
capacity. As an example, for the BEC with erasure prob-
ability ǫ = 0.01 and a block coding scheme with maximal
block error rate 10−3 and coding rate 0.95 the minimum
blocklength of the code should be at least 60 [4]. This
results in a large in order delivery delay in case of an
erasure.

In this note, we are interested in the tradeoff between
the throughput and the delay. As mentioned, the study
is motivated by transport layer coding, but it is also of
more general interest where in order delivery delay is
important. We are investagating alternative methods to
transmit data other than block coding schemes to reduce
in order delivery delay for rates well below capacity.

In section II, we introduce a random linear code con-
struction. In section III, the in-order delivery delay and the
throughput of a system based on this code is analyzed. In
section IV, the decoding failure probability is computed.
In section V, the encoding and decoding complexity of
the coding scheme is investigated and in section VI, we
compare our scheme with the scheme based on random

linear block codes through simulations. The section VII
talks about the path ahead.

II. Low Delay Coding Over a Stream

A. Problem Setup

We consider a real time streaming system where time
is slotted, with each slot corresponding to one packet. In
each slot the sender transmits either an information packet
or a coded packet over an erasure channel to one receiver.
Packets are erased with i.i.d probability ǫ. At the receiver
arriving packets are stored in a reassembly buffer until
a decoder is able to reconstruct the information packet
stream and deliver the information packets in-order to an
application. We seek to analyze the in order delivery delay
of such a scheme.

B. Low Delay Code Construction

We consider the following code construction. A coded
packet ci is inserted after every l − 1 information packets
ui, and the distance between coded packets is constant
l. Each coded packet is constructed as a random linear
combination of the preceding information packets. We
assume that information packets and the coded packets
are drawn from an alphabet with cardinality of Q and

ci = fi(u1, u2, . . . , u(l−1)∗i) :=

(l−1).i
∑

j=1

wij · uj (1)

with coefficients wij , selected identically and indepen-
dently, uniformly at random from field with size Q. At
the receiver, at slot i generator matrix Gi is constructed
with rows formed from the coefficients of the received
packets (information packets adding a row with a 1 in
the corresponding diagonal, all other entries being 0).
Decoding can then be carried out on-the-fly using e.g.
Gaussian elimination.

In our analysis, unless stated otherwise, we will make
the standing assumption that the field size Q is sufficiently
large that with probability one each coded packet helps
the receiver recover from one information packet erasure.
That is, each coded packet row added to generator matrix
Gi increases the rank of Gi by one. Our experimental
measurements do not, of course, make this assumption. We
also compute the decoding failure probability in section
IV, taking into account the probability that the matrix is
not full rank.

This method is different from block code construc-
tions, as the coded packets are constructed causally and
streamed in between information packets. This construc-
tion will help the receiver to mitigate the effect of an
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Fig. 1. Illustrating notation used. Clear rectangles indicate infor-
mation packets, shaded rectangles coded packets, crosses indicate
erasures, coded packets are inserted every l = 4 slots. ti is the coded
packet slot immediately preceding the information packet erasure at
slot t̃i which pauses in-order delivery at the receiver, T1 the coded
packet slot at which in-order delivery resumes. The information
packet at slot ti + 1 is delivered without delay, but any information
packets in slots {t̃i, · · · , Ti} are delayed.

erasure sooner since the receiver does not need to wait
till the end of the block to start the decoding procedure,
however the causal construction will limit the power of the
code. The goal is to analyze the behavior of the decoding
delay and compare it to concatenated block codes.

In this construction, we assume that the distance be-
tween two coded packets is constant and deterministic.
The delay analysis of randomized placement of coded
packets will be dealt in a later work.

III. In-Order Delivery Delay and Throughput

A. In-order delivery delay

Information packets are delivered in-order at the re-
ceiver until an erasure of an information packet occurs.
Upon erasure, in-order delivery is paused (arriving packets
are buffered) until the decoder receives as many coded
packets as the number of erasures, at which point in-order
delivery resumes.

Let {t̃i} denote the sequence of slot times at which
erasure of an information packet pauses in-order delivery
and {Ti} the corresponding sequence of times at which in-
order delivery resumes. Note that the Ti must be a slot at
which a coded packet is transmitted. Letting ti = ⌊t̃i/l⌋l
be the coded packet slot immediately preceding slot t̃i,
we can then define the sequence of coded packet slots
{t1, T1, t2, T2, · · · }. See Figure 1 for a schematic illustra-
tion. Slots {ti + 1, ti + 2, · · · , Ti} contain information
packets delayed by the i’th pause, plus perhaps non-
delayed packets {ti + 1, t̃i} and this set of slots is referred
to as the i’th “busy” period. Slots {Ti+1, · · · , ti+1} can be
partitioned into intervals {Ti+1, Ti+l}, {Ti+l+1, Ti+2l}
etc each of size l slots and ending with a coded packet slot
(since Ti and ti are both coded packet slots). Each of these
intervals of l slots is referred to as an “idle” period.

The busy/idle period terminology is by analogy with a
queueing system operating in embedded time correspond-
ing to the coded packet slots. Information packet erasures
can be thought of as queue arrivals and reception of coded
packets as queue service. Pauses in in-order delivery then
correspond to periods when the queue size is non-zero.

Index the busy/idle periods by j = 1, 2, · · · and let
i(j) be the index of the pause corresponding to the j’th
busy period i.e. the j’th busy period consists of slots
{ti(j), · · · , Ti(j)}. With the j’th period we associate a
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Fig. 2. Illustrating delay introduced by erasures. In this example the
information packet at slot t̃i is delayed by 6 slots, the information
packet at slot t̃i + 1 by 5 slots, the information packet at t̃i + 3 by 3
slots and so on. It can be seen that the sum-delay is the area under
a triangle of base Ti − ti slots and height Ti − ti slots, less the area
associated with any coded packets.

random variable Sj , with Sj = 0 for an idle period and
Sj = (Ti(j) − ti(j))/l for a busy period i.e. Sj equals
the number of coded packets transmitted before delivery
resumes. Since packet erasures are i.i.d., the busy/idle
periods form a renewal process and the {Sj} are i.i.d.
Letting S ∼ Sj the following theorem characteries the
probability distribution of S.

Theorem 1 (Busy Time). In an erasure channel with
erasure probability ǫ, suppose we insert a coded packet in
between every l − 1 information packets. Assume that each
coded packet can help us to recover from one erasure. We
have:

I. For all values of ǫ and l such that lǫ < 1, the mean of
the probability distribution of S exists and is finite.

II. P (S = 0) = (1 − ǫ)l−1 (2)

P (S = 1) = (l − 1)ǫ(1 − ǫ)l−1 (3)

P (S = k) =
l − 1

k
ǫk(1 − ǫ)k(l−1)

(

(k − 1)l

k − 1

)

, ∀k > 1

(4)

III. E(S) =
(l − 1)ǫ(1 − ǫ)l−1

1 − lǫ
(5)

E(S2) = E(S) +
l(l − 1)ǫ2(1 − ǫ)l

(1 − lǫ)3
(6)

Observe that the requirement that lǫ < 1 for S to have
finite mean is a natural one. The rate of the coding scheme
is R = l−1

l
= 1 − 1

l
. Since this rate of transmission should

be less than the channel capacity, we require R < 1 − ǫ,
and so lǫ < 1. Combining Theorem 1 with the following
result allows us to obtain a simple closed-form bound on
the mean in-order delivery delay:

Theorem 2 (In-Order Delivery Delay). At the receiver,
the mean in-order delivery delay for information packets is

upper bounded by E[S2]
max{1,E[S]}

l
2 slots.

Using simulations in Fig. 3, we show that the upper
bound on in-order delivery delay is reasonably tight.
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Fig. 3. Measured in-order delivery delay and upper bound vs coding
rate (l − 1)/l and packet erasure rate ǫ.

B. Throughput and rate

The rate of transmission of this scheme is l−1
l

= 1 − 1
l
.

The Good Throughput (GT ) of this scheme is a random
variable and its behavior is characterized in the following
theorem:

Theorem 3 (Throughput). Consider the transmission of
a coded stream of length N over an erasure channel. For
any R0 < 1 − 1

l
and δ > 0, there exist an N large enough

such that

Pr (GT > R0) > 1 − δ.

The length of the possible failure at the end of trans-
mission is independent of length of the transmission and
as the length of the transmission grows, the sacrifice in the
good throughput of the system becomes negligible.

IV. Computation of The Decoding Failure

Probability

Till here, we assume that the decoding procedure is
always successful upon the reception of enough coded
packets. In this section we are going to find upper and
lower bounds to the probability of decoding failure.

We assumed that information packets and the coded
packets are drawn from an alphabet with the cardinality
of Q and

ci = fi(u1, u2, . . . , u(l−1)∗i) :=

(l−1).i
∑

j=1

wij · uj (7)

with coefficients wij , drawn identically and independently,
uniformly at random from field with size Q. At the receiver
and at the time kl, assuming a certain pattern of erasures
and that enough coded packets have been received which
in our case means S = k, the decoding matrix is formed
based on the the coefficients of wij and the decoding can
then be carried out on-the-fly using e.g. Gaussian elim-
ination. The decoding will be successful if the decoding
matrix is of full rank. In what follows, we provide upper

and lower bounds to the probability of the decoding matrix
to be full rank.

Assume that k erasures happen and the erasure pattern
is admissible as defined in the lemma ??1, so the decoding
is performed exactly after receiving k coded packets in k l-
interval. Assume E1, E2, . . . , Ek are the number of erasures
in each l-interval. Constructing the decoding matrix, the
number of non-zero wijs in each row i is equal to

∑i

z=1 Ez .
We also know that since the decoding does not stop before
k, the number of erasures in any k′ l-interval for any k′ less
than k is strictly greater than k′. We denote a decoding
matrix admissible, if its elements are formed based on an
admissible erasure pattern.

Looking at the admissible decoding matrices from a
column perspective, the number of zeros in each column i
is equal to the number of rows j in which

∑

j Ej is strictly
less than i.

To illustrate this further, assume that S = 3 which
means there have been three erasures in the first three
intervals. There exists two admissible erasure patterns that
can lead to this case:

• All the erasures happen in the first interval. The
decoding operation is carried out as follows:





w1e1
w1e2

w1e3

w2e1
w2e2

w2e3

w3e1
w3e2

w3e3



 ·





e1

e2

e3



 =





c1

c2

c3



 .

In this case E1 = 3, E2 = 0, E3 = 0 and as we
explained the number of wijs in each row i is equal to
∑i

z=1 Ez. Furthermore, none of columns contains any
zero because for all columns i , all

∑

j Ej is greater
than or equal to i.

• Two erasures happen in the first interval and the last
one happens in the second interval. The decoding
operation is carried out as follows:





w1e1
w1e2

0
w2e1

w2e2
w2e3

w3e1
w3e2

w3e3



 ·





e1

e2

e3



 =





c1

c2

c3





In this case E1 = 2, E2 = 1, E3 = 0 and as we
explained the number of wijs in each row i is equal

to
∑i

z=1 Ez . Furthermore, the third column contains
one zero because for the first row

∑

j Ej = 2 is less
than 3.

Theorem 4 (Decoding failure for S = k). Consider an
admissible decoding matrix Gk×k, and assume that the
wijs are drawn identically and independently, uniformly
at random from field with size Q. The probability of the
matrix G to be of full rank is bounded as follows:

Pr(rank(G) = k) ≤

k−1
∏

j=0

(1 −
1

Qk−j
) (8)

Pr(rank(G) = k) ≥
Q

Q + 1
(1 −

1

Q2
)k. (9)

1Reminder: The term admissible is used here to mean that at least
two erasures should happen during a time t = l, at least three within
2l, and so on, so that the decoding process will remain activated for
the whole of the time t = kl.
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Note that these bounds coincide for the cases where k =
1 and k = 2, as there exists only one admissible decoding
matrix in each case.

Theorem 5 (Decoding failure for a stream of length N).
The decoding failure(DF) probability in a stream of length
N satisfies

lim
Nt→∞

1

Nt

P r(DF) ≤
(1 − lǫ)

l(1 − ǫ)l
.

∞
∑

i=1

(1 −
Q

Q + 1
(1 −

1

Q2
)i) Pr(S = i).

Corollary 1 (Decoding Failure Probability). The decod-
ing failure probability satisfies

lim
Nt→∞

1

Nt

P r(DF) ≤
(1 − lǫ)

l(1 − ǫ)l
.

( Q

Q + 1
(1 − ǫ0)l−1 − (1 − ǫ)l−1 +

1

Q + 1

)

, (10)

where ǫ0 is the solution to the equation

ǫ0(1 − ǫ0)l−1 = (1 −
1

Q2
)ǫ(1 − ǫ)l−1.

Since the function f(ǫ) = ǫ(1−ǫ)l−1 is increasing for ǫ < 1
l
,

the solution always exists and ǫ0 < ǫ.

Note that as Q becomes larger the decoding failure
probability goes to zero. As illustrated in the following
tables, we argue that in all practical purposes, Q is large
enough for this probability to be very small.

TABLE I
The upper bound on decoding failure probability per packet

in the base 10 logarithmic scale, ǫ = 0.02.

Q = 28x

x 1 2 4 10 20

l

25 -1.50 -3.91 -8.73 -22.76 -46.84
30 -1.41 -3.82 -8.64 -22.74 -46.82
35 -1.38 -3.79 -8.60 -22.75 -46.83
40 -1.41 -3.82 -8.64 -22.82 -46.91
45 -1.58 -3.99 -8.81 -23.03 -47.11

TABLE II
The upper bound on decoding failure probability per packet

in the base 10 logarithmic scale, ǫ = 0.1

Q = 28x

x 1 2 4 10 20

l

5 -2.24 -4.65 -9.46 -23.45 -47.53
6 -2.13 -4.54 -9.36 -23.42 -47.51
7 -2.09 -4.50 -9.31 -23.43 -47.52
8 -2.11 -4.52 -9.34 -23.51 -47.59
9 -2.27 -4.69 -9.51 -23.71 -47.79

V. Encoding and Decoding Complexity

Concerning the encoding complexity, note that we do
not need to encode over all preceding information packets,
but only those not yet received or decoded. To limit the
encoding complexity one can propose two schemes. The
first scheme uses feedback to keep an approximate track
of the decoding process. This will result in an encoding

complexity which is polynomial in E(S). The second
scheme assumes that the encoding is constrained to kl
preceding information packets and hence, there is a small
probability of decoding failure Pr(S > k) (which goes to
zero exponentially as k grows as given by the theorem 1).

The decoding complexity in our coding scheme also
depends on the process S. Assuming that S = k, a simple
Gaussian elimination is performed at each step with a total
of approximately 2k3

3 arithmetic operations[10]. Using the
elementary renewal theorem, very similar to the theorem
5 we have:

Theorem 6. The total number of arithmetic operation Cd

in a stream of length Nt which consists of Ni = (l−1)Nt

l

information packets, satisfies the following:

lim
Ni→∞

1

Ni

Cd =
3

2

1 − lǫ

(l − 1)(1 − ǫ)l
E(S3),

where

E(S3) = E(S2)+
l(l − 1)ǫ2(1 − ǫ)l(2 − 2ǫ − 2lǫ2 + lǫ + l2ǫ3)

(1 − lǫ)5
.

Proof. The proof is very similar to the proof of the
theorem 5. The computation of E(S3) is similar to the
computation of E(S2) performed in the theorem 1.

Note that the number of arithmetic operations per
information packet becomes very large as the coding rate
gets closer to the capacity. However, as illustrated in
our examples beloew, we propose that one uses such a
communication scheme in the low-delay regime, in which
the the complexity of decoding is not very high.

TABLE III
The average number of arithmetic operations performed in

the decoder per information packet, ǫ = 0.02

l 25 30 35 40 45
# of operations 0.67 1.93 7.11 41.74 769.58

TABLE IV
The average number of arithmetic operations performed in

the decoder per information packet, ǫ = 0.1

l 5 6 7 8 9
# of operations 3.13 8.87 32.56 190.96 3525

VI. Experimental Results

In this section, we compare our coding scheme with
random linear block codes with feedback. The linear block
code with feedback is implemented so that if the decoding
of the block code fails at any step, the receiver asks for
a retransmission. In our figures, RTT is round trip delay
time, cwnd is the congestion windows size, and BDP is the
bandwith delay product in the network.

A. Delay/Throughput Performance

In Fig. 4, we compare the mean in-order packet delivery
delay for our scheme with random linear block code with
different blocklength sizes with the same coding rate. As
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Fig. 4. Mean in-order packet delivery delay vs block size for ran-
dom linear block code, and for low-delay coding scheme. Link rate
25Mbps, RTT 60ms, loss rate 10%, redundancy 15%, cwnd fixed at
BDP (125 packets).

shown in the figure the delay is larger for linear block
codes.

In Fig. 5, the time history snapshots of the delay in two
schemes are shown. As can be seen, our construction has
a better delay profile in the sense that more packets are
experiencing lower in-order delivery delay.
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Fig. 5. Time history snapshots of in-order packet delivery delay
for random linear code with block size 64, and for low-delay coding
scheme. Link rate 25Mbps, RTT 60ms, loss rate 10%, redundancy
15%, cwnd fixed at BDP (125 packets).

In Fig. 6, the number of packets transmitted per infor-
mation packets in both schemes are compared.
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Fig. 6. Packets transmitted vs block size for random linear block
code, and for low-delay coding scheme. Link rate 25Mbps, RTT 60ms,
loss rate 10%, redundancy 15%, cwnd fixed at BDP.

B. Delay/Throughput vs Coding Rate

In Fig. 7, the mean delivery delay of different cod-
ing schemes is compared for different values of coding
rate(More precisely, the inverse of the coding rate). As
shown in the figure, our scheme performs the best in the
sense that for any given redundancy it has the lowest mean
in order delivery delay.
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Fig. 7. Mean in-order packet delivery delay vs packets transmitted
for random linear block code, and for low-delay coding scheme. Link
rate 25Mbps, RTT 60ms, loss rate 10%, cwnd fixed at BDP.

C. Low Delay Block Codes

We can place an upper limit on the number of packets
encoded over by partitioning the sequence of information
packets into blocks (or perhaps “chunks” is a better
terminology) and applying the low delay coding scheme
separately within each block. As the block size is increased,
the performance can be expected to approach that of the
streaming approach.

D. Example: Satellite link

As shown in Fig 9, at a link rate of 10Mbps, the mean
delay is 101ms with a block size of 128 packets and 33ms
with low delay code – factor of three reduction with low
delay approach. At a link rate of 2.5Mbps, the mean delay
is 162ms with a block size of 64 packets and 62ms with
low delay code – a factor of 2.5 reduction.
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0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

M
ea

n 
in

−
or

de
r 

de
liv

er
y 

de
la

y 
(m

s)

Block size (packets)

 

 

Low delay code

Block code

(a) Link rate 2.5Mbps
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Fig. 9. Mean in-order packet delivery delay vs packet loss rate for
random linear block code, and for low-delay coding scheme. Link
RTT 600ms, loss rate 10%, redundancy 15%, cwnd fixed at BDP
(500 packets).

VII. Conclusion and Future Work

We introduce a random linear code construction for
erasure packet channels and analyze its in-order delivery
delay behavior and show that for rates below the capacity,
the average in-order-delivery delay is better than the mean
delay introduced by the scheme which implements the
random linear block coding.

For the future work, we are going to investigate the
effect of putting more than one coded packet in each
interval which will help us to compare this method to

random linear block codes better. We will also investigate
the case where the placement of the coded packets is not
deterministic.
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