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LOW-DIMENSIONAL HOMOGENEOUS EINSTEIN MANIFOLDS

CHRISTOPH BÖHM AND MEGAN M. KERR

Abstract. We show that compact, simply connected homogeneous spaces up
to dimension 11 admit homogeneous Einstein metrics.

A closed Riemannian manifold (Mn, g) is called Einstein if the Ricci tensor of g
is a multiple of itself. This equation, called the Einstein equation, is a complicated
system of second order partial differential equations, and at the present time no
general existence results for Einstein metrics are known. However, there are results
for many interesting classes of Einstein metrics, such as Kähler-Einstein metrics
[Yau], [Tia], metrics with small holonomy group [Jo], Sasakian-Einstein metrics
[BoGa] and homogeneous Einstein metrics [He], [BWZ] (cf. [Bes], [LeWa] for many
more details and examples).

We investigate the Einstein equation for G-invariant metrics on compact homo-
geneous spaces. Due to this symmetry assumption the Einstein equation becomes
a system of non-linear algebraic equations which in special instances can be solved
explicitly, whereas in general this seems to be impossible. Yet there are general
existence results on compact homogeneous Einstein manifolds [WZ2], [BWZ], [Bö],
based on the variational characterization of Einstein metrics by the Hilbert action
[Hi]. These results turn out to be very helpful in proving the following:

Theorem. Let Mn be a compact, simply connected homogeneous space of dimen-
sion less than or equal to 11. Then Mn admits a homogeneous Einstein metric.

This result is optimal, since the 12-dimensional compact, simply connected ho-
mogeneous space SU(4)/SU(2)10 does not admit homogeneous Einstein metrics
[WZ2] (cf. Table 1).

A compact homogeneous Einstein manifold (Mn, g) of dimension n = 2 or 3 has
constant sectional curvature. Simply connected compact homogeneous Einstein
manifolds were classified by Jensen [Je1] in dimension n = 4, and by Alekseevsky,
Dotti and Ferraris [ADF] in dimension n = 5. It was shown by Nikonorov and
Rodionov [NiRo] that all simply connected compact homogeneous manifolds in
dimension n = 6 admit a homogeneous Einstein metric, and in dimension n = 7 by
Castellani, Romans and Warner [CRW]. In [Ni2] Nikonorov determined all seven-
dimensional homogeneous Einstein metrics.

Compact homogeneous spaces Mn can admit many homogeneous structures;
that is, there may be many inequivalent presentations Mn = G/H of Mn as a
homogeneous space. But for any presentation Mn = G̃/H̃ of a simply connected
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1456 CHRISTOPH BÖHM AND MEGAN M. KERR

homogeneous space there is a canonical presentation Mn = G/H, where G is a
compact, connected, semisimple Lie subgroup of G̃. Since the universal cover of G
still acts transitively on G/H, we may assume that G is simply connected. In what
follows we restrict our attention to such presentations. Furthermore, we will list
only irreducible Riemannian manifolds.

The symmetric metric on irreducible symmetric spaces is Einstein. The sym-
metric spaces which arise in dimensions up to 12 are Sn = SO(n + 1)/SO(n),
CPn = SU(n + 1)/S(U(1)U(n)), the Grassmannians SO(p + q)/SO(p)SO(q),
SU(p + q)/S(U(p)U(q)), and Sp(p + q)/Sp(p)Sp(q), then SU(n)/SO(n),
Sp(n)/U(n), SO(2n)/U(n), SU(2n)/Sp(n), and finally G2/SO(4). More gen-
erally, every isotropy irreducible homogeneous space G/H admits a unique G-
invariant Einstein metric [Wo]. The isotropy irreducible examples which appear
in dimensions up to 12 are S6 = G2/SU(3), S7 = Spin(7)/G2, the Berger space
B7 = SO(5)/SO(3)10, and G2/SO(3)28. (To indicate the embedding, we use
the Dynkin index of the corresponding subalgebra of type su(2) or u(2).) Some
spheres and projective spaces admit a smaller transitive Lie group and hence a
larger space of homogeneous metrics; their Einstein metrics were classified by Ziller
[Zi]. S2n+1 = SU(n + 1)/SU(n) admits one SU(n + 1)-invariant Einstein metric,
S4n+3 = Sp(n + 1)/Sp(n) admits two Sp(n + 1)-invariant Einstein metrics [Je3],
[Zi], and Sp(n + 1)/U(1)Sp(n) = CP 2n+1 admits two Sp(n + 1)-invariant Ein-
stein metrics [Zi]. Finally, the Stiefel manifold V2(Rn) = SO(n)/SO(n− 2) admits
exactly one SO(n)-invariant Einstein metric [Ko], [BaHs].

In Table 1 we list the remaining simply connected, compact homogeneous spaces
Mn = G/H with n ≤ 12, where G is compact, connected, simply connected and
simple. When we write “= m” in the column Einstein metrics, we mean that there
exist precisely m G-invariant Einstein metrics on G/H, up to isometry. When we
write “≥ m”, G/H carries at least m G-invariant Einstein metrics, up to isometry.
To the best of our knowledge, we provide all references as to who discovered those
Einstein metrics first and who classified them.

The first class of examples in Table 1 is the homogeneous Kähler-Einstein man-
ifolds F3 = SU(3)/T 2, Sp(2)/T 2, SU(4)/S(U(1)U(1)U(2)), G+

2 (R7) = G2/U(2)1,
F4 = SU(4)/T 3 and G2/T 2. (Here F3 and F4 are the spaces of complex flags in
C3 and C4, respectively.) As is well known, these spaces are coadjoint orbits. With
the exception of G2/T2, all their homogeneous Einstein metrics are classified. Note
that these metrics are not all Kähler.

The next class of examples in Table 1 is principal S1-bundles over homoge-
neous Kähler-Einstein manifolds: The Aloff-Wallach spaces Wp,q are principal S1-
bundles over F3, and we obtain infinitely many homotopy types of homogeneous
Einstein manifolds in dimension seven (cf. [AlWa], [Wa1], [BGMR]). These spaces
are classified up to homeomorphism and diffeomorphism [KS2], and it is known
that there are pairs of Aloff-Wallach spaces which are homeomorphic but not dif-
feomorphic. The spaces Sp(2)/∆p,qU(1) are principal S1-bundles over Sp(2)/T 2

and due to [Kl] there are also infinitely many homotopy types among them. Fi-
nally, the spaces SU(4)/S(∆p,qU(1)U(2)) and G2/SU(2)1 are principal S1-bundles
over SU(4)/S(U(1)U(1)U(2)) and G2/U(2)1, respectively.

Another pair of examples is the compact Lie groups SU(3)/{id} and Sp(2)/{id}.
The symmetric metric on the 8-dimensional compact Lie group SU(3) is Einstein.
Moreover, SU(3) admits at least one other homogeneous Einstein metric, obtained
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Table 1. G simple

Mn G/H Einstein metrics

F3 SU(3)/T 2 = 2 [Kosz], [DN]
Wp,q SU(3)/∆p,qU(1) = 2 [Wa1], [PP], [Ni2]
SU(3) SU(3)/{id} ≥ 2 [Je2]

Sp(2)/T 2 = 3 [Kosz], [Sa]
Sp(2)/∆p,qU(1) ≥ 1
SU(4)/S(U(1)U(1)U(2)) = 3 [Kosz], [Ki]

Sp(2) Sp(2)/{id} ≥ 2 [Je2]
G+

2 (R7) G2/U(2)1 = 3 [Kosz], [Ke]
G2/U(2)3 = 2 [DK2]
SU(4)/S(∆p,qU(1)U(2)) ≥ 1
SU(4)/U(2)2 = 2 [Ni1]
SU(4)/U(1)SO(3)4 = 1 [WZ2]
G2/SU(2)1 ≥ 2 [Je3], [Wa2]
G2/SU(2)3 ≥ 2 [Je3], [Wa2]
G2/SO(3)4 = 1 [DK1]

F4 SU(4)/T 3 = 3 [Kosz], [Sa]
V2(C4) SU(4)/SU(2)1 ≥ 1

SU(4)/SU(2)2 ≥ 1
SU(4)/SO(3)4 ≥ 1
SU(4)/SU(2)10 = 0 [WZ2]

SO(8)/U(4) SO(7)/U(3) = 2 [WZ2]
Sp(3)/Sp(1)Sp(1)Sp(1) = 2 [WZ1], [DK2]
G2/T 2 ≥ 1 [Kosz]

via the canonical variation in the direction of the maximal subgroup SO(3) [Je2].
This second Einstein metric is not invariant under the adjoint action of SU(3) on
su(3), hence it comes with an infinite family of (isometric) Einstein metrics. This
shows that in general the Einstein equation is not a generic system of l polynomial
equations with l unknowns. The space of left-invariant metrics on SU(3) is 36-
dimensional, thus finding all solutions to the Einstein equation is a highly non-
trivial task.

For each of the spaces SU(4)/U(1)SO(3)4, SU(4)/SU(2)10 and SO(8)/U(4) =
SO(7)/U(3), the space of G-invariant metrics of volume one is one-dimensional
and the Einstein equations reduce to a quadratic equation in one variable. We note
that for the above three spaces this equation has one, zero and two real solutions,
respectively [WZ2].

The remaining spaces are
G2/U(2)3, SU(4)/U(2)2, G2/SU(2)3, G2/SO(3)4,
SU(4)/SU(2)2, V2(C4) = SU(4)/SU(2)1,
SU(4)/SO(3)4 and finally the space Sp(3)/Sp(1)Sp(1)Sp(1) of quaternionic flags

in HH3;
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Table 2. G semisimple, Hs embedded diagonally

Mn G/H Einstein metrics

F (CP 2 × CP 2, S3) SU(3) × SU(3)/∆SU(2)(U(1) × U(1)) = 2 [Wa2]

F (S4 × S4, S3) Sp(2) × Sp(2)/∆Sp(1)(Sp(1) × Sp(1)) = 2 [Wa2]

F (CP 2 × S4, S3) SU(3) × Sp(2)/∆1Sp(1)(U(1) × Sp(1)) = 2 [Wa2]

SU(3) × SU(3)/∆U(2) ≥ 1

SU(3) × SU(3)/∆SU(2)(∆p,qU(1)), p �= q = 0

SU(3) × SU(3)/∆2SU(2)({id} × U(1)) = 2

SU(3) × Sp(2)/∆1Sp(1)({id} × Sp(1)) = 0

SU(3) × Sp(2)/∆2Sp(1)({id} × Sp(1)) = 2

the dimension of their spaces of G-invariant metrics of volume one ranges from three
to thirteen. For some of them, we computed solutions to the Einstein equation
explicitly; however, in the more complicated cases, we applied general existence
results.

For the convenience of the reader, we indicate the embeddings of isotropy sub-
groups of G2 and SU(4) in Table 1: In G2, SU(2)1 < U(2)1 < SU(3) ∩ SO(4) <
G2, SU(2)3 < U(2)3 < SO(4) < G2 and SO(3)4 < SO(4) < G2. In SU(4),
SU(2)1 < U(2)1 < SU(3) < SU(4), SU(2)2 < U(2)2 < Sp(2) ∩ SO(4) < SU(4),
SO(3)4 < SO(4) < SU(4) and SU(2)10 is maximal in Sp(2) < SU(4).

Now let us turn to the case when G is simply connected, semisimple, but not
simple. By the definition of our canonical presentation Mn = G/H, the projection
of H onto each simple factor is a proper subgroup. If G/H = G1/H1 × G2/H2,
then existence of a G-invariant Einstein metric on G/H is guaranteed if G1/H1 and
G2/H2 admit Gi-invariant Einstein metrics. Therefore we can assume that H lies
“diagonally” in G1 × G2. There are two cases: For Hs the semisimple part of H,
either Hs lies diagonally in G1 × G2 or it does not.

In Table 2 we list all examples for case 1. First, we indicate the embeddings
of some isotropy subgroups: In the third and seventh examples, pr1(∆1Sp(1)) =
SU(2) and pr2(∆1Sp(1)) = Sp(1) × {id}. In the sixth (resp. eighth) example,
pr1(∆2SU(2)) = SO(3) and pr2(∆2SU(2)) = SU(2) (resp. pr1(∆2Sp(1)) = SO(3)
and pr2(∆2Sp(1)) = Sp(1) × {id}).

The first three homogeneous spaces in Table 2 are 11-dimensional homogeneous
S3-bundles over CP 2 × CP 2, S4 × S4, CP 2 × S4, respectively. The existence of
two homogeneous Einstein metrics on these spaces is due to M. Wang [Wa2]. The
family of 12-dimensional spaces Gp,q := SU(3)×SU(3)/∆SU(2)(∆p,qU(1)) (where
∆p,qU(1) is embedded into U(1)U(1) < SU(2)SU(2) with slope determined by
(p, q), for p and q relatively prime) provides the first examples of simply connected
homogeneous torus bundles which do not admit G-invariant Einstein metrics. Note
that G1,1 = SU(3) × SU(3)/∆U(2) admits a G-invariant Einstein metric by the
Graph Theorem [BWZ]. This is possible since for G1,1 the dimension of the space
of G-invariant metrics is larger than that for Gp,q, p �= q. The following intrigu-
ing fact is due to W. Ziller: We have H4(Gp,q, Z) = Z6|p2−q2| for p2 �= q2 and
H4(G±1,±1, Z) = Z. Hence in this case existence and non-existence of homoge-
neous Einstein metrics seems to be related to topological properties of the principal
S1-bundles under consideration.
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Finally, we describe all examples of case 2 above; that is, we assume that the
center of H lies diagonally in G1 × G2 but Hs does not. Each of these spaces Mn

is a principal torus bundle over B = G/HT with the presentation Mn = G/HT ′,
T ′ � T . Since dim G/H ≤ 12, the base G/HT turns out to be a product of
homogeneous Kähler-Einstein manifolds with positive first Chern class.

The possible factors are CP 1 = SU(2)/U(1), CP 2 = SU(3)/U(2), CP 3 =
SU(4)/U(3), CP 3 = Sp(2)/U(1)Sp(1), F3 = SU(3)/T 2, G+

2 (R5) = Sp(2)/U(2),
CP 4 = SU(5)/U(4), G2(C4) = SU(4)/S(U(2)U(2)) and Sp(2)/T 2, with the re-
striction that the sum of the dimension of the factors is bounded from the above by
eleven. If the flag manifold F3 or Sp(2)/T 2 is not a factor, then existence of a G-
invariant Einstein metric on G/H follows from [WZ3] and in dimension seven from
the earlier work of physicists [CDF], [DFN]. For generic principal S1-bundles over
such bases, we also have uniqueness [WZ3]. In the remaining cases, B = F3 ×CP 1,
B = CP 1 × Sp(2)/T 2, B = F3 × CP 2 and B = F3 × CP 1 × CP 1, the existence of
a G-invariant Einstein metric follows from [Bö].

From a topological and geometric point of view, many of these manifolds have
been of great interest (cf. [KS1], [WZ3]). For instance, the principal S1-bundles
over CP 1 ×CP 1 are all diffeomorphic to S2 × S3, but as homogeneous spaces they
are quite different. On S2 × S3 the moduli space of Einstein metrics has infinitely
many components, all realized by homogeneous metrics.

This paper is organized as follows: In section 1 we recall some basic facts about
compact homogeneous spaces. Then we give the classification of all simply con-
nected compact homogeneous spaces Mn up to dimension n = 12, acted on by a
compact, connected, simply connected and simple Lie group G. In the last section
we provide a proof of our main theorem.

It is a pleasure to thank Wolfgang Ziller for helpful discussions.

1. The classification

A connected, closed manifold Mn is called a compact homogeneous space if
there exists a compact group G of diffeomorphisms acting transitively on Mn. Let
H denote the isotropy group at a point in Mn. Then the coset space G/H is
diffeomorphic to Mn. As is well known, both G and H are compact Lie groups.
In what follows we will assume that G/H is almost effective, i.e., H contains no
non-discrete normal subgroup of G. If the Lie algebra g of G is not semisimple, let
g = z(g) ⊕ gs denote the decomposition of g into its center z(g) and its semisimple
part gs. Let (Gs)0 denote the compact, connected subgroup of G with Lie algebra
gs.

Lemma 1.1 ([On, Prop. 9, p. 94]). Let Mn = G/H be a compact, almost effective
homogeneous space with finite fundamental group. Then (Gs)0 acts transitively on
G/H.

We obtain G/H = (Gs)0/H ∩ (Gs)0 as manifolds.

Lemma 1.2. Let G/H be a simply connected, compact homogeneous space. If G
is connected, then so is H.

We conclude that H ∩ (Gs)0 is connected if Mn = G/H is simply connected.
In order to define the canonical presentation of a compact homogeneous space
Mn = G/H, one further reduction might be possible, by the following lemma.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1460 CHRISTOPH BÖHM AND MEGAN M. KERR

Lemma 1.3. Let G/H be a simply connected compact homogeneous space, where
G is connected and semisimple, but not simple; that is, g = g1 ⊕ · · · ⊕ gp for simple
ideals gi, 1 ≤ i ≤ p. Suppose that the projection of h to g1 is onto. Then the
connected, semisimple Lie subgroup G′ of G with Lie algebra g′ = g2 ⊕ · · · ⊕ gp still
acts transitively on G/H.

Via this lemma, we obtain a connected and semisimple Lie group Gcan of G
acting transitively on a simply connected homogeneous space Mn = G/H such
that if Hcan = Gcan ∩ H, the projection of the connected isotropy group Hcan to
the simple factors of Gcan is not onto. We call the presentation Mn = Gcan/Hcan

the canonical presentation of the homogeneous space G/H.
In general the Lie group Gcan need not be simply connected. However, we may

pass to the universal cover Ĝcan of Gcan which still acts transitively on Mn = G/H.

Theorem 1.4. Let Mn be a simply connected, compact homogeneous space. Then
there exists a compact, connected, simply connected, semisimple Lie group G =
G1×· · ·×Gp, p ≥ 1, acting transitively and almost effectively on Mn with connected
isotropy group H, such that pri(H) �= Gi for 1 ≤ i ≤ p.

As is well known, the space of G-invariant metrics can be viewed as a subspace
of the space Gcan-invariant metrics. Moreover, the space of Ĝcan-invariant metrics
agrees with the space of Gcan-invariant metrics. This implies that by considering
all Ĝcan-invariant metrics, for all canonical presentations Ĝcan/Ĥcan, we obtain all
homogeneous metrics on the compact simply connected homogeneous space Mn.
(Note that there still may be infinitely many canonical presentations of Mn.)

Remark 1.5. If G is connected, compact and simply connected, then the second
fundamental group of G/H is finite if and only if H is semisimple. Therefore, up to
a fixed dimension, there are at most finitely many such simply connected, compact
homogeneous spaces Mn. These have been classified by Klaus [Kl] up to dimension
nine and by Kruggel [Kr] up to dimension 12 (up to the last 2 spaces in Table 2).

Next, we investigate each compact, connected, simply connected semisimple Lie
group G and all its connected subgroups H, such that dimG/H ≤ 12.

Let G be a connected, simply connected simple Lie group. The following number
will be helpful: α(G) := dim g − dim hmax. We have

g α(G) hmax

su(r), r ≥ 3, �= 4 2(r − 1) su(r − 1) ⊕ R

sp(r), r ≥ 3 4(r − 1) sp(r − 1) ⊕ sp(1)
so(r), r ≥ 3, r �= 4 r − 1 so(r − 1)
g2 6 su(3)
f4 16 so(9)
e6 26 f4

e7 54 e6 ⊕ R

e8 112 e7 ⊕ su(2)

Note that so(3) = su(2), so(4) = su(2) ⊕ su(2), so(5) = sp(2), and so(6) = su(4)
(cf. [Ad]).

We start by finding all simple G for which α(G) ≤ 12. For each such group, we
list all the subgroups H < G for which dim(G/H) ≤ 12 (see [Dy1]).
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Case 1: G = SU(N), N = 2, . . . , 7.

N = 2: We get two subgroups of SU(2): U(1) and {id}.
N = 3: We have two maximal subgroups of SU(3): U(2) = S(U(1)U(2)) and
SO(3), and within U(2), SU(2), T 2 = U(1)U(1), ∆p,qU(1), and {id}.
N = 4: We have four maximal subgroups of SU(4): U(3) = S(U(1)U(3)),
S(U(2)U(2)), Sp(2), and SO(4). Their subgroups H with dim(H) ≥ 3 are given
by

(a) SU(3) < U(3),
(b) SU(2)1SU(2)1 < S(U(2)1U(2)1) (equiv. to Sp(1)1Sp(1)1 < Sp(2)),
(c) S(U(1)U(1)U(2)1) = S(U(1)U(3)) ∩ S(U(2)1U(2)1),
(d) S(∆p,qU(1)U(2)1) < S(U(1)U(1)U(2)1),
(e) U(2)2 < Sp(2) (equiv. to U(2)2 < SO(4)),
(f) U(1)SO(3)4,
(g) SU(2)1 < U(2)1 < SU(3) (equiv. to SU(2)1 < SU(2)1SU(2)1 and Sp(1)1

< Sp(1)1Sp(1)1),
(h) SU(2)2 < U(2)2 (equiv. to ∆Sp(1)1 < Sp(1)1Sp(1)1, ∆SU(2)1 <

SU(2)1SU(2)1),
(i) SO(3)4 < SO(4),
(j) SU(2)10 < Sp(2) (maximal, see [Dy2], Table 13),
(k) T 3.

N = 5: We have three maximal subgroups of SU(5): U(4) = S(U(1)U(3)),
S(U(2)U(3)), SO(5). We need dim(H) ≥ 12, which eliminates SO(5). The only
non-maximal subgroup with sufficiently large dimension is SU(4) < U(4).

N = 6: SU(6) has six maximal subgroups. We want only those subgroups of SU(6)
with dim(H) ≥ 23; this leaves one maximal subgroup U(5) = S(U(1)U(5)), and
also SU(5) < U(5).

N = 7: The only subgroup of SU(7) with dim(H) ≥ 36 is U(6).

Case 2: G = Sp(N) for N = 2, 3, 4.

N = 2: The maximal subgroups of Sp(2) are U(2), Sp(1)Sp(1), and SU(2). We
also have their subgroups:

(a) U(1)Sp(1) < Sp(1)Sp(1),
(b) Sp(1) < Sp(1)Sp(1),
(c) SU(2) < U(2) (equiv. to ∆Sp(1) < Sp(1)Sp(1)),
(d) T 2 = U(1)U(1),
(e) ∆k,lU(1) < U(1)U(1),
(f) {id}.

N = 3: Sp(3) has four maximal subgroups: U(3), Sp(1)Sp(2), Sp(1)SO(3), and
SU(2). We want only the subgroups with dim(H) ≥ 9. This leaves us with U(3),
Sp(1)Sp(2), U(1)Sp(2), Sp(2), and Sp(1)Sp(1)Sp(1).

N = 4: The only subgroup of Sp(4) satisfying dim(H) ≥ 24 is Sp(1)Sp(3).

Case 3: G = SO(N) for N = 7, . . . , 13.

N = 7: The group SO(7) has four maximal subgroups: SO(6), SO(2)SO(5),
SO(3)SO(4) and G2. Since we are only interested in those subgroups of SO(7)
with dim(H) ≥ 9, we are left with U(3) and SO(5) = SO(2)SO(5) ∩ SO(6).
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N = 8: The group SO(8) has five maximal subgroups. Since we need dim(H) ≥ 16,
this leaves SO(2)SO(6) (equivalent to U(4)) and SO(7) of dimension 21. Then
SO(7) has no proper subgroups of dimension at least 17.
N = 9, 10, 11, 12, 13: The only quotients with dimension less than or equal to 12
are the spheres: SO(n)/SO(n− 1).
Case 4: G = G2. This is the only exceptional Lie group with α(G) ≤ 12. The
group G2 has three maximal subgroups: SU(3), SO(4) and SO(3)28 (see [Dy2],
Table 14). Their subgroups with dim H ≥ 2 are given by:

(a) U(2)1 < SU(3) ∩ SO(4),
(b) U(2)3 < SO(4) (not in SU(3)),
(c) SU(2)1 < U(2)1,
(d) SU(2)3 < U(2)3,
(e) SO(3)4 < SO(4),
(f) T 2.

This completes the classification for the case G simple.
Now let us turn to the semisimple groups. Let Mn = G/H be a connected,

compact homogeneous space written in canonical form: G = G1 × · · · × Gp, where
each Gi is compact, simple, simply connected, and p ≥ 2. We have Gi ∩ H <
pri(H) < Gi. If n ≤ 10, then for some k ≥ 1, G/H can be written G/H =
(G1 × · · · × Gp)/∆T k(H1 × · · · × Hp). To see this, we follow the method used in
[Kl]. Consider the fibration

(pr1(H) × · · · × prp(H))/H → G/H → G1/pr1(H) × · · · × Gp/prp(H).

Let f = dim((pr1(H)×· · ·×prp(H))/H), bi = dim(Gi/pri(H)). Then dim G/H =
f + (b1 + · · · + bp). We know f ≥ 1, and bi ≥ 2, bi �= 3. In order for one of the
simple factors of the semisimple part of H to lie diagonally in G, we must have
b1, b2 ≥ 4, and f ≥ 3. This implies dim G/H ≥ 11.

In dimension 11 = 3 + 4 + 4 we obtain the following possibilities for G/H:
(a) SU(3) × SU(3)/∆SU(2)(U(1)× U(1)),
(b) Sp(2) × Sp(2)/∆Sp(1)(Sp(1)× Sp(1)),
(c) SU(3) × Sp(2)/∆1Sp(1)(U(1)× Sp(1)).

In dimension 12 = 3 + 4 + 5 we get
(a) SU(3) × SU(3)/∆SU(2)(∆p,qU(1)),
(b) SU(3) × SU(3)/∆1SU(2)({id} × U(1)),
(c) SU(3) × Sp(2)/∆1Sp(1)({id} × Sp(1)),
(d) SU(3) × Sp(2)/∆2Sp(1)({id} × Sp(1)).

The diagonal embeddings of SU(2) and Sp(1), respectively, are described in the
Introduction.

2. Existence of Einstein metrics

Let G/H be a compact homogeneous space and let Q denote an Ad(G)-invariant
scalar product on g. Choose m the Q-orthogonal complement to h in g. As is well
known, every G-invariant metric on G/H is uniquely determined by an Ad(H)-
invariant scalar product on m. For any G-invariant metric 〈 · , · 〉 on G/H, there
exists a corresponding decomposition m = m1⊕· · ·⊕mp of m into Ad(H)-irreducible
summands, such that 〈 · , · 〉 is diagonal with respect to Q. That is, we have

〈 · , · 〉 = x1Q|m1 ⊥ · · · ⊥ xpQ|mp
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with x1, ..., xp > 0. The scalar curvature for 〈 · , · 〉 is given in [WZ2]:

(∗) S =
1
2

∑

i

dibi

xi
− 1

4

∑

i,j,k

[ijk]
xi

xjxk
.

In this formula, for each i, −B|mi = biQ|mi , where B denotes the Killing form,
and di = dimmi; the triple [ijk] =

∑
Q([Xα, Xβ], Xγ)2 is summed over {Xα},

{Xβ}, and {Xγ}, Q-orthonormal bases for mi, mj , and mk, respectively. Recall
that G-invariant Einstein metrics on G/H are characterized variationally as the
critical points of the scalar curvature function S restricted to the set of G-invariant
metrics of volume 1.

If the above-mentioned decomposition of m is unique up to order, e.g. if rkG =
rk H, then the Euler-Lagrange equation can be written down easily. The metric
〈 · , · 〉 is Einstein with Einstein constant λ ≥ 0 (cf. [Bo]), if and only if for all
1 ≤ i ≤ p,

bi

2xi
− 1

4di

∑

j,k

[ijk]
2x2

k − x2
i

xixjxk
= λ .

For certain homogeneous spaces this equation can be solved explicitly, and we will
make use of this approach in proving our main theorem. We will also apply the
following two general existence results on homogeneous Einstein metrics.

First, we describe a consequence of the Graph Theorem [BWZ].

Proposition 2.1 ([BWZ]). Let G/H be a compact homogeneous space with both G
and H connected. Suppose that there exists a connected, semisimple intermediate
subgroup K, such that H is maximal in K and K is maximal in G. If there exists
a further connected subgroup L with H < L < G not isomorphic to K, then G/H
admits a G-invariant Einstein metric.

Next, let us turn to the second general existence result. Suppose that G/H is
simply connected and compact, such that G is compact, connected, simply con-
nected and semisimple. Recall that H is connected. As described in [Bö], we can
assign a simplicial complex ∆̂G/H (the extended simplicial complex of G/H) to such
a homogeneous space as follows: Let T be a maximal torus of a compact comple-
ment of H in the identity component of the normalizer NG(H) of H in G. Then
TH is a connected, compact, proper subgroup of G and there exist at most finitely
many subalgebras of g lying properly between t ⊕ h and g. These subalgebras are
partially ordered by the inclusion relation. The extended simplicial complex ∆̂G/H

of G/H is the corresponding flag complex: Vertices correspond to flags of length
one, edges to flags of length two, and so on. The subcomplex ∆G/H of ∆̂G/H given
by all flags of subalgebras generated by minimal subalgebras is called the simplicial
complex of G/H. Note that both of these simplicial complexes are independent of
the choice of T . In general, ∆̂G/H and ∆G/H are homotopy equivalent but not
homeomorphic.

Theorem 2.2 ([Bö]). Let G/H be a compact homogeneous space with both G and
H connected. If the simplicial complex ∆G/H of G/H is not contractible, then G/H
admits a G-invariant Einstein metric.
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The empty set is by definition non-contractible. The following obvious property
of the simplicial complex turns out to be extremely helpful.

Proposition 2.3 ([Bö]). Let G/H be a simply connected, compact homogeneous
space with both G and H connected. Let T be a maximal torus of a compact com-
plement of H in the identity component of the normalizer NG(H) of H in G. Then
∆G/H = ∆G/TH .

Furthermore, the simplicial complex obeys the following “product formula”.
Here X ∗ Y denotes the join of X and Y . Note that X ∗ ∅ = X and ∅ ∗ ∅ = ∅.

Theorem 2.4 ([Bö]). Let G/H be a simply connected, compact homogeneous space
with both G and H connected. If G = G1×· · ·×Gp and H = H1×· · ·×Hp, Hi < Gi,
then the simplicial complex ∆G/H is homeomorphic to ∆G1/H1 ∗· · ·∗∆Gp/Hp

∗Sp−2.

We are now ready to prove our main theorem. We start with the case when G
is simple, by passing through Table 1. There are five spaces which are not covered
by the references provided there. By Proposition 2.3 we have ∆Sp(2)/∆p,qU(1) =
∆Sp(2)/T 2 . Since the simplicial complex ∆Sp(2)/T 2 is not connected, by Theorem
2.2 the existence of at least one Sp(2)-invariant Einstein metric follows. Simi-
larly, we have ∆SU(4)/S(∆p,qU(1)U(2)) = ∆SU(4)/S(U(1)U(1)U(2)) and again existence
of at least one SU(4)-invariant Einstein metric follows. By the same reasoning the
complex Stiefel manifold SU(4)/SU(2)1 admits an SU(4)-invariant Einstein met-
ric. By Theorem 2.2, SU(4)/SU(2)2 admits an SU(4)-invariant Einstein metric,
since ∆SU(4)/SU(2)2 = ∆SU(4)/U(2)2 is disconnected. Finally, with K = SO(4) and
L = SU(3), it follows from Proposition 2.1 that SU(4)/SO(3)4 carries an SU(4)-
invariant Einstein metric.

Using equation (∗) and Maple, one sees that SU(4)/U(2)2 carries exactly two
Einstein metrics; we extend the result of [Ni1] for this space. This completes the
proof of the main theorem in case G is simple.

Now let us turn to the case G semisimple, not simple. First, we consider the
case when G/H is one of our eight spaces with a nonabelian diagonal component
in H. The first three examples were all proved to admit exactly two homogeneous
Einstein metrics in [Wa2]. We will start with the fifth space: G/H = SU(3) ×
SU(3)/∆SU(2)(∆p,qU(1)). The fourth space is a special case of this, with p = q.

We take Q(X, Y ) = −1
2 tr (XY ), a multiple of the Killing form. Let G = G1×G2.

We have an intermediate subgroup K = K1 × K2 = U(2) × U(2), such that H <
K < G, and each Ki < Gi. We see that m decomposes into four irreducible
summands, pairwise inequivalent as long as p �= q: Let m1 be the tangent space to
G1/K1 and let m2 be the tangent space to G2/K2. That is, su(3)1 = u(2)1 ⊕ m1,
and su(3)2 = u(2)2 ⊕ m2. Next, m3 = su(2)1 ⊕ su(2)2 � ∆su(2), the Q-orthogonal
complement to ∆su(2) in su(2)1⊕ su(2)2. Similarly, m4 = u(1)1⊕u(1)2 �∆p,qu(1),
the complement to ∆p,qu(1) in u(1)1 ⊕ u(1)2.

Since G1/K1, G2/K2 and K/H are symmetric spaces, we know [m1, m1] ⊂ k1,
[m2, m2] ⊂ k2, [m3, m3] ⊂ ∆su(2) and [m4, m4] = [m3, m4] = 0. Note that [m1, m2] =
0. We conclude that the only non-zero symmetric triples are [114], [224], [113] and
[223].

We find [113] = [223] = 6. The symmetric triples involving m4 depend on the
embedding of ∆p,qU(1) in U(1)U(1): [114] = 12λ2 and [224] = 12(1−λ2), for some
λ = λ(p, q) with λ2 ≤ 1. We have d1 = d2 = 4, d3 = 3, d4 = 1, while bi = 12 for all
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i. Hence, the Einstein equation is given by the system

3λ2x4

x2
1

+
3(1 − λ2)x4

x2
2

=
4
x3

+
x3

2x2
1

+
x3

2x2
2

=
6
x1

− 3λ2x4

2x2
1

− 3x3

4x2
1

=
6
x2

− 3(1 − λ2)x4

2x2
2

− 3x3

4x2
2

.

Denote these four terms by I, II, III and IV , respectively. We get 2 ·III +2 ·IV +
I = 5 · II, an equation independent of λ. If we let α = x3

x1
, β = x3

x2
and simplify,

then we obtain 4(α2 + β2) + 20 − 12(α + β) = 0, which has no real solutions. This
shows that SU(3)×SU(3)/∆SU(2)(∆p,qU(1)) carries no SU(3)×SU(3)-invariant
Einstein metrics, as long as p �= q.

However, in the case p = q, m1 and m2 are equivalent summands in the isotropy
representation, and so there is in fact a larger family of homogeneous metrics. We
can write our homogeneous space as SU(3) × SU(3)/∆U(2). Then H = ∆U(2) is
maximal in K = ∆SU(3), which is itself maximal in G = SU(3) × SU(3). Since
H < L = U(2) × U(2), the existence of a G-invariant Einstein metric follows from
Proposition 2.1. Note that from the computation above we know that no metric
which is diagonal with respect to the decomposition above is Einstein.

The next space we consider is SU(3) × SU(3)/∆2SU(2)({id} × U(1)), where
pr1(∆2SU(2)) = SO(3) and pr2(∆2SU(2)) = SU(2). There are three irreducible
summands in the isotropy representation. We have an intermediate subgroup K =
K1 × K2 = SO(3) × U(2). Using this, we let m1 be the Q-orthogonal complement
to k1 in su(3)1, while m2 is the complement to k2 in su(3)2. This leaves us with
m3 = su(2)⊕su(2)�∆su(2). As in the example above, since G1/K1 and G2/K2 are
symmetric spaces, we know [m1, m1] ⊂ k1, [m2, m2] ⊂ k2. We also know [m3, m3] ⊂
∆su(2) and [m1, m2] = 0. Thus we have the following non-zero symmetric triples
to compute: [113] and [223]. We find that [113] = 15, and we already computed
[223] = 6 above. We have d1 = 5, d2 = 4, d3 = 3. As above, bi = 12. Hence, the
Einstein equation is given by the system

3x3

2x2
1

− 6
x1

=
3x3

4x2
2

− 6
x2

= − 5
2x3

− x3

2x2
2

− 5x3

4x2
1

.

Let α = x3
x1

, β = x3
x2

, and simplify to get the following pair of equations: 0 =
β2 − 24

5 β + 2 + α2 and 0 = 11
2 α2 − 12α + 5 + β2. This system has four solu-

tions, with exactly two real positive solutions: (α, β) ∼= (1.38166, 1.03948) and
(α, β) ∼= (0.618099, 0.562079), corresponding to two homogeneous Einstein metrics
on SU(3) × SU(3)/∆2SU(2)({id} × U(1)).

We next consider the homogeneous space SU(3)×Sp(2)/∆1Sp(1)({id}×Sp(1)),
where pr1(∆1Sp(1)) = SU(2) and pr2(∆1Sp(1)) = Sp(1) × {id}. The isotropy
representation can be seen to have four components: Let m1 denote the orthogonal
complement to u(2) in su(3), and let m2 be the complement to sp(1) ⊕ sp(1) in
sp(2). Then m3 = su(2) ⊕ su(2) � ∆su(2), and m4 = u(2) � su(2) (in su(3)).
We again have [m3, m4] = 0, and [m4, m4] = 0. We also know [m1, m2] = 0 and
[m2, m2] ⊂ sp(1)⊕ sp(1). As above, [m3, m3] ⊂ ∆su(2). Thus we have the following
nonzero triples: [113], [114], and [223]. We already found [113] = 6 above, and
we see (after computing) that [223] = 6 as well. If we consider the first example
with λ = 1, we find [114] = 12. We have d1 = d2 = 4, d3 = 3, d4 = 1, and
bi = 12 for all i. Note this is exactly the data for the scalar curvature function we
had in the example SU(3) × SU(3)/∆p,qU(1)∆SU(2) for λ = λ(p, q) = 1. Thus
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we can conclude that there are no SU(3) × Sp(2)-invariant Einstein metrics on
SU(3) × Sp(2)/∆1Sp(1)({id} × Sp(1)).

The last space we need to consider is SU(3) × Sp(2)/∆2Sp(1)({id} × Sp(1)),
where pr1(∆2Sp(1)) = SO(3) and pr2(∆2(Sp(1))) = Sp(1) × {id}. Here we again
find ourselves combining information from the examples above. The isotropy rep-
resentation has three summands: m1 is the Q-orthogonal complement to so(3) in
su(3), m2 is the complement to sp(1)⊕ sp(1) in sp(2), and m3 is the complement to
∆sp(1) in so(3) ⊕ sp(1). The non-zero symmetric triples are [113] = 15 (found in
the second example) and [223] = 6 (found in the previous example). We have here
d1 = 5, d2 = 4, d3 = 3, and bi = 12 for all i. Note that this is exactly the data for the
scalar curvature function we had in our second example, and so we obtain exactly
two homogeneous Einstein metrics on SU(3) × Sp(2)/∆2Sp(1)({id} × Sp(1)).

Finally, we consider the case when G/H is one of the spaces with abelian di-
agonal component in H. Existence of homogeneous Einstein metrics follows from
the references provided in the Introduction, apart from four cases. In the last
case we have to consider T k-principal bundles, k = 1, 2, over CP 1 × CP 1 × F3

presented as SU(2)SU(2)SU(3)/T ′, where T ′ < T 4 is any 2-dimensional (resp. 3-
dimensional) compact subtorus of a maximal torus T 4 of SU(2)SU(2)SU(3). We
have ∆SU(2)SU(2)SU(3)/T ′ = ∆SU(2)SU(2)SU(3)/T 4 , hence by Theorem 2.4,

∆SU(2)SU(2)SU(3)/T ′ = ∆SU(2)/U(1) ∗ ∆SU(2)/U(1) ∗ ∆SU(3)/T 2 ∗ S1 .

Since ∆SU(2)/U(1) = ∅ and ∆SU(3)/T 2 is disconnected, we conclude that

∆SU(2)SU(2)SU(3)/T ′

is not contractible (cf. [Mi]). The existence of a homogeneous Einstein metric
follows from Theorem 2.2. The other three cases can be treated in precisely the
same manner.

This concludes the proof of the main theorem when G is semisimple but not
simple. �
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Norm. Sup., 4e série t. 18, 563–633, (1985) MR0839687 (87k:53113)

[WZ2] M. Wang, W. Ziller: Existence and non-existence of homogeneous Einstein metrics,
Invent. Math. 84, 177–194, (1986) MR0830044 (87e:53081)

[WZ3] M. Wang, W. Ziller: Einstein metrics on principal torus bundles, J. Diff. Geom. 31,
215–248, (1990) MR1030671 (91f:53041)

[Wo] J. A. Wolf: The geometry and structure of isotropy irreducible homogeneous spaces, Acta
Math. 120, 59–148 (1968); correction, Acta Math. 152, 141–142 (1984). MR0223501
(36:6549)

[Yau] S. T. Yau: On the Ricci curvature of a compact Kähler manifold and the complex
Monge-Ampère equation I, Comm. Pure Appl. Math. 31, 339–411, (1978) MR0480350
(81d:53045)

[Zi] W. Ziller: Homogeneous Einstein metrics on spheres and projective spaces, Math. Ann.
259, 351–358, (1982) MR0661203 (84h:53062)

Mathematisches Institut, Universität Münster, Einsteinstr. 62, 48149 Münster, Ger-

many

E-mail address: cboehm@math.uni-muenster.de

Department of Mathematics, Wellesley College, 106 Central St., Wellesley, Mas-

sachusetts 02481

E-mail address: mkerr@wellesley.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1721419
http://www.ams.org/mathscinet-getitem?mr=1721419
http://www.ams.org/mathscinet-getitem?mr=1756487
http://www.ams.org/mathscinet-getitem?mr=1756487
http://www.ams.org/mathscinet-getitem?mr=2113184
http://www.ams.org/mathscinet-getitem?mr=0768319
http://www.ams.org/mathscinet-getitem?mr=0768319
http://www.ams.org/mathscinet-getitem?mr=1743146
http://www.ams.org/mathscinet-getitem?mr=1743146
http://www.ams.org/mathscinet-getitem?mr=1471884
http://www.ams.org/mathscinet-getitem?mr=1471884
http://www.ams.org/mathscinet-getitem?mr=0650366
http://www.ams.org/mathscinet-getitem?mr=0650366
http://www.ams.org/mathscinet-getitem?mr=1166528
http://www.ams.org/mathscinet-getitem?mr=1166528
http://www.ams.org/mathscinet-getitem?mr=0839687
http://www.ams.org/mathscinet-getitem?mr=0839687
http://www.ams.org/mathscinet-getitem?mr=0830044
http://www.ams.org/mathscinet-getitem?mr=0830044
http://www.ams.org/mathscinet-getitem?mr=1030671
http://www.ams.org/mathscinet-getitem?mr=1030671
http://www.ams.org/mathscinet-getitem?mr=0223501
http://www.ams.org/mathscinet-getitem?mr=0223501
http://www.ams.org/mathscinet-getitem?mr=0480350
http://www.ams.org/mathscinet-getitem?mr=0480350
http://www.ams.org/mathscinet-getitem?mr=0661203
http://www.ams.org/mathscinet-getitem?mr=0661203

	1. The classification
	2. Existence of Einstein metrics
	References

