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Abstract—This paper presents a geometric approach to the con-
struction of low-density parity-check (LDPC) codes. Four classes
of LDPC codes are constructed based on the lines and points of Eu-
clidean and projective geometries over finite fields. Codes of these
four classes have good minimum distances and their Tanner graphs
have girth 6. Finite-geometry LDPC codes can be decoded in var-
ious ways, ranging from low to high decoding complexity and from
reasonably good to very good performance. They perform very well
with iterative decoding. Furthermore, they can be put in either
cyclic or quasi-cyclic form. Consequently, their encoding can be
achieved in linear time and implemented with simple feedback shift
registers. This advantage is not shared by other LDPC codes in gen-
eral and is important in practice. Finite-geometry LDPC codes can
be extended and shortened in various ways to obtain other good
LDPC codes. Several techniques of extension and shortening are
presented. Long extended finite-geometry LDPC codes have been
constructed and they achieve a performance only a few tenths of a
decibel away from the Shannon theoretical limit with iterative de-
coding.

Index Terms—Bit flipping decoding, column splitting, cyclic
code, Euclidean geometry, iterative decoding, low-density parity-
check (LDPC) codes, projective geometry, quasi-cyclic code, row-
splitting, shortening.

I. INTRODUCTION

L OW-density parity-check (LDPC) codes were first discov-
ered by Gallager [1], [2] in the early 1960s and have re-

cently been rediscovered and generalized [3]–[14]. It has been
shown that these codes achieve a remarkable performance with
iterative decoding that is very close to the Shannon limit [4],
[9]–[14]. Consequently, these codes have become strong com-
petitors to turbo codes [23]–[26] for error control in many com-
munication and digital storage systems where high reliability is
required.

An LDPC code is defined as the null space of a parity-check
matrix with the following structural properties: 1) each row
consists of “ones”; 2) each column consists of“ones”; 3)
the number of “ones” in common between any two columns,
denoted , is no greater than; 4) both and are small com-
pared to the length of the code and the number of rows in[1],
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[2]. Since and are small, has a small density of “ones”
and hence is a sparse matrix. For this reason, the code specified
by is called an LDPC code. The LDPC code defined above
is known as a regular LDPC code. If not all the columns or all
the rows of the parity-check matrix have the same number of
“ones” (or weights), an LDPC code is said to be irregular.

Although LDPC codes have been shown to achieve out-
standing performance, no analytic (algebraic or geometric)
method has been found for constructing these codes. Gallager
only provided a class of pseudorandom LDPC codes [1], [2].
Good LDPC codes that have been found are largely computer
generated, especially long codes. Encoding of these long
computer-generated LDPC codes is quite complex due to the
lack of code structure such as cyclic or quasi-cyclic structure.
Furthermore, their minimum distances are either poor or hard
to determine.

In this paper, we investigate the construction of LDPC codes
from a geometric approach. The construction is based on the
lines and points of a finite geometry. Well-known finite geome-
tries are Euclidean and projective geometries over finite fields.
Based on these two families of finite geometries, four classes
of LDPC codes are constructed. Codes of these four classes
are either cyclic or quasi-cyclic, and, therefore, their encoding
can be implemented with linear feedback shift registers based
on their generator (or characterization) polynomials [27], [28].
This linear time encoding is very important in practice and is
not shared by other LDPC codes in general. We call codes of
these four classes finite-geometry LDPC codes.

Finite-geometry LDPC codes have relatively good minimum
distances and their Tanner graphs do not contain cycles of
length . They can be decoded with various decoding methods,
ranging from low to high complexity and from reasonably good
to very good performance. These decoding methods include:
one-step majority-logic (MLG) decoding [28], [31], Gallager’s
bit flipping (BF) decoding [2], weighted MLG decoding [49],
weighted BF decoding,a posterioriprobability (APP) decoding
[2], and iterative decoding based on belief propagation (com-
monly known as sum-product algorithm (SPA)) [10], [11], [15],
[20]–[22]. Finite-geometry LDPC codes, especially high-rate
codes, perform very well with the iterative SPA decoding.

A finite-geometry LDPC code can be extended by splitting
each column of its parity-check matrix into multiple columns.
This column splitting results in a new sparse matrix and hence
a new LDPC code of longer length. If column splitting is done
properly, the extended code performs amazingly well using the
SPA decoding. An error performance only a few tenths of a
decibel away from the Shannon limit can be achieved. New
LDPC codes can also be constructed by splitting each row of the
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parity-check matrix of a finite-geometry LDPC code into mul-
tiple rows. Combining column and row splittings of the parity-
check matrices of finite-geometry LDPC codes, we can obtain
a large class of LDPC codes with a wide range of code lengths
and rates. A finite-geometry LDPC code can also be shortened
by puncturing the columns of its parity-check matrix that cor-
respond to the points on a set of lines or a subgeometry of the
geometry based on which the code is constructed. Shortened fi-
nite-geometry LDPC codes also perform well with the SPA de-
coding.

The paper is organized as follows. Section II presents a
construction method of LDPC codes based on the lines and
points of a finite geometry. Two types of codes are constructed
and their minimum distances are lower-bounded. Section III
gives the construction and characterization of LDPC codes
based on Euclidean and projective geometries. Various de-
coding methods for finite-geometry LDPC codes are discussed
in Section IV. A simple weighted BF decoding algorithm and
a two-stage hybrid soft/hard decoding scheme are presented.
Section V presents simulation results of error performance
of some finite-geometry LDPC codes using various decoding
methods. Techniques for extending and shortening finite-geom-
etry LDPC codes are given in Sections VI and VII, respectively.
Section VIII discusses the possible combinations of finite-ge-
ometry LDPC codes and turbo codes in concatenation form.
Finally, Section IX concludes this paper with some remarks
and suggestions of further research work.

II. FINITE-GEOMETRY LDPC CODES AND THEIR GENERAL

STRUCTURE

This section presents a simple construction of LDPC codes
based on the lines and points of finite geometries. Two types
of codes are constructed and their general structural properties
are investigated. Lower bounds on their minimum distances are
derived.

Let be a finite geometry with points and lines which has
the following fundamental structural properties: 1) every line
consists of points; 2) any two points are connected by one
and only one line; 3) every point is intersected bylines (i.e.,
every point lies on lines); and 4) two lines are either parallel
(i.e., they have no point in common) or they intersect at one
and only one point. There are two families of finite geometries
which have the above fundamental structural properties, namely,
Euclidean and projective geometries over finite fields.

Form a matrix over GF whose rows
and columns correspond to the lines and points of the finite ge-
ometry , respectively, where if and only if the th line
of contains the th point of and , otherwise. A row
in simply displays the points on a specific line ofand
has weight . A column in simply displays the lines that
intersect at a specific point in and has weight . The rows of

are called the incidence vectors of the lines in, and the
columns are called the intersecting vectors of the points in.
Therefore, is the incidence matrix of the lines in over
the points in . It follows from the second structural property of

that every two columns have exactly one “-component” in
common, and it follows from the fourth structural property of

that any two rows have at most one “-component” in common.
The density of this matrix, denoted, is defined as the ratio of
the total number of “ones” in to the total number of entries
in . Then we readily see that . If and are
small compared to and , then is a low-density matrix
which has all the structural properties defined in Section I.

The null space over GF of gives a binary LDPC code
of length . Such a code is called the type-I geometry-LDPC
code, denoted . The rows of are not necessarily lin-
early independent. Let be the rank of . Then is a
binary linear code with as its parity-check
matrix.

Let be the transpose of , i.e., .
Then is also a low-density matrix with row weightand
column weight . The null space over GF of gives a
binary LDPC code of length , denoted . Since and

have the same rank, is a binary linear
code. This code is called the type-II geometry-LDPC code.

and are called companion codes and have the same
number of parity-check symbols.

Let be the rows of where

for

An -tuple is a codeword of the type-I
geometry- LDPC code specified by if and only if
the inner product

(1)

for . The sum given by (1) is called a parity-check
sum (or simply check sum), which is simply a linear sum of a
subset of code bits. A code bit is said to be checked by the
sum (or the row ) if . Let be the set
of rows in that check on the code bit. Let denote the
set of check sums formed by the rows in. It follows from the
structural properties of that the code bit is contained in
every check sum in and any of the other code bits is
contained in at most one check sum in. The check sums in
(or the rows in ) are said to be orthogonal on the code bit
[28], [31]. The check sums in are called the orthogonal check
sums on code bit and the rows in are called the orthogonal
vectors on . For , each code bit is checked by
exactly orthogonal check sums. These orthogonal check sums
can be used for majority-logic decoding of the code [28], [31].
The code is capable of correcting any error pattern with or
fewer errors using one-step majority-logic decoding [28], [31].
As a result, the minimum distance of the type-I geometry-
LDPC code is at least .

Similarly, it can be shown that there arecheck sums orthog-
onal on each code bit of a codeword in the type-II geometry-
code . Therefore, is also one-step majority-logic de-
codable and has a minimum distance at least .

For a linear block code of lengthspecified by a parity-check
matrix of rows, a graph can be constructed to display the re-
lationship between its code bits and the check sums that check
on them. This graph consists of two levels of vertices. The first
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level consists of vertices which represent thecode bits of
the code. These vertices, denoted are called the
code-bit (or variable) vertices. The second level consists of
vertices which represent thecheck sums, , that
the code bits must satisfy. These vertices are called the check
sum vertices. A code-bit vertex is connected to a check sum
vertex by an edge, denoted , if and only if the code
bit is contained in the check sum. No two code-bit vertices
are connected and no two check sum vertices are connected.
This graph is a bipartite graph [32] which was first proposed by
Tanner [3] to study the structure and iterative decoding of LDPC
codes, and hence it is called the Tanner graph. The number of
edges that are connected to (or incident at) a code-bit vertex,
called the degree of , is simply the number of check sums that
contain . The number of edges that are incident at the check
sum vertex , called the degree of , is simply the number of
code bits that are checked by the check sum. For a regular
LDPC code, the degrees of all the code-bit vertices are the same
and the degrees of all the check-sum vertices are the same. Such
a Tanner graph is said to be regular.

A cycle in a graph of vertices and edges is defined as a se-
quence of connected edges which starts from a vertex and ends
at the same vertex, and satisfies the condition that no vertex (ex-
cept the initial and the final vertex) appears more than once [32].
The number of edges on a cycle is called the length of the cycle.
The length of the shortest cycle in a graph is called the girth of
the graph. The Tanner graph of a linear block code contains no
cycles of length and no cycles of odd lengths. Therefore, the
girth of the Tanner graph of a linear block code is at least.

In decoding a linear block code with the SPA decoding, the
performance very much depends on cycles of short lengths in
its Tanner graph. These short cycles, especially cycles of length
, make successive decoding iterations highly correlated and

hence severely limit the decoding performance [3], [10], [11],
[20], [33]–[35]. Therefore, to use the SPA for decoding, it is
important to design codes without short cycles in their Tanner
graphs, especially cycles of length.

Both types of geometry- LDPC codes are regular and
hence their Tanner graphs are regular. Since the row and
column weights of are and , respectively, the degrees
of each check-sum vertex and each code-bit vertex in the
Tanner graph of the type-I geometry-LDPC code are

and , respectively. Since is the transpose of , the
degrees of each check-sum vertex and each code-bit vertex
in the Tanner graph of the type-II geometry-code are

and , respectively. In fact, the Tanner graphs of the type-I
and type-II geometry- LDPC codes are dual graphs, i.e., the
code-bit vertices of one graph become the check-sum vertices
of the other graph and the check-sum vertices of one graph
become the code-bit vertices of the other graph.

It follows from the structural properties of the parity-check
matrices and that no two code bits are checked si-
multaneously by two check sums. This implies that the Tanner
graphs of both types of geometry-LDPC codes do not contain
cycles of length . However, they do contain cycles of length.
To show this, we use the fundamental property of a finite geom-
etry that any two points are connected by a line. Letand

be any two points in the finite geometry. Then there is a line
connecting and . Let be a third point in but not

on . Then there is a line connecting and and a line
connecting and . These three lines enclose a triangle

with and as the vertices. In the Tanner graph of the
type-I geometry- LDPC code, these three lines, , and
correspond to three check-sum vertices, say and and
the three points and correspond to three code-bit ver-
tices, say and . Each of these three check-sum vertices,

and is connected to only two of the three code-bit
vertices and . Since no two check-sum vertices are
connected to the same pair of code-bit vertices, the edges con-
necting and to and form a cycle of length

in the Tanner graph of the type-I geometry-code . The
number of cycles of length is equal to the number of triangles
in which can be enumerated and is

(2)

Since the Tanner graphs of type-I and type-II geometry-codes
are dual, they have the same girth and the same cycle distribu-
tion. The above analysis shows that the girth of the Tanner graph
of an LDPC code constructed based on the lines and points of a
finite geometry is .

III. EUCLIDEAN AND PROJECTIVEGEOMETRY LDPC CODES

Euclidean and projective geometries over finite fields form
two large families of finite geometries. The structures of these
two families of finite geometries have been well studied and can
be found in any major text in combinatorics or groups of finite
order. References [36]–[38] give a good exposition of this sub-
ject. A simple discussion of these two types of finite geometries
can also be found in [28]. To make this paper self-contained, the
fundamental structural properties of lines and points of these
two types of geometries are briefly described before the code
construction.

Based on the lines and points of Euclidean and projective
geometries, four classes of finite geometry LDPC codes can
be constructed. They are: 1) type-I Euclidean geometry (EG)-
LDPC codes; 2) type-II EG-LDPC codes; 3) type-I projective
geometry (PG)-LDPC codes; and 4) type-II PG-LDPC codes.
Among these four classes of codes, two are cyclic and two are
quasi-cyclic.

A. Type-I EG-LDPC Codes

Let EG be an -dimensional Euclidean geometry
over the Galois field GF where and are two positive
integers. This geometry consists of points, each point
is simply an -tuple over GF . The all-zero -tuple

is called the origin. The -tuples over
GF that represent the points of EG form an -di-
mensional vector space over GF . Therefore, EG is
simply the -dimensional vector space of all the -tuples
over GF . A line in EG is either a one-dimensional
(1-D) subspace of EG or a coset of a 1-D subspace.
Therefore, a line in EG consists of points. There are

(3)
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lines in EG . Every line has lines parallel
to it. For any point in EG , there are

(4)

lines intersecting at this point.
Let GF be the extension field of GF . Each element

in GF can be represented as an-tuple over GF .
Therefore, the elements in GF may be regarded as the

points in EG and hence GF may be regarded
as the Euclidean geometry EG . Let be a primitive
element of GF . Then
form the points of EG , where is the origin.
Let be a nonorigin point in EG . Then, the points

GF

form a line in EG . Since for ,
the line contains the origin as a point. We say that
passes through the origin. Letand be two linearly indepen-
dent points in EG . Then the collection of the following
points:

GF

form a line in EG that passes through the point. Lines
and do not have any point in common and

hence they are parallel. Let be a point which is linearly inde-
pendent of and . Then lines and
intersect at the point .

Let be a matrix over GF whose rows are the
incidence vectors of all the lines in EG that do not pass
through the origin and whose columns correspond to the

nonorigin points in EG . The columns are arranged
in the order of , i.e., the th column
corresponds to the point . Then consists of

columns and

(5)

rows. has the following structures: 1) each row
has weight ; 2) each column has weight

; 3) any two columns have at most one “-com-
ponent” in common, i.e., ; 4) any two rows have at most
one “ -component” in common. The density of is

which is small for and . Therefore,
is a low-density matrix.

Let be the null space of . Then
is a regular LDPC code of length .

We call this code the type-I -dimensional EG-LDPC code.
Since the column weight of is

the minimum distance of is at least
It turns out that this EG-LDPC code is the one-step majority-

logic decodable th-order EG code constructed based on
EG [28], [39], [40] and is the dual code of a polynomial
code [40]–[43]. Therefore, it is cyclic and its generator polyno-
mial is completely characterized by its roots in GF .

Let be a nonnegative integer less than . Then can be
expressed in radix- form as follows:

where for . The weight of , denoted
, is defined as the following sum:

(6)

For a nonnegative integer, let be the remainder resulting
from dividing by . Then .
Let be the generator polynomial of the type-I-di-
mensional EG-LDPC code. Let be a primitive element of
GF . Then is a root of if and only if [28], [39],
[40]

(7)

From the above characterization of the roots of , it has
been shown [40] that has the following sequence of
consecutive powers of:

as roots. It follows from the Bose–Chaudhuri–Hocquenghem
(BCH) bound [27]–[30] that the minimum distance of the type-I

-dimensional EG-LDPC code is lower-bounded as follows:

(8)

This bound is exactly the same as the bound given above based
on majority-logic decoding.

The number of parity-check symbols of the type-I-dimen-
sional EG-LDPC code is, of course, equal to the degree of its
generator polynomial . However, a combinatorial ex-
pression for this number has been derived by Lin [42].

A special subclass of EG-LDPC codes is the class of type-I
two-dimensional (2-D) EG-LDPC codes . For any pos-
itive integer , the type-I 2-D EG-LDPC code has the fol-
lowing parameters [28], [40]:

Length
Number of parity bits
Minimum distance
Row weight of the

parity-check matrix
Column weight of the

parity-check matrix (9)

For this special case, the geometry EG contains
lines that do not pass through the origin. Therefore, the parity-
check matrix of the type-I 2-D EG-LDPC code is
a square matrix. Actually,
can be constructed easily by taking the incidence vectorof
a line in EG that does not pass through the origin and
then cyclically shifting this incidence vector times. This
results in incidence vectors for the distinct
lines in EG that do not pass through the origin. The in-
cidence vector and its cyclic shifts form the rows of
the parity-check matrix . Therefore, is a
square circulant matrix. A list of type-I 2-D EG-LDPC codes is
given in Table I.

Example 1: Consider the 2-D Euclidean geometry
EG . Let be a primitive element of GF .
The incidence vector for the line is
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TABLE I
A LIST OF TYPE-I 2-D EG-LDPC CODES

This vector and its 14 cyclic shifts form the parity-check matrix
. The null space of this matrix is the type-I

2-D EG-LDPC code, the first code given in Table I.

It follows from the analysis of finite-geometry LDPC codes
given in Section II that the Tanner graph of the type-I-dimen-
sional EG code does not contain cycles of length. With some
modifications to (2) (due to the exclusion of the origin), we find
that the number of cycles of lengthis

(10)

We see that the Tanner graph of the code contains many cycles
of length .

B. Type-II EG-LDPC Codes

Let

Then is a matrix with rows and

columns. The rows of this matrix correspond to the nonorigin
points of EG and the columns correspond to the lines
in EG that do not pass through the origin. Its column
and row weights are and
respectively. Any two rows of this matrix have exactly one
“ -component” in common, and any two columns have at most
one “ -component” in common.

The null space of gives an LDPC code of length
. This code is called the type-II -dimensional EG-LDPC

code. This code is also one-step majority-logic decodable
and has minimum distance at least . Since

and have the same rank,
and have the same number of parity-check sym-
bols. Since the Tanner graphs of and
are dual, they have the same cycle distribution. For ,
since the parity-check matrix of the type-I 2-D
EG-LDPC code is a square matrix whose rows are
the cyclic shifts of the first row, the rows of are
simply permutations of the rows of . Therefore,

and are identical.

In general, for , is not cyclic but it can be
put in quasi-cyclic form. To see this, consider the

lines in EG that do not pass through the origin. The
incidence vectors of these lines can be partitioned into

(11)

cyclic classes. Each of these cyclic classes contains
incidence vectors of lines which are obtained by cyclically

shifting any incidence vector in the class times. For
each cyclic class of incidence vectors of lines, we can choose
a representative and the rest of the incidence vectors are gen-
erated by cyclically shifting this representative. Now we con-
struct a matrix , whose columns are the

representative incidence vectors of the cyclic classes. For
, let be a matrix whose

columns are theth (downward) cyclic shifts of the columns of
. Form the following matrix:

(12)

Then the null space of gives a quasi-cyclic type-II
-dimensional EG-LDPC code . Every cyclic

shifts of a codeword in is also a codeword in
. Encoding of quasi-cyclic codes can also be

achieved with linear feedback shift registers [27].

C. Type-I PG-LDPC Codes

The construction of PG-LDPC codes for both types is based
on the lines and points of projective geometries (PGs) over finite
fields. For the purpose of code construction, a brief description
of this family of finite geometries is given here.

Let GF be the extension field of GF . Let be
a primitive element of GF . Let

(13)

and . Then the order of is . The elements
form all the elements of GF . Con-

sider the first powers of , .
Partition the nonzero elements of GF into disjoint
subsets as follows:

(14)

for . Each set consists of elements and each
element is a multiple of the first element in the set. Represent
each set by its first element as follows:

with . For any GF , if
with , then is in and represented by .

If we represent each element in GF as an
-tuple over GF , then consists of -tu-

ples over GF . The -tuple for represents the
-tuples in . The -tuple over GF that rep-

resents may be regarded as a point in a finite geometry over
GF . Then the points form
an -dimensional projective geometry over GF , denoted
PG [28], [36]–[38]. Note that the elements in
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are considered to be the same point
in PG and a PG does not have an origin.

Let and be any two distinct points in PG .
Then, the line passing through (or connecting) and
consists of points of the following form: , where

and are from GF and are not both equal to zero. Since
and are the same point, there-

fore, each line in PG consists of

(15)

points.
Let be a point not on the line . Then,

the line and the line have
as a common point (the only common point). We say that

they intersect at . The number of lines in PG that
intersect at a given point is

(16)

There are

(17)

lines in PG .
Form a matrix whose rows are the incidence vec-

tors of the lines in PG and whose columns correspond
to the points of PG . The columns are arranged in the
order , , , . has rows and
columns. It follows from the structural properties of lines and
points described above that has the following struc-
tural properties: 1) each row has weight ; 2) each
column has weight ; 3) any two columns
have exactly one “-component” in common; and 4) any two
rows have at most one “-component” in common. The density
of is

For , is relatively small. Therefore, is a
sparse matrix.

Let be the null space of . Then
is a regular LDPC code, called the type-I-di-

mensional PG-LDPC code. Since the column weight of
is

the minimum distance of is at least
. This regular LDPC code turns out

to be the one-step majority-logic decodable th order PG
code constructed based on the lines and points of PG
discovered in the late 1960s [28], [44], [45] and is the dual
of a nonprimitive polynomial code [40]–[43]. It is cyclic and,
therefore, can be encoded with a linear feedback shift register
based on its generator polynomial.

Let be a nonnegative integer less than . For a
nonnegative integer, let be the remainder resulting from
dividing by . The -weight of , , is
defined by (6). Let be the generator polynomial of
the type-I -dimensional PG-LDPC code constructed based
on PG . Let be a primitive element of GF .

TABLE II
A LIST OF TYPE-I 2-D PG-LDPC CODES

Then has as a root if and only if is divisible by
and

(18)

with [28], [40], [44]. Let . The order
of is then . From the characteriza-
tion of the roots of given by (18), it can be shown [39],
[40] that has the following consecutive powers of:

(19)

as roots. Therefore, it follows from the BCH bound that the min-
imum distance of the type-I -dimensional PG-LDPC code is
lower-bounded as follows:

(20)

This bound is exactly the bound derived based on one-step ma-
jority-logic decoding.

The number of parity-check symbols of the type-I-dimen-
sional PG-LDPC for a given can be enumerated by deter-
mining the roots of its generator polynomial. A combinatorial
expression for this number can be found in [42].

A special subclass of PG-LDPC codes is the class of type-I
2-D PG-LDPC codes constructed based on PG for var-
ious . For any positive integer , the type-I 2-D PG-LDPC
code has the following parameters [28], [42], [46], [47]:

Length
Number of parity bits
Minimum distance
Row weight of the

parity-check matrix
Column weight of the

parity-check matrix (21)

It is a difference-set code [28], [46]. The parity-check matrix
of this code is a square

matrix, which can be formed by taking the incidence vector of
a line in PG and its cyclic shifts as rows. A list
of type-I 2-D PG-LDPC codes is given in Table II.

D. Type-II PG-LDPC Codes

Let be the transpose of . Then the
rows and columns of correspond to the points and
lines of PG , respectively. is also a low-den-
sity matrix with row weight and column
weight . The null space of gives a regular
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LDPC code, called the type-II -dimensional PG-LDPC code,
denoted . This code is also one-step majority-logic
decodable with minimum distance at least .
For , is a square matrix whose rows are
the cyclic shifts of the first row, and the rows of
are simply permutations of the rows of . As a result,

and are identical. In general, for ,
is not cyclic but it can be put in quasi-cyclic form

in a similar manner as for the type-II-dimensional EG-LDPC
code.

Example 2: Let and . The three-dimensional
(3-D) projective geometry PG has 85 points and 357
lines. To construct the type-I 3-D PG-LDPC code ,
we form the parity-check matrix whose rows are the
incidence vectors of all the 357 lines in PG and whose
columns correspond to all the 85 points in PG . The ma-
trix can be put in the following form:

where is the identity matrix and each is an
circulant matrix. The circulant matrices

have the following vectors (in polynomial form) as their first
rows, respectively:

The matrix has row weight and column
weight . The null space of gives a
type-I 3-D PG-LDPC code . The companion code of
this code is the null space of the parity-check matrix

The matrix has row weight and column
weight . has the same number of parity-check
bits as . Hence, it is a PG-LDPC code
with minimum distance at least.

It follows from (2), (13), and (15) that the number of cycles
of length in the Tanner graph of an -dimensional (type-I or
II) PG-LDPC code is

(22)

IV. DECODING OFFINITE-GEOMETRY LDPC CODES

Finite-geometry LDPC codes can be decoded in various
ways, namely one-step MLG decoding [28], [31], BF decoding
[1], [2], weighted MLG decoding, weighted BF decoding,
APP decoding [2], [31] and SPA decoding [10], [11], [15],
[20], [22]. These decoding methods range from low to high
decoding complexity and from reasonably good to very good
error performance. They provide a wide range of tradeoffs
among decoding complexity, decoding speed, and error perfor-
mance. MLG and BF decodings are hard-decision decoding
and they can be easily implemented. Since finite-geometry
LDPC codes have relatively good minimum distances, they
provide relatively large coding gains over the uncoded system.
MLG decoding has the least decoding delay and very high
decoding speed can be achieved. APP and the SPA decodings
are soft-decision decoding schemes. They require extensive
decoding computation but they provide the best error perfor-
mance. Weighted MLG and BF decodings are between hard-
and soft-decision decodings. They improve the error perfor-
mance of the MLG and BF decodings with some additional
computational complexity. They offer a good tradeoff between
error performance and decoding complexity. The SPA decoding
gives the best error performance among the six decoding
methods for finite-geometry LDPC codes and yet is practically
implementable.

The first MLG decoding algorithm was devised by Reed [48]
for decoding Reed–Muller codes [27]. Later Reed’s algorithm
was reformulated and generalized by Massey for decoding both
block and convolutional codes [31]. A thorough discussion of
various types and implementation of MLG decoding can be
found in [28]. Therefore, we will not describe this decoding
method here. APP decoding also gives minimum error perfor-
mance, however, it is computationally intractable and hence it
will not be discussed here for decoding finite-geometry LDPC
codes. A good presentation of APP decoding can be found in
[1], [2].

Suppose a finite-geometry (EG- or PG-) LDPC codeis
used for error control over an additive white Gaussian noise
(AWGN) channel with zero mean and power spectral density

. Assume binary-phase shifrt keying (BPSK) signaling
with unit energy. A codeword is
mapped into a bipolar sequence
before its transmission where for

and for with .
Let be the soft-decision received
sequence at the output of the receiver matched filter. For

where is a Gaussian
random variable with zero mean and variance . Let

be the binary hard-decision received
sequence obtained fromas follows: for and

for .
Let be the parity-check matrix of the finite-geometry

LDPC code with rows and columns. Let ,
denote the rows of , where
for . Then

(23)
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gives the syndrome of the received sequence, where the th
syndrome component is given by the check sum

(24)

The received vector is a codeword if and only if . If
, errors in are detected. A nonzero syndrome component

indicates a parity failure. The total number of parity failures
is equal to the number of nonzero syndrome components in.
Let

(25)

Then is the error pattern in . This error pattern and the
syndrome satisfy the condition

(26)

where

(27)

for .

A. BF Decoding

BF decoding of LDPC codes was devised by Gallager in the
early 1960s [1], [2]. When detectable errors occur during the
transmission, there will be parity failures in the syndrome

and some of the syndrome bits are equal to
. BF decoding is based on the change of the number of parity

failures in when a bit in the received
sequence is changed.

First, the decoder computes all the parity-check sums based
on (24) and then changes any bit in the received vector
that is contained in more than some fixed numberof un-
satisfied parity-check equations. Using these new values, the
parity-check sums are recomputed, and the process is repeated
until the parity-check equations are all satisfied. This decoding
is an iterative decoding algorithm. The parameter, called
threshold, is a design parameter which should be chosen to
optimize the error performance while minimizing the number
of computations of parity-check sums. The value ofdepends
on the code parameters and the signal-to-noise
ratio (SNR).

If decoding fails for a given value of, then the value of
can be reduced to allow further decoding iterations. For error
patterns with number of errors less than or equal to the error
correcting capability of the code, the decoding will be com-
pleted in one or a few iterations. Otherwise, more decoding iter-
ations are needed. Therefore, the number of decoding iterations
is a random variable and is a function of the channel SNR. A
limit may be set on the number of iterations. When this limit is
reached, the decoding process is terminated to avoid excessive
computations. Due to the nature of LDPCs, the above decoding
algorithm corrects many error patterns with number of errors
exceeding the error correcting capability of the code.

A very simple BF decoding algorithm is given as follows.

Step 1 Compute the parity-check sums (syndrome bits). If
all the parity-check equations are satisfied (i.e., all
the syndrome bits are zero), stop the decoding.

Step 2 Find the number of unsatisfied parity-check equa-
tions for each code bit position, denoted,

.
Step 3 Identify the set of bits for which is the largest.
Step 4 Flip the bits in set .
Step 5 Repeat Steps 1) to 4) until all the parity-check equa-

tions are satisfied (for this case, we stop the iteration
in Step 1) or a predefined maximum number of it-
erations is reached.

BF decoding requires only logical operations. The number
of logical operations performed for each decoding itera-
tion is linearly proportional to (or ), say ,
where the constant depends on the implementation of the
BF decoding algorithm. Typically, is less than three. The
simple BF decoding algorithm can be improved by using adap-
tive thresholds ’s. Of course, this improvement is achieved at
the expense of more computations. EG- and PG-LDPC codes
perform well with the BF decoding due to the large number of
check sums orthogonal on each code bit.

B. Weighted MLG and BF Decodings

The simple hard-decision MLG and BF decodings can be im-
proved to achieve better error performance by including some
kind of reliability information (or measure) of the received sym-
bols in their decoding decisions. Of course, additional decoding
complexity is required for such performance improvement.

Consider the soft-decision received sequence

For the AWGN channel, a simple measure of the reliability of a
received symbol is its magnitude . The larger the magni-
tude , the larger the reliability of the hard-decision digit.
Many algorithms for decoding linear block codes based on this
reliability measure have been devised. In the following, this re-
liability measure is used to modify the one-step majority logic
decoding and the BF decoding.

Again consider a finite-geometry LDPC code specified by a
parity-check matrix with rows, . For

and , define

(28)

and

(29)

where is the set of check sums orthogonal on bit position.
The value is simply a weighted check sum that is orthogonal
on the code bit position. Let be the
error pattern to be estimated. Then the one-step MLG decoding
can be modified based on the weighted check sumas follows:

for

for
(30)

for . The above decoding algorithm is called
weighted-MLG decoding and was first proposed by Kolesnik in
1971 [49] for decoding majority logic decodable codes.
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The decision rule given by (30) can be used in BF decoding.
In this case, the decoding is carried out as follows.

Step 1: Compute the check sums. If all the parity-check
equations are satisfied, stop the decoding.

Step 2: Compute based on (29), for .
Step 3: Find the bit position for which is the largest.
Step 4: Flip the bit .
Step 5: Repeat Steps 1 to 4. This process of BF continues

until all the parity-check equations are satisfied or a
preset maximum number of iterations is reached.

This modified BF algorithm is called weighted BF decoding
algorithm.

The above weighted decoding algorithms are in a way soft-
decision decoding algorithms and require real addition opera-
tions to compute the weighted check sums’s to make deci-
sions. Since a real addition operation is much more complex
than a logical operation, the computational complexities of both
weighted MLG and BF decodings are dominated by the total
number of real additions needed to decode a received sequence.
From (29), we can readily see that for weighted MLG decoding,
the number of real additions required for decoding a received
sequence is where is a constant. How-
ever, for weighted BF decoding, the number of real additions
needed for each decoding iteration is . Since

(or ) is the total number of -entries in the parity-check
matrix of the code, the computational complexities of both
weighted-MLG and -BF decodings are linearly proportional to
the total number of -entries in .

C. The Sum–Product Algorithm

The sum–product algorithm (SPA) [17]–[20], [33] is an it-
erative decoding algorithm based on belief propagation [10],
[11], [20]–[22] which is extremely efficient for decoding LDPC
codes. Like MAP probability decoding algorithm [50], it is a
symbol-by-symbol soft-in/soft-out decoding algorithm. It pro-
cesses the received symbols iteratively to improve the reliability
of each decoded code symbol based on the parity-check sums
computed from the hard decisions of the received symbols and
the parity-check matrix that specifies the code. The reliability
of a decoded symbol can be measured by its marginalposteriori
probability, its log-likelihood ratio (LLR), or the value of its cor-
responding received symbol. The computed reliability measures
of code symbols at the end of each decoding iteration are used
as inputs for the next iteration. The decoding iteration process
continues until a certain stopping condition is satisfied. Then,
based on the computed reliability measures of code symbols,
hard decisions are made.

Again we consider a finite-geometry LDPC code of
length specified by a parity-check matrix with rows,

. For , define the following index set
for :

(31)

which is called the support of .

The implementation of the SPA decoding [10] is based on the
computation of marginala posterioriprobabilities ’s for

. Then the LLR for each code bit is given by

(32)

Let and be the prior probabil-
ities of and , respectively.

For and each , let be the
conditional probability that the transmitted code bithas value

, given the check sums computed based on the check vectors in
at the th decoding iteration. For

and , let be the conditional probability that the
check sum is satisfied, given ( or ) and the other
code bits in have a separable distribution

i.e.,

(33)

The computed values of are then used to update the values

of as follows:

(34)

where is chosen such that .
At the th iteration step, the pseudo-posterior probabilities are

given by

(35)

where is chosen such that .
Based on these probabilities, we can form the vector

as the decoded candidate with

for

otherwise.

Then compute If , stop decoding the
iteration process and output as the decoded codeword.

The SPA decoding in terms of probability consists of the fol-
lowing steps.

Initialization: Set , maximum number of iterations to
. For every pair such that

with and , set

and .
Step 1: For and each ,

compute the probabilities, and .
Go to Step 2.

Step 2: For and each ,
compute the values of and
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Fig. 1. Bit-error probabilities of the type-I 2-D(255; 175) EG-LDPC code and(273; 191) PG-LDPC code based on different decoding algorithms.

and the values of and
. Form and test

. If or the
maximum iteration number is reached,
go to Step 3. Otherwise, set and
go to Step 1.

Step 3: Output as the decoded codeword and
stop the decoding process.

In the above SPA decoding, real number addition, subtraction,
multiplication, division, exponential, and logarithm operations
are needed. In implementation, the last four types of operations
are more complex than addition and subtraction. For this reason,
we simply ignore the number of additions and subtractions in
analyzing the computational complexity. From (33)–(35), we
find that the number of multiplications and divisions needed in
each iteration of the SPA decoding is of the order
and the number of exponential and logarithm operations needed
for each iteration of decoding is of the order . A detail
exposition of the SPA can be found in [10], [17]–[20], [33].

D. Two-Stage Hybrid Decoding

The SPA decoding is computationally expensive. Each de-
coding iteration requires many real number computations. If de-
coding of a code with the SPA converges slowly, a large number
of iterations is needed to achieve the desired performance. A
large number of iterations results in a large number of computa-
tions and long decoding delay which is not desirable in high-
speed communications. However, for finite- geometry LDPC
codes, this difficulty can be overcome by using a two-stage hy-

brid soft/hard decoding scheme. At the first stage, a code is de-
coded with the SPA with a small fixed number of iterations,
say . At the completion of the th iteration, hard decisions of
decoded symbols are made based on their LLRs. This results
in a binary sequence of estimated code bits. This sequence

is then decoded with the simple one-step MLG decoding.
This two-stage hybrid decoding works well for finite-geometry
LDPC codes because they have large minimum distances and
SPA decoding of these codes converges very fast. Simulation
results for many codes show that the performance gap between
five iterations and 100 iterations is within 0.2 dB. Therefore,
at the first stage, we may set the number of iterations for the
SPA decoding to five or less (in many cases, two iterations are
enough). The resulting estimated code sequencemay still con-
tain a small number of errors. These errors will be corrected by
the one-step MLG decoding at the second stage due to the large
majority-logic error-correcting capability of the finite-geometry
LDPC codes.

The two-stage hybrid soft/hard decoding scheme offers
a good tradeoff between error performance and decoding
complexity. Furthermore, it reduces decoding delay.

V. PERFORMANCE OFFINITE-GEOMETRY LDPC CODES

To demonstrate the error performance of finite-geometry
LDPC codes, we select several EG- and PG-LDPC codes
of various lengths and decode them with various decoding
methods. Figs. 1–8 show the error probabilities of these codes.

Fig. 1 gives the bit-error performance of the type-I 2-D
EG-LDPC code and the type-I 2-D
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Fig. 2. Bit-error probabilities of the(255; 175) EG-LDPC code,(273; 191) PG-LDPC code and two computer generated(273; 191) Gallager codes with the
SPA decoding.

Fig. 3. Bit- and block-error probabilities of the type-I 2-D(1023; 781)EG-LDPC code and(1057; 813)PG-LDPC code based on different decoding algorithms.

PG-LDPC code given in Tables I and II, respectively. These
two codes are equivalent in terms of geometries based on

which they are constructed. They have about the same rate
and minimum distance. The EG-LDPC code is decoded with
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Fig. 4. Bit-error probabilities of the(1023; 781) EG-LDPC code,(1057; 813) PG-LDPC code and two computer-generated(1057; 813) Gallager codes with
the SPA decoding.

Fig. 5. Bit- and block-error probabilities of the type-I 2-D(4095; 3367) EG-LDPC code and(4161; 3431) PG-LDPC code based on different decoding
algorithms.
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Fig. 6. Error performances of the type-I 3-D(511; 139) EG-LDPC code and the type-II 3-D(4599; 4227) EG-LDPC code with the SPA decoding.

Fig. 7. Error performance of the type-II five-dimensional (5-D)(86955; 85963) EG-LDPC code with the SPA decoding.
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Fig. 8. Convergence of the SPA decoding for the type-I 2-D(4095; 3367) EG-LDPC code.

various decoding methods but the PG-LDPC code is only
decoded with the SPA decoding. From Fig. 1, we see that these
two codes have almost the same error performance with the
SPA decoding. We also see that the SPA decoding gives the best
error performance at the expense of computational complexity.
The hard-decision BF decoding achieves relatively good error
performance with much less computational complexity. It
outperforms the simple one-step MLG decoding by 0.45 dB
at the bit-error rate (BER) of . With some additional
computational complexity, the weighted BF decoding achieves
0.75- and 1.20-dB coding gains over the hard-decision BF and
MLG decodings at the BER of , respectively, and it is
only 1.2 dB away from the performance of the SPA decoding.
It requires much less computational complexity than that of
the SPA decoding. Therefore, weighted BF decoding provides
a very good tradeoff between the error performance of the
SPA decoding and the complexity of the simple one-step MLG
decoding. Fig. 2 gives a comparison of the error performance
of the two finite-geometry LDPC codes and that of two
best computer-generated Gallager’s LDPC codes
[10] with equals to and , respectively. All codes are
decoded with the SPA decoding. For the two finite-geometry
LDPC codes, the maximum number of decoding iterations
is set to 50, however, for Gallager’s codes, the maximum
number of decoding iterations is set to 200. We see that both
finite-geometry LDPC codes outperform their corresponding
computer-generated Gallager’s codes. The Gallager’s code
with also shows an error floor. This indicates that the
code has poor minimum distance.

Fig. 3 shows the bit-error performance of the type-I 2-D
EG-LDPC code and the type-I 2-D

PG-LDPC code given in Tables I and II, respectively. These
two codes are equivalent in terms of the code construction
geometries and they have about the same rate and minimum
distance. Again, the EG-LDPC code is decoded with various
decoding methods and the PG-LDPC code is only decoded with
the SPA decoding. The two codes perform almost the same
with the SPA decoding. At the BER of , the performance
of both codes is only 1.7 dB away from the Shannon limit
(with binary-input constraint computed based on the rate of
the code). For codes of length and rate ,
this performance is amazingly good. Again, we see that the
weighted BF performs very well and provides a good tradeoff
between the error performance of the SPA decoding and the
decoding complexity of the simple one-step MLG decoding.
The block error performance of both codes with the SPA de-
coding is also shown in Fig. 3. They both perform well. Fig. 4
gives a comparison of the error performance of the two finite
geometry LDPC codes and that of two best computer-generated

Gallager’s LDPC codes with equals to and
, respectively. All codes are decoded with the SPA decoding.

We see that the two finite-geometry LDPC codes slightly
outperform their corresponding Gallager’s codes.

The next two codes being evaluated are the type-I 2-D
EG-LDPC code and the type-I 2-D

PG-LDPC code, the fifth codes given in Tables I and II,
respectively. Both codes have rates about . Their error
performances with various types of decoding are shown in
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Fig. 9. Bit-error probabilities of the type-I 2-D(4095; 3367) EG-LDPC code based on two-stage hybrid decoding.

Fig. 5. With the SPA decoding, they perform 1.5 dB from the
Shannon limit at the BER of .

For , the type-I 3-D EG-LDPC code
is a code with minimum distance at least . Its
parity-check matrix is a matrix with
row weight and column weight . Then,

is a matrix with row weight and column
weight . The null space of gives the type-II 3-D
EG-LDPC code which is a code with minimum
distance at least and rate . The type-I code is a low-rate
code but the type-II code is a high-rate code. Both codes have
372 parity-check bits. The bit- and block-error performances of
both codes with the SPA decoding are shown in Fig. 6. We see
that the type-II EG-LDPC code performs very
well. At BER of , its performance is only 1 dB away from
the Shannon limit.

For and , the type-II five-dimensional (5-D)
EG-LDPC code constructed based on the lines and
points of EG is an code with rate
and minimum distance at least. With the SPA decoding, this
code performs only 0.4 dB away from the Shannon limit at the
BER of as shown in Fig. 7. Its block error performance is
also very good.

In decoding the finite-geometry LDPC codes with the SPA
decoding, we set the maximum number of decoding iter-
ations to 50. Many codes have been simulated. Simulation re-
sults of all these codes show that the SPA decoding converges

very fast. For example, consider the type-I 2-D
EG-LDPC code, the fifth code given in Table I. Fig. 8 shows
the convergence of the SPA decoding for this code with

. We see that at BER of , the performance gap between
five and 100 iterations is less than 0.2 dB, and the performance
between 10 and 100 iterations is less than 0.05 dB. This fast con-
vergence of the SPA decoding for finite-geometry LDPC codes
is not shared by the computer-generated Gallager’s codes whose
parity-check matrices have small column weights,or .

To demonstrate the effectiveness of the two-stage hybrid
soft/hard-decoding scheme for finite-geometry LDPC codes,
we consider the decoding of the type-I 2-D
EG-LDPC code. Fig. 8 shows that decoding this code with
the SPA, the performance gap between two iterations and 100
iterations is about 0.5 dB at the BER of . Therefore, in
two-stage hybrid decoding, we may set the first stage SPA
decoding to two iterations and then carry out the second stage
with the one-stage MLG decoding. The code is capable of cor-
recting 32 or fewer errors with one-step MLG decoding. Fig. 9
shows that the code performs very well with the two-stage
hybrid decoding.

The parity-check matrix of a type-I finite-geometry LDPC
code in general has more rows than columns. This is because
the number of lines is larger than the number of points in either
EG or PG, except for the 2-D case. Therefore, the number of
rows is larger than the rank of the matrix. In decoding a finite-
geometry LDPC code with the SPA (or BF decoding), all the
rows of its parity-check matrix are used for computing check
sums to achieve good error performance. If we remove some
redundant rows for the parity-check matrix, simulation results
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Fig. 10. Bit- and block-error probabilities of the extended(65520; 61425) EG-LDPC code with the SPA decoding.

show that the error performance of the code will be degraded.
Therefore, finite-geometry LDPC codes in general require more
computations than their equivalent computer-generated LDPC
codes with small row and column weights (often column weight
is or and the row weight is ).

VI. CODE CONSTRUCTION BYCOLUMN AND ROW SPLITTING

OF THE PARITY-CHECK MATRICES OFFINITE-GEOMETRY

LDPC CODES

A finite-geometry (type-I or type-II) LDPC code of length
can be extended by splitting each column of its parity-check

matrix into multiple columns. This results in a new parity
matrix with smaller density and hence a new LDPC code. If the
column splitting is done properly, very good extended finite-ge-
ometry LDPC codes can be obtained. Some of the extended fi-
nite-geometry LDPC codes constructed perform amazingly well
with the SPA decoding. They achieve an error performance only
a few tenths of a decibel away from the Shannon limit. They are
the first known algebraically constructed codes approaching the
Shannon limit.

Let denote the columns of the parity-check
matrix . First we consider splitting each column of into
the same number of columns. All the new columns have the
same length as the original column. The weight (or “ones”) of
the original column is distributed among the new columns. A
regular column weight distribution can be done as follows. Let

be a positive integer such that . Dividing by ,
we have , where . Split each column

of into columns , such that the first
columns, , , have weight and the next

columns, , , have weight . The
distribution of “ones” of into , is carried
out in a rotating manner. In the first rotation, the first “” of
is put in , the second “” of is put in , and so on. In
the second rotation, the th “one” of is put in , the

th “one” of is put in , and so on. This rotating
distribution of the “ones” of continues until all the “ones” of

have been distributed into thenew columns.
The above column splitting results in a new parity-check ma-

trix with columns which has the following structural
properties: 1) each row has weight; 2) each column either has
weight or has weight ; 3) any two columns have at
most one “ ” in common. If the density of is , the density
of is then . Therefore, the above column splitting re-
sults in a new parity-check matrix with smaller density. The null
space of gives an extended finite-geometry LDPC code

. If is not divisible by , then the columns of have
two different weights, and . Therefore, a code bit of
the extended code is either checked by check sums or
by check sums. In this case, the extended LDPC code

is an irregular LDPC code.

Example 3: For and , the type-I 2-D EG-LDPC
code is a code with minimum distance

, the fifth code given in Table I. The parity-check matrix of
this code has row weight and column weight , re-
spectively. Its error performance is shown in Fig. 5. At the BER
of , the required SNR is 1.5 dB away from the Shannon
limit. Suppose we split each column of the parity-check ma-
trix of this code into 16 columns with rotating column weight
distribution. This column splitting results in a
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TABLE III
EXTENDED CODESCONSTRUCTEDFROM THE TYPE-I 2-D (4095; 3367) EG-LDPC CODE

extended type-I EG-LDPC code whose parity-check matrix has
row weight and column weight . The rate of this
new code is . This code decoded with the SPA decoding
achieves an error performance which is only 0.42 dB away from
the Shannon limit at the BER of as shown in Fig. 10. We
see that it has a sharp waterfall error performance. In decoding,
the maximum number of decoding iterations is set to 50, but the
decoding converges very fast. The performance gap between 10
and 50 iterations is less than 0.1 dB.

Given a base finite-geometry LDPC code, it can be ex-
tended into codes of many different lengths. All these extended
codes have different rates and behave differently. Consider the
type-I 2-D EG-LDPC code discussed in Example
3. Suppose we split each column of its parity-check matrix into
various numbers of columns from two to 23. Table III shows
the performances of all the extended codes in terms of SNRs
required to achieve the BER and the gaps between the
required SNRs and their corresponding Shannon limits. We see
that splitting each column of the parity-check matrix of the base
code into 16 or 17 columns gives the best performance in terms
of the Shannon limit gap.

Example 4: For and , the type-I 2-D EG-LDPC
code is a code with minimum distance ,
the sixth code in Table I. The column and row weights of its
parity-check matrix are both . Suppose we split each column
of the parity-check matrix of this code into 32 columns. We ob-
tain a extended type-I EG-LDPC code with
rate . The bit-error performances of this extended code
and its base code are shown in Fig. 11. At the BER of ,
the performance of the extended code is 0.3 dB away from the
Shannon limit.

Example 5: Let . The type-I 3-D EG-LDPC
code constructed based on the lines and points of EG
is a code with minimum distance at least and rate

. It is a low-rate code. Its parity-check matrix is a
matrix with row weight and column weight .

Suppose this code is extended by splitting each column of its
parity-check matrix into 24 columns. Then the extended code
is a LDPC code with rate . The bit-error
performances of this extended code and its base code are shown
in Fig. 12. The error performance of the extended code is only
1.1 dB away from the Shannon limit at the BER of .
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Fig. 11. Error performances of the type-I 2-D(16383; 14197) EG-LDPC code and the extended(524256; 507873)EG-LDPC code with the SPA decoding.

Given a finite-geometry LDPC code specified by a parity-
check matrix , each column of can be split in different
manner and into different numbers of columns. Consequently,
many extended finite-geometry LDPC codes can be obtained by
splitting columns of the parity-check matrix. If the columns
are split differently, the resultant extended code is an irregular
LDPC code.

Column splitting of the parity-check matrix of a finite-geom-
etry LDPC code may result in an extended code which is nei-
ther cyclic nor quasi-cyclic. However, if we arrange the rows of
the parity-check matrix into circulant submatrices and then split
each column into a fixed number of new columns with column
weight distributed in a rotating and circular manner, the resul-
tant extended code can be put in quasi-cyclic form. To see this,
we consider a type-I EG-LDPC code of length. Let be the
parity-check matrix of this code with rows and columns.
The rows of can be grouped into circulant subma-
trices, where . Each circulant sub-
matrix is obtained by cyclically shifting the incidence vector
of a line times. Therefore, can be put in the following form:

...
(36)

Now we split each column of into columns in a similar
manner as that described earlier in this section. However, the

-components in a column of must be labeled in a specific
circular order. For , let be the th column of
the th circulant matrix . Then the th column of is
obtained by cascading with one on top
the other. We label the-components of theth column of

as follows. The first -component of on or below the
main diagonal line of circulant and inside is labeled
as the first -component of the th column of . The first

-component of on or below the main diagonal line of
circulant and inside is labeled as the second-com-
ponent of . Continue this labeling process until we label the

first -component of on or below the main diagonal line
of circular and inside as the th -component of
column . Then we go back to circulant and start the
second round of the labeling progress. The second-compo-
nent of below the main diagonal line of and inside
is labeled as the th -component of . The second

-component of below the main diagonal line of circulant
is labeled as the th -component of . Continue the

second round labeling process until we reach theth circulant
again. Then we loop back to circulant and continue

the labeling process. During the labeling process, whenever we
reach down to the bottom of a circulant matrix , we wrap
around to the top of the same column of . The above
labeling process continues until all the-components of are
labeled. Once the labeling of-components of is completed,
we distribute the -components of into the new columns
in the same rotating manner as described earlier in this sec-
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Fig. 12. Error performance of the type-I 3-D(511; 139) EG-LDPC code and the extended(12264; 7665) EG-LDPC code with the SPA decoding.

Fig. 13. Graph decomposition by column/row splitting.

tion. So the weight of each column of is distributed into new
columns in a doubly circular and rotating manner. Clearly, the
labeling and weight distribution can be carried out at the same
time. Let be the new matrix resulting from the above
column splitting. Then consists of submatrices

. For , the rows of
are cyclic shifts of the first row bits at a time. As a

result, the null space of gives an extended finite-geometry
LDPC code in quasi-cyclic form. Type-II EG-LDPC codes can
be extended and put in quasi-cyclic form in a similar manner.

For PG-LDPC codes, may not be divisible by . In this
case, not all the submatrices of the parity-check matrixof a
type-I PG-LDPC code can be arranged as square circu-
lant matrices. Some of them are nonsquare circulant matrices as
shown in Example 2. The rows of such a matrix are still cyclic
shifts of the first row and the number of rows divides. In reg-
ular column splitting, the labeling and distribution of-compo-
nents of a column in a nonsquare circulant submatrix still follow
the 45 diagonal and wrap back to the top order. When we reach
the last row, move back to the first row and start to move down
from the next column. After column splitting, each extended
submatrix is still a circulant matrix and the extended code is
in quasi-cyclic form. The columns of the parity-check matrix of
a type-II PG-LDPC code can be split in a similar manner.

The last three examples show that splitting each column of the
parity-check matrix of a finite-geometry LDPC code into
multiple columns properly results in an extended LDPC code

which performs very close to the Shannon limit with the
SPA decoding. A reason for this is that column splitting reduces
the degree of each code-bit vertex in the Tanner graphof the
base code and hence reduces the number of cycles in the graph.
Splitting a column of into columns results in splitting a
code-bit vertex of the Tanner graph of the base code into
code-bit vertices in the Tanner graph of the extended code

. Each code-bit vertex in is connected to a smaller
number of check-sum vertices than in. Fig. 13(a) shows that
splitting a column in into two columns results in splitting
a code-bit vertex in the Tanner graphinto two code-bit ver-
tices in the Tanner graph . The original code-bit vertex has
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Fig. 14. Cycle decomposition.

Fig. 15. Decomposition of a cycle of length6 by column splitting.

a degree of but each code bit after splitting has a degree of
. This code bit splitting breaks some cycles that exist in the

Tanner graph of the base code . Figs.14(a) and 15 show the
breaking of cycles of lengthsand . Therefore, column split-
ting of a base finite-geometry LDPC code breaks many cycles
of its Tanner graph and results in an extended LDPC code whose
Tanner graph has many fewer cycles. This reduction in cycles in
the Tanner graph improves the performance of the code with the
SPA decoding. In fact, breaking cycles with column splitting of
the parity-check matrix can be applied to any linear block code.
This may result in good LDPC codes.

LDPC codes can also be obtained by splitting each row of the
parity-check matrix of a base finite-geometry LDPC code
into multiple rows. The resultant code has the same length as
the base code but has a lower code rate. Furthermore, proper row
splitting also preserves the cyclic or quasi-cyclic structure of the
code. Clearly, LDPC codes can be obtained by splitting both
columns and rows of the parity-check matrix of a base finite-
geometry code.

Splitting a row in the matrix is equivalent to splitting a
check sum vertex in the Tanner graph of the code and hence
reduces the degree of the vertex as shown in Fig. 13(b). There-
fore, row splitting of the parity-check matrix of a base code can

also break many cycles in the Tanner graph of the base code.
An example of cycle breaking by check-sum vertex splitting is
shown in Fig. 14(b). Clearly, a combination of column and row
splitting will break many cycles in the Tanner graph of the base
code. This may result in a very good LDPC code.

Example 6: Consider the type-I EG-LDPC 2-D
code given in Table I. Its performance is shown in Fig. 1. The
column and row weights of the parity-check matrixare both

. If each column of is split into five columns and each row
of is split into two rows, we obtain a parity-check matrix
whose columns have two weights,and , and whose rows have
weight . The null space of gives a LDPC code
whose error performance is shown in Fig. 16.

Example 7: Again we consider the type-I
2-D EG-LDPC code given in Table I. If we split
each column of the parity-check matrix of this code into 16
columns and each row of into three rows, we obtain a new
parity-check matrix with column weight and row weights

and . The null space of gives a
extended LDPC code. This extended code and its base code
have about the same rate. Its error performance is shown in
Fig. 17, and it is 0.7 dB away from the Shannon limit at the
BER of . However, the performance of its base code is
1.5 dB away from the Shannon limit. This example shows that
by a proper combination of column and row splittings of the
parity-check matrix of a base finite-geometry LDPC code, we
may obtain a new LDPC code which has about the same rate
but better error performance.

VII. SHORTENEDFINITE-GEOMETRY LDPC CODES

Both types of finite-geometry LDPC codes can be shortened
to obtain good LDPC codes. This is achieved by deleting prop-
erly selected columns from their parity-check matrices. For a
type-I code, the columns to be deleted correspond to a prop-
erly chosen set of points in the finite geometry based on which
the code is constructed. For a type-II code, the columns to be
deleted correspond to a properly chosen set of lines in the finite
geometry. In this section, several shortening techniques are pre-
sented.

First, we consider shortening type-I finite-geometry LDPC
codes. We use a type-I EG-LDPC code to explain the short-
ening techniques. The same techniques can be used to shorten
a type-I PG-LDPC code. Consider the type-I EG-LDPC
code constructed based on the -dimensional
Euclidean geometry EG . Let EG be an

-dimensional subspace (also called an -flat) of
EG [28], [36]–[38]. If the points in EG
are removed from EG , we obtain a system, denoted
EG EG , that contains
points. Every line (or -flat) contained in EG is
deleted from EG . Every line that is completely outside
of EG remains in and still contains points.
Every line not completely contained incontains only
points, since by deleting an EG from EG
we also delete a point in EG from each such line.
The columns of that correspond to the points
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Fig. 16. Bit- and block-error probabilities of the extended(1275; 765) LDPC code with the SPA decoding.

Fig. 17. Bit-error probabilities of the extended(65520; 53235) EG-LDPC code and the type-I 2-D(4095; 3367) EG-LDPC code with the SPA decoding.
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Fig. 18. Bit-error probabilities of the(255; 175) EG-LDPC code, the(239; 160) and(224; 146) shortened EG-LDPC codes with the SPA decoding.

in the chosen -flat EG are deleted, the
rows in that correspond to the lines contained in
EG become rows of zeros in the punctured matrix,
the rows of that correspond to the lines contained
in become rows in the punctured matrix with weight, and
the rows of that correspond to lines not completely
contained in become rows in the punctured matrix with
weight . Removing the rows of zeros from the punctured
matrix, we obtain a new matrix that has

(37)

rows and columns. Every column of
still has weight , but the rows of

have two different weights, and . The matrix
still has low density of “ones” and the null space

of gives a shortened EG-LDPC code whose
minimum distance is at least the same as that of the original
EG-LDPC code.

Consider the EG-LDPC code constructed based on the
2-D Euclidean geometry EG . Its parity-check matrix

is a matrix whose rows are
the incidence vectors of the lines in EG that do not pass
through the origin. The weight of each column of
is and the weight of each row of is .
Let be a line in EG that does not pass through the
origin. Delete the columns in that correspond to the

points on . This results in a matrix with
columns. The row in that corresponds to the line

becomes a row of zeros in . Removing this zero row
from , we obtain a matrix

. Each column of still has weight

. Removing a column of that correspond a
point on will delete a “one” from rows in
which are the incidence vectors of the lines that intersect with
line at the point . Therefore, there are rows in

with weight . There are lines
in EG not passing through the origin of EG that
are parallel to . Deleting the columns of the that
correspond to the points on does not change the weights
of the rows that are the incidence vectors of the lines
parallel to . Therefore, there are rows in

with weight . Any two columns in still

have at most one “” in common. The density of

is . Therefore, is still a low-density

matrix. The null space of is a shortened EG-
LDPC code with minimum distance at least .

Example 8: Consider the type-I 2-D EG-LDPC
code constructed based on EG . The code has rate .
A line in EG has 16 points. Puncturing this EG-LDPC
code based on a line in EG not passing through the origin
results in a LDPC code with rate . Note that the
puncturing removes 15 information bits and one parity-check
bit from the EG-LDPC code. Fig. 18 shows that the
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error performance of this punctured code is slightly better than
that of the original code.

Puncturing can also be achieved with combination of re-
moving columns and rows of the low-density parity-check
matrix . For example, let be a set of lines in
EG not passing through the origin that intersect at a
common point , where

Let be the set of lines in EG that are parallel to the
lines in . Suppose we puncture as follows: 1) remove all the
rows in that are the incidence vectors of the lines
in and ; and 2) remove the columns that correspond to the
points on the lines in . The total number of distinct points on
the lines in is . The total number of lines in

and is . Therefore, the puncturing results
in a matrix with rows
and columns.

Example 9: Consider puncturing the EG-LDPC
code. Let and be two lines in EG not passing
through the origin that intersect at the point. There are
28 lines not passing through the origin parallel to either
or . Puncturing the parity-check matrix of the

EG-LDPC code based on , , and their parallel
lines results in a matrix . The LDPC

code generated by is a code with
minimum distance at least . Its error performance is shown
in Fig. 18.

Clearly, shortening of a type-I finite-geometry LDPC code
can be achieved by deleting columns from its parity-check ma-
trix that correspond to the points in a set ofparallel

-flats. Zero rows resulting from the column deletion are re-
moved. This results in a shortened LDPC code of length of

or depending whether
the -flat that contains the origin is included in the dele-
tion.

To shorten a type-II -dimensional EG-LDPC code, we first
put its parity-check matrix in circulant form

(38)

where

and is a circulant matrix whose
columns are cyclic shifts of the incidence vector of a line. For
any integer with , we select circulant submatrices
from and delete them. This deletion results in a new
matrix with rows and
columns. The column and row weights of this matrix areand

, respectively. Its null space gives a shortened type-II
EG-LDPC code which is still quasi-cyclic. This shortened code
has minimum distance at least . A type-II PG-LDPC code
can be shortened in the same manner.

Example 10: For , the type-II EG-LDPC code
constructed based on EG is a code with
minimum distance whose error performance is shown in Fig. 6

(this code was discussed in Section V). The parity-check ma-
trix of this code is a matrix. In circu-
lant form, this matrix consists of nine circulant sub-
matrices. Suppose we delete one circulant submatrix (any one)
from this matrix. The null space of the resultant shortened ma-
trix gives a LDPC code with minimum distance at
least and rate . The error performance of this shortened
code is shown in Fig. 19. At the BER of , its error perfor-
mance is 1.1 dB away from the Shannon limit. If we remove
any three circulant submatrices from , we obtain a

LDPC code with rate . Its error performance
is also shown in Fig. 19. If we delete any six circulant subma-
trices from , we obtain a LDPC code
with rate . Its error performance is 1.9 dB away from the
Shannon limit at the BER of . For comparison, the error
performance of the original base code is also in-
cluded in Fig. 19.

VIII. A M ARRIAGE OFLDPC CODES ANDTURBO CODES

Turbo codes with properly designed interleaver achieve an
error performance very close to the Shannon limit [23]–[26].
These codes perform extremely well for BERs above (wa-
terfall performance), however, they have a significant weakened
performance at BERs below due to the fact that the compo-
nent codes have relatively poor minimum distances, which man-
ifests itself at very low BERs. The fact that these codes do not
have large minimum distances causes the BER curve to flatten
out at BERs below . This phenomenon is known as error
floor. Because of the error floor, turbo codes are not suitable for
applications requiring extremely low BERs, such as some scien-
tific or command and control applications. Furthermore, in turbo
decoding, only information bits are decoded and they cannot be
used for error detection. The poor minimum distance and lack
of error-detection capability make these codes perform badly in
terms of block error probability. Poor block error performance
also makes these codes not suitable for many communication
applications. On the contrary, finite-geometry LDPC codes do
not have all the above disadvantages of turbo codes, except that
they may not perform as well as the turbo codes for BERs above

.
The advantage of extremely good error performance of

turbo codes for BERs above and the advantages of
finite-geometry LDPC codes such as no error floor, possessing
error detection capability after decoding, and good block error
performance, can be combined to form a coding system that
performs well for all ranges of SNRs. One such system is
the concatenation of a turbo inner code and a finite-geometry
LDPC outer code. To illustrate this, we form a turbo code
that uses the distance- Hamming code as the two
component codes. The bit and block error performances of
this turbo code are shown in Fig. 20 from which we see the
error floor and poor block error performance. Suppose this
turbo code is used as the inner code in concatenation with the
extended EG-LDPC code given in Example
3 as the outer code. The overall rate of this concatenated
LDPC–turbo system is . It achieves both good waterfall
bit and block error performances as shown in Fig. 20. At
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Fig. 19. Bit-error probabilities of the(4088; 3716); (3066; 2694); and(1533; 1161) shortened EG-LDPC codes and the type-II 3-D EG-LDPC code with the
SPA decoding.

Fig. 20. Bit- and block-error performance of a concatenated LDPC–turbo coding system with a turbo inner code and an extended EG-LDPC outer code.

the BER of , its performance is 0.7 dB away from the
Shannon limit. This concatenated system performs better than

a concatenated system in which a Reed–Solomon (RS) code,
say the NASA standard RS code over GF , is
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used as the outer code and decoded algebraically or decoded
based on a reliability-based decoding algorithm.

Another form of the marriage of turbo coding and a finite-
geometry code is to use finite-geometry codes as component
codes in a turbo coding setup.

IX. CONCLUSION AND SUGGESTIONS FORFURTHERWORK

In this paper, a geometric approach to the construction of
LDPC codes has been presented. Four classes of LDPC codes
have been constructed based on the lines and points of the well-
known Euclidean and projective geometries over finite fields.
These codes have been shown to have relatively good minimum
distances and their Tanner graphs have girth. They can be de-
coded with various decoding methods, ranging from low to high
decoding complexity, from reasonably good to very good error
performance. A very important property of these four classes
of finite-geometry LDPC codes is that they are either cyclic
or quasi-cyclic. Encoding of cyclic and quasi-cyclic codes is a
linear time process and can be achieved with simple feedback
shift registers. This linear time encoding is very important in
practice. This advantage is not shared by other LDPC codes
in general, especially the randomly computer-generated LDPC
codes and irregular LDPC codes.

The finite-geometry LDPC codes can be extended or short-
ened in various ways to form many other good LDPC codes
of various lengths and rates. Extension by column splitting
of the parity-check matrix of a finite-geometry LDPC code is
a powerful method to construct long powerful LDPC codes.
Some long extended finite-geometry LDPC codes have been
constructed and they achieve a performance that is only a few
tenths of a decibel away from the Shannon limit. Techniques
for column splitting and deletion have been proposed so that
both the extended and shortened finite-geometry LDPC codes
can be put in quasi-cyclic form.

In this paper, it has been shown that finite geometry is a
powerful tool for constructing good LDPC codes. Finite geom-
etry is a branch in combinatorial mathematics; there are other
important branches in combinatorial mathematics which may
also be useful in constructing LDPC codes. One such branch
is balanced incomplete block design (BIBD) [37], [38], [52],
[53]. Let be a set of objects. A
BIBD of is a collection of -subsets of , denoted by

and called the blocks, such that the following
conditions are satisfied: 1) each object appears in exactlyof
the blocks; and 2) every two objects appear simultaneously
in exactly of the blocks. Such a BIBD can be described by
its incidence matrix , which is a matrix with ’s and
’s as entries. The columns and rows of the matrixcorre-

spond to the objects and the blocks of, respectively. The
entry at the th row and th column of is “ ” if the object

is contained in the block and is “ ” otherwise. If
and both and are small, then and its transpose are
sparse matrices and they can be used as the parity-check ma-
trices to generate LDPC codes whose Tanner graphs does not
contain cycles of length. Over the years, many such BIBDs
have been constructed. For example, for any positive integer
such that is a power of a prime, there exists a BIBD with

,
and . The set of integers for which is a power
of a prime is
which is infinite. For this class of BIBDs, the incidence ma-
trix is a matrix with density

, a sparse matrix. Then and generate two
LDPC codes. Of course, column- and row-splitting techniques
can be applied to and to generate other LDPC codes.
The above construction based on BIBDs may yield good LDPC
codes. In fact, one such code of length and dimension
has been constructed, which performs very well, 2 dB away
from the Shannon limit. This construction approach should be a
direction for further research.
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