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Low-Density Graph Codes for Coded

Cooperation on Slow Fading Relay Channels

Dieter Duyck, Joseph J. Boutros, and Marc Moeneclaey

Abstract

We study Low-Density Parity-Check (LDPC) codes with iterative decoding on block-fading (BF)

Relay Channels. We consider two users that employ coded cooperation, a variant of decode-and-

forward with a smaller outage probability than the latter. An outage probability analysis for discrete

constellations shows that full diversity can be achieved only when the coding rate does not exceed a

maximum value that depends on the level of cooperation. We derive a new code structure by extending

the previously published full-diversity root-LDPC code, designed for the BF point-to-point channel,

to exhibit a rate-compatibility property which is necessary for coded cooperation. We estimate the

asymptotic performance through a new density evolution analysis and the word error rate performance

is determined for finite length codes. We show that our code construction exhibits near-outage limit

performance for all block lengths and for a range of coding rates up to 0.5, which is the highest

possible coding rate for two cooperating users.

Index Terms

Block fading channels, density evolution, low-density parity-check code, mutual information, relay

channels.
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I. INTRODUCTION

When communicating over fading channels, Word Error Rate (WER) performances as well

as power savings are dramatically improved through transmit diversity, i.e., transmitting signals

carrying the same information over different paths in time, frequency or space. Recently, a new

network protocol called Cooperative Communication [11], [26], [32], [40], [41] yields transmit

diversity using single-antenna devices in a multi-user environment by taking advantage of the

broadcast nature of wireless transmission.

The most elementary example of a cooperative network is the relay channel, introduced by

van der Meulen [31]. In a relay channel, a relay helps the source in transmitting its data

to a destination by relaying the messages sent by the source so that the received energy at

the destination is increased. This relay channel can be generalized to a cooperative Multiple

Access Channel (MAC) [26], where two users transmitting data to a single receiver cooperate

by alternately being the relay for the other user, as indicated in Fig. 1. Further generalization to

more users is possible, but this will not be discussed here for simplicity.
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Fig. 1. A Cooperative Multiple Access Channel (MAC). Arrows between two nodes illustrate that both nodes communicate

between each other.

A challenging channel model is the BF [3] frequency non-selective Single-Input Single-Output

(SISO) channel. When the fading gain is constant over a codeword and no cooperation is used,

the resulting word error rate curve (displaying the logarithm of the error rate versus the average

signal-to-noise ratio (SNR) in dB) has the same high-SNR slope as for uncoded transmission: the

March 28, 2011 DRAFT



3

corresponding diversity order1 equals one. The potential diversity increase brought by cooperative

techniques allows to save much transmit energy at a given error rate. BF channels are a realistic

model for a number of channels affected by slowly varying fading and flat fading is assumed in

order to isolate the effect of cooperative diversity.

The specific task of the relay is determined by the strategy or protocol. In the case Decode

and Forward (DF), the relay first decodes and then re-encodes the message before sending it

to the destination. A variant of DF is coded cooperation, where the relay decodes the message

received from the source, and then transmits additional parity bits of the message, resulting in

a more spectral efficient strategy [22], compared to a traditional DF protocol. Instead of SNR

accumulation (logarithmic rise of mutual information with received power from the relay) at the

destination, we get information accumulation (linear rise of mutual information with received

power from the relay) [46]. It has been shown in [23] that the outage probability [3], [33] of

coded cooperation for half-duplex BF channels is smaller than for repetition-based protocols.

Moreover, the concept of coded cooperation can be used in more complex strategies, such

as Amplify-Decode-Forward [2], where the relay can choose between DF and AF. So finally,

replacing the decode-and-repeat part in any protocol by this more intelligent “information adding”

strategy improves the outage probability performance. As a consequence, constructing a near-

outage channel code for a coded cooperation scenario results in a competitive error-correcting

code in terms of error-rate performance vs. SNR for a given rate R.

Up till now, coded cooperation has mainly been implemented using rate-compatible convo-

lutional codes [22]. The main drawback of these codes is that the WER increases with the

logarithm of block length to the power d where d is the diversity order [6], [7]. The WER of

practical near-outage codes should be independent of the block length in order to approach the

outage probability limit [16], [17]. The solution is to use capacity-achieving codes, for example

LDPC codes [36]. LDPC codes designed for the special case of a cooperative channel have been

reported for the Gaussian channel by Razaghi and Yu [34], [35] and by Chakrabarti et al. [9].

1Here, diversity order is defined as the ratio of the high-SNR slopes of the error rate curves of the considered system and

of the uncoded system, respectively. Alternatively, diversity order can be defined as the slope of the error-rate curve of the

considered system. The diversity depends on the fading gain distribution in the latter definition, but not in the former definition.

Both definitions are equal in the case of Rayleigh fading.
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For the block-fading channel however, there is still a lack of a near-outage LDPC code. Hu et

al. [20] also designed LDPC codes for the Gaussian relay channel, whereafter they applied this

random LDPC code to a BF relay channel. Unfortunately, a random code does not perform very

well on a BF relay channel, because it has not the structure to achieve full diversity, as shown

by Boutros et al. [5] and as will be explained in the rest of the paper.

In Section III, this paper analyzes the outage probability for binary phase shift keying (BPSK)

modulations and derives a coding rate limitation that is necessary for the protocol to have diversity

two, valid for all discrete alphabets. Deriving a code structure for coded cooperation will be

treated in the second part of the paper. The aim of coded cooperation is to send a codeword over

two independent fading paths and the relay must be able to decode after receiving the first part of

the codeword. An error-correcting code must therefore exhibit two properties: full-diversity and

rate-compatibility. This paper derives a new code structure satisfying both properties. Often [13]–

[15], perfect source-relay channels are assumed when designing error-correcting codes. These

codes can be extended immediately to codes for cooperative systems with non-perfect source-

relay channels using the proposed rate-compatible structure from this paper. We also determine

density evolution equations to obtain a lower bound on the WER of the LDPC ensemble. The

density evolution analysis can also be used to optimize the degree distributions, which will be

discussed briefly, but this is not the topic of the paper.

Channel-State Information (CSI) is assumed at the decoder. We consider half-duplex devices,

assuming that simultaneously receiving and transmitting data in the same frequency-band is too

complicated due to the limited isolation of directional couplers. In addition, we also restrict the

protocol to be orthogonal since we transmit at low rates (we use Binary Phase-Shift Keying

(BPSK)). The proposed code construction can nevertheless be used in more complex non-

orthogonal protocols, where one can achieve more coding gain in high-rate scenarios [1].

II. SYSTEM MODEL AND NOTATION

As mentioned in the introduction, the devices are half-duplex and users transmit in non-

overlapping time slots. The transmission of a codeword is organized in two frames which

constitute one block. We denote the transmission of user u, u = 1, 2, in frame m, m = 1, 2,

by Xu,m. The pair (Cu,1, Cu,2) denotes the codeword of user u. In the first frame of a block,
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each user broadcasts the first part of its encoded data to the other user and to the destination.

In the second frame, users either cooperate or send additional parity bits related to their own

information message, depending on whether they are able to decode the transmissions in the first

frame. The decoding failure is detected by the relaying user via a Cyclic Redundancy Check

(CRC) code or any other intelligent detection scheme. There are 4 cases to be distinguished, as

summarized in Fig. 2: in case 1, both users have successfully decoded the information from the

other user; in case 2, none of the users has been able to decode the information from the other

user; in case 3 (case 4), only user 2 (user 1) has successfully decoded the information from the

other user. Methods are known allowing the destination to detect which of these 4 cases has

occurred [21].

Frame 1 Frame 2

User 2

User 1 X1,1 = C1,1

X2,1 = C2,1

X1,2 = C2,2

X2,2 = C1,2

(a) Case 1. Both interuser transmissions are successfully

decoded. Each user cooperates in the second frame.

Frame 1

User 1

User 2

Frame 2

X1,1 = C1,1 X1,2 = C1,2

X2,1 = C2,1 X2,2 = C2,2

(b) Case 2. Both interuser communications failed. Each

user sends its own parity bits in the second frame.

Frame 1 Frame 2

User 2

User 1 X1,1 = C1,1

X2,1 = C2,1

X1,2 = C1,2

X2,2 = C1,2

(c) Case 3. User2-to-User1 communication failed. In the

second frame, user 1 sends its own parity bits and user 2

cooperates with user 1.

Frame 1 Frame 2

User 1

User 2

X1,1 = C1,1 X1,2 = C2,2

X2,1 = C2,1 X2,2 = C2,2

(d) Case 4. User1-to-User2 communicatino failed. In the

second frame, user 2 sends its own parity bits and user 1

cooperates with user 2.

Fig. 2. The 4 cases encountered in coded cooperation are listed above.

A codeword will consequently be split over 2 frames. We consider codewords to have a total

length equal to N binary digits, where N = N1 +N2, and N1 and N2 denote the length of the

first and second part of the codeword. We define the level of cooperation, β, as the ratio N2/N .

We denote the transmitter of a frame, which can be user 1 or user 2, by s and the receiver of

a frame, which can be user 1, user 2 or the destination, by r. Transmitted symbols of user 1

will be denoted x1[i] where i is the symbol time index, i ∈ {1, . . . , N}. Similarly, transmitted

symbols of user 2 are denoted x2[i]. The transmitted symbols are chosen from a BPSK alphabet,

xs[i] ∈ {1,−1}. Received symbols will be denoted ysr[i] for received symbols from transmitter

s to receiver r. The received symbol is given by
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ysr[i] = αsrxs[i] + zr[i], (1)

where zr[i] ∼ N (0, σ2) are independent noise samples and αsr ∈ R+ is the Rayleigh distributed

fading gain between sender s and receiver r, with normalized second order moment, E[α2
sr] = 1.

The fading coefficient αsr is assumed to be constant during 2 frames. Note that this channel

model is memoryless [10] and satisfies the channel symmetry condition, p(ysr[i]|αsr, xs[i] =

1) = p(−ysr[i]|αsr, xs[i] = −1). Each terminal is transmitting at a constant enery per symbol

Es, which is related to the energy per information bit Eb by Es = RcEb (BPSK). The total

energy per information bit-to-noise ratio is specified by Eb/N0.

We focus on binary LDPC codes C[N,K]2 with block length N , dimension K, and coding

rate Rc = K/N . Regular LDPC ensembles are characterized by the pair (db, dc), where db is the

maximum bitnode degree and dc is the maximum checknode degree. Irregularity is introduced

through the standard polynomials λ(x) and ρ(x) [38]:

λ(x) =

db
∑

i=2

λix
i−1, ρ(x) =

dc
∑

i=2

ρix
i−1.

where λ(x) and ρ(x) are the left and right degree distributions from an edge perspective. In

Section V the polynomials λ̊(x) and ρ̊(x), which are the left and right distributions from a node

perspective, will also be adopted:

λ̊(x) =

db
∑

i=2

λ̊ix
i−1, ρ̊(x) =

dc
∑

i=2

ρ̊ix
i−1.

In this paper, not all bit nodes and check nodes in the Tanner graph will be treated equally.

To elucidate the different classes of bit nodes and check nodes, a compact representation of the

Tanner graph, adopted from [8] and also known as protograph representation [42], will be used.

In this compact Tanner graph, bit nodes and check nodes of the same class are merged into one

node.
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Definition 1 The diversity order attained by a code C is defined as

d = − lim
γ→∞

logPe

log γ
,

where Pe is the word error rate after decoding.

Definition 2 An error-correcting code is said to have full diversity if d = Nu, where Nu is the

number of cooperating users.

Notice that the above definition assumes Rayleigh distributed single antenna channels. Ac-

cording to the blockwise Singleton bound [25], [30], the coding rate for an n-order full-diversity

code is upper bounded by Rcmax = 1/n. Hence, in a 2-user scenario we get Rc ≤ 0.5.

III. OUTAGE PROBABILITY ANALYSIS

The word error rate of practical systems is, in the limit of large block length, lower bounded

by the information outage probability

Pout = P
(

I(α, γ) < R
)

,

where I(α, γ) is the instantaneous mutual information as a function of a certain fading gain α

and average SNR γ, γ = Es

N0
= 1

2σ2 , where Es is the symbol energy. This definition remains valid

for a channel model as described in (1), but then α is the set of fading gains over a codeword

and γ is the set of average received SNRs. The rate R is the spectral efficiency of a user, only

taking into account its timeslots, hence not the average spectral efficiency2. The diversity order

of the outage probability limit is the same as the order attained by a full-diversity channel code

[16]. It is our aim in this paper to approach the outage probability limit for a range of values

of the spectral efficiency R. Since we use BPSK signaling, the spectral efficiency R is identical

to Rc.

The outage probability analysis of coded cooperation with a Gaussian alphabet has been

made in [23]. Here, the analysis considers BPSK signaling, leading to an important conclusion

in Corollary 1 at the end of this section. The stated corollary is also valid for larger discrete

2This is, in our opinion, necessary for a fair comparison between multiple user networks with a different number of users.
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alphabets.

The average mutual information of a SISO channel with received signal y, conditioned on the

channel realization α, is determined by the following well-known formula [44]:

I(X ; Y |α) = 1− EY |α

{

log2

(

1 + exp

[

−2yα

σ2

])}

, (2)

where EY |α is the mathematical expectation over Y given α. The outage event of a point-to-point

link is defined by the mutual information of that link being less than its transmission rate. The

outage event Eo of the relay channel is determined by a specific region in the multidimensional

space of instantaneous signal-to-noise ratios. Next, we give the exact definition of Eo for coded

cooperation with BPSK modulation. We shorten the notation I(Xi; Yj|αij) to Iij .

Proposition 1 In coded cooperation for a two-user MAC with BPSK signaling, the outage event

Eo related to user 1 is expressed as follows:

Eo
a)
=

[(

I12 >
R

1− β

)

∩

(

I21 >
R

1− β

)

∩ (I1d (1) < R)

]

∪

[(

I12 <
R

1− β

)

∩

(

I21 <
R

1− β

)

∩ (I1d (2) < R)

]

∪

[(

I12 >
R

1− β

)

∩

(

I21 <
R

1− β

)

∩ (I1d (3) < R)

]

∪

[(

I12 <
R

1− β

)

∩

(

I21 >
R

1− β

)

∩

(

I1d (4) <
R

1− β

)]

,

where

I12
b)
= 1− EY |α12

{

log2

(

1 + exp

[

−2y12α12

σ2
12

])}

, (3)

I21
b)
= 1− EY |α21

{

log2

(

1 + exp

[

−2y21α21

σ2
21

])}

, (4)

and where I1d(1) is I1d in case i. For each of the cases considered in Fig. 2, the mutual

information I1d can be calculated as follows:

Case 1:

I1d(1)
c)
= 1− (1− β) E⋫Y |α1d

{

log2

(

1 + exp

[

−2y1dα1d

σ2
1d

])}

− β EY |α2d

{

log2

(

1 + exp

[

−2y2dα2d

σ2
2d

])}

. (5)
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Case 2:

I1d(2)
c)
= 1− EY |α1d

{

log2

(

1 + exp

[

−2y1dα1d

σ2
1d

])}

. (6)

Case 3:

I1d(3)
c)
= 1− (1− β) EY |α1d

{

log2

(

1 + exp

[

−2y1dα1d

σ2
1d

])}

− β EY ′|α1dα2d

{

log2

(

1 + exp

[

−2(y′)(α2
1d + α2

2d)
3/2

σ2
1dα

2
1d + σ2

2dα
2
2d

])}

, (7)

y′ =
(α1dy1d + α2dy2d)

√

α2
1d + α2

2d

.

Case 4:

I1d(4)
c)
= 1− EY |α1d

{

log2

(

1 + exp

[

−2y1dα1d

σ2
1d

])}

. (8)

Proof:

a) is the union of four events associated to the four cases considered in Fig. 2. Each

case in Eo involves the intersection with an outage event where the mutual information

between a user and the destination is below the rate R, except for case 4, where only

the first frame is dedicated to user 1.

b) follows directly from (2).

c) uses the fact that the two frames in a block behave as parallel Gaussian channels whose

capacities add together. Of course, both frames timeshare a time-interval, which gives

a weight to each capacity term [10, Section 9.4], [43, Section 5.4.4].

(7) follows from maximum ratio combining [43] at the destination during the second frame.

The outage probability is obtained by integrating the joint probability distribution p(α12, α21, α1d, α2d)

over the volume defined by Eo:

Pout =

∫∫∫

Eo

p(α12, α21, α1d, α2d) dα12dα21dα1ddα2d.

Just as for the Gaussian modulation, there is only one free parameter β because R and γ are fixed

by the protocol and the physical environment. Hence, given R and γ, one can optimize the value

of β. For example, notice that for a low-SNR interuser channel, the outage probability improves
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while taking β smaller than 0.5 due to the enhanced protection of the source-relay channel.

On the other hand, a β smaller than 0.5 results in lower achievable coding rates, as proved in

Corollary 1. The optimization of β, as already undertaken in [23] for Gaussian modulations, is

not within the subject of this paper.

There is an important conclusion to draw from the analysis of Prop. 1:

Corollary 1 In coded cooperation over a block-fading channel for the 2-user MAC with a

cooperation level β, transmitting at a coding rate greater than min(β, (1− β)) renders a single

order diversity.

Proof: A necessary condition for coded cooperation to achieve full diversity over a block-

fading channel, is that it achieves full diversity over a Block Erasure Channel (BEC) [27],

because a BEC is an extremal case of a block-fading channel. We will show that this condition

is not satisfied for coding rates greater than min(β, (1− β)). In a BEC, the fading gain α takes

two possible values {0,+∞}. An outage event on a point-to-point channel is defined by the

fading gain α being zero. As a consequence, the possible values of the BPSK capacity on a

BEC are confined to zero or one. Hence, for the two-user MAC, the mutual information I1d

related to case 1 belongs to {1, β, (1− β), 0}. A double diversity order is equivalent to stating

that two outage events are necessary to lose the transmitted codeword. Take the scenario where

the user1-to-destination channel has fading gain zero and the user2-to-destination channel has

fading gain ∞. In this scenario, the mutual information I1d is equal to β. All coding rates higher

than β will limit the diversity order of the outage probability to one, since only one channel in

outage is enough to lose the codeword. From a similar reasoning, it is shown that Rc must be

smaller than (1 − β). This corollary is also valid for signaling strategies with M constellation

points.

In the sequel, if not otherwise stated, we assume a rate equal to Rc =
1
3
. From Corollary 1,

we know that the level of cooperation must at least belong to β ∈ [1
3
, 2

3
]. We stress on the fact

that the proposed code construction is very flexible in parameters such as the block length and

the coding rate. We will use β = 0.5 throughout this paper, which allows the broadest range of

coding rates according to Corollary 1. We illustrate this in the numerical results by showing the

WER performance of an LDPC code whose coding rate Rc approaches 1/2.
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IV. FULL-DIVERSITY LOW-DENSITY CODING FOR CODED COOPERATION

Codewords in coded cooperation are split over 2 frames. The first part of a codeword,

transmitted during the first frame should protect information on the noisy source-relay channel.

Consequently, a channel code, compatible with two distinct rates is to be devised. In non-

cooperative communications, this property is known as rate-compatibility where parity bits of

higher rate codes are embedded in those of lower rate codes [19]. The advantage is that all codes

can be encoded/decoded using a single encoder/decoder.

Rate-compatibility in the context of LDPC codes was first introduced by Li et al. [29] and Ha et

al. [18] and further elaborated for example in [45]. Two techniques have been used: puncturing

and extending. A fraction of parity bits of a mother code could be punctured to obtain higher

rate codes. However, the resulting rate range is limited because the deletion of too many bits

has a negative effect on decoding via belief propagation. To obtain a more dynamic range in

rates, the technique of extending has been used. The extension is made by adding extra parity

bits as illustrated in Fig. 3, where the overall code is the intersection of two constituent codes

defined by H2 and H1 padded with zeros on the right.

0

i 1p 2p

0

Frame 2Frame 1

H2

H1

Fig. 3. Parity-check matrix of a rate-compatible LDPC code obtained by the extension of higher rate codes. Symbols are split

into three classes: i for the information bits, 1p and 2p for two classes of parity bits. The classes i and 1p are transmitted by

the source in frame 1. Parity bits 2p are transmitted in the second frame, for example by the relay after successful decoding of

the first frame.

For simplicity, we only used the technique of extending to acquire rate-compatibility, but this

may be further optimized by combining puncturing and extending via known techniques [18],

[29], [45].
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A. Full-diversity LDPC codes

In coded cooperation, 4 cases occur depending on the success of the transmission in the first

frame. In each of the cases, the destination has other log-likelihood ratios at the input of the

decoder. In the following proposition, we will show that it is sufficient to guarantee that the

decoder at the destination achieves full diversity in case 1.

Proposition 2 In coded cooperation on a cooperative MAC, a code C attains full diversity, if

and only if full diversity is attained in case 1.

Proof: The WER after decoding Pe can be split as follows

Pe =

4
∑

i=1

P (case i)P (e|case i). (9)

The probability that a certain case occurs, depends on the success of decoding two point-to-point

channels, so that it is easy to derive that:

P (case 1) = (1−
c

γ
)(1−

c

γ
) (10)

P (case 2) = (
c

γ
)(
c

γ
) (11)

P (case 3) = (1−
c

γ
)(
c

γ
) (12)

P (case 4) = (
c

γ
)(1−

c

γ
), (13)

where c is a positive constant. To have Pe ∝
1
γ2 , the following conditions apply:

P (e|case 1) ∝
1

γ2
, (14)

P (e|case 2) ∝ 1, (15)

P (e|case 3) ∝
1

γ
, (16)

P (e|case 4) ∝
1

γ
. (17)

Eqs. (15), (16) and (17) are automatically satisfied, so that the only nessecary and sufficient

condition is (14).
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Due to Proposition 2, we will assume in the following analysis the occurrence of case 1 where

the transmission on the interuser channel in the first frame has been successful and both users

are cooperating in the second frame. Full-diversity coding on a relay channel must cope with

block erasures. Consider the coding structure plotted in Fig. 3. If all parity bits 2p are erased

due to deep fading in frame 2, then the decoder should be capable to retrieve information bits

i thanks to H1 and possibly recompute 2p thanks to H2. Unfortunately, under deep fading in

frame 1, a structure with a randomly generated H2, as in Fig. 3, cannot guarantee the retrieval

of the information bits through H2. The aim of this section is to explain how H2 can be tuned

in order to have full diversity for any left and right degree distribution and for any block length.

To the destination, it appears as if one source has sent its codeword over a point-to-point BF

channel in case 1. Therefore, we take the constituent code defined by H2 to be a full-diversity

LDPC code (referred to as root-LDPC code) as constructed by Boutros et al. in [8], [5] for non-

cooperative single-antenna channels with two or more fading states per codeword. The Tanner

graph notation for the root-LDPC code is given in Fig. 4. This notation is essential for the

analysis because we seek full diversity under iterative decoding. Full diversity of a root-LDPC

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

Parity node transmitted in frame 2.

Check node.

connected to a rootcheck.

connected to a rootcheck.

Information node transmitted in frame 2, 

Parity node transmitted in frame 1.

Information node transmitted in frame 1, 

Fig. 4. Notation for the Tanner graph of a full-diversity LDPC code.

structure is created by rootchecks, a special type of checknodes in the Tanner graph. As shown in

Fig. 5, the root and the leaves of this special checknode do not belong to the same frame. When

the rootbit is in frame 1, the leavebits are in frame 2, and vice versa. Using the limiting case of

a Block-Erasure Channel, it is easy to verify that a rootbit is determined via its rootcheck when

its own frame is erased. The complete root-LDPC structure is built after splitting information
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Fig. 5. Two types of rootchecks. On the left-hand side, the rootbit belongs to frame 1 and the leavebits belong to frame 2.

The symmetric case where channel states are switched is shown at the right-hand side.

bits into two classes, denoted 1i and 2i, and parity bits into two classes, denoted 1p and 2p.

The checknodes are cut into two classes denoted 3c and 4c3. The classes 3c and 4c consist

of rootchecks for information bits 1i and 2i respectively. The complete root-LDPC structure

including all types of nodes is illustrated in Figs. 6 and 7. Rootchecks are translated into two

identity matrices (or permutation matrices in general) inside the parity-check matrix in Fig. 7.
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4c

3c

2p

2i

1

2

3

3

2
1

1i

1p

F
ram

e 1
F

ram
e 2

N
4

N
4

N
4

N
4

N
4

N
4

Fig. 6. Tanner graph of a full-diversity LDPC code of length N and rate 1
2

. This compact graph representation has been

adopted from [8], [5], it is also known as protograph representation [42]. The integers labeling the edges of the Tanner graph

indicate the degree of a node along those edges for a regular (3,6) root-LDPC code. The binary elements are split into four

classes of each N
4

bits. The checknodes are cut into two classes of N
4

checks.

The proof of full-diversity for block-Rayleigh fading can be found in [8]. Note that the diversity

order of the root-LDPC code does not depend on the right or left degree distributions. For

3The checknode notation 1c and 2c is reserved for H1 in the cooperative code as described in the next subsection.
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simplicity, we only showed a regular (3,6) structure in Fig. 6.

1

1

1
1

1

1

1
1

2i1p 2p

0

0 4c

3c

1i

Frame 1 Frame 2

H1pH1i

H2i H2p

Fig. 7. Parity-check matrix of a rate 1
2

root-LDPC code.

Note that although this code is natural for the point-to-point BF channel, it isn’t for the

cooperative MAC. The source is sending only half of its information bits to the relay, who is

supposed to decode all the information bits. This sounds counter-intuitive and we are the first to

apply this concept in cooperative communications. Although it is counter-intuitive, it is necessary

to achieve full diversity with iterative decoding, as explained above.

For asymptotic code lengths, multi-edge type messages propagate in the root-LDPC graph

[39]. One has to choose between two different root-LDPC ensembles. If we refer to the Tanner

graph in Fig. 6, the two ensembles are distinguished as follows: (i) The first ensemble is built

by two random edge permutations (edge interleavers) connecting 3c to (2i, 2p) and 4c to (1i,

1p) respectively. This is equivalent to the random generation of two low-density matrices (H2i,

H2p) and (H1i, H1p) in the parity-check matrix shown in Fig. 7. (ii) The second ensemble is

built by four random edge permutations 3c−2i, 3c−2p, 4c−1i, and 4c−1p. In the root-LDPC

parity-check matrix, this is equivalent to building seperately the four submatrices H2i, H2p, H1i,

and H1p. For simplicity reasons, mainly in the density evolution (DE) analysis, we adopt the

first root-LDPC ensemble as part of the full-diversity cooperative code proposed in the next

subsection.

B. Rate-compatible full-diversity LDPC codes

The difference with [8] is that our code construction must take into account the protocol of

coded cooperation, i.e., the 4 different cases, to perform well on this channel. Furthermore, the
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optimized degree distributions of our code construction will be different from [8], because of

the multi-edge type structure [39] of this code construction. The structure of an LDPC ensemble

for coded cooperation is derived by joining the rate-compatibility property and the full-diversity

property. The global parity-check matrix is obtained by embedding the root-LDPC matrix (Fig.

7) into the rate-compatible matrix (Fig. 3). This leads to an asymmetric code where class 1i may

have a higher coding gain than class 2i. Therefore, we propose an extension to the “extending”

technique, due to the fact that we split the information bits over two frames, which is a new

phenomenon. To get a balanced structure, we replace the zero-padded H1 by the direct sum of

two rate R1 codes defined by H1s and H1r as illustrated in Fig. 8. Thus, the constituent code H1s

protects bits 1i and 1p via extra parity bits p′1. Similarly, in the second frame, extra parity bits

p′2 are generated from 2i and 2p. The bottom of the global parity-check matrix simply includes

the root-LDPC structure, connecting (1i, 1p) to (2i, 2p). For simplicity we can assume that H1s

and H1r belong to the same rate R1 random LDPC ensemble, defined by the degree distributions

(λ1(x), ρ1(x)). Hence, if the degree distribution of the root-LDPC is (λ2(x), ρ2(x)), we refer to

the rate-compatible root-LDPC (RCR-LDPC) as a (λ1(x), ρ1(x), λ2(x), ρ2(x)) code. The Tanner

graphs of a regular (3, 9, 3, 6) LDPC code and an irregular (λ1(x), ρ1(x), λ2(x), ρ2(x)) code are

shown in Figs. 9 and 10. Since we guarantee full diversity via a root-LDPC with a fixed rate

1
2
, the global coding rate of the RCR-LDPC code observed at the destination is Rc =

R1

2
. As a

consequence, the global coding rate Rc can be easily varied through R1 and is upper limited by

0.5.

1

1

1
1

1

1

1
1

1i 1p

00

1c

2c

3c

4c

000

Frame 2

0

2i 2p

0

00

0

0

0

Frame 1

H1pH1i

p′
1

H1s

H2i H2p

p′
2

H1r

Fig. 8. Parity-check matrix of a RCR-LDPC code for coded cooperation. The upper coding rate associated to H1s and H1r

is R1 = 2
3

, the bottom root-LDPC coding rate is 1
2

, and the overall coding rate is Rc = R1

2
= 1

3
.
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Fig. 9. Tanner graph of a regular (3, 9, 3, 6) RCR-LDPC code for coded cooperation. We see that the average bit degree is

d̄b = 5 and the average check degree is d̄c = 15
2

which results in Rc = 1− d̄b
d̄c

= 1
3

.
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4

R1N
4
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4
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λ1(x)

λ1(x) ρ1(x)

ρ2(x)

λ1(x)

λ1(x)
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λ1(x)
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ρ1(x)

λ1(x)
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4
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4

Fig. 10. Tanner graph of an irregular RCR-LDPC code for coded cooperation. The binary elements are split into six classes,

p′1 and p′2 of each
(1−R1)N

2
bits and 1i, 1p, 2i, and 2p of each R1N

4
bits. The checknodes are cut into four classes of R1N

4
checks.

Due to the identity matrices inside the parity-check matrix, new polynomials λ̃2(x) appear in

Fig. 10 in the connections 1i− 4c and 2i− 3c, as illustrated in Fig. 11.
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1

bits bits
λ(x)

λ̃(x)

Fig. 11. Transition from a traditional representation, characterized by an edge distribution polynomial λ(x), towards a

representation where one edge per bitnode is isolated resulting in a new degree distribution λ̃(x).

Proposition 3 In a Tanner graph with a left degree distribution λ(x), isolating one edge per

bitnode yields a new left degree distribution described by the polynomial λ̃(x):

λ̃ (x) =
∑

i

λ̃i x
i−1, λ̃i−1 =

λi(i− 1)/i
∑

j λj(j − 1)/j
. (18)

Proof: Let us define Tbit,i as the number of edges connected to a bitnode of degree i.

Similarly, the number of all edges is denoted Tbit. From Section II, we know that λ(x) =
∑dbmax

i=2 λix
i−1 expresses the left degree distribution, where λi is the fraction of all edges in the

Tanner graph, connected to a bitnode of degree i. So finally λi =
Tbit,i

Tbit
. A similar reasoning can

be followed to determine λ̃i:

λ̃i−1
a)
=

Tbit,i −
λi

i
Tbit

Tbit −
∑

j
λj

j
Tbit

b)
=

λiTbit −
λi

i
Tbit

Tbit −
∑

j
λj

j
Tbit

=
λi −

λi

i
∑

j
λj

j
j −

∑

j
λj

j

=
λi

i
(i− 1)

∑

j
λj

j
(j − 1)

.

a)
∑

j
λj

j
Tbit is equal to the number of edges that are removed which is equal to the

number of bits.

b) λiTbit is equal to the number of edges connected to a bit of degree i.

In Section V, we will also use ρ̃ (x), which is defined similarly as λ̃ (x).

Proposition 4 Consider a (λ1(x), ρ1(x), λ2(x), ρ2(x)) RCR-LDPC code for coded cooperation

March 28, 2011 DRAFT



19

transmitted on a 2-user block-fading cooperative MAC. Then, under iterative belief propagation

decoding, the RCR-LDPC code has full diversity.

Proof:

Let Λa
i , i = 1 . . . dc− 1 denote the input log-ratio probabilistic messages to a checknode Φ of

degree dc. The output message Λe for belief propagation is [37]

Λe = 2th−1

(

dc−1
∏

i=1

th

(

Λa
i

2

)

)

,

where th(x) denotes the hyperbolic-tangent function. Superscripts a and e stand for a priori

and extrinsic, respectively. To simplify the proof, we show that the suboptimal min-sum decoder

yields a diversity order 2. For a min-sum decoder, the output message produced by a checknode

Φ is now

Λe = min (|Λa
i |)

dc−1
∏

i=1

sign(Λa
i ).

An information bit ϑ of class 1i of degree db has Λ0 =
2αsrysr

σ2 where Λ0 is the log-likelihood ratio

coming from the likelihood p(ysd|ϑ). It also receives db messages: Λe
1,i, i = 1 . . . db1 and Λe

2,i, i =

1 . . . db2, db = db1 + db2, from its neighbouring checknodes in the constituent codes H1s and H2

respectively. The total a posteriori message corresponding to ϑ is Λ = Λ0+
∑db1

i=1 Λ
e
1,i+

∑db2
i=1 Λ

e
2,i.

In [8] it is proven that full-diversity is achieved if and only if Λ behaves as aα2
1d + bα2

2d, where

a, b > 0.

The addition of
∑db1

i=1 Λ
e
1,i cannot degrade the error probability Pe(1i) because the convolution

with the density of messages from H1s can only physically upgrade the resulting density. Thus,

it is sufficient to prove that message Λ0 +
∑db2

i=1 Λ
e
2,i exhibits full diversity, i.e., behaves as

aα2
1d + bα2

2d, which is proven in [8].

V. DENSITY EVOLUTION ON THE BLOCK-FADING RELAY CHANNEL

Richardson and Urbanke [36], [37] established that, if the block length is large enough,

(almost) all codes in an ensemble of codes4 behave alike, so the determination of the average

4The ensemble of all LDPC-codes that satisfy the left degree distribution λ(x) and right degree distribution ρ(x) is considered.

The ensemble is equipped with a uniform probability distribution.
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behavior is sufficient to characterize a particular code behavior. This average behavior converges

to the cycle-free case if the block length augments and it can be found in a deterministic way

through density evolution (DE). The evolution trees represent the local neighborhood of a bitnode

in an infinite length code whose graph has no cycles, hence incoming messages to every node

are independent.

A. Interuser channel

To determine the density of messages propagating in the graph of the constituent code H1s,

the following notation is used:

dmsr(x) = density of message from a bitnode to

a checknode in the mth iteration.

µsr(x) = density of the likelihood of

the source-relay channel.

Let X1 ∼ p1(x) and X2 ∼ p2(x) be two independent real random variables. The density function

of X1 +X2 is obtained by convolving the two original densities, written as p1(x)⊗ p2(x). The

notation p(x)⊗n denotes the convolution of p(x) with itself n times.

Let X1 ∼ p1(x) and X2 ∼ p2(x) be two independent real random variables. The density function

p(y) of the variable Y = 2 th−1
(

th
(

X1

2

)

th
(

X2

2

))

, obtained through a checknode with X1 and X2

at the input, is obtained through the R-convolution [37], written as p1(x)⊙ p2(x). The notation

p(x)⊙n denotes the R-convolution of p(x) with itself n times.

To simplify the notations, we use the following definitions:

λ (p (x)) =
∑

i

λi p(x)
⊗i−1, ρ (p (x)) =

∑

i

ρi p(x)
⊙i−1.

In the next subsection we will also use the following definitions:
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ρ (p (x) , t (x)) =
∑

i

(

ρi p(x)
⊙i−1 ⊙ t(x)

)

,

λ∗ (p (x)) = λ (p (x))⊗ (p (x)) ,

ρ∗ (p (x)) = ρ (p (x))⊙ (p (x)) .

The first definition is necessary because of the non-linearity of the R-convolution. Therefore, the

first equation is not equal to t(x)⊙ ρ (p (x)). The next subsection will also use the polynomials

ρ̊∗ (x) and λ̊∗ (x) which are defined by combining the two transformations, denoted by (̊.) (see

introduction) and (.)∗.

Fig. 12 illustrates the local neighborhood of a bitnode in the constituent code H1s.

1c 1c

bit−

node

1c

1p1i1p1i p′
1

ρ1(x)

λ1(x)

p′
1

ρ1(x)

Fig. 12. Local neighborhood of a bitnode in the constituent code H1s. This tree is used to determine the evolution of density

dsr(x) of messages from a bitnode to a checknode.

The DE equation in the neighborhood of the bitnode for a (λ1(x), ρ1(x)) LDPC code [36] is,

for all m,

dm+1
sr (x) = µsr(x)⊗ λ1

(

ρ1
(

dmsr(x)
)

)

. (19)

The threshold of a code is the minimum SNR at which a codeword can be decoded perfectly

[36]. Comparing the received signal-to-noise ratio with this threshold, the relay and the source

can determine whether the interuser transmissions can be decoded successfully and consequently

decide what to transmit in the second frame.
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B. Overall cooperative MAC

The proposed (λ1(x), ρ1(x), λ2(x), ρ2(x)) root-LDPC code has 6 variable node types and 4

checknode types. Consequently, the evolution of message densities under iterative decoding has

to be described through multiple evolution trees. Figs. 13, 15 and 16 show the local neighborhood

of a bit node of the class 1i. The local neighborhoods of bit nodes of the classes 1p, and p′1 can

be derived similarly. The local neighborhood of classes 2i, 2p, and p′2 are equivalent because of

code symmetry.

To determine the density of messages, the following notation is used:

am1 (x), a
m
2 (x) = density of message from 1i to 1c and

2i to 2c respectively, at the mth iteration,

fm
1 (x), fm

2 (x) = density of message from 1i to 3c and

2i to 4c respectively, at the mth iteration,

gm1 (x), g
m
2 (x) = density of message from 1i to 4c and

2i to 3c respectively, at the mth iteration,

km
1 (x), k

m
2 (x) = density of message from 1p to 1c and

2p to 2c respectively, at the mth iteration,

lm1 (x), l
m
2 (x) = density of message from 1p to 4c and

2p to 3c respectively, at the mth iteration,

qm1 (x), q
m
2 (x) = density of message from p′1 to 1c and

p′2 to 2c respectively in the mth iteration,

µi(x) = density of the likelihood of the channel

in the i’th frame.

Note that µ2(x) depends on the success or the failure of the transmissions in the first frame.

Proposition 5 The DE equations in the neighborhood of 1i for a (λ1(x), ρ1(x), λ2(x), ρ2(x))
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Fig. 13. Local neighborhood of bitnode 1i. This tree is used to determine the evolution of the density of messages 1i → 1c.

am+1
1 (x) = µ1(x)⊗ λ̊2

(

ρ̃2
(

f1i4c gm1 (x) + f1p4c lm1 (x), fm
2 (x)

)

)

⊗ λ1

(

ρ1
(

f1i1c am1 (x) + f1p1c km1 (x) + fp′

1
1c qm1 (x)

)

)

⊗ρ̊2

(

f2i3c gm2 (x) + f2p3c lm2 (x)
)

, (20)

fm+1
1 (x) = µ1(x)⊗ λ̊∗

1

(

ρ1
(

f1i1c am1 (x) + f1p1c km1 (x) + fp′

1
1c qm1 (x)

)

)

⊗ λ̊2

(

ρ̃2
(

f1i4c gm1 (x) + f1p4c lm1 (x), fm
2 (x)

)

)

,(21)

gm+1
1 (x) = µ1(x)⊗ λ̊∗

1

(

ρ1
(

f1i1c am1 (x) + f1p1c km1 (x) + fp′

1
1c qm1 (x)

)

)

⊗ λ̃2

(

ρ̃2
(

f1i4c gm1 (x) + f1p4c lm1 (x), fm
2 (x)

)

)

⊗ρ̊2

(

f2i3c gm2 (x) + f2p3c lm2 (x)
)

, (22)

RCR-LDPC ensemble for coded cooperation, for all m, are given in Eqs. (20), (21) and (22)
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Fig. 14. Part of the compact graph representation of the Tanner graph of a root-LDPC for coded cooperation. The number of

edges connecting (1i, 1p) to 4c is T . the number of edges connecting 1p to 4c is T1p. The number of edges connecting 1i to

4c is T1i.

where

f1p4c =

∑

i ρ̃2i/i
∑

i λ2i/i
, (23)

f1i4c =

∑

i ρ̃2i/i
∑

i λ̃2i/i
, (24)

f1p1c =

∑

i ρ1i/i
∑

i λ1i/i
, (25)

f1i1c = f1p1c, (26)

fp′11c = 1− f1i1c − f1p1c, (27)

f2i3c = f1i4c, (28)

f2p3c = f1p4c. (29)

Proof: Equations (20)-(29) are directly derived from the local neighborhood trees. To obtain

the proportionality factors (23)-(29), it is important to remark that we use the first ensemble of

root-LDPC codes, as explained at the end of Section IV-A. Let T denote the total number of

edges between the variable nodes (1i− 1p) and the checknodes 4c. Fig. 14 illustrates how f1p4c

and f1i4c are obtained:
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Fig. 15. Local neighborhood of bitnode 1i. This tree is used to determine the evolution of the density of messages 1i → 3c.

T
a)
=

R1N/4
∑

i ρ̃2i/i
(30)

T1p
a)
=

R1N/4
∑

i λi/i
(31)

T1i
a)
=

R1N/4
∑

i λ̃i/i
(32)

f1p4c
b)
=

T1p

T
(33)

f1i4c
b)
=

T1i

T
. (34)

a) The number of checknodes connected to i edges of T is ρ̃2i
i
T . A Similar reasoning

proves equations (31) and (32).

b) The fraction of edges T connecting 1p to 4c is f1p4c. The fraction of edges T connecting

1i to 4c is f1i4c.

The DE equations in the neighborhood of 1p and p′1 for a (λ1(x), ρ1(x), λ2(x), ρ2(x)) RCR-

LDPC ensemble for coded cooperation can be derived similarly.

Proposition 5 can be used for multiple purposes. First of all, it is used to estimate the

asymptotic performance. For a fixed fading set (α12, α21, α1d, α2d), it is possible to determine

whether the bit error probability converges to 0 or not. We refer to the event where the bit error
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Fig. 16. Local neighborhood of bitnode 1i. This tree is used to determine the evolution of the density of messages 1i → 4c.

probability does not converge to 0 by Density Evolution Outage (DEO). Thus, at a fixed SNR, it

is possible to determine the probability of a Density Evolution Outage PDEO by averaging over

a sufficient number of fading instances. Now, it is possible to write the word error probability

Pew of the ensemble as

Pew = Pew|DEO × PDEO + Pew|CONV × (1− PDEO); (35)

where Pew|DEO is the word error probability given a DEO event, Pew|DEO = 1, and Pew|CONV

is the word error probability when DE converges. The probability Pew|CONV depends on the

speed of convergence of density evolution and the population expansion of the ensemble with

the number of decoding iterations [24], so that

PDEO ≤ Pew. (36)

Thus, the performance estimated via density evolution is a lower bound for the word error

probability.

Secondly, Proposition 5 can be used to determine the threshold of C on an ergodic channel.

This does not directly serve the performance analysis for the BF channel. However, an analysis

in the real space of the fading coefficients has shown that this can be used to increase the coding
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gain on a BF relay channel [12]. But the optimization of the coding gain is outside the scope

of this paper and here we will only use Proposition 5 in the application of Eq. (36).

VI. NUMERICAL RESULTS

In this section we estimate the asymptotic performance of RCR-LDPC codes through DE and

verify Eq. (36) through finite length simulations. We studied different scenarios:

1) Scenario 1:

• The average SNR of the independent interuser channels is 5dB higher than the average

SNR on the source-destination link.

• The average SNR of the relay-destination link is equal to that on the source-destination

link.

• The coding rate is Rc =
1
3

and the cooperation level is β = 0.5.

For this scenario, we have tested two code ensembles: a regular (3,9,3,6) RCR-LDPC code and

an irregular (λ1(x), ρ1(x), λ2(x), ρ2(x)) RCR-LDPC code with left and right degree distributions

given by the polynomials

λ1(x) = 0.1989x+ 0.2305x2 + 0.0068x5 + 0.2774x6

+0.14267x19 + 0.1335x20 + 0.0102x21,

ρ1(x) = x12,

λ2(x) = 0.22767x+ 0.20333x2 + 0.2145x5

+0.011048x6 + 0.34346x19,

ρ2(x) = 0.5x7 + 0.5x8.

2) Scenario 2:

• The average SNR of the independent interuser channels is 12dB higher than the average

SNR on the source-destination link.

• The average SNR of the relay-destination link is 4dB higher than the average SNR on the

source-destination link.

• The coding rate is Rc = 0.45 and the cooperation level is β = 0.5.
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Here, we imitated the channel conditions used in [20]5. The average SNR of the interuser

channels is high with respect to the uplink channels, allowing a high coding-rate for the source-

relay channel. We used an irregular (λ1(x), ρ1(x), λ2(x), ρ2(x)) RCR-LDPC ensemble with left

and right degree distributions given by the polynomials

λ1(x) = 0.1581x+ 0.2648x2 + 0.1116x5 + 0.1354x6

+0.3301x14,

ρ1(x) = x43,

λ2(x) = 0.234413x+ 0.21392x2 + 0.123711x5 + 0.125548x6

+0.30241x19,

ρ2(x) = 0.71875x7 + 0.28125x8.

The coding rate for the interuser channel subcode H1 is equal to 0.9.

A. Density Evolution Outage

We evaluated the asymptotic performance of RCR-LDPC codes by applying DE on the

proposed code construction. The probability of Density Evolution Outage PDEO, which is a lower

bound of the WER, for both scenarios is illustrated in Fig. 17. Note that the outage probability for

both rates is, by coincidence, too close to distinguish. The simulated RCR-LDPC code ensembles

all perform within 1.5dB from the outage probability limit, whereas the irregular RCR-LDPC

code ensembles are within 1dB from the outage probability limit. This distance is respected for

many variations of the channel conditions, such as other interuser channel conditions or uplink

channel conditions. Note that our code construction can be applied on a full-duplex channel,

doubling the overall spectral efficiency. As mentioned before, the coding rate is adjustable by

varying the number of parity bits p′1 and p′2, which is illustrated in scenario 2.

In this work, we mainly focussed on the diversity order achieved by the code construction.

In more recent work [12] we optimized the degree distribution using the analysis of Section

V. Another method is based on density evolution with a modified Gaussian approximation that

5We use the same distribution of the fading and the same average SNR. However, in [20], the source keeps transmitting in the

second frame, so that a direct comparison between our code and the performance of the code proposed in [20] is not possible.
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Fig. 17. Density Evolution Outage probability of RCR-LDPC codes with coding rates Rc = 1
3

(scenario 1) and Rc = 0.45
(scenario 2) with iterative decoding on a cooperative MAC with two users. Es/N0 is the average symbol energy-to-noise ratio

on the source-destination link.

takes into account the SNR variation in one received codeword as well as the rate-compatibility

constraint [28].

B. Finite Length LDPC Codes

It is interesting to evaluate the finite length performance of the proposed RCR-LDPC codes.

Not only to approve the asymptotic performance, but also to see how to generate an instance of

the parity-check matrix, given by Fig. 8. Before showing the results, we will first discuss the

practical generation of this parity-check matrix.

Consider case 1 from Fig. 2. For the decoding process, the destination will apply the sum-

product algorithm on the overall graph including H1s, H1r, and H2. For the encoding process, it

is easier to determine the parity bits p′1, p
′
2, and (1p, 2p) with the parity-check matrices H1s, H1r,

and H2 respectively. As with standard LDPC encoding, these matrices will then be systemized

to determine the parity bits. An important constraint for the decoding process is the alignment

in the overall parity-check matrix of common bit nodes in both constituent codes. This can
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be achieved by prohibiting column permutations during the systemization of H1s, H1r and H2.

Except for case 4, which only decodes on H1s, the other cases need the same constraints.

1) Generation of H1s and H1r: H1s and H1r are randomly generated satisfying the degree

distribution ρ1(x) for its rows and the degree distribution λ1(x) for its columns. A sufficient

condition to prohibit column permutations during the systemization of H1s and H1r is imposing

on Hp′1
and Hp′2

to be full-rank. Hp′1
(Hp′2

respectively) is the most right square matrix of H1s

(H1r respectively).

2) Generation of H2: The generation of H2 can be split in the generation of H4c and H3c,

where H3c (H4c resp.) is the upper part (resp. lower part) of the parity-check matrix H2. H3c

is the concatenation of an identity matrix (permutation matrix), zeros and a randomly generated

matrix (H2i, H2p). The rows of (H2i, H2p) satisfy the degree distribution ρ̃2(x), the columns of

the most left square matrix H2i satisfy the degree distribution λ̃2(x) and the columns of the most

right square matrix H2p satisfy the degree distribution λ2(x). This is equivalent to generating a

random graph with two classes of bitnodes at the left side and one class of checknodes at the

right side of the graph. If n3c is the number of checknodes at the right side, then a random graph

with n3c∑
i ρ̃2i

edges is generated. A fraction
∑

i ρ̃2i/i∑
i λ̃2i/i

of the edges is connected to bit nodes of the

class 2i, whereas a fraction
∑

i ρ̃2i/i∑
i λ2i/i

of the edges is connected to bit nodes of the class 2p. In

the end, the identity matrix is simply added. H4c is generated similarly.

For the encoding process, we have to systemize this matrix. One solution is to switch the

columns associated with the 1i bit node class and the 2p bit node class. The most left square

matrix of H2 will then be block-diagonal with H2p and H1p on its diagonal. Having H2p and

H1p full-rank is consequently a sufficient condition to exclude column permutations during the

systemization of this matrix. After the generation of (2p, 1p), all the bits are put in the required

order 1i− 1p− 2i− 2p by switching back the bits of the classes 1i and 1p.

3) WER performance of finite length LDPC codes: The probability of Density Evolution

Outage PDEO is a lower bound of the WER of LDPC ensembles without cycles in its Tanner

graph, which is illustrated in Fig. 18 for irregular codes and in Fig. 19 for the regular code of

scenario 1. In the latter, we augment the blocklength to show that the WER of LDPC codes is
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independent of the block length. The results shows that inequality (36) is very tight in this case.
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Fig. 18. Comparison of Density Evolution Outage (DEO) probability of irregular RCR-LDPC codes with coding rates Rc = 1
3

(scenario 1) and Rc = 0.45 (scenario 2) with iterative decoding on a cooperative MAC with two users. Eb/N0 is the average

information bit energy-to-noise ratio on the source-destination link.
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Fig. 19. Comparison of RCR-LDPC codes for different block lengths with iterative decoding on a cooperative MAC for two

users, coding rate Rc = 1/3. The ratio Eb/N0 is the average information bit energy-to-noise ratio on the source-destination

link.

C. Comparison with Previous Work

As mentioned in the introduction, especially rate-compatible punctured convolutional codes

(RCPC) have been used in coded cooperation. The main drawback of these codes is that the WER

increases with the logarithm of the block length to the power d where d is the diversity order

[6], [7], whereas the WER of near-outage codes should be independent of the block length. This

can be seen clearly on Fig. 20, where we show the WER of two rate-compatible non-recursive
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non-systematic (75,53,47) convolutional codes with block length 500 and 5000 respectively. We

used the same channel conditions and coding rate as in scenario 1.

We also compared with another protocol, Decode and Forward (DF), using near-outage LDPC

codes for this protocol. Despite the fact that this implementation has near-outage performance,

the WER performance is worse than that of our code construction. The reason is that the outage

probability limit of DF is higher than that of coded cooperation.
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Fig. 20. Comparison of RCR-LDPC codes for coded cooperation with other work on a cooperative MAC for two users. We

simulated LDPC codes for Decode and Forward under iterative decoding and an implementation of rate-compatible convolutional

codes [21]. The ratio Eb/N0 is the average information bit energy-to-noise ratio on the source-destination link.

D. Comparison with fully random LDPC codes

Finally, a comparison with random LDPC codes is made. In Sec. IV-B, the global parity-check

matrix is obtained by embedding the root-LDPC matrix (Fig. 7) into the rate-compatible matrix

(Fig. 3). When using codes that are fully random generated, i.e., no special rootchecks are used,

then the global parity-check matrix is obtained by embedding a random LDPC matrix into the

rate-compatible matrix (Fig. 3), see Fig. 21, where H1 and H2 are randomly generated.

We simulated the same scenarios from the previous subsections, using the same code for H1

and using the degree distribution of previously published excellent LDPC codes for the Gaussian

channel for the random generation of H2.
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0

i1p 2p

Frame 2Frame 1

0 H2

H1

Fig. 21. Parity-check matrix of a rate-compatible LDPC code obtained by the extension of higher rate codes. Symbols are split

into three classes: i for the information bits, 1p and 2p for two classes of parity bits. The classes i and 1p are transmitted by

the source in frame 1. Parity bits 2p are transmitted in the second frame, for example by the relay after successful decoding of

the first frame. Matrix H1 is used to protect the information bits on the source channel. The parity bits generated by the relay

provide an extra protection through the code H2.

1) Scenario 1:

λ2(x) = 0.189x+ 0.177x2 + 0.136x4 + 0.126x5 + 0.027x6

+0.037x11 + 0.006x13 + 0.076x21 + 0.225x28,

ρ2(x) = 0.153x4 + 0.125x5 + 0.040x6 + 0.261x7

+0.149x8 + 0.178x9 + 0.041x10 + 0.055x11,

where the coding rate of (λ2(x), ρ2(x)) is Rc2 = 0.4, so that the overall coding rate is Rc = 1/3.

The comparison with a regular (3, 9, 3, 6) RCR-LDPC code is shown in Fig. 22.

2) Scenario 2:

λ2(x) = 0.230x+ 0.164x2 + 0.149x5 + 0.126x6 + 0.027x7

+0.037x15 + 0.006x16 + 0.243x17 + 0.018x23,

ρ2(x) = 0.153x5 + 0.425x7 + 0.149x8 + 0.273x9,

where the coding rate of (λ2(x), ρ2(x)) is Rc2 = 9/19, so that the overall coding rate is

Rc = 0.45. The comparison with an irregular RCR-LDPC code is shown in Fig. 23.

In scenario 1, the threshold of (λ2(x), ρ2(x)) is Eb/N0 = 0.1dB which is 0.338dB from the

Shannon limit; and in scenario 2, the threshold of (λ2(x), ρ2(x)) is Eb/N0 = 0.4dB which is
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MAC for two users, coding rate Rc = 1/3. The ratio Eb/N0 is the average information bit energy-to-noise ratio on the

source-destation link.
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Fig. 23. Comparison of RCR-LDPC codes with rate-compatible random LDPC codes for coded cooperation on a cooperative

MAC for two users, coding rate Rc = 0.45. The ratio Eb/N0 is the average information bit energy-to-noise ratio on the

source-destination link.

0.33dB from the Shannon limit. Despite the excellent thresholds of the codes in both scenarios,

full-diversity is not achieved. From these two examples, it is clear that rootchecks are necessary

to have full-diversity.

VII. CONCLUSION

We have studied LDPC codes for relay channels in a slowly varying fading environment

under iterative decoding. We have introduced the new family of rate-compatible root-LDPC

codes, which combines the rate-compatibility property with the full-diversity property for any

coding rate Rc ≤ Rcmax = min(β, 1 − β), where β is the cooperation level. Through a density
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evolution analysis and finite length simulations, we have shown that the error rate performance

of regular and irregular rate-compatible root-LDPC codes is close to the outage probability limit

and this occurs for all block lengths (finite and infinite) and all rates not exceeding Rcmax.

Its flexibility and high performance makes rate-compatible root-LDPC attractive for wireless

cooperative communications scenarios with slowly varying fading.
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[6] J.J. Boutros, E. Calvanese, and A. Guillén i Fàbregas, “Turbo code design for block fading channels,” Allerton Conf. on

Communication and Control, Illinois, 2004.
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at the Ecole Nationale Supérieure des Télécommunications (ENST, Telecom ParisTech), Paris, France. In 2007, he

started his Ph.D. research at the Department of Telecommunications and Information Processing (TELIN), Ghent

University, Gent, Belgium.

From Oct. 2007 until present, he conducted his Ph.D. research. He has held visiting appointments with Ecole
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