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Abstract

Low-Dimensional Models for PCA and Regression

by

Christian Ladapo Omidiran
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Laurent El Ghaoui, Co-Chair
Professor Martin Wainwright, Co-Chair

This thesis examines two separate statistical problems for which low-dimensional
models are effective.

In the first part of this thesis, we examine the Robust Principal Components
Analysis (RPCA) problem: given a matrix X that is the sum of a low-rank matrix
L∗ and a sparse noise matrix S∗, recover L∗ and S∗. This problem appears in various
settings, including image processing, computer vision, and graphical models. Various
polynomial-time heuristics and algorithms have been proposed to solve this problem.
We introduce a block coordinate descent algorithm for this problem and prove a con-
vergence result. In addition, our iterative algorithm has low complexity per iteration
and empirically performs well on synthetic datasets.

In the second part of this thesis, we examine a variant of ridge regression: unlike
in the classical setting where we know that the parameter of interest lies near a single
point, we instead only know that it lies near a known low-dimensional subspace. We
formulate this regression problem as a convex optimization problem, and introduce an
efficient block coordinate descent algorithm for solving it. We demonstrate that this
“subspace prior” version of ridge regression is an appropriate model for understanding
player effectiveness in basketball. In particular, we apply our algorithm to real-world
data and demonstrate empirically that it produces a more accurate model of player
effectiveness by showing that (1) the algorithm outperforms existing approaches and
(2) it leads to a profitable betting strategy.
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Chapter 1

Introduction

In the first part of this thesis, we propose a fast algorithm for solving the Robust
Principal Components Analysis problem: given a matrix X that is the sum of a low-
rank matrix L∗ and a sparse matrix S∗, recover L∗ and S∗. This problem appears in
various settings, including image processing [Torre and Black, 2003], computer vision
[Ke and Kanade, 2005], and graphical models [Chandrasekaran et al., 2010]. Various
polynomial-time heuristics and algorithms have been proposed to solve this problem
under certain conditions. We introduce a block coordinate descent algorithm for this
problem and prove that its limit points are also stationary points. In addition, this
iterative algorithm has low complexity per iteration and performs well on synthetic
datasets.

In the second part of this thesis, we develop a new penalized regression model
for basketball, use cross-validation to select its tuning parameters, and then use it to
produce ratings of player ability. We apply the model to the 2010-2011 NBA season
to predict the outcome of games. We compare the performance of our procedure to
other known regression techniques for this problem and demonstrate empirically that
our model produces substantially better predictions. We evaluate the performance of
our procedure against the Las Vegas gambling lines, and show that with a sufficiently
large number of games to train on our model outperforms those lines. Finally, we
demonstrate how the technique developed here can be used to quantitively identify
“overrated” players who are less impactful than common wisdom might suggest.
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Chapter 2

Robust Principal Components

Analysis

2.1 Notation

Given a matrix X ∈ R
m×n, we use the notation (a) rank(X) to denote the rank

of X, (b) ||X||0 to denote its number of non-zero entries, (c) si(X) to denote the
ith largest singular value, (d) ‖X‖∗ :=

∑

i si(X) to denote the nuclear norm of X,
(e) ‖X‖F to denote the Frobenius norm, and (f) ‖X‖1 :=

∑

ij |Xij| to denote the
element-wise 1-norm.

2.2 Introduction

Given a matrix X ∈ R
m×n that is the sum of a low rank matrix L∗ and sparse

matrix S∗, we seek to recover both L∗ and S∗. This is the Robust Principal Compo-
nents Analysis (RPCA) problem: as in Principal Components Analysis (PCA), we
want to learn a low-rank matrix L∗ that is contaminated by errors, represented by
the matrix S∗. Unlike the standard PCA problem, the corruption matrix S∗ may
contain gross, but sparse errors. This problem appears in a variety of settings in-
cluding image processing [Torre and Black, 2003], computer vision [Ke and Kanade,
2005], graphical models [Chandrasekaran et al., 2010], traffic anomaly detection [Ab-
delkefi et al., 2010], astronomical spectroscopy [Budavari et al., 2009] and system
identification [Chandrasekaran et al., 2011].

Assuming that the number of nonzeros s of S∗ is known, RPCA is equivalent to
solving the intractable optimization problem

min
L∈Rm×n

rank(L) subject to ||X− L||0 ≤ s. (2.1)
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To address the computational intractability of (2.1), many researchers have pro-
posed heuristics for performing this decomposition. Torre and Black [2003] proposes
a technique inspired by robust statistics [Huber, 1974]. Ke and Kanade [2005] pro-
poses directly solving a non-convex program similar to (2.1) using block coordinate
descent. Unfortunately, there is no discussion of whether the algorithm provably con-
verges, nor of what it converges to. The work of Ke and Kanade [2005] is similar in
spirit to our own: the technique we introduce can be viewed as a provably convergent
alternative to their algorithm.

Candès et al. [2011] (see also Chandrasekaran et al. [2010]) proposes a convex
relaxation to (2.1) called Principal Components Pursuit (PCP) that successfully de-
composes X when certain conditions on L∗ and S∗ are satisfied. The PCP relaxation
is the convex program

min
L∈Rm×n,S∈Rm×n

‖L‖∗ + λ‖S‖1 subject to X = L+ S. (2.2)

Candès et al. [2011] shows that when the true low-rank component L∗ and true
sparse component S∗ satisfy certain technical conditions, the solution (L̂, Ŝ) to (2.2)
is the true factorization of X with high probability.

Unfortunately, while (2.2) can be solved numerically by reformulating as a semi-
definite program (SDP) [Vandenberghe and Boyd, 1996], the resulting program is
solved with complexity O ((mn)3) per iteration using standard interior point tech-
niques (see Appendix A of Chandrasekaran et al. [2011] for this formulation). Lin
et al. [2010] and Yuan and Yang [2009] develop an alternating direction method
of multipliers (ADMM) algorithm (see Boyd et al. [2011] for an excellent modern
overview of the ADMM technique) that brings the per iteration complexity down to
the cost of a SVD, which is O(m3) under the assumption that n = Θ(m). In contrast,
assuming that n = Θ(m) our algorithm has complexity O(rm2) per iteration, where
r is the desired rank of the low-rank factorization. As a consequence, our approach
is easier to scale to very large problems for which r is small relative to m.

We now introduce more precisely our algorithm, prove its convergence to a sta-
tionary point, and then present results evaluating its performance on synthetic data.

2.3 Block Coordinate Descent for Robust Princi-

pal Components Analysis

We consider for a given matrix X ∈ R
m×n that is the sum of a rank r matrix L∗

and a sparse matrix S∗ the problem

min
U,V
‖X−UV‖1, (2.3)
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where U ∈ R
m×r, V ∈ R

r×n are decision variables. We are ultimately interested
in understanding (a) when iterative algorithms for the non-convex problem (2.3)
converge, (b) and under what circumstances the solution (Û, V̂) to (2.3) represents
the true low rank matrix L∗ (in other words, when L∗ equals ÛV̂).

One natural heuristic for solving (2.3) is to perform alternating minimization over
U and V, resulting in Algorithm 1.

Algorithm 1 KeKanade(X, r, k)

1: U0 ← Uinit

2: V0 ← Vinit

3: for i ∈ {1, 2, . . . , k} do
4: Ui ← argminU∈Rm×r ‖X−UVi−1‖1
5: Vi ← argminV∈Rr×n ‖X−UiV‖1
6: end for

This is the approach taken by Ke and Kanade [2005]. Algorithm 1 is parallelizable
due to the separability of both the Ui and Vi computations and often performs
well empirically on data. Unfortunately there are no known convergence results for
Algorithm 1. In fact, it is known that the iterates obtained by performing alternating
minimization in this manner sometime fail to converge [Powell, 1973]. Powell [1973]
provides a concrete example where the iterates cycle infinitely.

Instead of directly minimizing (2.3), we solve the equivalent problem

min
U∈Rm×r,V∈Rr×n,X∈Rm×r,Y∈Rr×n

f(U,V,X,Y), (2.4)

with

f(U,V,X,Y) := ‖X−UV‖1 + ||U−X||2F + ||V−Y||2F . (2.5)

The formulation (2.4) is equivalent to (2.3) in the sense that an optimal solution
for one can be used to construct an optimal solution for the other. We prove this in
Appendix A.1.

For computational reasons, rather than directly optimizing the objective function
with respect to the matrix variables U,V, we optimize the columns of U, VT sepa-
rately. In other words, our proprosed algorithm is block coordinate descent with the
columns of U,VT viewed as variables.

Let us use the notation fUq
(u) to denote (2.5) as a function of the qth column of

U, with all other columns of U,VT fixed. Similarly, we use fVq
(v) to denote (2.5) as

a function of the qth column of VT .
We then have Algorithm 2, a block coordinate descent procedure.
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Algorithm 2 BCD(X, r, k)

1: U0 ← Uinit

2: V0 ← Vinit

3: for i ∈ {1, 2, . . . , k} do
4: for q ∈ {1, 2, . . . , r} do
5: Ui

q ← argminu∈Rm fUq
(u)

6: end for

7: for q ∈ {1, 2, . . . , r} do
8: Vi

q ← argminv∈Rn fVq
(v)

9: end for

10: end for

Algorithm 2 has the following desirable convergence property:

Theorem 2.3.1. The limit points of the iterates {(Ui,Vi)}
∞
i=1 produced by Algorithm

2 are all stationary points of the optimization problem (2.4).

Proof. This is a consequence of Proposition A.3.1 in Appendix A.3.

Each of the subproblems corresponds to the computation of Ui,Vi. Assume that
we want to compute Ui

q, the qth column of Ui. This is the problem

Ui
q = arg min

u∈Rm
‖X̃q − uVi−1

q ‖1 + ||u−Ui−1
q ||

2
F (2.6)

where Vi−1
q is the qth row of the matrix Vi−1 and X̃q := X−Ui−1Vi−1+Ui−1

q Vi−1
q .

Problem (2.6) is equivalent to

m∑

j=1

min
t∈R

[
‖rj − tVi−1

q ‖1 + (t−Ui−1
j,q )

2
]
,

with rj the j
th row of M̃q, and Ui−1

j,q denoting the (j, q)th entry of the matrix Ui−1.

Thus, we have reduced the computation of Ui
q to m single-variable convex opti-

mization problems of the form

min
t∈R
‖a− tb‖1 + (t− t0)

2, t0 ∈ R, a, b ∈ R
n. (2.7)

There are a variety of techniques for solving (2.7). Since the objective function
is piecewise differentiable, it can be solved to within ǫ accuracy in O(n) time by
a modified version of the bisection algorithm, or by using the subgradient method
[Bertsekas, 1999]. See Appendix A.2 for more details.

Thus, Ui
q can be computed in O(mn) time. Since Ui has r columns, then it can

be computed in O(rmn) time. Similarly Vi can be computed in O(rmn) time. Thus,
Algorithm 2 takes O(rmn) time per iteration.
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2.4 Experimental Results

In this section, we compare the performance of an Alternating Directions Method
of Multipliers (ADMM) solver for the PCP convex program (2.2) (Boyd et al. [2011])
and Algorithm 2 on random experiments. In these problems, the low rank matrix
L∗ = U∗V∗ ∈ R

m×m with U∗,V∗T ∈ R
m×r and the entries of U∗,V∗ i.i.d N(0, 1

m
).

The sparse matrix S∗ has k non-zeros chosen uniformly at random, each with random
signs.

Each algorithm produces estimates L̂, Ŝ. We consider the metrics a) ||L̂−L
∗||F

||L∗||F
,

the relative error of the low rank matrix L̂ produced by an algorithm, b) ||Ŝ−S
∗||F

||S∗||F
,

the relative error of the sparse matrix Ŝ produced by an algorithm, c) T ime(s), the
algorithm’s running time, d) and k, the number of iterations the algorithm runs before
terminating.

We are interested in comparing the performance of the two algorithms when the
rank r of the low-rank matrix L∗ is a) Θ(1) and b) Θ(m).

Figure (2.1) summarizes the performance of the algorithms when the underlying
low-rank matrix has rank r = 1, representing the case where r = Θ(1). As Figure
(2.1a) indicates, Algorithm 2 is able to recover the low rank component L∗ with
accuracy superior to that of the ADMM solver. Similarly, we see from Figure (2.1b)
that the sparse component S∗ is recovered accurately by our technique. Finally, for
this constant rank experiment we observe that Algorithm 2 runs far more quickly
than the ADMM solver, and in roughly 3 iterations across a wide range of problem
sizes (see Figure (2.1c) and (2.1d), respectively). In summary, Algorithm 2 appears
to be comparable to or outperform the ADMM solver for PCP by all of these four
metrics considered.

However, as Figure (2.2) indicates, when r = Θ(m), the relative performance of
the two algorithms changes. From Figure (2.2a) and Figure (2.2b), we see that in this
new regime Algorithm 2 is not able to recover L∗ or S∗ with accuracy comparable
to the ADMM solver. Furthermore, the running time of Algorithm 2 is substantially
worse than that of the ADMM solver. Finally, the number of iterations used by
Algorithm 2 appears to be slightly increasing, while that of the ADMM solver seems
to be constant despite m increasing (see Figure (2.2c) and (2.2d), respectively).

2.5 Conclusion

We have introduced a new algorithm for Robust PCA that satisfies a certain
convergence condition and has low computational complexity for problems for which
the rank r of the low-rank matrix is small. We have also demonstrated that the
algorithm empirically performs as well as more computationally expensive approaches
on randomly generated problems for small r.
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In future work, we would like to provide bounds on how many iterates are required
for convergence to a stationary point and also find conditions under which (a) there
is only one limit point of the iterates and (b) the stationary points correspond to local
minima or a global minimum. We would also like to test the empirical behavior of
this approach on large, real-world datasets for which the sparse plus low-rank model
is appropriate.
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Chapter 3

Penalized Regression Models for

the NBA

3.1 Introduction

The National Basketball Association (NBA) is a multi-billion dollar business.
Each of the thirty franchises in the NBA try their best to put forward the most
competitive team possible within their budget. To accomplish this goal, a key task is
to understand how good players are.

A large fraction of the thirty NBA teams have quantitative groups analyzing data
to evaluate and rate players. The website ESPN.com has many analysts providing
statistical analysis for casual fans. Gambling houses use quantitative analysis to
price bets on games, while gamblers try to use quantitative analysis to find attractive
wagers.

A popular technique for producing player ratings is weighted least-squares (LS)
regression1. However, as we show later show, least squares is an approach with many
flaws.

In this paper, we introduce a new penalized regression technique for estimating
player ratings which we call Subspace Prior Regression (henceforth, SPR). SPR cor-
rects some of the flaws of least squares for this problem setting, and has substantially
better out-of-sample predictive performance. Furthermore, given sufficient training
data SPR outperforms the Las Vegas wagering lines.

We interpret the ratings produced by SPR, discussing it identifies as the best
players in the NBA (Section 3.6.1), who are the most overrated and underrated play-
ers (Section 3.6.2), and what SPR suggests is the relative importance of different
basic actions within the game like three point shooting and turnovers (Section 3.6.3).
Finally, we discuss some possible improvements to this model (Section 3.7).

1this technique is also known as Adjusted Plus/Minus (APM) in the quantitative basketball
community.
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3.2 Notation

We use the notation R
d
+ to indicate the set {x ∈ R

d |xi > 0 ∀i}. Let 1n ∈ R
n×1

denote the column vector of ones and ei ∈ R
n×1 signify the ith standard basis vector.

We use Ip ∈ R
p×p to denote the identity matrix of size p, and Diag(w) to stand for

a diagonal matrix with entries given by the vector w. Given a,b ∈ R
n and c ∈ R

n
+

we define the inner product as aTb :=
∑n

i=1 aibi, the ℓp norm ||a||p := [
∑n

i=1 a
p
i ]

1

p and

finally the c-weighted ℓp norm as ||a||p,c := [
∑n

i=1 cia
p
i ]

1

p .

3.3 A Brief Introduction to the Game of Basket-

ball

Each of the thirty teams in the NBA plays 82 games in a season, where 41 of these
games are at their home arena and 41 are played away. Thus, there are 1,230 total
games in an NBA regular season. Each team has a roster of roughly twelve to fifteen
players. Games are usually 48 minutes long, and each of the two competing teams
has exactly five players on the floor at a time. Thus, there are ten players on the
floor for the duration of the game. Associated with each game is a box score, which
records the statistics of the players who played in that game. Figure 3.1 contains a
sample box score from an NBA game played on February 2nd, 2011 by the Dallas
Mavericks (the home team) against the New York Knicks (the away team). Note that
we only display the box score for the Mavericks players. Observe that there are 12
players listed in the box score, but only 11 who actually played for the Mavericks in
this game. Each of the columns of this box score corresponds to a basic statistic of
interest (the column REB in the box score denotes rebounds, AST denotes steals,
etc.)

3.3.1 Statistical Modeling of Basketball

To statistically model the NBA, we must first extract from each game a dataset
suitable for quantitative analysis. There is a standard procedure for this currently
used by many basketball analysts [Kubatko et al., 2007, Oliver, 2004], which we
describe as follows.

We model each basketball game as a sequence of n distinct events between two
teams. During event i the home team scores Yi more points than the away team. We
use the variable p to denote the total number of players in the league (in a typical
NBA season, p ≈ 450.) We can then represent the current players on the floor for
event i with a vector Xi ∈ R

p defined as
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Figure 3.1: Sample single-game boxscore for the Dallas Mavericks

Xij =







1 Player j is on the floor for the home team

-1 Player j is on the floor for the away team

0 otherwise.

Associated with event i is a weighting factor wi. Roughly speaking, the ith event
happens for wi minutes.

Figure 3.1 contains a sample box score. We summarize box score data like that
of Figure 3.1 with the matrix RMavericks,Game 1 which looks like

RMavericks
Game #1 =







MIN FGM FGA . . . PTS

Brian Cardinal 10 1 1 . . . 3
Dirk Nowitzki 33 10 16 . . . 29

...
...

...
. . .

...
Peja Stojakovic 0 0 0 . . . 0







This matrix records the statistics of the 12 players on the Dallas Mavericks roster
for that particular game. If there are d basic statistics of interest in this box score,
then RMavericks

Game #1 is a matrix of size 12 by d.
One can imagine computing the aggregate box score matrix

RMavericks =
82∑

t=1

RMavericks
Game #t
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that summarizes the total statistics of these 12 players for an entire season. Finally,
define the p× d matrix R that vertically concatenates Rj across the 30 teams in the
NBA:

R :=







Team 1 RMavericks

Team 2 RBulls

...
...

Team 30 RCeltics






.

R summarizes the season box score statistics for all p players who played in the
NBA for that year.

3.3.2 Least Squares Estimation

We want to determine the relationship between Xi and Yi, i.e., find a function
f such that Yi ≈ f(Xi). One natural way to do this is through a linear regression
model, which assumes that

Yi = α∗
hca +XT

i β
∗ + ei, i = 1, 2, . . . n.

Recall that the event i has a weighting factor wi associated with it. Roughly
speaking, event i happens for wi minutes.

The scalar variable α∗
hca represents a home court advantage term, while the variable

β∗ ∈ R
p is interpreted as the number of points each of the p players in the league

“produces” per minute. This model recognizes players for whom their team is more
effective because of their presence on the floor.

For notational convenience, we stack the variables Yi, wi, and ei into the n vectors
Y, W, and E and the variables Xi into the n× p matrix X. This yields the matrix
expression

Y = 1nα
∗
hca +Xβ∗ + E. (3.1)

Given observations (Y,X) and weights W, we define the W-weighted quadratic
loss function as

Lquadratic(αhca,β) :=
1

∑n

i=1 wi

||Y − 1nαhca −Xβ||2
W
. (3.2)

A natural technique for estimating the variables α∗
hca and β∗ is to minimize (3.2),

i.e.,

(α̂LS
hca, β̂

LS
) = arg min

αhca,β
Lquadratic(αhca,β), (3.3)
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resulting in a weighted least squares (LS) problem. The values β̂
LS

are known
in the quantitative basketball community as the adjusted plus/minus ratings2. The

website Basketballvalue3 has computed β̂
LS

for several recent seasons.

3.3.3 Is least squares regression a good estimator of player

value?

Table 3.1. LS Player Rat-
ings

Rank Player β̂
LS

i

1 James, LeBron 12.62
2 Durant, Kevin 11.5
3 Nash, Steve 11.39
4 Paul, Chris 10.42
5 Nowitzki, Dirk 10.33
6 Collison, Nick 9.87
7 Wade, Dwyane 9.59
8 Hilario, Nene 8.56
9 Deng, Luol 8.46
10 Howard, Dwight 8.13

Table 3.1 lists the top ten players in the NBA for the combined 2009-2010 and
2010-2011 NBA regular seasons by their ratings produced from least squares4. By this
ranking, LeBron James was the best player in the league over this two year period.

Since β̂
LS

LeBron James = 12.62, this procedure suggests that he is worth an additional
12.62 net points to his team for every 100 possessions the team plays.

How believable are the player ratings of Table 3.1? The list has many of the
widely-considered best players in the NBA. However, there are also some names on
this list that are questionable. If we believe these ratings, then Nick Collison, a
player considered by most fans and analysts to be at best a merely average player at
his position, is better than Dywane Wade and Dwight Howard, two of the premiere
superstars in the league. Similarly, while Nene Hilario and Luol Deng are good
players, they are not considered by most fans and analysts to be amongst the top ten
players in the NBA.

2http://www.82games.com/ilardi1.htm
3http://www.basketballvalue.com
4These numbers were obtained from http://basketballvalue.com/topplayers.php?&year=

2010-2011
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This contradiction between common wisdom and least squares is useful, since it
can either reveal to us that the common wisdom is wrong or that the least squares
approach is incorrect. We need some basis of comparison to evaluate how well least
squares is performing.

In classical linear regression, assuming that the generative model satisfies cer-
tain conditions, the least squares estimate has several desirable properties (maximum
likelihood estimate, best linear unbiased estimate, consistency, asymptotic normality,
etc). However, these properties typically assume that the underlying model satisfies
certain technical conditions like normality, linearity, and statistical independence. It
is unreasonable to expect that these technical conditions hold for the game of bas-

ketball. Thus, we must find other ways to evaluate how trustworthy the β̂
LS

values
are, and whether they should be believed over common wisdom about players. One
simple approach for evaluating the the least squares model is to test its predictive
power versus a simple dummy estimator.

To do this, we

1. define a dummy estimator that sets β̂Dummy
i = 0 for each player, and the home

court advantage term β̂
Dummy
hca = 3.5. In other words, each player is rated a zero,

and the home team is predicted to win every 100 possessions by 3.5 points.

2. We then can compute both the least squares estimate and dummy estimate for
the first 820 games of an NBA season, and measure how well each technique
does in estimating the margin of victory of the home team for the remaining
410 games of that season.

If least squares accurately models the NBA, then at a minimum it must substan-
tially outperform the dummy estimator. Let us use the variable Ak to denote the
actual number of points by which the home team wins game k, Âk to denote the
predicted number of points by the statistical estimator of interest, and Êk := Âk−Ak

to denote the error this statistical estimator makes in predicting the outcome of game
k.

Figure 3.2 is a histogram of the error variable Êk over the course of the 410 games
under consideration from the 2010-2011 NBA season for each technique. A perfect
estimator would have a spike of height 410 centered around zero. Thus, the “spikier”
the histogram looks, the better a method performs. It is hard to immediately say
from Figure 3.2 that the least squares estimate yields better predictions than the
simple dummy estimate. We can also study some of the empirical properties of Êk

for each approach. Table 3.2 summarizes the results.
When comparing least squares to the dummy estimate, we notice that

1. least squares reduces the percentage of games in which the wrong winner is
identified from 39.27% to 33.66% over the block of 410 games of interest.
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Table 3.2: Performance of Statistical Estimators over the last 410 games
Metric Dummy LS RR SPR SPR2
RMSE (millions) 547.0447 558.0350 551.0912 539.7495 541.9725
Fraction of games guessed wrong 0.3927 0.3366 0.3293 0.2854 0.2951

Mean of |Êi| 10.5394 18.0507 16.0016 10.5540 11.8109

Variance of |Êi| 68.5292 187.1446 147.8993 60.2527 70.7671

Median of |Êi| 9.4885 15.2577 13.6127 8.9687 10.2200

Min of |Êi| 0.0279 0.0346 0.0109 0.0260 0.1445

Max of |Êi| 38.8338 79.1965 72.0122 40.9012 45.9275

Empirical P(|Êi| > 1) 0.9171 0.9707 0.9683 0.9463 0.9512

Empirical P(|Êi| > 3) 0.7683 0.9000 0.8878 0.8171 0.8732

Empirical P(|Êi| > 5) 0.6707 0.8366 0.8122 0.7244 0.7780

Empirical P(|Êi| > 10) 0.4854 0.6585 0.6049 0.4415 0.5098

2. Unfortunately, the empirical behavior of Êk seems to be substantially worse for
least squares. For example, the empirical mean of |Êi| is 18.05 for least squares,
while only 10.54 for the dummy estimator. Thus, least squares makes larger
average errors when predicting the final margin of victory of games.

As a result, it is hard to convincingly argue that least squares approach is a better
model for the NBA than the dummy estimate.
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Figure 3.2. Comparison of Dummy, Least Squares, Ridge Regression, SPR and
SPR2 trained on 820 games.
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3.4 SPR: Improving Least Squares

Although Figure 3.2 and Table 3.2 suggest that the LS estimate performs poorly,
this doesn’t necessarily mean that the linear model (3.1) is without promise. The
least squares estimate simply doesn’t take into account the following two key pieces
of information we have about the problem domain:

1. Model sparsity: The NBA is a game dominated by star players. Lesser players
have far less impact on wins and losses. This folk wisdom informs player acqui-
sitions and salaries. For example, with a $60 million budget, one would much
rather acquire three elite $15 million stars and fill out the rest of the roster
with cheap role-players, than spend tons of money on role-players and skimp
on stars.

This “elites first” strategy was used by the Boston Celtics in the summer of 2007
when they traded their role-players and other assets to build a team around
Kevin Garnett, Paul Pierce and Ray Allen5, and more recently by the Miami
Heat in the summer of 2010 who built a team around LeBron James, Dywane
Wade and Chris Bosh6. We shall incorporate this prior information through
ℓ1 regularization. This penalizes non-sparse models, and should cause only the
very best players to stand out in the regression. This suggests a penalty term
of the form λ1||β||1.

2. Box score information: Another valuable piece of information useful in inferring
player worth is the box score statistics matrix R. One expects good players to
not only have high APM ratings, but to also produce rebounds, assists, blocks,
steals, etc. Thus, we prefer ratings β̂ which are consistent with box score
statistics. In other words, we expect a ratings vector to be “close” to the
column space of R. We therefore should penalize ratings for which the distance
from β̂ to Rz is large. Although there are many different possible penalties
one can choose, in this work we choose a quadratic penalty term of the form
λ2||β − z01p −Rz||22.

We can encode the above prior information through the function g(αhca,β, z0, z;~λ)
defined as

g(αhca,β, z0, z;~λ) := Lquadratic(αhca,β)
︸ ︷︷ ︸

Weighted least squares

+ λ1||β||1
︸ ︷︷ ︸

Sparse player ratings

+ λ2||β − z01p −Rz||22
︸ ︷︷ ︸

Box score prior

,

(3.4)

1. R is a p×d matrix containing the box-score statistics of the p different players,

5http://www.nba.com/celtics/news/press073107-garnett.html
6http://sports.espn.go.com/nba/news/story?id=5365165
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2. The variable z gives us weights for each of the box score statistics,

3. and the vector (λ1, λ2) ∈ R
2
+ are the regularization parameters.

We shall use the shorthand ~λ to denote the pair (λ1, λ2). We can find a model
consistent with both the data and the prior information by solving the convex opti-
mization problem

β̂
~λ
hca, β̂

~λ
, β̂

~λ
0 , ẑ

~λ = argmin g(αhca,β, z0, z;~λ). (3.5)

We call the procedure described by Equation (3.5) the SPR algorithm, and the

vector β̂
~λ
are the player ratings produced by it. One very important difference be-

tween SPR and the least squares approach is that it yields both a player rating vector

β̂
~λ
and a box score weights vector ẑ

~λ. The weights vector ẑ
~λ is a valuable tool in

its own right. It provides numerical values for different basic box score statistics like

scoring, rebounding, and steals. We further interpret ẑ
~λ in Section 3.6.3.

Furthermore, it yields a linear formula for transforming player box score effective-
ness into a player productivity rating through the equation

θ̂
~λ := Rẑ

~λ + β̂
~λ
01p. (3.6)

θ̂
~λ can be viewed as an additional player rating vector produced by SPR, one

that linearly transforms each player’s box score production into a “points per 100

posession” rating similar to least squares or β̂
~λ
. Thus, θ̂

~λ succintly converts the box
score production of each player into a single number.

Thus for player i, we can compare the variable β̂
~λ

i to the variable θ̂
~λ
i to understand

how “overrated” or underrated he is relative to his box score production. This is
useful, since many players produce great box score statistics but don’t necessarily
impact team competitiveness to the level the box score might suggest. We explore
this aspect of SPR in further detail in Section 3.6.2.

3.4.1 Bayesian Interpretation of SPR

SPR can be interpreted as the posterior mode for a Bayesian statistics model.
Suppose that Y, αhca,β, z0, z are all random variables.

Let

• Yi|αhca,β ∼ N (αhca +XT
i β,

1
2
),

• αhca have the improper prior P(αhca = α) ∝ 1



19

Table 3.3: Regularization parameters obtained from 10-fold cross-validation
Setting λ1 λ2

~λ820
CV 2−10 2−3

~λ820
CV,2 2−10 2−1

~λ410
CV 2−10 2−2

• P(β|z0, z) ∝ e−λ1||β||1−λ2||β−z01p−Rz||22 ,

• z0 have the improper prior P(z0 = γ) ∝ 1,

• and z has the improper prior P(z = κ) ∝ 1.

Then the solution to SPR with w = 1n is exactly the mode of the posterior
distribution P(αhca,β, z0, z|Y).

3.4.2 Selecting the regularization parameter ~λ

For SPR to be useful, we need to be able to select a good choice of ~λ quickly.
Cross-validation [Stone, 1974] is one standard technique in statistics for doing this.
To select regularization parameters, we use 10-fold cross-validation. We cross-validate
over regularization parameters from the set

Λ := {(2a, 2b)| a, b ∈ F}

where

F := {−10,−9, . . . , 9}.

K-fold cross-validation on T different values of ~λ means solving TK different SPR
problems, each of which are convex programs of moderate size (n ≈ 20000, p ≈ 450,
d ≈ 20).

Thus, it is necessary that

1. for each fixed value of ~λ, SPR can be solved quickly

2. and that many values of ~λ can be evaluated at once.

To address the first issue, we implemented a fast numerical algorithm for solving
SPR for a fixed valued of ~λ. See Appendix A.5 for a derivation.

To address the second issue, our cross-validation code takes advantage of the cloud
computing service PiCloud7 to perform the computations in parallel.

The resulting regularization parameters learned by cross-validation are summa-
rized in Table 3.3.

7http://www.picloud.com
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3.5 The Performance of SPR

Our ultimate goal is to produce substantially better estimates of player value than
least squares. If it turns out that despite all the additional computational work that
SPR requires that there is little or no statistical improvement, then SPR is not of
much practical value. In this section, we discuss the performance of SPR on the 2010-
2011 NBA dataset. We demonstrate that SPR substantially outperforms both the
dummy estimate and least squares estmate, and outperforms even Las Vegas given a
sufficient amount of training data.

3.5.1 SPR outperforms least squares

From Table 3.3, we see that the cross-validation methodology described in Sec-
tion 3.4.2 on the first 820 games of the 2010-2011 season yields the regularization
parameter

~λ820
CV = (2−10, 2−3).

Armed with this choice, we can now compare least squares to SPR on the final
410 games of the 2010-2011 NBA regular season. Each procedure produces a player
rating vector β̂, and we can use these ratings to predict the final margin of victory
over this collection of games.

Recall that we use the variable Âi to denote the number of points that a statistical
estimator predicts that the home team will win game i, Ai to denote the actual
number of points by which the home team wins game i, and Êk = Âi −Ai to denote
the difference between these quantities.

Figure 3.2 is a histogram of the variable Êk for each technique. It is clear from
Figure 3.2 that SPR produces better estimates than APM. The histogram of the SPR
errors are “spikier” around the origin than the APM errors. We can also study some of
the empirical properties of the variable Êk for each approach. Table 3.2 summarizes
the results. As Table 3.2 indicates, SPR represents a substantial improvement on
APM in nearly all of these statistical measures. In particular,

• the fraction of games in which the wrong winner is guessed decreases from
33.66% with LS to 28.54% with SPR; and

• the average absolute error in predicting the margin of victory decreases from
18.05 to 10.554.

Comparing SPR to the dummy estimator, we

• see an enormous improvement in ability to predict the winning team. The
percentage of games in which the wrong winner is predicted falls from 39.27%
to 28.54%.
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• Both techniques obtain a similar average absolute error in predicting the margin
of victory, with 10.54 for the dummy estimator and 10.55 with SPR.

Overall, this suggests that SPR more accurately models the NBA than the least
squares estimator.

3.5.2 SPR outperforms Las Vegas

To convincingly evaluate the performance of SPR, we examine whether it actually
results in a profitable gambling strategy against the Vegas lines. In fact, we will
compare the dummy, least squares and SPR estimators. Given predictions by each
of the above estimates, we have the following natural gambling strategy:

1. If the deviation ∆ between the estimate’s prediction of the outcome of a game
and the Vegas lines is greater than 3, place a bet on the team the estimator
favors.

2. Otherwise, don’t bet.

Due to transaction costs that the sportbooking companies charge8 a gambling
strategy must win more than roughly 52.5% of the time to at least break even. Table
3.4 summarizes the result of this gambling rule for each of the three techniques of
interest over the last 410 games of the 2010-2011 NBA season. The dummy-based
gambling strategy places 263 bets on the 410 games and loses 3 more bets than
it wins, for a winning percentage below 50%, which is performance comparable to
random guessing, and not enough to break even. The least squares-based strategy
has a winning percentage of 51.97% on 356 bets made. In comparison, SPR places
wagers on 290 games and wins 57.24% of these bets. This represents a very profitable
betting strategy, and thus suggests that SPR more accurately models the NBA than
major alternatives, including the estimators used by Las Vegas. Finally, SPR obtains
this improved performance while only having access to the first 820 games of the
regular season.

Table 3.4: Betting Strategy over the last 410 games, ∆ = 3
Statistic Dummy LS RR SPR SPR2
# of bets possible 410.0000 410.0000 410.0000 410.0000 410.0000
# of bets made 263.0000 356.0000 346.0000 290.0000 321.0000
Net # of bets won -3.0000 14.0000 26.0000 42.0000 21.0000
Winning percentage 0.4943 0.5197 0.5376 0.5724 0.5327

8The fee is called the “vigorish” in the gambling community.
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3.5.3 Robustness of Results

How sensitive is the SPR algorithm to our choice of training on the first 410
games? Does the performance relative to the least squares estimate degrade if the
estimators are trained on much fewer games? To evaluate this, we train estimators on
the first 410 games and then evaluate predictive power on the remaining 820 games.
From Table 3.3, we obtain the cross-validation selected regularization parameter

~λ410
CV = (2−7, 2−2).

We also compare against the Las Vegas predictions for that block of 820 games.
Table 3.5 summarizes the results of this experiment. As before, SPR outperforms
both the Dummy estimator and LS. Furthermore, by increasing ∆ to 5 (from the
value 3 used when training on 820 games), SPR still leads to a successful betting
strategy, as Table 3.6 shows.

Table 3.5: Robustness Experiment, First 410 Games
Metric Dummy LS RR SPR
RMSE (millions) 1087.4967 1209.3042 1130.7781 1078.7885
Fraction of games guessed wrong 0.4024 0.4073 0.3732 0.3049

Mean of |Êi| 10.3326 28.9714 19.9875 11.4719

Variance of |Êi| 64.9664 524.1851 238.1755 74.1957

Median of |Êi| 9.2783 23.3688 17.3077 9.5853

Min of |Êi| 0.0279 0.0491 0.0158 0.0208

Max of |Êi| 49.2299 150.4097 98.2374 43.1902

Empirical P(|Êi| > 1) 0.9207 0.9756 0.9659 0.9573

Empirical P(|Êi| > 3) 0.7768 0.9329 0.9000 0.8378

Empirical P(|Êi| > 5) 0.6744 0.8817 0.8195 0.7378

Empirical P(|Êi| > 10) 0.4720 0.7805 0.6890 0.4780

Table 3.6: Betting Strategy over the last 820 games, ∆ = 5
Statistic Dummy LS RR SPR
# of bets possible 820.0000 820.0000 820.0000 820.0000
# of bets made 342.0000 700.0000 658.0000 503.0000
Net # of bets won -10.0000 6.0000 14.0000 57.0000
Winning percentage 0.4854 0.5043 0.5106 0.5567
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3.6 What does SPR say about the NBA?

In the previous section, we evaluated the performance of SPR by testing its ability
to predict the outcome of unseen games. In this section, we interpret the box score

weights vector ẑ
~λ and player rating vector β̂

~λ
returned by SPR, and discuss what

they say about the NBA.

3.6.1 Top 10 players in the league

Table 3.7. SPR
Player Ratings

Player β̂
~λ

i

James, LeBron 8.6006
Garnett, Kevin 8.2860
Paul, Chris 8.1899
Nowitzki, Dirk 7.7296
Howard, Dwight 7.4706
Gasol, Pau 6.9251
Odom, Lamar 6.5630
Hilario, Nene 6.2170
Evans, Jeremy 6.1725
Nash, Steve 6.0349

From β̂
~λ
we can extract a list of the top 10 players in the league who have played

at least 10 possessions. Table 3.7 summarizes these results. This list contains some
of the most prominent star players in the league (LeBron James, Chris Paul, Dirk
Nowitzki, Dwight Howard), thus agreeing with common basketball wisdom. However,
this ranking contradicts common basketball wisdom in the following ways:

1. The list noticeably omits Kobe Bryant, a player pop culture and common bas-
ketball wisdom considers one of the league’s superstars. Yet SPR thinks very
highly of Pau Gasol and Lamar Odom, two of Kobe Bryant’s teammates who
are individually credited far less for the success of the Lakers than Kobe is.

2. The list includes Nene Hilario and Jeremy Evans, players who are not considered
by most to be amongst the top 10 players in the league.

3.6.2 Top 10 most underrated and overrated players

There are certain players in the NBA for whom their impact on the game seems
to be far more (or less) than their raw box score production suggests. SPR allows
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us to identify these players and quantify their impact by measuring the discrepancy

between their SPR rating and their weighted box score ratings θ̂
~λ
i.

We define the underrated vector U as

U := β̂
~λ
− θ̂

~λ.

.
Similarly, we can examine which players impact the game much less than their

box score production suggests with the vector O := −U.
Table 3.9 lists the top 10 most underrated/overrated players in the league relative

to their box score production. For at least a few of these players, it is easy to
understand why box scores alone do a poor job of capturing their impact:

• Andris Biedrens is a severe liability offensively, due to both his inability to score
outside of 5 feet of the basket and poor free throw shooting. This makes it much
more difficult for his teammates to score, since his defender can shift attention
away from him and instead provide help elsewhere. Biedrens is also a liability
defensively.

• Goran Dragic is a point guard with a scoring mentality. While a “shoot-first”
point guard is not necessarily harmful to a team, if he doesn’t do a good enough
job in setting up his teammates and creating easy scoring opportunities for
them, it hurts his team’s ability to score.

3.6.3 Box score weights produced by SPR

The SPR regression also produces box score weights ẑ
~λ that tell us the relative

importance of the different box score statistics. ẑ
~λ gives us a method to linearly

transform box score data into the player effectiveness rating θ̂
~λ defined in Equation

3.6. For player j, the variable θ̂
~λ
j is a weighted linear combination of his box score

statistics.
We can examine each entry of the vector ẑ

~λ to compare the relative importance of
different box score variables like rebounds, assists and steals. Table 3.8 summarizes
the results. We also display the relevant row in the box score matrix R for LeBron
James, which we call RT

Lebron James.
Examining this table, we see that LeBron James made two point shots at a rate

of 7.83 per 36 minutes, and attempted two point shots at a rate of 14.16 per 36

minutes. The corresponding weightings from ẑ
~λ,rescaled are 3.38 and−1.54 respectively,

suggesting that overall LeBron’s rating from his two point shooting is 7.83 × 3.38 +
14.16 × −1.54 ≈ 4.66 points. In fact, from these weightings we can calculate that
according to the SPR model all players in the league must hit their two point shots
roughly 45% of the time for their rating from two point shooting to be non-negative.
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Interestingly enough, a similar calculation reveals that three point shots must
only be hit at a roughly 14% rate to break even. This is counterintuitive: naively one
would believe that hitting two point shots q percent of the time should be equivalent
to hitting three point shots 2

3
q of the time. However, three point shooting increases

the amount of spacing on the floor and perhaps missed three point shots are easier
to rebound for the offensive team.

According to this interpretation of the ẑ
~λ variable turnovers are extremely costly,

with the corresponding entry of ẑ
~λ,rescaled equal to −.76. Thus, LeBron’s turnover rate

of 3.34 turnovers per 36 minutes hurts his rating box score rating by roughly 6.28
points.

Table 3.8: Box Score Weights

Statistic Description ẑ
~λ RT

LeBron James

2M Per 36 Minute 3.38 7.83
2A Per 36 Minute -1.54 14.16
3M Per 36 Minute 1.48 1.08
3A Per 36 Minute -0.21 3.28
FTM Per 36 Minute 0.73 5.91
FTA Per 36 Minute -0.33 7.79
OR Per 36 Minute 0.11 0.94
DR Per 36 Minute 0.50 5.99
AS Per 36 Minute 0.85 6.51
ST Per 36 Minute 1.66 1.46
TO Per 36 Minute -1.88 3.34
BK Per 36 Minute 0.86 0.58
PF Per 36 Minute -0.37 1.92
TC Per 36 Minute 2.81 0.09
DQ Per 36 Minute 6.98 0.00
P1 Boolean -0.17 0.00
P2 Boolean -0.71 0.00
P3 Boolean 0.29 1.00
P4 Boolean 1.65 0.00

3.7 Extending SPR by augmenting the box score

In this section, we discuss a possible extension to the SPR model.
The box score matrix R keeps track of statistics like rebounds, assists, and steals.

However, one might imagine augmenting this basic box score matrix with products
of raw statistics such as rebounds × assists, blocks × steals, turnovers × free throws
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Table 3.9: Underrated/Overrated Players

Player β̂
~λ

Rẑ
~λ + β̂

~λ
01p Underrated

Dooling, Keyon 1.3531 -0.3840 1.7371
Watson, Earl 0.9973 -0.2920 1.2893
Aldridge, LaMarcus 5.0226 3.8456 1.1770
Ginobili, Manu 5.4336 4.2599 1.1738
Tolliver, Anthony 1.9424 0.7742 1.1682
Bosh, Chris 4.6311 3.4681 1.1630
Carter, Vince 1.4315 0.3376 1.0939
Collins, Jason -2.4071 -3.4634 1.0563
Hill, George 2.0535 1.0201 1.0333
Bass, Brandon 2.5777 1.5792 0.9985

Player β̂
~λ

Rẑ
~λ + β̂

~λ
01p Overrated

Dragic, Goran -2.1439 -0.4758 -1.6680
Marion, Shawn 0.7049 2.2120 -1.5071
Gortat, Marcin 2.7433 4.1681 -1.4249
Ellis, Monta -0.1175 1.2634 -1.3810
Biedrins, Andris 0.9205 2.2408 -1.3203
Jefferson, Al 1.7706 3.0598 -1.2893
Felton, Raymond 1.4721 2.7513 -1.2792
Bell, Raja -2.8779 -1.5992 -1.2787
Dudley, Jared 1.1287 2.3858 -1.2572
Law, Acie -1.7759 -0.6247 -1.1512

made, etc. By capturing some of these product statistics and incorporating them into
SPR, one might more accurately model the value of multifaceted players.

We expand the matrix R to include all pairwise product of the basic variables. If
R is a p by d matrix, this leads to a p by d+

(
d

2

)
matrix called

Poly(R, 2).

Let us use the notations SPR(R) and SPR(R, 2) to denote SPR with the box
score matrices R and Poly(R, 2), respectively. Applying the cross-validation proce-
dure described in Section 3.4.2 on the first 820 games of the 2010-2011 produces the
regularization parameter

~λ820
CV,2 = (2−10, 2−1).
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With this choice of parameter for the expanded box score matrix Poly(R, 2), we
can then empirically compare its performance to that of the ordinary SPR algorithm
using the basic box score matrix R. Figure 3.2 demonstrates the result of this exper-
iment. From this figure we see that the additional box score statistics don’t seem to
substantially improve performance. The histogram of the SPR(R, 2) errors are fairly
similar to the SPR(R) errors. We can also study some of the empirical properties of
the variable Êk for each approach. Table 3.2 summarizes the results.

As Table 3.2 indicates, SPR(R, 2) doesn’t improve upon the predictive power
of SPR(R). The fraction of games in which the wrong winner is guessed actually
increases from 28.54% to 29.51%, the average absolute error in predicting games
increases from 10.55 to 11.81.

A possible explanation for this poor statistical performance is that the pairwise
interaction terms that SPR(R, 2) models are too many, and thus the model is over-
fitting.

3.8 Conclusion

We have introduced SPR, a powerful new statistical inference procedure for the
NBA. We compared the statistical performance of our approach to an existing pop-
ular technique based on least squares and demonstrate empirically that SPR gives
more predictive power. We also compare SPR to the Las Vegas lines and show that
with sufficient training data, SPR seems to better predict the NBA than Vegas. We
interpret the estimates produced by SPR and discuss what they suggest about who
the best players in the NBA are, and which players are overrated or underrated.
Finally, we discuss a possible extension to the SPR model.
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Chapter 4

Conclusion

In this thesis, we have introduced a new technique for solving the RPCA problem,
proved a convergence result for it, and demonstrated empirically that it performs well
on synthetic datasets for which the rank of the low-rank component is small. We have
also developed a new penalized regression model and demonstrated its usefulness for
modeling player effectiveness in the NBA by comparing against existing techniques
as well as the Las Vegas lines.
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A.1 Equivalence of (2.3) and (2.4)

Observe that if (A,B) minimizes (2.3), then (A,B,A,B) is an optimal solution
for (2.4). On the other hand, consider any optimal solution (C,D, C̃, D̃) for (2.4). It
must be the case that C = C̃ and D = D̃, otherwise f(C,D,C,D) < f(C,D, C̃, D̃),
contradicting the optimality of (C,D, C̃, D̃). Thus, if (C,D) does not minimize
(2.3), then there exists some (Ĉ, D̂) which acheives a smaller value, implying that
f(Ĉ, D̂, Ĉ, D̂) < f(C,D, C̃, D̃), a contradiction.

A.2 Techniques for solving (2.7)

The convex program (2.7) can be solved in O(n) time, using either bisection or
the subgradient method. We focus on the subgradient method in this example.

The objective function of (2.7) is subdifferentiable, with the subgradients at c of
the form

n∑

i=1

wizi + 2(c− c0), (A.1)

where

zi ∈ ∂|c− vi| =







{1} if c > vi

[−1, 1] if c = vi

{−1} if c < vi.

The computation of (A.1) takes O(n) time, and to get within ǫ of the optimal value
of the program (2.7) takes a constant number of steps, with the constant dependent
on ǫ.

A.3 Block Coordinate Descent Proof

Consider the optimization problem

min
x

f(x1, x2, . . . , xp) s.t. x ∈ X := X1 ×X2 . . .×Xp, (A.2)

with Xi closed and convex. Note that (2.5) is a special case of this formulation,
with p = 4 and with X1,X2,X3,X4 set to R

m×r,Rr×n,Rm×r,Rr×n respectively.
One possible approach for solving the problem (A.2) is block coordinate descent

(BCD), Algorithm 3. Observe that Algorithm 2 is a special case of Algorithm 3.
We want to prove that Algorithm 3 converges to a stationary point of (A.2). We

use a proof technique similar to that of Bertsekas [1999], Grippo and Sciandrone
[2000], Grippo and Sciandrone [1999], and Tseng [2001].
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Algorithm 3 General Block Coordinate Descent.

1: x0 ← x0
init

2: for k ∈ {1, 2, . . .} do
3: for i ∈ {1, 2, . . . , p} do
4: xk+1

i ← argminξ∈Xi
f(xk+1

1 , . . . , xk+1
i−1 , ξ, x

k
i+1, . . . , x

k
p)

5: end for

6: end for

Proposition A.3.1. Suppose that for each i, f is a strictly convex function of xi,
when the values of the other components of x are held constant. Let {xk} be the
sequences generated by the BCD algorithm. Then every limit point of {xk} is a sta-
tionary point of f over X .

Proof. Given a limit point x̄ of the BCD, there are two possibilities

1. f is not differentiable at x̄. In which case, x̄ is a stationary point by definition.

2. f is differentiable at x̄. We shall show that

∇f(x̄)T (x− x̄) ≥ 0 ∀x,

and thus x̄ is a stationary point of f .

For Case 2, since X is the Cartesian product of sets X1,X2, . . . ,Xp and

∇f(x̄)T (x− x̄) =
∑

i

ti.

then it is sufficient to show that

ti := ∇if(x̄)
T (αi − x̄i) ≥ 0 ∀αi ∈ Xi, ∀i. (A.3)

Lemma A.3.2 proves (A.3).

Lemma A.3.2. Let x̄ be a limit point of the BCD updates. Then we have that

ts := ∇sf(x̄)
T (α− x̄s) ≥ 0 ∀α ∈ Xs.

Proof. Let xkj be a subsequence of the BCD updates that converges to x̄. From the
definition of the BCD algorithm, we have that

f(x
kj+1
1 , . . . , xkj+1

s , x
kj
s+1, . . . , x

kj
p ) ≤ f(x

kj+1
1 , . . . , α, x

kj
s+1, . . . , x

kj
p ) ∀α ∈ Xs.

This is true simply because the algorithm optimizes each coordinate assuming
that the others are fixed.
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By Lemma A.3.3, limj→∞ x
kj
s = x̄s∀s ∈ 1, 2, . . . , p. Using this and the continuity

of f , we have that

f(x̄) ≤ f(x̄1, . . . , x̄s−1, α, x̄s+1, . . . , x̄p) ∀α ∈ Xs. (A.4)

Define the function g(α) := f(x̄1, . . . , x̄s−1, α, x̄s+1, . . . , x̄p). Then (A.4) is equiva-
lent to

g(x̄s) ≤ g(α) ∀α ∈ Xs.

In other words, x̄s is a global minimum for the function g. Since we are considering
Case 2 and are assuming that f is differentiable at x̄, then g is differentiable at x̄1.
Therefore

∇g(x̄s)
T (α− x̄s) ≥ 0 ∀α ∈ Xs.

Since ∇g(x̄s)
T = ∇sf(x̄), we have our desired result.

Lemma A.3.3. Let {xk}∞k=1 be the BCD updates. Let x̄ be a limit point of this se-

quence, and {xkj}∞j=1 be a subsequence converging to x̄. Then x
kj
s → x̄s∀s ∈ 1, 2, . . . , p.

Proof. Let us introduce the intermediate vectors produced by the BCD algorithm

zk0 := xk,

zki := (xk+1
1 , . . . , xk+1

i , xk
i+1, . . . , x

k
p), i = 1, 2, . . . , p.

For i ∈ 1, . . . , p define ǫki := zki − zki−1 and γk
i := ||ǫki ||2.

Since zk0 = xk → x̄, the lemma is true if ∀i ∈ 1, . . . , p, we have

lim
k→∞

γk
i = 0. (A.5)

Suppose for the sake of a contradiction that there is some i ∈ 1, . . . p for which i

is false. Without loss of generality, assume that i is the smallest value that violates
(A.5).

Then there exists some γ∗ > 0 such that a subsequence S of {kj}
∞
j=1 satisfies

γt ≥ γ∗∀t ∈ S. We replace {kj}
∞
j=1 with this subsequence.

We can write zki = zi−1 + γk
i
ǫki
γk
i

. Since
ǫki
γk
i

is of length 1, it belongs to the compact

set {x|||x||2 = 1}, and thus the sequence {
ǫki
γk
i

}∞k=1 has a limit point ǭ.

Let us replace {
ǫki
γk
i

}∞k=1 with a subsequence converging to ǭ.

We then have that ∀δ ∈ [0, γ∗]

f(z
kj
i ) = f(z

kj
i−1 + γk

i

ǫki
γk
i

) ≤ f(z
kj
i + δ

ǫki
γk
i

), (A.6)
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since the BCD algorithm produces z
kj
i such that minimizes f with all components

other than the ith entry fixed.

Since ∀δ ∈ [0, γ∗], z
kj
i−1 + δ

ǫki
γk
i

is a convex combination of z
kj
i−1 and z

kj
i , and f is

convex in its ith argument, we have that

f(z
kj
i−1 + δ

ǫki
γk
i

) ≤ max
{

f(z
kj
i−1), f(z

kj
i )

}

= f(z
kj
i−1). (A.7)

Combining (A.6) and (A.7), we have that

f(z
kj
i ) ≤ f(z

kj
i−1 + δ

ǫki
γk
i

) ≤ f(z
kj
i−1) ∀δ ∈ [0, γ∗]. (A.8)

Since z
kj
i−1 → x̄ and f is continuous, then f(z

kj
i−1)→ f(x̄). Since f(z

kj
i−1) > f(z

kj
i ) >

f(z
kj+1

i−1 ), then we have that f(z
kj
i )→ f(x̄).

Letting j →∞ in (A.8), we have

f(x̄+ δǭ) = f(x̄) ∀δ ∈ [0, γ∗],

which is a contradiction of the fact that f is a strictly convex function with respect
to its ith argument.

A.4 Tables used to generate Figures 2.1 and 2.2

m log10(
||L̂−L

∗||F
||L∗||F

) log10(
||Ŝ−S

∗||F
||S∗||F

) Time (s) Iterations

500 -0.31 (2.20) -0.33 (2.30) 2.93 (0.78) 2.92 (0.44)
1000 -0.31 (2.18) -0.33 (2.30) 7.41 (1.22) 3.02 (0.54)
2000 -0.31 (2.15) -0.33 (2.30) 32.03 (7.26) 2.97 (0.45)
3000 -0.31 (2.17) -0.33 (2.30) 67.48 (11.03) 2.94 (0.48)

Table A.1. Algorithm 2, r = 1. Average over 100 trials, standard deviation in
parentheses.

A.5 The Cyclical Coordinate Descent Algorithm

for Subspace Prior Regression

There are a variety of techniques for solving the convex program (3.5), including
interior-point methods [Boyd and Vandenberghe, 2004], LARs [Efron et al., 2004],
iteratively re-weighted least squares [Huber, 1974], approximating the ℓ1 term with
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m log10(
||L̂−L

∗||F
||L∗||F

) log10(
||Ŝ−S

∗||F
||S∗||F

) Time (s) Iterations

500 -0.11 (0.77) -0.15 (1.06) 7.65 (3.63) 7.86 (0.99)
1000 -0.09 (0.65) -0.14 (0.98) 35.28 (8.00) 8.32 (1.17)
2000 -0.10 (0.71) -0.15 (1.08) 302.93 (77.99) 8.84 (1.13)
3000 -0.11 (0.78) -0.17 (1.18) 1085.03 (236.89) 9.82 (1.26)

Table A.2. ADMM solver for the convex program (2.2), r = 1. Average over 100
trials, standard deviation in parentheses.

m log10(
||L̂−L

∗||F
||L∗||F

) log10(
||Ŝ−S

∗||F
||S∗||F

) Time (s) Iterations

500 -0.11 (0.80) -0.14 (0.98) 177.38 (33.29) 12.88 (2.39)
1000 -0.12 (0.85) -0.15 (1.06) 1520.03 (259.61) 14.90 (2.46)
2000 -0.13 (0.94) -0.17 (1.17) 13679.21 (2346.40) 16.61 (2.56)

Table A.3. Algorithm 2, r = 0.05m. Average over 100 trials, standard deviation
in parentheses.

m log10(
||L̂−L

∗||F
||L∗||F

) log10(
||Ŝ−S

∗||F
||S∗||F

) Time (s) Iterations

500 -0.14 (0.95) -0.16 (1.14) 9.64 (3.89) 8.84 (1.13)
1000 -0.13 (0.89) -0.16 (1.10) 60.24 (11.60) 8.84 (1.13)
2000 -0.13 (0.93) -0.17 (1.16) 452.13 (79.99) 8.62 (1.17)

Table A.4. ADMM solver for the convex program (2.2), r = 0.05m. Average over
100 trials, standard deviation in parentheses.

a smooth function [Lee et al., 2006] the sub-gradient method [Shor et al., 1985], and
Nesterov’s proximal gradient method [Nesterov, 2003].

Ultimately, we found experimentally that cyclical coordinate descent (CCD) [Fried-
man et al., 2007, Wu and Lange, 2008] was the fastest for our problem.

The CCD method works by repeatedly optimizing the objective function viewed
as a function of each variable with the others fixed. This idea gives a CCD algorithm
for SPR, Algorithm 4.

A.5.1 Convergence of Algorithm 4

The correctness of this algorithm for minimizing the objective function (3.4) fol-
lows from Lemma A.5.1.

Lemma A.5.1. Let αhca
∗, z∗0 ,β

∗, z∗ ∈ argmin g(αhca,β, z0, z;~λ).



38

Algorithm 4 CCDSPR(X, Y, R, ~λ, T)

1: αhca(0)← 0, z0(0)← 0, β(0)← 0p, z(0)← 0d

2: for i ∈ {1, 2, . . . , T} do
3: {Optimize αhca with all other variables fixed}
4: {Optimize z0 with all other variables fixed}
5: for k ∈ {1, 2, . . . , p} do
6: {Optimize βk with all other variables fixed}
7: end for

8: for ℓ ∈ {1, 2, . . . , d} do
9: {Optimize zℓ with all other variables fixed}

10: end for

11: end for

12: return αhca(T ), z0(T ),β(T ), z(T )

Then

lim
T→∞

g(αhca(T ), z0(T ),β(T ), z(T )) = g(αhca
∗, z∗0 ,β

∗, z∗).

Furthermore, when αhca
∗, z∗0 ,β

∗, z∗ is the unique global minimum of g,

lim
T→∞

(αhca(T ), z0(T ),β(T ), z(T )) = (αhca
∗, z∗0 ,β

∗, z∗).

Proof. This is a direct consequence of Proposition 5.1 of Tseng [2001]. In particular,
identify f0 and fi, i = 1, . . . , p of Proposition 5.1 with Lquadratic(αhca,β) + λ2||β −
z01p −Rz||22 and λ1|βi|, i = 1, . . . , p, respectively. We observe that

• Assumption B1 of Tseng [2001] is satisfied, since f0 is continuous.

• Assumption B2 of Tseng [2001] is satisfied, since f is convex and non-constant
on line segments.

• Assumption B3 is satisfied, since fi, i = 1, . . . , p are continuous.

• Assumption C2 is trivially satisfied.

Therefore, the conditions of Proposition 5.1 of Tseng [2001] are satisfied for Algorithm
4 on the objective function (3.3).

Since (3.4) has at least one global minimum and is convex, then we further con-
clude that the limit points of Algorithm 4 are global minima.
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A.5.2 Computing the updates for Algorithm 4

The updates for αhca(i), z0(i),β(i), z(i) can be computed in closed form.
To compute αhca(i), we can optimize the objective function g viewed as a function

only of the decision variable αhca by taking the derivative and setting it to zero.
This yields the update

αhca ←
1TnDiag(w) [Y −Xβ]

1Tnw
.

Similarly, for z0(i) we get the update

z0 ←
1

p
1T
p [β −Rz] .

For z, we simply get the least squares updates:

z← (RTR)−1RT [β − z01p].

Updates for β

We next derive a closed-form expression for the updates for βi. To do so, we need
Lemma A.5.2.

Lemma A.5.2 (One-variable lasso is soft-thresholding). Let h(x) := 1
2
Ax2 − Bx +

C + τ |x|, x ∈ R. Suppose that A > 0. The solution of

min
x∈R

h(x) (A.9)

is

x∗ =
Sτ (B)

A

where

Sτ (x) :=







0 if |x| ≤ τ

x− τ if x > 0 and |x| > τ

x+ τ if x < 0 and |x| > τ,

is the soft-thresholding function with threshold τ .
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See Section A.5.2 for a proof of this.
This lemma is useful, as it allows us to immediately write the updates for βk(i).
First, let us identify A and B for βk(i). Differentiating gs, we get

∂βt
gs = ∂βt

(Lquadratic(αhca,β) + λ2||β − z01p −Rz||22)

= ∂βt

[

1

1T
n ~w

∑

i

wi(Yi − αhca −XT
i β)

2

]

+ λ2∂βt

∑

j

(βj − z0 −RT
j z)

2

= (
1

1T
n ~w

∑

i

wi∂βt
(Yi − αhca −XT

i β)
2 + λ2

∑

j

∂βt
(βj − z0 −RT

j z)
2

=
1

1T
n ~w

∑

i

2wiXit(−Yi + αhca +XT
i β) + λ22(βt − z0 −RT

t z)

= C
∑

i

wiXit(−Yi + αhca +XT
i β) + λ22(βt − z0 −RT

t z)

= C(Xet)
TW (−Y + αhca1n +Xβ) + λ22(βt − z0 −RT

t z)

= C(Xet)
TW (−Y + αhca1n +X[β − etβt + etβt] + λ22(βt − θt)

= C(Xet)
TW (κ+X[etβt]) + λ22(βt − θt)

where

C :=
2

1T
n ~w

,

θt := (z01p +Rz)T et,

κ := −Y + αhca1n +X[β − etβt].

The constant term (with respect to βt) of the above expression is

D := C(Xet)
TWκ− 2λ2θt.

The linear term is

C(Xet)
TWXetβt + 2λ2βt =

[
CeTt X

TWXet + 2λ2

]
βt

= Eβt,

where

E := CeTt X
TWXet + 2λ2.

From this we conclude that for βk(t)

A = E

B := −D.

So, we have the update equation

βk(i)←
Sλ1

(B)

A
.
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Proof of Lemma A.5.2

Proof. The subdifferential of h(x) [Rockafellar, 1970] is the set

∂h(x) :=
K∑

k=1

ak(akx− bk) + τ∂|x|

= xA− B + τ∂|x|,

where

A :=
K∑

k=1

a2k

B :=
K∑

k=1

bk

∂|x| :=

{

{sign(x)} if x 6= 0

[−1, 1] otherwise.

From the theory of convex analysis [Rockafellar, 1970] x∗ is the solution of (A.9)
if and only if

0 ∈ ∂h(x∗). (A.10)

The set ∂h(x∗) behaves differently depending on the value of x∗. When x∗ 6= 0,
then

0 ∈ ∂h(x∗) = {x∗A−B + τ sign(x∗)},

which is equivalent to x∗ = B−τ sign(x∗)
A

. However, when x∗ = 0, then

0 ∈ ∂h(x∗) = {x∗A−B + τ [−1, 1]}.

We use this observation to deal with the following two cases:

1. Suppose that τ ≥ |B|. Then

(a) If x∗ 6= 0, then

τ ≥ |B| = |x∗A+ τ sign(x∗)|

= x∗A+ τ,

since at least one ak 6= 0, then A > 0. This is a contradiction. Therefore
x∗ 6= 0 cannot be a solution when τ ≥ |B|.
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(b) If x∗ = 0, then

0 ∈ −B + τ [−1, 1] = [−τ −B, τ − B],

which is true.

2. Suppose that τ < |B|. Then

(a) If x∗ 6= 0, then B − τ sign(x) has the same sign as B. Since A is positive,

then x∗ has the same sign as B. So the choice of x∗ = B−τ sign(B)
A

satisfies the
required sub-gradient optimality condition (A.10) without contradiction.

(b) If x∗ = 0, then 0 ∈ −B+ τ [−1, 1] = [−τ −B, τ −B], which is a contradic-
tion.

Thus,

1. τ ≥ |B| =⇒ x∗ = 0,

2. τ < |B| =⇒ x∗ = Sτ (B)
A

.

These two cases can be summarized by x∗ = Sτ (B)
A

, as desired.


