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The aim of this paper is to deseribe how the Voronot cell of a lattice changes as that
lattice is continuously varied. The usual treatment is simplified by the introduction
of new parameters called the vonorms and conorms of the lattice. The present paper
deals with dimensions n < 3; a sequel will treat four-dimensional lattices. An elegant
algorithm i given for the Voronoi reduction of a three-dimensional lattice, leading
to a new proof of Voronoi's theorem that every lattice of dimension n < 3 18 of the
first kind, and of Fedorov’s clagsification of the threc-dimensional lattices into five
types. There ig a very simple formula for the determinant of a three-dimensional
lattice in terms of its conorms,

1. Introduction

Our aim in this paper and its sequel is to deseribe how the Voronoi cell of a lattice
changes as that lattice is continuously varied. We simplify the usual treatment by
introducing new parameters which we call the vonorms and conorms of the lattice.
The present paper studics lattices in one, two and three dimensions, ending with the
theorem of Fedorov (1885, 1891) and on the five types of three-dimensional lattices.
The sequel will uge the same machinery to give a simple proof of the theorem of
Delone (1929, 1937, 1938), as corrected by Stogrin (1973), that there are 52 types of
four-dimensional lattice.
The main theorem of the present paper is the following.

Theorem 1. Each three-dimensional lattice is uniquely represented by a projective
plane of order 2 labelled with seven numbers, the conorms of the lattice, whose minimum
is O and whose support is nol contained in « proper subspace. Two laltices are isomorphic
if and only if the corresponding labellings differ only by an automorphism of the plane.

Asg we shall see, in threc dimengions our seven ‘conorms’ are just 0 and the six
‘Selling parameters’. However, this apparently trivial replacement of six numbers
by seven numbers whose minimum is zero leads to several valuable improvements in
the theory.

1. The conorms vary continuously with the lattice. (For the Selling parameters the
rariation is usually continuous but requires occasional readjustments. )

2. The definition of the conorms makes it apparent that they are invariants of the
lattice. (The Selling parameters are almost but not quite invariant.)

3. All symmetries of the lattice arise from gymmetries of the conorm funetion,
(Again, this 1z false for the Selling parameters.)

There are several reasons for studying Voronoi cells of Jattices. Besides the
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56 J. H. Conway and N.J. A. Sloane

applications to packing, covering and quantizing problems (see, for example, Barnes
& Sloane 1983; Conway & Sloanc 1988« ; Gruber & Lekkerkerker 1987 ; Ryskov &
Baranovskii 1976, 1979) there are connections with the theory of tilings. Following
sruber & Lekkerkerker (1987, p. 168) we define an n-dimensional parallelotope (or
parallelohedron it n == 3) to be a convex body § which admits a lattice tiling (in other
words there is a lattice 4 such that the translates S+u, e A cover #* while their
interiors are disjoint}. Voronoi (1908a, 6, 1909) conjectured that cvery parallelo-
hedron is the affine image of the Voronoi cell of some Jattice, This was proved for
n < 4 by Delone (1929}, while for n = 5 the question remains open. In particular
there are five three-dimensional parallelohedra, the affine images of the five Voronoi
cclls described in figure 7 (see Theorem 9).

Voronoi vectors are defined in §2, and vonorms and conorms in §§3-5. All of these
quantities are particularly simple in the case of lattices of the “first kind’, defined in
§2. Sections 6 and 7 will establish that every lattice of dimension #n < 3 is of the first
kind. In particular the proof that every three-dimensional Jattice is of the first kind
is accomplished by means of a new algorithm given in §7 for the *Voronoi reduction’
of the lattice, that is, [or finding a specification of the lattice that makes its Voronoi
vectors apparcnt. Figure 5 shows an example. This algorithm is also used to prove
Theorem 1. The last section of the paper applies the preceding theory to derive the
five types of three-dimensional Voronoi cells (summarized in figure 7, Theorem 9 and
table 2). At the beginning of §8 we give especially simple formulae (involving the
conorms) for the vertices, edges and faces of the generic Voronoi cell of a three-
dimensional lattice, for its edge-lengths and for the determinant of the lattice (sce
(15) and (17)).

2. Voronoi vectors

Let 4 = B" be a real n-dimensional lattice (as in Conway & Sloane 1988a). The
Voronoi cell Viu) for we A is the set of points of #* that are at least as close to « as
to any other lattice point:

Vi) = {ee B* . Nae—u) < Ne—w) all ved},

where N{x) = z'x denotes the norm of a vector. All the Vi{u) for we A are congruent.
convex polvtopes. They partition 8" into the Voronoi honeycomb of A.
A vector ve A is called a Voronot vector if the hyperplane

{xeR™ v = fvv)

has a non-empty intersection with V((}) (the Voronoi cell containing the origin). A
Voronol vector 18 refevant (or strict) it this intersection is an (n— 1 })-dimensional face
of V({0), and is otherwise irrelevant (or lax).

By the Voronoi reduction of 4 we mean finding a description of A from which its
Voronoi vectors are apparent.

The starting point for thiz investigation is the [ollowing theorem.

Theorem 2. A non-zero vector ve A is (i) a Voronot veclor if and only if v is a shortest
veetor in the class v+ 24 (ii) a strict Voronoi vector iof ard only if v and —v are the only
shortest vectors in v+ 241.

The usual version of this theorem only gives part (i) (Voronoi 19086, p. 277;
Venkov 1983 Engel 1986, p. 35; Gruber & Lekkerkerker 1987, p. 95; Conway &
Sloane 19884, where, owing to an unfortunate printer’s error, the statement of the
theorem was omitted from the foot of page 474).
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Voronoi reduction of laltices 57

Proof. (1) Supposc v is a Voronoi vector yet there is a vector we A with v—w e 24,
N{w) < N(v). Then t = Ho+w) and u = {{v—w) belong to A. Let P satisfy P2 = Lo.v,
Pri<it-t, Pru < tu-u. These equations imply N(z) < N(w), a contradiction. On the
other hand, suppose v is a shortest vector in its class v+ 24, but is not a Voronoi
vector. Then for some we A, Ju-w > fw-w, so N —2w) < N(w), a contradiction. The
proof of (ii) (sce, for example, Conway & Sloane 1988a, p. 475) is similar.

Since there are 2% — 1 non-zero classes of A/2A. [rom part (i) of the theorem there
arc at least 2(2"—1) Voronoi vectors. In a generie (or random) lattice there arc no
coincidences between the lengths of vectors in distinet classes, and hence there are
exactly 2(2"—1} Voronoi vectors, all strict.

A lattice A is said to be of Voronot's first kind if it has what we shall call an obtuse
superbase; that is to say, a set of vectors »,, vy, ..., v, such that v, ..., v, i3 an integral
bagis for 4 and

vyt + .. +w, =0

(this is a superbase), and in addition
py=v1, <0, for 4,5=0..n i#j, (1)
(this is the obiuse condition). The superbase 18 strictly obtuse if
vy <0, for 4,j=0.....n i#}j (2}

For example, the root lattice 4, (# = 1) and its dual A% arc of the first kind. The
#+ 1 eyelie shifts of (1, —1,0,...,0} are an obtuse superbasce for 4, and the vectors
(nf(n+1), —1/(n+1),..., —1/(n+1)) arc a strictly obtusc superbase for A%,

The numbers p,; are traditionally called the Selling parameiers for the superbase or
lattice (Selling 1874: Baranovskii 1980), and if we define

P = Pig TPt o T Dy (3)

then the inner product matrix for the superbase is

Popz...n —Pm —Poz .- —Pox
—Puw  Proe...n TPz - —Pin (4)
~Pav P “Pnz - Papr...a-1

Theorem 3. (i) If A is of the first kind with superbase vy, ..., ¢, then the 2" —2
subsums

re= xv, SE{01,.. 0],
s
0 < |S] < n, are Voronot vectors. Also vy and vy = —vg are congruent modulo 24, but
otherwise these veclors are in distinct classes of A/2A. (1) The vectors v are all strict if
and only if the superbase is stricl.

Remark. Here S is the set complementary to S. We writo vy, for o, , o .

Proof. (1} The norm of any vector v = 2 om0, e A, m;e Z, is plainly given by
Selling’s formula

1 i3
N(E m, ?}_!-) = X pylm—m,)? (5)
=0 i,7=0
rej
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(Selling 1874). Now » i3 unchanged if the m, are all incrcased by the same amount,
and unchanged modulo 24 if the m, are changed by even integers. So within a given
coset of 4/2A4 the norm 18 minimized when all even m, are replaced by 0 and all odd
m, by 1. (i) If all p,; > 0 and we suppose, as we may, that min {mg, ..., m,} = 0, then
the norm is minimized only if all m, arc 0 or 1. [ |

3. Vonorms

The Voronot norm, or vonorm, vo (7), of a class ¥ = v+ 24 of 4/24 15 the least norm
of any veetor in that class. Thus the vonorms are the norms of the Voronoi vectors
{the proper vonorms), together with zero (the émproper vonorm). By ‘the vonorms’
we usually mean ‘the proper vonorms’. The vonorm map from A/24 to & i
obviously an invariant of 4; we shall see in dimensions # € 4 (and we conjecture in
general) that it also characterizes A. The quotient 4/24 can obviously be regarded
as a vector space over the field of order 2. Since this important space is the domain
of the vonorms we call il. vonorm space.

Theorem 4. The vonorms of a lattice of the first kind are the numbers
*'IV("{"S) = Z p-eij = pab T X (Su'y)ﬂ (ﬁ)
ies, je§
where S = {a, b, ...,c}, S ={d,e, ... f}

Proof. This follows immediately from Theorem 3. [ |

4. Characters

As usual we deline a real character on an n-dimensional lattice 4 to be a function
y from 4 to {£ 1} with the property that y(u+u) = y(u)y(v) for all v, ve A. The 27
real characters form a group which is abstractly isomerphic to the vector space dual
of the vonorm space A4/24. We call this dual space cororm space. From now on,
‘character’ will alwayvs mean ‘real character’.

Theorem 5. The characters of a laltice of the first kind correspond to the subsets S of
{10, ....n} for which |S| is even. They are defined by

; ("I" _ _'_]'5 ‘;ES- (7
;\S "i}_ _t_‘]-‘ €¢JS‘ )

Proof. Tt is cagy to check that these are characters, and since there are 3-2%'7 =
2% of them, therc 18 no other. |

5. Conorms

The conjugate norm, or conorm, co (¥} corresponding to a character y is defined by

t
o) = -5 I xl@)vo(e). (8)

an—1
2 Al 2A

The conorm co (1) corresponding Lo the trivial character y, = 1 is called the improper
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conorm, By “the conorms’ we usually mecan “the proper conorms’. The conorms are,
apart from a scale factor, the Fourier transforms of the vonorms, and so carry
exactly the same information as the vonorms. In fact

vo (1) = X co (y), (9)

where the sum i taken over all y with y(») = —1. Since vo (#) > 0 if 7 i8 not the zero
clagg, (9) implies that the support of the conorm function cannot be contained in a
proper subspace of conorm space.

Theorem 6. For a lattice of the first kind the proper conorms are given by

iy JPa S =H )
o (Yg) = { 0, otherwise.

So for a lattice of the first kind the conorms are the Selling poarameters supplemented by

ZEYOS.

The proof is an easy caleulation,

6. One-dimensional and two-dimensional lattices

An n-dimensional lattice is represented by a point in a vector space of dimension
N = {n(n+1), the space of Gram matrices. On the other hand there are 2% —1 proper
vonorms {(or conorms), a number which is always greater than or equal to N, as we
gee 1n table 1.

Table 1

n N=hn+1) 2»—1  difference

1 1 1 0
2 3 3 0
3 6 T |
4 10 15 3
b 15 3 16

In thig section we briefly discuss the one-dimensional and two-dimensional cases,
and show that there the vonorms are exactly enough to parametrize the space of
lattices and that every lattice is of the first kind.

Dimension 1. Let A have Gram matrix («), and gencrator »,, with N(»,) = ¢. Then
v, = —w, and v, form an obtuse superbase, the proper vonorm is a, and the proper
CONOTM I8 —u, v, = Py, = .

Dimension 2. Suppose A is generated by veetors ¢, v, having Minkowski-reduced

GGram matrix
o —h
—h bl

with 0 € 2k < a <bh. Then v, = — (v, +v,), #,,0, form an obtuse supcrbase, with
Sclling parameters p,; determined by

= PutPia b =P b=puptpn,
The Voronoi vectors are +o,, £v,, ¥, and if & = p;, # 0 there is no other, while if

Hroe. . Sve. Lond. A (1992)
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(a] —_ vD: v oy (b] )
I 2 y — ,
Y vV, v, T lx:]—vl-fw_z
0\\ i
}
o -
vV, 1Y v,
2 T 2
] Ty +
e e —y —V. T,
Voo T TV, Y 1T

Figure 1. Voronoi cells (heavy lines) of two-dimensional lattices. {«) If g, # 0 theve are three pairs
+#,, tu,, T2, of Voronoi vectors, all strict, and the cell is a hexagon. (b) T p,, = O therc are four‘
peur":. +y, i?._, + (2, +1,), T (8, —2,) of Voronoi veetors, but only +»,, t#, are strict, and the cell
is a rectangle.

P, = 0 there is an additional pair of Voronoi vectors =+ (z, —#,). The corresponding
Voronol cclls are shown in figure 1.

The proper vonorms arc @ = Py, + P b= Po+ iy €= Do tPo = ¢ +b—2k
These may be any three positive numboers satisfying the triangle inequalities

b+eza, c+azb at+bzec {10}

The proper conorms py;, Pos, P1» May be any three non-negative numbers, although
at least two must be strictly positive for 4 to be a proper lattice. Note that

det A = ab—h* = pyy poy+Por P12+ Po2 Pra

(compare with (15) below).
The vonorms have also a geometric interpretation.

Theorem 7. The vonorms py;, of a two-dimensional lallice A are the three smallest
norms of primitive vectors (ignoving the distinction between vectors and their negatives).

Proof. If the conorms are p,; then the norm of v = X m, v, is 2, by, (e, —my)*, If
two of the wm,; are equal, » iz a multiple of one of the »,. If not, its norm is at- least
Poi T Po2 T P15 Which exceeds all the vonorms py; +py;. [}

7. Three-dimensional lattices
The main result of this section is the following theorem of Voronoi (1908 «. 6, 1909),
Theorem 8. Any three-dimensional {attice A is of the first kind.

Proof. We establish this by giving an algorithm for the Voronoi reduction of A,
which computes the Selling parameters p;; for the desired obtuse superbase.

Civen any base 2, v,, v, for 4, we call the seven subsums v vy, ..., 055 = v, v, +1y
the pulative Voronoi veelors, their norms N(», ), Nz 2) ..... N{vy,,} 1[1(‘ putalive (proper}
vonorms, and the six numbers p, = - »;0, (0 <4 «% 3) the putative (proper)
conorms, tor the superbase v, = —v, —n,—w,, 7, ¥, ¥y, ( T h[—‘ﬁn putative quantities will
be eorrect if this superbase is obtmc )

The non-zcro cosets of A4/24 naturally form a projective plane of order 2, which
we draw as in figure 2a. The lines of this plane correspond to the points of the dual
plane as n figure 25,

The putative vonorms pj;.; = N(wy). Py = N(vy;) = N(vy,) are marked at the nodes
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Voronot reduction of lattices 61

(a) (b)

Figure 2. Two dual projective planes, Uhe lines A, B, ..., G of vonorm space
(@) correspond to the points of conorm space (4).

(5)

p‘l|023 p13|02 Jpf.’r|t)12

Figure 3. (0) Projective plane labelled with putative vonorrs;
(6) dual plane Jabelled with putative conorms.

(b)

Hog™ € Pgre=0 P -e

Pyt €

-4
JD1 023 p‘|3|02 € p3|012

Figure 4. Putative vonorms (a) and conorms (6) for superbase adjacent
to that described by figure 3.

of figure 3a and the corresponding putative conorms 0 and p;; at the nodes of the dual

plane in figure 34.
Any non-trivial character takes the value +1 at the three points of a line and —1

at the remaining four points, so four times the typical putative conorm in figure 36
is equal to the sum of the four numbers off a line minus the sum of the three numbers
on that line in figure 3a.
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Figure 5. [lustration of algorithm for Voronol reduction of three-dimensional lattice. (f),
which gives the conorms corresponding to an obtuse superbase, is the final angwer.

Now suppose that one conorm is negative, say p;, = —eé. We study what happens
when we change to the "adjacent’ superbase ), v], o5, v defined by
!, — !1 i 1 \/ — b !" — k]
Vo =Wy, ¥y = 7 Uy TV, V3 T, (1)
o nt— 0t = wt — gt o [
20 that Dig = Vg, Uy = — ¥y, Ty = ¥4 — 5. (12)

Note that six of thesc seven vectors agree (up to sign) with six of our seven original
putative Voronoi vectors, Their norms are shown in figure 4a and their conorms in
figurc 46. :

We see in figurc 4a that just onc putative vonorm has changed, being decreased
by 4e (since N(uy,) = N(v,—v,) = N(v,,) —4¢}, and in figure 46 that three putative
conorms on a line have inercased by ¢ while those off that line have decreased by ¢.
The line of conorms which increase by e is that joining the positions of the conorms
that are 0 in figures 36 and 46 respectively, and indeed e is determined by the
condition that one of the new conorms shall be 0.

This leads to our algorithm for Voronoi reduction, which we illustrate by an
cxample. Let A have Gram matrix

L1
L5 2f,
1 2 6

which we border with a leading row and column chosen so that the sum of the four
entries in any row or column is 0:

22 -5 —8 —9-

—5 3 1 t

—8 1 5 2

-9 1 2 6
This corresponds to the putative conorms shown in figure 5a.

We choose a line joining the 0 entry to a negative number —e¢, increasc the three

numbers on this line by ¢ and decrease the numbers off it by e. The node originally
labelled —e¢ is now labelled 0. This corresponds to a change from the original
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Voronoi reduction of lallices 63

superbase o an adjacent one. Figure 56 shows the result of applying this process
(with ¢ = 1) to the vertical line in figure 5a. In each of figures 5e- f the heavily drawn
lines indicates the next modilication. Note that figure 5 f has two zeros. In such a casc
it does not matter which of them we regard as “the’ 0 entry, because we can change
from one to the other by a move with ¢ = 0. Since figure 5 f contains no negative label
its labels are the conorms corresponding to an obtuse superbase, and we stop. (The
vonorms are then easily obtained from (9).)

This algorithm 18 correct, because each step simply replaces the putative conorms
for one superbase by those for an adjacent superbase. To show that it terminates wo
congider the putative vonorms and compare figures 3a and 4a. Sinee just onc
putative vonorm is decrcased, the putative Voronoi vectors at all times have norms
below some fixed bound, and so the process of reducing their norms must eventually
terminatc.

(liven any three-dimensional lattice, the algorithm produces conorms corre-
sponding to an obtuse superbase, and so establishes theorem 8.

On the other hand the conorms are (by definition} unigue, and so we have now also
proved Theorem 1.

There is an analogous algorithm for the Voronoi reduction of a two-dimensional
lattice. The algorithm replaces putative conorms «, §, vy = —¢, where € > 0, by a— 2¢,
f—2¢, v+2e¢ = ¢, adding 2¢ Lo one conorm and subtracting 2e from the other two.
{(Note that because o+ g, f+y, v +a are positive, at least one conorin is negative.}
After a finite number of such steps all the putative conorms arc non-negative and the
algorithm terminates.

Remark. The algorithms deseribed here are theoretical rather than practical. In
practice a reduction algorithm such as that of Lenstra ef al. (1982) (see also Lagarias
1991) would be used before applying our algorithm.

8. The five parallelohedra

In this section we study the Voronoi cells of three-dimensional lattices and prove
Fedorov’s theorem.

Let 4 be an arbitrary threc-dimensional lattice, with obtuse superbase v, ¢, vy, v,
and conorms p,;. A vector € R* will be specified by its inner products

(Erwg bog, U vy bvy) = (o Y Ye W) = . (13)

say, where y,+y, +y,+y; = 0.

We first show that the Voronoi cell for a gencric three-dimensional lattice A
is a truncated octahedron, or permutohedron, as in figure 6. Corresponding to
cach Voronoi vector vg, 8§ S{0,1,2,3}, 1 <|S]< 3, there s a face Fy ¢ (say), where
S =1{0,1,2,37\S, of the Voronoi cell. The face F;, (where {2, 7, &, {} is any permutation
of {0,1,2,3}) contains the points with y;, = §py4,, the face K, contains the
points with y,+y, = —¥,— ¥, = ; Pyj> and the face K, contains the points with
Yty Y, = — Y = 5Py Then Fgo= —Fgq and F g are opposite faces.

We assert that the vertices of the Voronoi cell are the 24 points ..., (where again
{i,4. k. 1} is any permutation of {0,1,2,3}) with coordinates

Yi=dF Pyt puetpa). U= {0t pg 0 },} (14)
Wy = %(_?’Jc-a_m.-j"'fjm)s ¥ = %(—ph‘._:pij_?]m}-
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(Note that py,;; = — P and pyg, are opposite vertices.) In fact, each such point p;,
belongs to the three faces £, Fipy and Fy,. (In figure 6 p,y, is simply labelled
ijkl.) Also Fy,, is a hexagonal face containing the six vertices pg,,. where
{o, .y} = {j. k. 1}, and F;, is a rhombie face containing the four vertices py, i
Piiwts Pre:

Similar (although less symmetrical) coordinates for the Voronoi cell were given by
Barnes (1956) and Barnes & Sloane (1983).

The determinant of A, the squared volume of the Voronoi eell, is the determinant
of the Gram matrix

Pio2s — Pre Pz
ST Paors — ¥ |>
— s —Pag Pajorz

which is cqual to

Po1 Poz Pos T Po1 Poz P1z T Po1 Poe Paz + Po1 Poz Pro t Por Pos Pos
T Po1 P12 P13 T Po1 P12 P2z T Por P13 Paa + Poz Poa Pr2 T Poz2 Pos Pas
+'p(12'p1_2 PratPozPr2Poat Poe Pra Paz + Pos P12 Pra T Pos Pr2 Poy T Poz P1a Poa-

Upon examination of figurc 36 we see that this can be written as

detA= > co(P)eo(Q)co(R), (L5)
{P, Q Rj=4
where {P,(}, B} runs through all 28 #riangles in figure 36 that is to say, through all
bases for the conorm space. (For 12 of these triangles the product is 0.)
It a vector t is specified by ¥ = (y,, 41, ¥s. ¥5), as in (13), then its norm is given by

N = yT Dy, (16)

dot A*
where D =(dy), dy=pubutPubytvyPm dy= — 5 (P PutPapPu) (G FJ4),
0<i <3,

The Voronol cell has six familics of parallel cdges. If we denote the vector along
a typical edge by e;; (0 <1 <j < 3), as in figure 6, then ¢;; has coordinates y, = p;; =
=¥, Y =y, = 0. From (16) we find that

! Y co®(P)co(Q)co(R), (17}

Niey) = ——
( U) dE‘L A PG, =4

where the sum is over all triangles in figure 36 containing that node P for which
co (P) = p,;. Note that (17) vanishes only when co(P) does, since otherwise the
support of the eonorm function includes at least one base containing P.

It follows that two lattices in which the same conorms are zero have
combinatorially equivalent Voronoi cells (since onc can be continuously deformed
into the other without any edges being lost). There are only five choices for the
locations of the zeros (see top of figure 7}:

one zero,

tWo 7eros,

three collinear zoros,
threc non-collinear zeros,
four zeros,

Proe. B, Soe, Lond. A (1992)
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F Fo12
1802\ sto2 Y 3012
d ' l%&12
0321
Foza
B

Figure 6. Voronoi cell for generic three-dimensional lattice.

F\T\T?X/j @ {3 }’%E;\_Y/f "\?(]j_v
hYI?,C “7 h‘j?[) W

o
v a_p
¥ 18
b N b, v vB
o o o
¢ b - b o /P g
N gy
a7 :
TRUNCATED HEXA-RHOMBIG RHOMBIC ~ HEXAGONAL CUBOID
OCTAHEDRON DODECAHEDRON ~DODECAHEDRON  PRISM
(a=0) (a=a=0) (a=c=0) (a=b=c=0)
h/T~\¢
WP
(ii) (iii) (iv)

Tigure 7. The five parallelohedra {(middle), together with conorms (top) and Delone graphs
(bottom) for the corresponding lattices.

since the non-zero conorms may not be collinear (by the remark preceding Theorem
6). Thus we have established the following theorem of Fedorov (1885, 1891},

Theorem 9. There ave just five combinatorially distinet possibilities for the shape of
the Voronoi cell of a three-dimensional laltice.

The five cases are obviously distinet, for we see from (17) that if the conorms are
raried 1n such a way that co(#?) approaches 0 then the corresponding family of
parallel edges all shrink to points and the polyvhedron simplifies. Figurce 7 shows the
effects of successive simplifications. (During thesc simplifications the remaining
edges may change their lengths and directions, but we ignore this in the figurcs.} The
labels on the edges are the corresponding conorms, taken from the top row of
diagrams.

If we shrink its edges labelled @, the truncated octahedron of figure 7 (i) becomes

Proc. B Soc. Lond. A (1992)
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the hexarhombic dodecahedron of figure 7(ii). This has one family of four parallel
edges labelled a, whose shrinkage leads to a rhombic dodecahedron {figure 7 (iii)), and
four families of six parallel edges such as those labelled ¢, whose shrinkage leads to
a hexagonal prism (figure 7(iv})). (Our term ‘hexarhombic dodecahedron’ is an
abbreviation for “hexagonal-rhombic dedecahedron’. We prefer this to the less
specific name ‘elongated dodecahedron” of Fejes 'Toth (1964) and Coxcter (1973).)

Shrinking any of the families of parallel edges in figure 7(iii) or (iv) leads to a
cuboid (figure 7(v)) or to a polyhedron of zero volume.

The Delone diagram. An n-dimensional lattice of the first kind may also be
described by its Delone diagram (after Delone 1937, 1938 see also Ryskov 1972;
Ryskov & Baranovskii 1979). This has 4+ 1 nodes labelled 0,1, ..., n, with an edge
labelled with the Selling paramceter p;; joining nodes ¢ and j whenever p,; # 0. The
Delone diagrams for the five types of three-dimensional lattices arce given in the
bottom row of figure 7 (cf. Delone 1938, p. 138, fig. 37). These diagrams are very
useful, but have the disadvantage of not displayving all the symmetries of the
situation. For example, in [igure 7(ii) it is possible to interchange & and vy
independently of ¢ and £ thig is obvious from the conorm picture but not [rom the
Delone diagram. Similarly in figure 7 (iil) it is possible to permute all four parameters
b, e, p. v freely, and in figure 7 (iv} to permute b, «, . There is, however, a simple
mnemonic: a permutation of the parameters that does not allect the circuits of the
Delone diagram to which they belong leads to another specification of the same
lattice.

The conorm representation has no such defect. Two projective planes labelled with
conorms represent the same lattice precisely when there is a conorm preserving
collineation between them.

We call a three-dimensional lattice primitive (or primary). secondary, lerliary, ete.,
according to whether it has 1,2, 3, ..., conorms equal to 0. Table 2 lists the five types
of three-dimensional lattices, together with the corresponding section of figure 7, the
name of the Voronoi cell, and in the final column the (classically) integral lattice of
smallest determinant of cach type. The latter are obtained by sctting all non-zero
conorms in figure 7 cqual to 1; the notation ig that of Conway & Sloane (19884).

The dual lattice. If the conorms of a three-dimensional lattice A4 are as shown in
figure 34, then those of its dual A* are, after multiplication by det 4, as shown in
figure 8, where we set

PP = MIn{Pg; Pogs Poo Prg- Pos Prats (18)
PPise = Py Poie T Pire Pies T Prea Py (19)

From this it is immediate that the dual of a
fully decomposable lattice ig fully decomposable,
simply decomposable lattice is simply decomposable,

secondary or indecomposable tertiary lattice is primary,

+

whereas the dual of a primary lattice is primary, sccondary or indecomposable
tertiary according to whether the minimum m (18) is attained once, twice or thrice.

There is an analogous ¢lassification to that of table 2 in every dimension. In two
dimensions the primary or indecomposable lattices are those with hexagonal Voronoi
cells (figure 1a), and the others are secondary or decomposable with rectangular
Voronoi cells (figure 15).

Froc. B Noc, Lond. A (1992)
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PP+ Pl

PoaPr2=PP Dy Pog—0P

PP+ Phoss PoaPy3—PP PP+ PPyp

Figure 8. Conorms (multiplied by det A) for A%, where A iz defined by
the conorms in figure 35.

Table 2, The five types of three-dimengional lattice

canonical
type tigure 7 Voronoi cell example
primary (#)  truncated octahedron 2:4F, det = 16
sceondary (6)  hexarhombic (A28)*%, det = 8
dodecahedron
indecompogable (¢)  rhombie A, det =4
tertiary dodecahedron
decomposable (dy hexagonal prism A0, det =3

tertiary or
simply decomposable

quaternary or (e} ecuboid I, det =1
fully decomposable

Delone (1929, 1937, 1938), as corrected by Stogrin (1973), enumerated the Voronoi
cells of four-dimensional lattices. There ave three primary ones and 52 in all. In a
sequel to the present paper we shall show that the conorm method enables us to
enumerate these very simply, and we shall also give a detailed account of their
properties,
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