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Low-Dimensional Approach for Reconstruction of Airfoil Data
via Compressive Sensing

Zhe Bai,∗ Thakshila Wimalajeewa,† Zachary Berger,‡ Guannan Wang,‡ Mark Glauser,§

and Pramod K. Varshney¶

Syracuse University, Syracuse, New York 13244-1240

DOI: 10.2514/1.J053287

Compressive sensing is used to compress and reconstruct a turbulent-flow particle image velocimetry database

over a NACA 4412 airfoil. The spatial velocity data at a given time are sufficiently sparse in the discrete cosine

transform basis, and the feasibility of compressive sensing for velocity data reconstruction is demonstrated.

Application of the proper orthogonal decomposition/principal component analysis on the dataset works better than

the compressive-sensing-based reconstruction approach with discrete cosine transform as the basis in terms of the

reconstruction error, although the performance gap between the two schemes is not significant. Using the proper

orthogonal decomposition/principal component analysis as the sparsifying basis, compressive-sensing-based velocity

reconstruction is implemented, which outperformed discrete cosine transform. Compressive sensing preprocessing

(filtering) with discrete cosine transform as the basis is applied to a reduced number of particle image velocimetry

snapshots (to mimic conditions with limited time support) before application of proper orthogonal decomposition/

principal component analysis. Using only 20 particle image velocimetry snapshots with a 10% compressive sensing

compression, it is found that the proper orthogonal decomposition/principal component analysismodes 1 and 2 of the

streamwise velocity component are very close to those extracted from full time support data (1000 particle image

velocimetry snapshots in this case). Results demonstrate the feasibility and utility of a compressive-sensing-based

approach for reconstruction of compressed or limited time support particle image velocimetry flow data.

Nomenclature

A = projection/measurement matrix
an = time-dependent proper orthogonal decomposition/

principal component analysis coefficients
CR = compression ratio (M∕N for discrete cosine-

transform-based approach, and M∕T for snapshot
proper orthogonal decomposition/principal com-
ponent analysis based approach)

C!t; t 0" = two-point temporal correlation matrix
K = number of nonzero elements in sparsifying basis

domain coefficients
M = number of compressed measurements of veloc-

ity data
N = number of particle image velocimetry velocity

vectors
Nm = number of proper orthogonal decomposition/

principal component analysis modes
Ntot = total number of proper orthogonal decomposition/

principal component analysis modes
Rij!x; x

0" = ensemble-averaged two-point spatial velocity
correlation tensor

s, r = streamwise, wall-normal component coefficients in
the transformed domain

T = number of snapshots of velocity data
U, V = streamwise, wall-normal components of the actual

velocity
y, z = projection of streamwise, wall-normal component

velocities
λ = eigenvalues of the correlation matrix
Φ = basis in which the velocity data are sparse
ϕ
!n"
i !x" = proper orthogonal decomposition/principal com-

ponent analysis mode n eigenfunction, i!# 1; 2"th
component of velocity

I. Introduction

I N THE past decade, larger and larger datasets have been (and are
being) generated in wind tunnels and from flight tests due to

enhanced capabilities to measure various aerodynamic variables,
including spatially and temporally resolved velocity and pressure,
resulting in datasets on the order of terabytes and beyond. As a result,
we need faster and more efficient methods for processing and
understanding them so that critical data can be extracted quickly to
make timely decisions.
The aim of this study is to explore the application of a new efficient

approach, compressive sensing (CS) [1,2], to reconstruct particle
image velocimetry (PIV) data from a NACA 4412 airfoil.
Implementation of efficient control of turbulent flow over the airfoil
requires high-frequency sensing and actuating capabilities to capture
the instantaneous velocity field data [3]. However, increasing the
sampling rate is quite difficult and expensive, which makes the real-
time processing a challenge. We therefore need low-dimensional
tools [4–6] that can reduce the complexity of data collection
and analysis in high-Reynolds-number turbulent flows. Proper
orthogonal decomposition (POD)/principal component analysis
(PCA) with the modified linear stochastic measurement low-
dimensional techniques have been used to capture and estimate the
most energetic structures [7,8]. Pinier et al. [8] performed closed-loop
feedback control of the separated flow over the airfoil using these
methods. These approaches require significant time support (large
number of PIV snapshots) to determine the space-time correlations so
that the POD/PCA eigenfunctions can be extracted. Further, it is
required to compute all the eigenfunctions (modes), although only
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significant ones in terms of the turbulent kinetic energy are used in
representing and reconstructing the original data. Over the past
couple of years, our group [9,10] and several others [11–19]** have
been exploring the application of CS to turbulence and general fluid
dynamics. These include compressive sensing with dynamic mode
decomposition to improve temporal resolution or rebuild low-
dimensionalmodes [17–19], compressive sensing to rebuild a pressure
field with a limited number of sensors [13,15], and improving the
spatial and temporal resolution of tomographic PIV data through
compressive sensing concepts [14].** In the CS framework, the
original data are projected onto a lower-dimensional subspace based
on a simple linear projection scheme to achieve compression. A signal
is said to be sparse if represented in a proper basis, all but a few
coefficients in that basis representation are negligible, and the sparsity
index refers to the number of such significant coefficients. If the
original data are sufficiently sparse in a particular domain, the sparse
signal can be reliably reconstructed with a very small number of
compressed measurements (which is slightly greater than the sparsity
index of the signal and much less than the original signal dimension)
using several approaches including optimization techniques [2,20,21]
and greedy techniques [22].
It has been shown that many signals are either sparse in a certain

domain or can be transformed to be sparse in some specific domain
[23], which motivates the use of low-dimensional schemes. Turbulent
flows that contain large-scale coherent structures fall into this category.
In this study, we reconstruct a givenN-dimensional physical field data
(PIV data from the NACA 4412 airfoil) from a small number of data
samples M obtained via random projections by exploiting sparsity.
Within the fluidmechanics community and beyond, there is a growing
need for large datasets with sufficient time support and spatial
resolution. As the community continues to investigate more complex
flowfields, PIV is an efficient means of probing the flow because it is
spatially resolved and nonintrusive. For many applications, a large
number of snapshots are desired for statistical convergence as well as
for control purposes. Many times, however, sufficient time support is
not easily achievable under normal operating conditions. For example,
when studying wind turbines in the field, PIV would be a desirable
means for acquiring velocity measurements. In this case, setting up
and acquiring measurements in the field would be quite difficult,
possibly resulting in limited number of snapshots. In addition to POD,
several other compression schemes such as discrete cosine transform
(DCT) and discretewavelet transform (DWT) can be used to represent
data in a lower dimension. To compress data with such schemes, the
original data have to be first processed, and then one finds the most
significant coefficients along with their locations in the given basis.
Although these schemes are promising under certain circumstances,
they require a higher computational burden at the compression stage.
In contrast, in the compressive-sensing-based scheme investigated in
this paper, the compression is performed with much less
computational burden at the compression stage.
To reliably reconstruct the original velocity field (described in

Sec. II) based on CS with a small number of compressive mea-
surements, we need to identify the bases in which the velocity data are
sparse. The approaches used to identify the bases are presented in
Sec. III. Section IV describes the results of the study.We show that the
spatial velocity data at a given time snapshot are considerably sparse in
theDCTdomain.UsingDCTas the sparsifying basis, thevelocity field
at a given time snapshot is reconstructed using CS-based mea-
surements via l1 norm minimization. The performance of the CS-
based velocity field reconstruction is compared to that with the
traditional snapshot POD/PCA method [8] using the mean-squared
error as the performance metric. We have the following comparison
results of the two schemes.
1) When the compression ratio is small, the performance of the CS-

based approach for velocity field reconstruction is slightly worse than
that with the standard POD/PCA approach. However, as the com-
pression ratio increases, both schemes depict identical performance.

2) To reconstruct the original velocity field at a given time snapshot
based on the POD/PCA approach, it is required to compute the
correlation matrix of the original fluctuating velocity and thus the
need for a large time support. However, to do the same based on CS,
only the projected data at one particular time snapshot and the
knowledge of the basis in which the signal is sparse are used, and
large time support is not required. Thus, the CS-based scheme does
not need to store large datasets for any offline computation.
3) In the POD/PCA approach, the compression stage (or the

computation of the significant eigenfunction modes) is computa-
tionally expensive, whereas the reconstruction phase is fairly simple.
In contrast, with the CS-based approach, the compression stage is
very simple and universal, whereas the reconstruction requires some
computational effort.
In Sec. IV, we also explore combining the two schemes in different

ways to reconstruct the velocity field appealing to the advantages of
each scheme. For example, we employ POD/PCA to generate the
sparsifying basis for the original data, where the POD/PCA modes
are computed based on some training data and then apply CS.
Because POD/PCA is a data-dependent scheme, it is capable of
representing the original data more sparsely compared to DCT if the
stochastic properties of the data remain unchanged over time. Thus,
we observe an improved performance in velocity field reconstruction
based on CS with POD/PCA as the sparsifying basis compared to
that with DCT. We also lay out a method for extracting POD/PCA
modes with limited time support using CS preprocessing on the
snapshots with DCT as the sparsifying basis. With this approach,
the small-scale structures in the velocity field are filtered out, and the
large-scale ones are preserved. In this way, the first few POD/PCA
modes can be extracted from a very small subset of PIV snapshots
(the limited time support condition).

Fig. 1 Overall view of experimental setup located in the test section of
the Syracuse University wind tunnel.

Fig. 2 Compressive sensing measurement process with a random
Gaussian measurement matrix and DCT matrix (Baraniuk [20]).

**Petra, S., and Schnörr, C., “Tomopiv Meets Compressed Sensing,”
2009, http://archiv.ub.uni-heidelberg.de/volltextserver/9760/1/puma09_
submission.pdf [retrieved April 2014].
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II. NACA 4412 Airfoil Particle Image Velocimetry
Dataset

The PIV data used in this studywere obtained in the subsonicwind-
tunnel facility at Syracuse University, and a schematic of the
experimental setup is shown in Fig. 1. The freestream velocity was set
at 10 m∕s, resulting in a Reynolds number of 135,000 based on a
chord lengthof 20.32 cm.The extensive datasetwas obtained as part of
a large-scale closed-loop flow control set of experiments [3,8], and the
particular dataset used here is from a baseline case at an angle of attack
of 16 deg where the flow is separated. The in-plane components of
velocity, U and V, are both measured using a Dantec Dynamics PIV
systemwith two cameras side-by-side to double themeasurement area
size in the X − Y (streamwise wall-normal) plane above the airfoil.
The PIV sampling frequencywas 4Hz, which is much slower than the
time scales in the 10 m∕s flow, and so all sample data in the study can
be considered statistically independent [8].

III. Reconstruction of the Velocity Field

In many fields, POD/PCA has been widely applied for the
extraction of important features from large datasets. It is used for

compression and for successful reconstruction from compressed data
including turbulence, where it has been used to reconstruct velocity,
pressure, etc. [3,8]. In this study, the reconstruction results based on
compression via the CS methodology are compared with that using
the POD/PCAmethod by conducting an error analysis. Compression
and reconstruction using a combination of these two approaches is
also explored.

A. Proper Orthogonal Decomposition/Principal Component Analysis

POD/PCA (we use these interchangeably)was first introduced into
the turbulence community by Lumley [24] in 1967 as an unbiased
method to study coherent structures in turbulent flows. It is a logical
way to construct the basis functions to capture the most energetic
features in a small number of modes, in which the first principal
component (mode) has the largest energy. Thus, it enables an
optimal low-dimensional representation of the energy contained in
the flow.
The POD/PCA method maximizes the energy content of the flow

in an orthogonal basis functions ϕ!n"!x". These are obtained from the
solution of the following integral eigenvalue problem (one-
dimensional case shown here):

Table 1 Description of CS-based approach and direct snapshot POD/PCA approach

CS_DCT/DWT basis CS_POD/PCA basis CS_Modified POD/PCA basis
Direct snapshot POD/PCA

method

Φ!u!x; t0" # Φs" DCT/DWT matrix
Φ # f!N"

C # U!x; t"TU!x; t"Cϕn # λϕn C1 # yT1 y1!y1 # AU!x; t""
C1ϕn # λϕn

Φ
!n" #

P

T

n#1
U!x;t"·ϕn

!

!

!

P

T

n#1
U!x;t"·ϕn

!

!

!

2

, n # 1; : : : ; T C # U!x; t"TU!x; t"

A (y # Au!x; t0") Gaussian matrix Cϕn # λϕn

A # g!M;N"M < N A # g!M;N"M < T an!t0" # ∫
D
u!x; t0"ϕ

!n"!x" dx
ŝ (y # AΦs) l1 norm minimization

ŝ # argmin ksk1 such that y # AΦs u!x; t0" # Σ

Nm

n#1
an!t0"ϕ

!n"!x" dx
ŝ!N; 1" ŝ!T; 1"

û (û!x; t0" # Φŝ) û!x; t0" # Φŝ
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Fig. 3 DCT coefficients of streamwise velocity U data and wall-normal velocity V data.
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Fig. 4 Instantaneous velocity field and CS-based reconstructed velocity field taking DCT basis with 10% of the original samples.
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Z

D

Rij!x; x
0"ϕ!n"

j !x 0" dx 0 # λ!n"ϕ
!n"
i !x" (1)

where Rij!x; x
0" is the ensemble-averaged two-point spatial velocity

correlation tensor, defined as

Rij!x; x
0" # hui!x; t0"uj!x 0; t0"i (2)

where t0 is a given PIV-snapshot time, and h·i denotes the average
over time. We can then extract the time-dependent (not time-
resolved) expansion coefficients, by projecting the PIV velocity field
onto the eigenfunctions, as follows:

an!t0" #

Z

D

ui!x; t0"ϕ
!n"
i !x" dx (3)

where ui!x; t0" is the velocity field from a particular PIV time
snapshot.
The eigenfunctions ϕ!n"!x" of Eq. (1) are the optimal basis

functions in terms of turbulent kinetic energy that are extracted from

the PIVmeasurement ensemble. TheHilbert–Schmidt theory ensures
that, if the random field occurs over a finite domain, an infinite
number of orthonormal solutions can be used to express the original
random velocity field ui!x; t0"; therefore, we can partially or
completely reconstruct the original velocity field by projecting an
an!x; t0" onto the eigenfunctions:

ui!x; t0" #
X

Nm

n#1

an!t0"ϕ
!n"
i !x" dx (4)

whereNm is the number of modes with which wewish to reconstruct
the velocity field. If Nm is chosen to be Ntot, the velocity field is
completely and exactly reconstructed. Using POD/PCA, most of the
kinetic energy can be captured in a small number of modes relative to
the total number of modes, enabling an effective and accurate
representation of the large coherent structures in terms of energy.
A modification to the classical POD/PCA approach was

introduced by Sirovich [25] in 1987 to reduce the dimension of the
eigenvalue problem, which is morewidely used in the cases in which
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Fig. 5 Normalized MSE comparison of CS-based and snapshot POD/PCA-based reconstruction.
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the number of snapshots is much smaller than the number of grid
points. In our case, the velocity vectormap is composed ofN # 8320
vectors in both X and Y components with T # 1000 statistically
independent PIV velocity vector snapshots for each case; therefore, it
is more appropriate and equivalent mathematically to use the
snapshots POD/PCAmethod [8]. In this way, the eigenvalue problem
is reduced to the dimension of T, instead of N as with the classical
POD/PCA method [24]. The integral eigenvalue problem from
Eq. (1) is equivalent to

Z

T

C!t; t 0"an!t
0" dt 0 # λ!n"an!t" (5)

where C!t; t 0" is defined as

C!t; t 0" #
1

T

Z

D

ui!x; t"ui!x; t
0" dx (6)

For the reason of consistency with the classical POD/PCA, the
temporal eigenfunctions and eigenvalues are arbitrarily chosen to
satisfy the following relation:

ham · ani # λ!m"δmn (7)

The spatial eigenfunctions ϕ!n"!x" must then be defined as

ϕ
!n"
i !x" #

1

T · λ!n"

Z

T

an!t"ui!x; t" (8)

so that they become orthogonal and satisfy

Z

D

ϕ
!m"
i !x"ϕ

!n"
i !x" dx # δmn (9)

The low-dimensional velocity fields are then reconstructed by
projecting the temporal eigenfunctions an!t" onto the spatial
eigenfunctions ϕ

!n"
i !x", using Eq. (4).

B. Velocity Field Reconstruction Based on Compressive Sensing

According to the Nyquist sampling theory, one must sample at
least two times faster than the signal bandwidth to avoid losing
information when capturing a signal [20]. In many modern
applications, the signal bandwidths have increased tremendously,
requiring very high sampling rates, whereas the acquisition

capabilities have not scaled sufficiently fast [26]. Handling such large
amounts of data is difficult in many applications because it requires
large processing power, space for storage, and time. It has been
observed that lower-dimensional representations of large datasets are
possible for many signals. A signal is said to be sparse if it can be
represented as a combination of fewer basis vectors in an appropriate
basis compared to the original signal dimension. The traditional way
of representing such compressible or sparse signals in a lower
dimension is to first “sample” and then “compress” or identify the
most significant coefficients with respect to the particular domain.
Although many signals of interest are known to be sparse after
representing in a proper basis, a considerable computational effort is
required at the compression stage.
In contrast, CS provides a new way to capture and represent

compressible signals at a rate significantly below the Nyquist rate.
More specifically, in the CS framework, the original sparse signal is
projected onto a lower-dimensional subspace via a random projection
scheme. It has been shown in [1,2,20] that the sparse signal can be
reliably reconstructed based on a small number of such random
projections via optimization techniques (such as l1 norm min-
imization). Generally, CS relies on two principles: sparsity, which
pertains to the signals of interest, and incoherence,whichpertains to the
sensing modality [21]. Sparsity expresses the idea that a discrete time
(or space) signal dependsona number of degreesof freedom,which are
comparativelymuch smaller than its (finite) length.More precisely, CS
exploits the fact that many natural signals may be sparse or com-
pressible in the sense that they have concise representations when
expressed in the proper basis (Φ). Incoherence extends the duality
between time and frequency and expresses the idea that objects having
a sparse representation inΦmust be spread out in the domain inwhich
they are acquired, just as a Dirac or a spike in the time domain is spread
out in the frequency domain. Put differently, incoherence says that,
unlike the signal of interest, the sampling/sensing waveforms have an
extremely dense representation in Φ [21].
From the PIV system, we obtained the velocity vector map

composed ofN # 8320!128 × 65" vectorswithT # 1000 snapshots
for each component. This PIV velocity database is not time-resolved,
and hence we concentrate on the spatial problem. For the spatial
velocity field, we focus on one snapshot, processingU andV velocity
components individually, and consider each one of the two as a one-
dimensional column vector ui ∈ Rn!i # 1; 2".
For the original velocity data, we are collecting them as a time

series, and CS is applied to the spatial data collected at one time
snapshot. A single velocity snapshot ui!x; t0"!i # 1; 2" is processed
at one time, and it is assumed that the one-dimensional columnvector
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Fig. 6 Normalized MSE for 1000 snapshots with CS-based reconstruction.
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is such that there exists a transformation under which it is sparse. In
this study, we assume only orthogonal bases. Specifically, there is an
invertible transformation matrix Φ of size N × N such that

ui # Φsi (10)

si is anN × 1 column vector, and the basisΦ is taken as a sparsifying
matrix such as a DCTmatrix, or a DWTmatrix.We can regard ui and
si as equivalent representations of the signal, with ui in the space or
time domain and si in theΦ domain. We say that si isK-sparse when
it has at most K nonzero elements, with K < N, and ui can be
represented as the linear combination of only K vectors in the basis.
The observation model is given by

yi # Aui (11)

where yi is a column vector of size M!< N", and A is an M × N

projection matrix. To reliably reconstruct length N column vector ui
from length M observation vector yi as in Eq. (11), the projection
matrix A has to satisfy a certain stability condition that is commonly
known as restricted isometry property (RIP) [27]. It has been shown
that, when elements of A are taken as realizations of zero mean
random variables (e.g., Gaussian, Bernoulli), the RIP condition is
satisfiedwith high probabilitywhenM > cK log!N∕K", where c is a
small constant [27,28]. Although there are other possible matrices
(such as random Bernoulli and random rows of DCT matrix) that
satisfy RIP with high probability, we use Gaussian matrices in this
paper. When using random projections, CS is universal in the sense

X(mm)

Y
(m

m
)

-150 -100 -50 0 50 100 150

-100

-50

0

X(mm)

Y
(m

m
)

-150 -100 -50 0 50 100 150

-100

-50

0

X(mm)

Y
(m

m
)

-150 -100 -50 0 50 100 150

-100

-50

0

X(mm)

Y
(m

m
)

-150 -100 -50 0 50 100 150

-100

-50

0

Y
(m

m
)

-150 -100 -50 0 50 100 150

-100

-50

0

X(mm)X(mm)

Y
(m

m
)

-150 -100 -50 0 50 100 150

-100

-50

0

a) U component b) V component  

Fig. 8 First three POD/PCA spatial eigenfunctions.
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that the same mechanism for acquiring measurements can be used
irrespective of the sparsity level or the basis in which the signal is
sparse [29]. In our work, A is taken as a random matrix, whose
elements are independent and identically distributed random
variables from a Gaussian probability density function with mean
zero and variance 1∕N [30]. Then, by substituting Φ from Eq. (10),
Eq. (12) can be expressed as

yi # Aui # AΦsi # Θsi (12)

whereΘ # AΦ is anM × N matrix as shown in Fig. 2, and A is fixed
whenM is selected, which does not depend on the signal ui.

The measurement matrix A must allow the reconstruction of the
length-N signalui from the lengthMmeasurementyi. BecauseM < N,
this problem appears ill-conditioned. However, if s is sparse, it has been
shown that the sparse signal s can be recovered exactly with high
probability based on length M vector y, if A satisfies RIP. Re-
construction can be performed based on optimization techniques or
greedy algorithms [20–22,31]. A widely used optimization-based
approach is to consider the following l1 norm minimization algorithm
[31]

ŝ # arg min ksk1y # AΦs (13)

where ksk1 denotes the l1-normof the columnvector s. This is a convex
optimization problem that reduces to a linear program [20].We used the
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interior point method to solve this problem, and Matlab codes are
available.†† Then, s is retrieved as the reconstructed ŝ, and the original
signal is found throughEq. (10).Weapply this technique for bothU and
V data at a given time snapshot.

IV. Performance Results

In this section, we provide results that demonstrate the efficiency
of using CS-based schemes in recovering wind-tunnel data, obtained
with PIV. The quality of the reconstruction based on CS depends on
certain factors including the basis in which the data are sparse and the
number of CS measurements. We use several bases to demonstrate
the reconstruction capability of the CS-based approach including the
DCT matrix (Sec. IV.A), DWT matrix, snapshot POD/PCA basis
(Sec. IV.B), and modified snapshot POD/PCA (Sec. IV.C) as
summarized in Table 1. For the velocity data considered in this paper,
DWT does not transform the velocity vectors to a more sparse
domain, and so only the data obtained for theDCTbasis are presented
in this paper. We also provide a comparison of these approaches with
the direct snapshot POD/PCAmethodwhere the entire dataset is used
to see the differences in terms of performance of the different data
processing approaches. Finally, in Sec. IV.D, we conclude with a
limited time support scenario where only a small number of PIV
snapshots are compressed using the DCT basis and then used to
extract estimates of the POD/PCA basis.

A. Performance of Compressive-Sensing Based Reconstructions with
Discrete Cosine Transform Bases

First, DCT is used as the basis inwhichU andV are sparse. DCTis a
commonly used low-dimensional representation for many signals
because it is naturally orthogonal and only depends on the number of
grid points. For a lengthN signalx, themthDCTcoefficient is givenby

s!m" # α!m"
X

N−1

k#0

x!k" cos

"

!2k$ 1"mπ

2N

#

where

α!m" #

8

<

:

1
$$$

N
p ; k # 0
$$$

2
N

q

; otherwise
(14)

In matrix form, the DCT coefficient vector can be written as

s # Φ
−1x (15)

where the !m; n"th element of the matrix Φ is given by

Φm;n #

8

<

:

1
$$$

N
p ; m # 0; 0 ≤ n ≤ N − 1

$$$

2
N

q

cos π!2n$1"m
2N

for 1 ≤ m ≤ N − 1; 0 ≤ n ≤ N

(16)

DCTisquite universal andprovides an easyway toperform the sparsity
transformation (note that we generally would use a DCT type basis in
turbulent flows if the flow is homogenous and/or periodic in a
particular direction).
The DCT coefficients of U and V in one snapshot are shown in

Fig. 3, from which we see that the original velocity field data are
considerably sparse in the DCT domain. Taking DCT as the basis in
which the velocity data are sparse, in Fig. 4b, we plot the
reconstructed velocity field based on the CS mechanism with only
10% of the original samples (M # 0.1N) in a particular snapshot.
Figure 4a shows the original instantaneous velocity field. When
compared with the original instantaneous velocity field, we can see
that 10% of CS measurements capture the large-scale (low-
dimensional) features of the velocity field.
We further illustrate the performance of the velocity reconstruction

based on CS in terms of the normalized mean-squared error (MSE),
which is defined as

MSE #
kui − ûik2
kuik2

(17)

where, for U!V" data in one snapshot, ui!vi" is the original velocity
vector, and ûi!v̂i" is the estimated velocity vector via CS. Here, k · k2
signifies the l2-norm of the columnvector. In Fig. 5, we plot theMSE
of U and V data for different snapshots when the reconstruction is
performed via the CS-based scheme (as described previously) as well
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Fig. 10 Reconstructed velocity field based on CS with snapshot POD/PCA basis for compression ratiosM∕T ! 5, 20, 50, and 80%.

††Data available online at http://users.ece.gatech.edu/justin/l1magic
[retrieved April 2014].
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as when the reconstruction is performed via the POD/PCA method
applied to the entire dataset. From Fig. 5, we can see that the
reconstruction performance with CS is not as good as with POD/
PCA, especially when the compression ratio is small; however, the
performance degradation is not significant. As M∕N increases,
the performance of the CS-based scheme converges to that based on
the POD/PCA-based scheme. It is worth mentioning that, in contrast
to the POD/PCA scheme, which requires large computation at the
compression stage (finding covariance matrices, eigenfunctions, and
significant modes, time support etc.), the compression stage of the
CS-based scheme is very simple and universal. More specifically, the
POD/PCA scheme requires processing of all the time and spatial data
to find the covariance matrices and the significant eigenvalues,
whereas the CS measurement scheme directly acquires lower-

dimensional data for a particular snapshot via a simple random
projection scheme. Thus, although the CS-based scheme does not
show the same performance as the POD/PCA-based scheme at very
small compression ratios, it would still appear to be attractive due to
these advantages at the compression stage. However, for real-time
flow control, POD/PCA only needs to be computed once, based on
which stochastic estimation could be used for POD/PCA mode
feedback.
Figure 6 shows the MSE of the U and V components for 1000

snapshots with half of the total samples (M # 0.5N).We can see that,
for all of the PIV snapshots, the difference between the actual ui and
estimated ûi is less than 13% of the original ui.

B. Performance of Compressive-Sensing Based Reconstructions with
Proper Orthogonal Decomposition Bases

In this section,we use the basis obtained from snapshot POD/PCA,
as explained in Table 1, as the sparsifying basis instead of the DCT.
We use the term “snapshot POD/PCA basis” to refer to it in the rest of
this paper. Because the POD/PCA provides an optimal basis for
describing the particular physics (in terms of turbulent kinetic
energy), the expectation is that the CS approach should improve
when POD/PCA is used to determine the sparsifying basis. In this
case, the size of the POD/PCA basis coefficient swill be T instead of
N as in the DCT basis because the spatial coefficient Φ is an N by T
matrix in the snapshot POD/PCA. Therefore,M should be less thanT
instead of N, as in the DCT basis, to make sure that the size of y is
smaller than the size of s.
In Fig. 7, we plot the energy distribution versus the POD/PCA

modes. Note that, with the snapshot POD/PCA approach, the total
number ofmodes is equal to the smallest dimension of the original data
matrix. In our study, the original velocity data (U andV) is stored in an
N by T matrix with N # 8320 and T # 1000. Thus, the number of
total POD/PCAmodes is 1000.As can be seen inFig. 7, approximately
70% of the energy is retrieved with approximately 10% of the
modes, and more than 30% of the total energy is contained in the first
two modes, which is quite significant in a fully developed
turbulent flow.
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Fig. 12 First three modes in modified snapshot POD/PCA basis.
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Figure 8 presents the spatial behavior of the first three POD/PCA
modes for the U and V velocity components. We can see large-scale
structures, which contain most of the energy of the flow over the
airfoil. Also, note that the spatial structures of the two components
ΦU andΦV are quite different, reflecting the different characteristics
of each component (more discussion on the POD/PCA analysis of
this data can be found in [8]).
The original and reconstructed first 100 coefficients (where most of

the significant coefficients are located) at a given time snapshot with
respect to the snapshot POD/PCA basis for different compression
ratios are shown in Fig. 9. We see that the reconstructed ŝ and r̂ based
on CS, taking the snapshot POD/PCA generated basis as the
sparsifying basis, gradually become closer to the original s and r with
increasing values ofM. The reconstructedvelocity field approaches the
actual velocity fieldwith an increase in the compression ratio as seen in
Fig. 10, especially in the flow separation region as shown.

C. Modified Snapshot Proper Orthogonal Decomposition/Principal
Component Analysis Basis

Asdescribed in the previous section,withCS-based reconstruction
using the snapshot POD/PCA basis as the sparsifying basis, we
compute the covariance matrix of the data offline, which is donewith
a certain amount of training data from the original dataset (before
taking random projections). To further reduce the complexity of
computing the covariance matrix of the data, we consider computing
the covariance matrix after application of Eq. (11), i.e., we reduce the
number of spatial grid points in a randomly sampledmanner. For this,
the number of compressive measurementsM should be larger than T

(here, we set it toM # 0.2,N # 1664 > T) to assure the accuracy of
the correlation matrix in snapshot POD/PCA; however, for the
measurement matrix in the later step, M should be smaller than T,
same as that in the original snapshot POD/PCA basis.
Figure 11 shows the convergence of energy in themodified snapshot

POD/PCA basis. We can see that there is not much difference
compared to that obtained with the original snapshot POD/PCA basis,
even though thevelocity data have been compressed spatially using the
random projection before computing the correlation.
The first three modes of the modified snapshot POD/PCA basis in

U and V components computed in this case are shown in Fig. 12. We
see the large-scale structures, having most of the energy in the flow,
are very similar to those in Fig. 8, except the small difference in the
third mode of the U component. Hence, this might be a useful
approach for extracting the snapshot POD/PCA basis while requiring
much less storage of the original PIV dataset.
For the modified snapshot POD/PCA basis, the original and

reconstructed sparse coefficients for different compression ratios forU
andV separately reconstructed ŝ and r̂ do notmatch the original s and r
as well as the ones in the snapshot POD/PCA basis. However, there is
not much difference in terms of the reconstructed û, v̂ compared with
the original u, v. The reason is that, although s, r from the modified
POD/PCA basis are somewhat different from the original POD/PCA
basis, the optimization process still selects the significant coefficients
from the POD/PCA domain for reconstruction. As a result, the
reconstructed ŝ or r̂ do not deviate much from the original one. Thus,
the error between the reconstructed velocity and the original velocity
remains the same, as shown in the error comparison of different
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schemes in Fig. 13.While takingM∕T as the independent variable, we
clearly see that the POD/PCA-based approaches (CS-POD/PCA, CS-
modified POD/PCA, and direct POD/PCAmethod) behave betterwith
faster convergence rates because we take a lower-dimension T instead
of thenumberof gridpointsN to solve the eigenvalue problemandpick

out the significant structures in the velocity field more efficiently.
Although the CS-based reconstruction does not reach the same level as
the POD/PCA-based reconstruction, we still consider it to be a useful
method to analyze the physical data for its universality, which depends
only on the number of grid points for the DCT basis. The CS-based
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Fig. 14 First three modes of POD spatial eigenfunctions with CS-based reconstruction using 20 snapshots.
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Fig. 15 First three modes of POD spatial eigenfunctions with direct POD/PCA using 20 snapshots.
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method taking POD/PCAas the sparsifying basis also provides a novel
view of combining CS and POD/PCA and taking advantage of both.
Unlike the DCT basis, the POD/PCA basis or modified POD/PCA
basis requires the whole physical field information; however, the total
computational cost is dramatically reduced with additional offline
computation more related to the velocity field and flow characteristics
in terms of the turbulence in the separation region.

D. Extracting Proper Orthogonal Decomposition Modes from Com-
pressed Snapshots with Limited Time Support

Here, we present a methodology for POD/PCA mode extraction
based on CS preprocessing (filtering) using only the DCT basis. The
CS preprocessing (CS-POD/PCA) approach is exploited to extract
the significant POD/PCA spatial eigenfunctions under conditions
with limited time support. The idea here is to use the CS approach
with the DCT basis to filter the PIV snapshots before applying POD/
PCA to deal with real-world applications where only limited time
support PIV data (or large-eddy simulation and direct numerical
simulation datasets without great time support) are available but yet
POD/PCA modes are desired for various reasons. Situations where
this might occur for PIV datasets include full-scale PIV measure-
ments: for large wind turbines in the field, on aircraft wings, and in
large wind tunnels where seeding can be difficult, etc. Klenk and
Heidemann‡‡ have proposed a similar approach to calculate principal
components based on CS for high-dimensional heart sound data. For
the first attempt, CS is applied with a compression ratio of 10% to 20
snapshots individually. A compression ratio of 10% is chosen based
on the previous analysis as observed in Fig. 4. Once the compression
and reconstruction are implemented, the snapshot POD/PCA is then
performed on those 20 preprocessed snapshots.
The first three modes of POD spatial eigenfunctions using the

reconstructed data from CS are shown in Fig. 14. When comparing
these results to the direct snapshot POD/PCA (without CS) on the
same 20 snapshots shown in Fig. 15, we see that the eigenfunctions
are substantially different.When comparing both of these resultswith
the full time support (1000 snapshots) POD/PCA results previously
applied as shown in Fig. 8, we see that the results for the CS filtered
case shown in Fig. 14 compare quite well for the first couple
of eigenfunctions extracted for the streamwise velocity and
substantially better than those from the 20 mode direct POD/PCA
approach. For the V component, however, the CS preprocessing
method and subsequently extracted POD/PCA do not compare well
with the full time support data.
Table 2 presents a quantitative comparison between the POD/PCA

modes obtained from the CS filtered 20 snapshot data and the
unfiltered 20 snapshot data using themodes from the full time support
as a reference. As noted in the earlier discussions of Figs. 14 and 15,
the CS filtered POD approach performswell for theU component but
not for the V component. This is consistent with what was described
in Fig. 3, where the DCT coefficients of the streamwise velocity are
more sparse than those of thewall-normal velocity. In futurework,we
will perform vector CS filtering and anticipate that the additional
information extracted from the strong UV correlations will improve

the CS filtered POD/PCA results for the wall-normal velocity
component. The convergence of the POD eigenvalues for the three
different approaches is given in Fig. 16. The energy within the
streamwise component converges faster than the wall-normal
component, as expected. The CS filtered approach has a similar
performance with the full 1000 snapshots for the first three modes
with respect to energy convergence. Overall, these initial results
appear promising, and future work will explore ways to improve the
performance of the CS filtered POD/PCA approach and develop a
more clear understanding of its limitations.

V. Conclusions

In this study, the feasibility and effectiveness of using compressive
sensing (CS) for compression and reconstruction of large airfoil
datasets is shown. With the CS scheme, using an orthogonal basis
such as DCT in which the signals are sparse, reconstruction can be
achieved relatively accurately through a small number of samples
obtained via random projections. CS is an effective compression
process without the time support as required for many traditional
compression schemes such as POD/PCA. The CS-based sampling
scheme is universal, and it can also be expected to be readily applied
to other types of data acquisition.
The reconstruction performance is illustrated with CS taking

different bases in which the data are sparse and compared the
performance with the traditional snapshot POD/PCA-based re-
construction. When DCT is used as the sparsifying basis, acceptable
performance with CS is achieved compared to the POD/PCA-based
reconstruction. The reconstruction performance with CS is further
improved by taking the POD/PCA basis as the sparsifying basis,
which, however, has to be computed offline with an additional
computational cost compared to the DCT. Examination of the two
reconstruction approaches shows that the snapshot POD/PCA offers
amore efficient reconstruction, taking only 10%of the computational
time as compared to the DCT. The modified snapshot POD/PCA
provides a unique technique for compressing the spatial data using
random projections to decrease the number of spatial grid points,
resulting in a reduced dimension of the eigenvalue problem for
extraction of the snapshot POD/PCA basis.
The POD/PCA basis extraction with CS preprocessing and limited

time support has been shown toworkwell for the first two streamwise
velocity eigenfunctions but not for the wall-normal velocity
eigenfunctions. This is due in part to thewall-normal velocity data not
being as sparse in the DCT basis as the streamwise velocity
component. Future work will include application of vector CS
filtering to use the additional information available from the strong
UVcorrelations alongwith exploring optimal compression ratios and
number of snapshots to give the best results.
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Table 2 Modal correlation of the POD spatial eigenfunctions, at the same
mode number

CS filtered POD (full
snapshots POD)

20 snapshots POD (full
snapshots POD)

Modal correlation U component V component U component V component

First mode/first mode 0.9062 0.3143 0.7611 0.7658
Second mode/second mode 0.7558 0.2191 0.6295 0.7377
Third mode/third mode 0.3067 0.4733 0.8401 0.8534
Fourth mode/fourth mode 0.5112 0.0598 0.3693 0.6287
Fifth mode/fifth mode 0.2952 0.4402 0.0603 0.0080

‡‡Klenk, S., and Heidemann, G., “ANewMethod for Principal Component
Analysis of High-Dimensional Data Using Compressive Sensing,” 2010,
http://www.sfb716.uni-stuttgart.de/uploads/tx_vispublications/pca.pdf [re-
trieved April 2010].
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