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The aim of this paper is to describe how the Voronoi cell of a lattice changes as that 

lattice is continuously varied. The usual treatment is simplified by the introduction 

of new parameters called the vonorms and conorms of the lattice. The present paper 
deals with dimensions n < 3; a sequel will treat four-dimensional lattices. An elegant 

algorithm is given for the Voronoi reduction of a three-dimensional lattice, leading 
to a new proof of Voronoi's theorem that every lattice of dimension n < 3 is of the 

first kind, and of Fedorov's classification of the three-dimensional lattices into five 

types. There is a very simple formula for the determinant of a three-dimensional 

lattice in terms of its conorms. 

1. Introduction 

Our aim in this paper and its sequel is to describe how the Voronoi cell of a lattice 

changes as that lattice is continuously varied. We simplify the usual treatment by 

introducing new parameters which we call the vonorms and conorms of the lattice. 

The present paper studies lattices in one, two and three dimensions, ending with the 

theorem of Fedorov (1885, 1891) and on the five types of three-dimensional lattices. 

The sequel will use the same machinery to give a simple proof of the theorem of 

Delone (1929, 1937, 1938), as corrected by Stogrin (1973), that there are 52 types of 

four-dimensional lattice. 

The main theorem of the present paper is the following. 

Theorem 1. Each three-dimensional lattice is uniquely represented by a projective 

plane of order 2 labelled with seven numbers, the conorms of the lattice, whose minimum 

is 0 and whose support is not contained in a proper subspace. Two lattices are isomorphic 

if and only if the corresponding labellings differ only by an automorphism of the plane. 

As we shall see, in three dimensions our seven 'conorms' are just 0 and the six 

'Selling parameters'. However, this apparently trivial replacement of six numbers 

by seven numbers whose minimum is zero leads to several valuable improvements in 

the theory. 
1. The conorms vary continuously with the lattice. (For the Selling parameters the 

variation is usually continuous but requires occasional readjustments.) 
2. The definition of the conorms makes it apparent that they are invariants of the 

lattice. (The Selling parameters are almost but not quite invariant.) 
3. All symmetries of the lattice arise from symmetries of the conorm function. 

(Again, this is false for the Selling parameters.) 
There are several reasons for studying Voronoi cells of lattices. Besides the 
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applications to packing, covering and quantizing problems (see, for example, Barnes 

& Sloane 1983; Conway & Sloane 1988a; Gruber & Lekkerkerker 1987; Ryskov & 

Baranovskii 1976, 1979) there are connections with the theory of tilings. Following 
Gruber & Lekkerkerker (1987, p. 168) we define an n-dimensional parallelotope (or 

parallelohedron if n = 3) to be a convex body S which admits a lattice tiling (in other 

words there is a lattice A such that the translates S+ u, u e A cover Rn while their 

interiors are disjoint). Voronoi (1908a, b, 1909) conjectured that every parallelo- 
hedron is the affine image of the Voronoi cell of some lattice. This was proved for 

n < 4 by Delone (1929), while for n > 5 the question remains open. In particular 
there are five three-dimensional parallelohedra, the affine images of the five Voronoi 

cells described in figure 7 (see Theorem 9). 
Voronoi vectors are defined in ?2, and vonorms and conorms in ??3-5. All of these 

quantities are particularly simple in the case of lattices of the 'first kind', defined in 

?2. Sections 6 and 7 will establish that every lattice of dimension n < 3 is of the first 

kind. In particular the proof that every three-dimensional lattice is of the first kind 

is accomplished by means of a new algorithm given in ? 7 for the 'Voronoi reduction' 

of the lattice, that is, for finding a specification of the lattice that makes its Voronoi 

vectors apparent. Figure 5 shows an example. This algorithm is also used to prove 
Theorem 1. The last section of the paper applies the preceding theory to derive the 

five types of three-dimensional Voronoi cells (summarized in figure 7, Theorem 9 and 

table 2). At the beginning of ?8 we give especially simple formulae (involving the 

conorms) for the vertices, edges and faces of the generic Voronoi cell of a three- 

dimensional lattice, for its edge-lengths and for the determinant of the lattice (see 

(15) and (17)). 

2. Voronoi vectors 

Let A c ]n be a real n-dimensional lattice (as in Conway & Sloane 1988a). The 
Voronoi cell V(u) for u A is the set of points of QR that are at least as close to u as 

to any other lattice point: 

V(u) = {x E n :N(x - ) < N(x-v) all v A}, 

where N(x) = x x denotes the norm of a vector. All the V(u) for u E A are congruent 
convex polytopes. They partition ?n into the Voronoi honeycomb of A. 

A vector v A is called a Voronoi vector if the hyperplane 

{x E n: x'v = iV'v} 

has a non-empty intersection with V(0) (the Voronoi cell containing the origin). A 

Voronoi vector is relevant (or strict) if this intersection is an (n- 1)-dimensional face 

of V(0), and is otherwise irrelevant (or lax). 

By the Voronoi reduction of A we mean finding a description of A from which its 

Voronoi vectors are apparent. 
The starting point for this investigation is the following theorem. 

Theorem 2. A non-zero vector v E A is (i) a Voronoi vector if and only if v is a shortest 

vector in the class v + 2A; (ii) a strict Voronoi vector if and only if v and -v are the only 
shortest vectors in v + 2A. 

The usual version of this theorem only gives part (ii) (Voronoi 1908b, p. 277; 
Venkov 1983; Engel 1986, p. 35; Gruber & Lekkerkerker 1987, p. 95; Conway & 

Sloane 1988a, where, owing to an unfortunate printer's error, the statement of the 

theorem was omitted from the foot of page 474). 
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Proof. (i) Suppose v is a Voronoi vector yet there is a vector weA with v-wE 2A, 

N(w) < N(v). Then t = (v + w) and u = (v-w) belong to A. Let P satisfy P v = v. v, 
P't ?t' t, P 'u v luu. These equations imply N(v) < N(w), a contradiction. On the 

other hand, suppose v is a shortest vector in its class v+ 2A, but is not a Voronoi 

vector. Then for some weA, lv'w > w' w, so N(v-2w) < N(w), a contradiction. The 

proof of (ii) (see, for example, Conway & Sloane 1988a, p. 475) is similar. 

Since there are 2n- 1 non-zero classes of A/2A, from part (i) of the theorem there 

are at least 2(2 - 1) Voronoi vectors. In a generic (or random) lattice there are no 

coincidences between the lengths of vectors in distinct classes, and hence there are 

exactly 2(2n-- 1) Voronoi vectors, all strict. 

A lattice A is said to be of Voronoi's first kind if it has what we shall call an obtuse 

superbase; that is to say, a set of vectors v0, v1, ..., vn such that v1, ..., vn is an integral 
basis for A and 

Vo+ V+ -... +n 
= 0 

(this is a superbase), and in addition 

piJ = Vi' j < O, for i,j = 
O,...,n, i j, (1) 

(this is the obtuse condition). The superbase is strictly obtuse if 

Vj' v <0, for i,j = O,...,n, i j. (2) 

For example, the root lattice An (n >c 1) and its dual A* are of the first kind. The 

n+ 1 cyclic shifts of (1, - 1,0, ..., 0) are an obtuse superbase for An, and the vectors 

(n/(n+ 1), - 1/(n+ 1), ..., - 1/(n+ 1)) are a strictly obtuse superbase for A*. 
The numbers pij are traditionally called the Selling parameters for the superbase or 

lattice (Selling 1874; Baranovskii 1980), and if we define 

Piljk... 
= 

Pij +Pik + .. +Pil (3) 

then the inner product matrix for the superbase is 

-Po0112...n -P01 Po2 ... -P0on 

-P10 P1102...n --Pl2 "... Pn 4 

_Pno -Pnl -Pn 2 n0... n-l- 

Theorem 3. (i) If A is of the first kind with superbase v, ..., Vn then the 2n+1 2 

subsums 

Vs = vi, S {O, 1,..., n}, 
ieS 

0 < ISI < n, are Voronoi vectors. Also vs and vs = -vs are congruent modulo 2A, but 

otherwise these vectors are in distinct classes of A/2A. (ii) The vectors vs are all strict if 
and only if the superbase is strict. 

Remark. Here S is the set complementary to S. We write vij.. for v, ... . 

Proof. (i) The norm of any vector v = = mi vi A, mi , is plainly given by 

Selling's formula 
n n 

N( mi vi= 
E 

pij(mi-mj)2 (5) 
\i=o0 i,j=o 
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(Selling 1874). Now v is unchanged if the mi are all increased by the same amount, 
and unchanged modulo 2A if the mi are changed by even integers. So within a given 
coset of A/2A the norm is minimized when all even mi are replaced by 0 and all odd 

mi by 1. (ii) If all pij > 0 and we suppose, as we may, that min {m, ..., m} = 0, then 

the norm is minimized only if all mi are 0 or 1. f 

3. Vonorms 

The Voronoi norm, or vonorm, vo (v), of a class v = v + 2A of A/2A is the least norm 

of any vector in that class. Thus the vonorms are the norms of the Voronoi vectors 

(the proper vonorms), together with zero (the improper vonorm). By 'the vonorms' 

we usually mean 'the proper vonorms'. The vonorm map from A/2A to i is 

obviously an invariant of A; we shall see in dimensions n < 4 (and we conjecture in 

general) that it also characterizes A. The quotient A/2A can obviously be regarded 
as a vector space over the field of order 2. Since this important space is the domain 

of the vonorms we call it vonorm space. 

Theorem 4. The vonorms of a lattice of the first kind are the numbers 

N(Vs) = E Pij 
= 

Pab... clde... (say), (6) 
ieS, jeS 

where S = {a,b, ..., c}, S = {d,e, ...,f}. 

Proof. This follows immediately from Theorem 3. 1 

4. Characters 

As usual we define a real character on an n-dimensional lattice A to be a function 

X from A to {?+ 1} with the property that X(u + v) = X(u)X(v) for all u, v eA. The 2n 

real characters form a group which is abstractly isomorphic to the vector space dual 

of the vonorm space A/2A. We call this dual space conorm space. From now on, 
'character' will always mean 'real character'. 

Theorem 5. The characters of a lattice of the first kind correspond to the subsets S of 
{0, ..., n} for which IS1 is even. They are defined by 

Xs(V) = 
{+1, i (S. 

Proof. It is easy to check that these are characters, and since there are 12*2n+l 

2n of them, there is no other. U 

5. Conorms 

The conjugate norm, or conorm, co (X) corresponding to a character X is defined by 

co(X) = - X(v) vo (). (8) 
veA/2A 

The conorm co (1) corresponding to the trivial character x0 = 1 is called the improper 
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conorm. By 'the conorms' we usually mean 'the proper conorms'. The conorms are, 

apart from a scale factor, the Fourier transforms of the vonorms, and so carry 

exactly the same information as the vonorms. In fact 

vo (v) = Eco (X), (9) 

where the sum is taken over all X with X(v) = -1. Since vo (v) > 0 if v is not the zero 

class, (9) implies that the support of the conorm function cannot be contained in a 

proper subspace of conorm space. 

Theorem 6. For a lattice of the first kind the proper conorms are given by 

= fPij, if S = {i,j}, co (Xs) 
) 0, otherwise. 

So for a lattice of the first kind the conorms are the Selling parameters supplemented by 
zeros. 

The proof is an easy calculation. 

6. One-dimensional and two-dimensional lattices 

An n-dimensional lattice is represented by a point in a vector space of dimension 

N = ln(n + 1), the space of Gram matrices. On the other hand there are 2 - 1 proper 
vonorms (or conorms), a number which is always greater than or equal to N, as we 

see in table 1. 
Table 1 

n N =n(n+l) 2n- 1 difference 

1 1 1 0 
2 3 3 0 
3 6 7 1 
4 10 15 5 
5 15 31 16 

In this section we briefly discuss the one-dimensional and two-dimensional cases, 
and show that there the vonorms are exactly enough to parametrize the space of 

lattices and that every lattice is of the first kind. 

Dimension 1. Let A have Gram matrix (a), and generator v1, with N(vl) = a. Then 

v = -v1 and v1 form an obtuse superbase, the proper vonorm is a, and the proper 
conorm is -vo' 1 = Po1 = a. 

Dimension 2. Suppose A is generated by vectors v1, v2 having Minkowski-reduced 

Gram matrix 

[ a -h~ 

with 0 2h a b. Then v0= -(v1+v2), v1,v2 form an obtuse superbase, with 

Selling parameters pij determined by 

a = P1+P12, h =P12, b= P2 +P12' 

The Voronoi vectors are + v0, + v1, + v2, and if h = P12 : 0 there is no other, while if 
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(a) (b) 
11 v-v V -V +V 

/YJ0 v 2 
- 

V=-V1 _V 

Figure 1. Voronoi cells (heavy lines) of two-dimensional lattices. (a) If p12 # 0 there are three pairs 

+vO, +v1, + v2 of Voronoi vectors, all strict, and the cell is a hexagon. (b) If p12 = 0 there are four 

pairs + v1, ? v2, (v + v2), ? (v -v2) of Voronoi vectors, but only + v, ? v2 are strict, and the cell 

is a rectangle. 

p12 = 0 there is an additional pair of Voronoi vectors + (v1-v2). The corresponding 
Voronoi cells are shown in figure 1. 

The proper vonorms are a = Po1+12, b = 02+ 12, c=p01+p02 = a+b-2h. 

These may be any three positive numbers satisfying the triangle inequalities 

b+c> , c+a > b, a+b c. (10) 

The proper conorms Po,, P02P 12 may be any three non-negative numbers, although 
at least two must be strictly positive for A to be a proper lattice. Note that 

det A = ab-h2 = P01P02 +Po0112 +P02P12 

(compare with (15) below). 
The vonorms have also a geometric interpretation. 

Theorem 7. The vonorms Piljk of a two-dimensional lattice A are the three smallest 

norms of primitive vectors (ignoring the distinction between vectors and their negatives). 

Proof. If the conorms are pij then the norm of v = i mi i is i,<jPij (mi-mj)2. If 

two of the mi are equal, v is a multiple of one of the vi. If not, its norm is at least 

01 +p-02 +p12, which exceeds all the vonorms p,ij +pj. 

7. Three-dimensional lattices 

The main result of this section is the following theorem of Voronoi (1908a, b, 1909). 

Theorem 8. Any three-dimensional lattice A is of the first kind. 

Proof. We establish this by giving an algorithm for the Voronoi reduction of A, 
which computes the Selling parameters pij for the desired obtuse superbase. 

Given any base v1, v2, v3 for A, we call the seven subsums v1, v2,..., v123 = vl + v2 + V3 
the putative Voronoi vectors, their norms N(v1), N(v2), ..., N(v,23) the putative (proper) 
vonorms, and the six numbers pij= --v'vj (0 <i <j < 3) the putative (proper) 
conorms, for the superbase v0 = -vV-v2-V3, v1, v2, V3. (These putative quantities will 

be correct if this superbase is obtuse.) 
The non-zero cosets of A/2A naturally form a projective plane of order 2, which 

we draw as in figure 2a. The lines of this plane correspond to the points of the dual 

plane as in figure 2b. 

The putative vonorms iljkl 
= N(Vi), pijlkl = 

N(vij) 
= N(vkl) are marked at the nodes 
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(b) 

C 

Figure 2. Two dual projective planes. The lines A, B, ..., G of vonorm space 
(a) correspond to the points of conorm space (b). 

(a) (b) 

P21013 

P11023 P13102 P31012 "2 

Figure 3. (a) Projective plane labelled with putative vonorms; 

(b) dual plane labelled with putative conorms. 

(a) (b) 

P21013 

1023 
-4 02 

'' P11023 P13102 4 E P31012 

Figure 4. Putative vonorms (a) and conorms (b) for superbase adjacent 
to that described by figure 3. 

of figure 3 a and the corresponding putative conorms 0 and pij at the nodes of the dual 

plane in figure 3b. 

Any non-trivial character takes the value + 1 at the three points of a line and - 1 

at the remaining four points, so four times the typical putative conorm in figure 3b 

is equal to the sum of the four numbers off a line minus the sum of the three numbers 

on that line in figure 3a. 
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(d) (e) (f) 
7 1 15 -1 34 0 2 

I 0 1 

-2 1 0 1 0 

6 4 3 

Figure 5. Illustration of algorithm for Voronoi reduction of three-dimensional lattice. (f), 
which gives the conorms corresponding to an obtuse superbase, is the final answer. 

Now suppose that one conorm is negative, say p13 = -e. We study what happens 
when we change to the 'adjacent' superbase v0, v', v, va defined by 

V0 =- VOl =1 --V1, V2 = 12 V3 = , ( ) 

so that 2 v2, v23 - -v, 3 =v1-v3. (12) 

Note that six of these seven vectors agree (up to sign) with six of our seven original 

putative Voronoi vectors. Their norms are shown in figure 4a and their conorms in 

figure 4b. 

We see in figure 4a that just one putative vonorm has changed, being decreased 

by 4e (since N(v31) = N(v3-v1) = N(v31)-4e), and in figure 4b that three putative 
conorms on a line have increased by e while those off that line have decreased by e. 

The line of conorms which increase by e is that joining the positions of the conorms 

that are 0 in figures 3b and 4b respectively, and indeed e is determined by the 

condition that one of the new conorms shall be 0. 

This leads to our algorithm for Voronoi reduction, which we illustrate by an 

example. Let A have Gram matrix 

1 5 2 

1 2 6 

which we border with a leading row and column chosen so that the sum of the four 

entries in any row or column is 0: 

-22 -5 -8 -9- 

-5 3 1 1 

-8 1 5 2 

--9 1 2 6- 

This corresponds to the putative conorms shown in figure 5a. 

We choose a line joining the 0 entry to a negative number - , increase the three 

numbers on this line by e and decrease the numbers off it by e. The node originally 
labelled -e is now labelled 0. This corresponds to a change from the original 
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superbase to an adjacent one. Figure 5b shows the result of applying this process 

(with e = 1) to the vertical line in figure 5a. In each of figures 5 a-f the heavily drawn 

lines indicates the next modification. Note that figure 5f has two zeros. In such a case 

it does not matter which of them we regard as 'the' 0 entry, because we can change 
from one to the other by a move with e = 0. Since figure 5f contains no negative label 

its labels are the conorms corresponding to an obtuse superbase, and we stop. (The 
vonorms are then easily obtained from (9).) 

This algorithm is correct, because each step simply replaces the putative conorms 

for one superbase by those for an adjacent superbase. To show that it terminates we 

consider the putative vonorms and compare figures 3a and 4a. Since just one 

putative vonorm is decreased, the putative Voronoi vectors at all times have norms 

below some fixed bound, and so the process of reducing their norms must eventually 
terminate. 

Given any three-dimensional lattice, the algorithm produces conorms corre- 

sponding to an obtuse superbase, and so establishes theorem 8. 

On the other hand the conorms are (by definition) unique, and so we have now also 

proved Theorem 1. 

There is an analogous algorithm for the Voronoi reduction of a two-dimensional 

lattice. The algorithm replaces putative conorms ac, /, y = -e, where e > 0, by a- 2e, 

f- 2e, y + 2e = e, adding 2e to one conorm and subtracting 2e from the other two. 

(Note that because +-/, /3+y, y+?x are positive, at least one conorm is negative.) 
After a finite number of such steps all the putative conorms are non-negative and the 

algorithm terminates. 

Remark. The algorithms described here are theoretical rather than practical. In 

practice a reduction algorithm such as that of Lenstra et al. (1982) (see also Lagarias 

1991) would be used before applying our algorithm. 

8. The five parallelohedra 

In this section we study the Voronoi cells of three-dimensional lattices and prove 
Fedorov's theorem. 

Let A be an arbitrary three-dimensional lattice, with obtuse superbase v0, v, V2, V3 

and conorms Pij. A vector t e l will be specified by its inner products 

(t'vo,t'v, t'2,t3) = (Y, Y1,Y2, Y3) = Y, (13) 

say, where 0 + + Y2 + Y3 = 0. 

We first show that the Voronoi cell for a generic three-dimensional lattice A 

is a truncated octahedron, or permutohedron, as in figure 6. Corresponding to 

each Voronoi vector vs, S C {0, 1,2, 3}, 1 < 1SI < 3, there is a face Fslx (say), where 

S = {0, 1, 2, 3}\S, of the Voronoi cell. The face 'iljkl (where {i,j, k, l} is any permutation 
of {0,1,2,3}) contains the points with yi = ilj, the face Fijlkl contains the 

points with y +yj = -y -Yl = Pijk, and the face Fijkll contains the points with 

Yi + Yj+Yk = - Y = Pllijk. Then Fsl, = -F,I, and Fs,g are opposite faces. 
We assert that the vertices of the Voronoi cell are the 24 points pijll (where again 

{i,j, k, 1} is any permutation of {0, 1, 2, 3}) with coordinates 

Y 2 ( +Pij+Pi, +Pil), 1 2Pji +Pjl) (14) 

Y = (-P -pj +Pkl ), Y = 2(-Pli Plj -Plk ) 

Proc. R. Soc. Lond. A (1992) 

63 



J. H. Conway and N. J. A. Sloane 

(Note that pklji = -Pijkl and pijk1 are opposite vertices.) In fact, each such point Pijkl 

belongs to the three faces Fijklk, Fjlkl and Fjkll. (In figure 6 Pijkl is simply labelled 

ijkl.) Also 
Filjkl 

is a hexagonal face containing the six vertices Pio,f where 

{Ca, ,, y} = {j, k, 1}, and Fijkl is a rhombic face containing the four vertices Pjk, Pijlk, 

Pjikl, Pjilk' 
Similar (although less symmetrical) coordinates for the Voronoi cell were given by 

Barnes (1956) and Barnes & Sloane (1983). 
The determinant of A, the squared volume of the Voronoi cell, is the determinant 

of the Gram matrix P1023 -12 -P13 

-P12 P21013 -P23 , 

-P13 -P23 P31012 

which is equal to 

P01 P02P 03 +P01 P02 P13 + 01 P02 P23 +P01 P03 P12 +P01 P03 23 

+P01P12P13 +P01P12P23 +P01P13P23 +P02P03P12 +P02P03P13 

+ P02 p12 13 + P02 P12 P23 + P02 P13 P23 + P03 P12 13 + Po03 P12 23 + P03 P13 P23 

Upon examination of figure 3b we see that this can be written as 

detAi= E co(P)co(Q)co(R), (15) 
{P, Q, R}=A 

where {P, Q,R} runs through all 28 triangles in figure 3b that is to say, through all 

bases for the conorm space. (For 12 of these triangles the product is 0.) 
If a vector t is specified by y = (Yo, Y1, Y2, Y), as in (13), then its norm is given by 

N(t) = de TDy, (16) 

where D = (di), dii = Pjk'Pkcl+PklPlj+PlPjpik, dPj = -l (PikPil +PPjk) ( j), 
0 < i,j ? 3. 

The Voronoi cell has six families of parallel edges. If we denote the vector along 
a typical edge by eij (O < i <j < 3), as in figure 6, then eij has coordinates i = pij 

= 

-Yi, Y = Yl =0. From (16) we find that 

N )(e2) = d co2 (P)co(Q) ((R), (17) 
det A , Q{, , }= 

where the sum is over all triangles in figure 3b containing that node P for which 

co(P) = 
ij. Note that (17) vanishes only when co(P) does, since otherwise the 

support of the conorm function includes at least one base containing P. 

It follows that two lattices in which the same conorms are zero have 

combinatorially equivalent Voronoi cells (since one can be continuously deformed 

into the other without any edges being lost). There are only five choices for the 

locations of the zeros (see top of figure 7): 

one zero, 

two zeros, 

three collinear zeros, 

three non-collinear zeros, 

four zeros, 
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13102 

F X 
- u 

zI 
,1 / I 2031 

1 2103 e 
- 13 

2103 eo1 2013 

F21013 

Figure 6. Voronoi cell for generic three-dimensional lattice. 

I/ B YO O Ya L 0 YO ? 

bc b c b c b/3 
f 3 

c b c b b b 

TRUNCATED HEXA-RHOMBIC RHOMBIC HEXAGONAL CUBOID 
OCTAHEDRON DODECAHEDRON DODECAHEDRON PRISM 

(a=O) (a=a=O) (a=c=O) (a=b=c=O) 

bb C b C b 

(i) (ii) (i ii) (iv) (v) 

Figure 7. The five parallelohedra (middle), together with conorms (top) and Delone graphs 
(bottom) for the corresponding lattices. 

since the non-zero conorms may not be collinear (by the remark preceding Theorem 

6). Thus we have established the following theorem of Fedorov (1885, 1891). 

Theorem 9. There are just five combinatorially distinct possibilities for the shape of 
the Voronoi cell of a three-dimensional lattice. 

The five cases are obviously distinct, for we see from (17) that if the conorms are 

varied in such a way that co (P) approaches 0 then the corresponding family of 

parallel edges all shrink to points and the polyhedron simplifies. Figure 7 shows the 

effects of successive simplifications. (During these simplifications the remaining 

edges may change their lengths and directions, but we ignore this in the figures.) The 

labels on the edges are the corresponding conorms, taken from the top row of 

diagrams. 
If we shrink its edges labelled a, the truncated octahedron of figure 7 (i) becomes 
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the hexarhombic dodecahedron of figure 7 (ii). This has one family of four parallel 

edges labelled a, whose shrinkage leads to a rhombic dodecahedron (figure 7 (iii)), and 

four families of six parallel edges such as those labelled c, whose shrinkage leads to 

a hexagonal prism (figure 7(iv)). (Our term 'hexarhombic dodecahedron' is an 

abbreviation for 'hexagonal-rhombic dodecahedron'. We prefer this to the less 

specific name 'elongated dodecahedron' of Fejes Toth (1964) and Coxeter (1973).) 

Shrinking any of the families of parallel edges in figure 7 (iii) or (iv) leads to a 

cuboid (figure 7 (v)) or to a polyhedron of zero volume. 

The Delone diagram. An n-dimensional lattice of the first kind may also be 

described by its Delone diagram (after Delone 1937, 1938; see also Ryskov 1972; 

Ryskov & Baranovskii 1979). This has n+ I nodes labelled 0, 1, ..., n, with an edge 
labelled with the Selling parameter pij joining nodes i and j whenever pij 

: 0. The 

Delone diagrams for the five types of three-dimensional lattices are given in the 

bottom row of figure 7 (cf. Delone 1938, p. 138, fig. 37). These diagrams are very 

useful, but have the disadvantage of not displaying all the symmetries of the 

situation. For example, in figure 7(ii) it is possible to interchange b and y 

independently of c and fi: this is obvious from the conorm picture but not from the 

Delone diagram. Similarly in figure 7 (iii) it is possible to permute all four parameters 
b , c, , freely, and in figure 7 (iv) to permute b, a, y. There is, however, a simple 
mnemonic: a permutation of the parameters that does not affect the circuits of the 

Delone diagram to which they belong leads to another specification of the same 

lattice. 

The conorm representation has no such defect. Two projective planes labelled with 

conorms represent the same lattice precisely when there is a conorm-preserving 
collineation between them. 

We call a three-dimensional lattice primitive (or primary), secondary, tertiary, etc., 

according to whether it has 1,2, 3,..., conorms equal to 0. Table 2 lists the five types 
of three-dimensional lattices, together with the corresponding section of figure 7, the 

name of the Voronoi cell, and in the final column the (classically) integral lattice of 

smallest determinant of each type. The latter are obtained by setting all non-zero 

conorms in figure 7 equal to 1; the notation is that of Conway & Sloane (1988b). 
The dual lattice. If the conorms of a three-dimensional lattice A are as shown in 

figure 3b, then those of its dual A* are, after multiplication by det A, as shown in 

figure 8, where we set 

pp = min {P pl23, Po2 P3, P3 P12}, (18) 

PPijk = PijPjk +PjkPki +PkiPij (19) 

From this it is immediate that the dual of a 

fully decomposable lattice is fully decomposable, 

simply decomposable lattice is simply decomposable, 

secondary or indecomposable tertiary lattice is primary, 

whereas the dual of a primary lattice is primary, secondary or indecomposable 

tertiary according to whether the minimum in (18) is attained once, twice or thrice. 

There is an analogous classification to that of table 2 in every dimension. In two 

dimensions the primary or indecomposable lattices are those with hexagonal Voronoi 

cells (figure la), and the others are secondary or decomposable with rectangular 
Voronoi cells (figure 1 b). 
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PP+ PP023 Po2P1 3 PP PP+ PPo 2 

Figure 8. Conorms (multiplied by det A) for A*, where A is defined by 
the conorms in figure 3b. 

Table 2. The five types of three-dimensional lattice 

canonical 

type figure 7 Voronoi cell example 

primary (a) truncated octahedron 2A*, det = 16 

secondary (b) hexarhombic (A281)+2, det = 8 
dodecahedron 

indecomposable (c) rhombic A3, det = 4 

tertiary dodecahedron 

decomposable (d) hexagonal prism A2I1, det = 3 

tertiary or 

simply decomposable 
quaternary or (e) cuboid 13, det = 1 

fully decomposable 

Delone (1929, 1937, 1938), as corrected by Stogrin (1973), enumerated the Voronoi 

cells of four-dimensional lattices. There are three primary ones and 52 in all. In a 

sequel to the present paper we shall show that the conorm method enables us to 

enumerate these very simply, and we shall also give a detailed account of their 

properties. 
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