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LOW-DIMENSIONAL REPRESENTATIONS
OF QUASI-SIMPLE GROUPS

GERHARD HISS and GUNTER MALLE

Abstract

We determine all the absolutely irreducible representations of de-
gree up to 250 of quasi-simple finite groups, excluding groups that
are of Lie type in their defining characteristic. Additional informa-
tion is also given on the Frobenius–Schur indicators and the Brauer
character fields of the representations.

1. Introduction

In this paper we classify low-dimensional absolutely irreducible representations of quasi-
simple groups. Results of this type seem to have many applications. We have at least one
immediate application in mind, namely the matrix group-recognition program in computa-
tional group theory.

Our main result is a list of all the absolutely irreducible representations of quasi-simple
groups up to degree 250 (excluding representations of groups that are of Lie type in their
defining characteristic), together with some information on these representations, such as
the character fields and the Frobenius–Schur indicators.

Theorem 1. Let G be a quasi-simple finite group, and let V be an absolutely irreducible

faithful FG-module of dimension d 6 250, where the characteristic of F is not the defining

characteristic of G if G is of Lie type. Then the values of (G, dim(V )), together with some

additional information, are contained in Tables 2 and 3.

Previous work of Kondratiev (see [36] and the references therein) has solved this question
for representations up to degree 27. His results are recovered as part of our main theorem.
In the case not considered here—that of irreducible representations of groups of Lie type in
their defining characteristic—Aschbacher (in unpublished work) obtained a classification
up to degree 27. Recent work by Lübeck [37] has determined all the low-dimensional
representations of groups of Lie type in their defining characteristic, thus complementing
our list. More precisely, Lübeck has determined all the absolutely irreducible representations
ofG of degree up to at least l3/8, where l is the Lie rank ofG, including all those of degree
at most 250.

The construction of the list falls naturally into three parts, according to the classification of
finite simple groups. If the groupG is of Lie type, we make use of results obtained by various
authors on low-dimensional representations in cross-characteristic (see [15, 16, 23]), and the
Landazuri–Seitz–Zalesskii bounds [49]. For the alternating groups and their spin-covers,
results obtained by James [27, 28] and Wales [55] can be used. Finally, for the sporadic
groups, there exists a wealth of published and unpublished tables of Brauer characters,
computed by different authors.
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Low-dimensional representations of quasi-simple groups

In all three classes, the tables for the smaller groups can be found in the ordinary and
modular Atlas [5, 34], and also in the GAP computer algebra system [8]. Nevertheless, it
turns out that in all three families there remain some groups where the theoretical results
cannot be applied to determine all the candidate representations, and where the correspond-
ing tables are also not contained in GAP. In these cases, the open questions could be solved
with the help of the MOC computer system [33].

Throughout our paper we adopt the notation of the Atlas [5] for the quasi-simple groups.

2. Groups of Lie type

In this section we describe the proof of correctness of the table for groups that are of Lie
type in their non-defining characteristic.

2.1. Known results

The starting point is a result of Landazuri–Seitz–Zalesskii [49], giving lower bounds
for degrees of non-trivial representations of quasi-simple groups of Lie type in their non-
defining characteristic. Using this, we get down to the following finite list of simple candi-
date groups whose covering groups possibly have non-trivial irreducible representations of
degree at most 250:

L2(q) (q 6 499), L3(q) (q 6 13), L4(q) (q 6 5), L5(2),
L5(3), L6(2), L7(2),
U3(q) (q 6 16), U4(q) (q 6 5), U5(q) (q 6 4), U6(2),
U6(3), U7(2), U8(2), U9(2),
S4(q) (q 6 19), S6(q) (q 6 7), S8(q) (q 6 3), S10(q) (q 6 3),
O7(3), O+

8 (2), O−
8 (2), O−

8 (3),
2B2(8), 2B2(32), G2(q) (q 6 5),
3D4(2), 3D4(3), 2F4(2)′, F4(2).

From this list we can eliminate the groups whose modular character tables are contained
in the Atlas of Brauer characters [34], or in GAP [8]. Furthermore, the irreducible repre-
sentations of L2(q) in non-defining characteristic are well-known (see [3]), and the relevant
information is displayed in Table 2. For linear groups, Guralnick and Tiep [15] have de-
scribed the representations of the first two non-trivial degrees, and have given a lower bound
for the third-smallest degree. Similarly, this has been done for unitary groups by the present
authors in [23], and for the symplectic groups over fields of odd order in [16]. Using these
results, we are left with the following groups:

L4(4), L4(5), U4(4), S4(7), S4(8), S10(2),
O−

8 (3),
3D4(3) F4(2).

Restriction to 2.O7(3) (which is in GAP) shows that 2.O−
8 (3) has no faithful characters of

degree at most 250, and the characters of the simple group O−
8 (3) are in GAP.

2.2. Some groups of Lie type and MOC

Here we comment on the computation of the results for some of the smaller groups of
Lie type that are not contained in the Modular Atlas. For the linear groups L4(4) and L4(5),
we used the modular representation theory of the general linear groups in the non-defining
characteristic case, as developed by Dipper and James in a series of papers. In particular, we
consulted reference [29], in which James computed the decomposition matrices for GLn(q)
up to n = 10.
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Low-dimensional representations of quasi-simple groups

For the unitary group U4(4), we used the information contained in the diploma thesis
of Wings [61], as well as the generic character table of U4(q) computed by Nozawa [44].
Partial decomposition matrices for the 4-dimensional symplectic groups have been obtained
by White, and completed by Okuyama and Waki in [45]. For the case of cyclic defect groups,
the decomposition matrices have been computed by Fong and Srinivasan [7]. To deal with
the groups S4(7) and S4(8), we used White’s papers [56, 57, 58]. For the character values,
we consulted the generic character tables (see [50], [46] and [6]). The desired result for
3D4(3) can be extracted from Geck’s work [9], and that for F4(2) is contained in [20].

The decomposition matrices for F4(2), as well as those for S10(2) and many sporadic
groups, have been computed with the help of MOC [33], a system for dealing with modular
characters. This was developed by Jansen, Lux, Parker and the first author, beginning in
1984. A description of MOC and its algorithms is given in [33], which unfortunately never
found a publisher. Some of the algorithms and methods used are also described in [38,
Section 3] and in [39, Section 3].

Let us briefly sketch the principal idea, without going into too many details. Let G be
a finite group, and let p be a prime dividing the order of G. Suppose that the ordinary
character table ofG and the p-modular character tables of some (maximal) subgroups ofG
are known. In a first step, we compute a large set B of p-modular Brauer characters, and a
large set P of projective characters ofG. This is done using the usual methods, by tensoring
characters, or by inducing them from subgroups.

Let IBr(G) and IPr(G) denote the set of irreducible Brauer characters and the set of
projective indecomposable characters of G, respectively. In a second step, we compute a
basic set of Brauer characters BS fromB, and a basic set of projective characters PS fromP .
The term ‘basic set’ here means that the transition matricesX and Y , with BS = X · IBr(G)
and PS = Y · IPr(G), are unimodular and have non-negative integral entries. (In the above
matrix equations, we have identified the sets of characters with their matrices of values, so
that, for example, ‘IBr(G)’ also stands for the Brauer character table of G.)

LetU denote the square matrix of scalar products between the characters in BS and those
in PS. Then U = XY t , by the orthogonality relations. Thus, in order to find candidates for
IBr(G), one has to find the factorizations of U into a product of unimodular matrices
with non-negative integral entries. If U = X1Y

t
1 is such a factorization, then X−1

1 ·BS is a
candidate set for the irreducible Brauer characters. The projective characters in P reduce
the number of candidates for IBr(G), and thus for the first factorX1, since every irreducible
Brauer character must have a non-negative scalar product with every character inP . Dually,
the Brauer characters in B restrict the number of possibilities for the second factor, Y t1 .

Of course, in each individual problem we used some ad-hoc techniques, adapted to
the particular problem. The application of these techniques was supported by substantial
calculations, made using GAP and MAPLE [4].

3. The alternating groups

In this section, we collect some results on low-dimensional representations of alternating
groups and their covering groups. For this purpose, we recall some standard notation. For
a field F and a partition λ ⊢ n, let Sλ denote the corresponding Specht module for Sn
over F . Assume that F has characteristic ℓ. For ℓ-regular partitions λ we write Dλ for the
irreducible FSn-module indexed by λ, the unique simple composition factor in the socle
of Sλ. It is known that theDλ constitute a complete set of representatives for the irreducible
FSn-modules.
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3.1. 2-modular representations of An

We first consider the case of representations over fields of characteristic ℓ = 2. The
2-modular character table of Sn is known for n 6 14 [1, 34].

Proposition 2. Let n > 15, ℓ = 2 and (n) 6= λ ⊢ n be 2-regular. Assume that

dim(Dλ) 6 500. Then one of the following cases occurs:

(1) λ = (n− 1, 1) and n 6 502, or

(2) λ = (n− 2, 2) and n 6 34, or

(3) λ = (12, 3), dim(Dλ) = 336, or

(4) λ = (8, 7), (9, 7), dim(Dλ) = 128, or

(5) λ = (9, 8), (10, 8), dim(Dλ) = 256.

Proof. From the known 2-modular character table ofS14, it follows that for n = 14, either

λ ∈ M14 := {(14), (13, 1), (12, 2), (11, 3), (10, 4), (8, 6)}

or dim(Dλ) > 500. Now let n = 15 and assume that dim(Dλ) 6 500. Then the restriction
Dλ|S14 has to contain some Dµ, with µ ∈ M14, as a submodule. This implies that Sλ is a

constituent of the induced module (Sµ)S15 , and hence that

λ ∈ {(15), (14, 1), . . . , (9, 6), (8, 7), (8, 6, 1)}

by the branching rule for ordinary characters ofSn. The dimension ofDλ for λ in the above
list is known by [27, Theorems 5.2 and 7.1], and it turns out that dim(Dλ) 6 500 only for

λ ∈ M15 := {(15), (14, 1), (13, 2), (12, 3), (8, 7)}.

The same argument may be applied to obtain M16, . . . ,M19, yielding in particular
M19 = {(19), (18, 1), (17, 2)}. Now, induction and the branching rule allow us to com-
plete the proof. The degrees of the relevant Dλ follow from [27, Theorem 5.2].

Benson has determined those 2-regular partitions λ = (λ1 > λ2 > · · ·) for which the
irreducibleSn-moduleDλ splits upon restriction to the alternating groupAn: the restriction
is irreducible if λ2j−1 − λ2j > 2 or if λ2j−1 + λ2j ≡ 2 (mod 4) for some j > 0
[2, Theorem 1.1].

We thus obtain the following corollary to the theorem.

Corollary 3. Let n > 15, let ℓ = 2, and let D be a non-trivial absolutely irreducible

An-module of dimension dim(D) 6 250. Then either D is the restriction to An of either

D(n−1,1) with n 6 252, or D(n−2,2) with n 6 24, or

(n, dim(D)) ∈ {(15, 64), (16, 64), (17, 128)}.

3.2. ℓ-modular representations of An, ℓ > 2

Now, assume thatF is a sufficiently large field of characteristic ℓ 6= 2. The decomposition
matrices of Sn over F are known for n 6 14 (see [34]), or can be computed using the
Specht-package in GAP, written by Andrew Mathas. (In fact, for ℓ 6= 3 the decomposition
matrices can be computed up to at least n = 20, but we will not need this here.)

We obtain the following analogue of Proposition 2.
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Proposition 4. Let n > 14, and letM be a non-trivial absolutely irreducible FAn-module

of dimension dim(M) 6 250. Then M = Dλ for λ one of the following:

(1) λ = (n− 1, 1) and n 6 252, or

(2) λ = (n− 2, 2) and n 6 24, or

(3) λ = (n− 2, 12) and n 6 24, or

(4) λ = (11, 3) and ℓ = 5, 7, or

(5) λ = (7, 7) and ℓ = 5.

Proof. We can argue essentially as in the proof of the preceding proposition. First, let ℓ = 3.
From the known decomposition matrix, it follows that the irreducible A13-modulesD with
dim(D) 6 250 are the ten relevant modules Dλ with

λ ∈ M3,13 :=
{

(13), (12, 1), (11, 2), (11, 12), (10, 3), (10, 2, 1)
}

.

In particular, all of them are restrictions of irreducible S13-modules. Thus, if D is an
irreducible A14-module of dimension 1 6= dim(D) 6 250, thenD is a constituent of either

Dλ orDλ̄ for a partition λ ⊢ 14 which can be obtained by adding a hook of length 1 to some
partition µ ∈ M3,13. The dimensions of the ten relevant modules of Dλ can be determined
by using [28]. It turns out, in fact, that

λ ∈ M3,14 :=
{

(14), (13, 1), (12, 2), (12, 12)
}

.

All of these restrict irreducibly to A14. Similarly, for n = 15, we obtain D = Dλ for

λ ∈ M3,15 :=
{

(15), (14, 1), (13, 2), (13, 12)
}

,

and so on. The assertion for ℓ = 3 follows by induction.
The argument for ℓ > 5 is similar. For ℓ = 0, the degrees of the Specht modules are

well known.

3.3. ℓ-modular representations of 2.An

Here, we study low-dimensional faithful irreducible representations of the covering
groups 2.An. Since an irreducible 2-modular representation of 2.An is not faithful, we
assume that ℓ 6= 2 throughout this section. Also, we may and will assume that n > 14,
since for smaller n the modular tables are contained in [34] or in GAP.

We begin by looking at the covering groups of the symmetric groups. Their irreducible
representations of characteristic 0 are indexed by partitions of n into distinct parts, with the
rule that one partition corresponds to two different representations if these have the same
restriction to 2.An. Following the notation in the paper of Wales [55], the representations
of 2.Sn corresponding to a partition λ are denoted by < λ >, or by < λ > and < λ >∗ if
there are two of them.

Proposition 5. Let n > 14, and let ℓ 6= 13 for n = 14. Then a faithful irreducible F2.Sn-

module M with dimM 6 500 is a constituent of the reduction modulo ℓ of < n >, or else

of < n >∗.

Proof. The assertion is correct for n = 14 and ℓ 6= 13, and for n = 15 and ℓ = 13. This
follows from explicit computations with the character tables using MOC.

Suppose, then, that n > 15, and that n > 16 if ℓ = 13. Let M be a faithful simple
F2.Sn+1-module with dimM 6 500. Then the restriction ofM to 2.Sn contains a faithful
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irreducible submodule of dimension at most 500. By induction, this is a composition factor
of < n >, or else of < n >∗.

It follows thatM is a composition factor of the reduction modulo ℓ of< n >2.Sn+1 , or of
< n >∗2.Sn+1 . By the branching theorem, we have < n >2.Sn+1=< n+ 1 > + < n, 1 >
if n is odd, and < n >2.Sn+1=< n + 1 > + < n + 1 >∗ + < n, 1 > if n is even. By
[55, Table IV], either a modular composition factor of < n, 1 > is a composition factor of
< n+1 > or< n+1 >∗, or its dimension is larger than 500. This completes the proof.

This proposition shows that for n > 15 and n = 14, ℓ 6= 13, a faithful irreducible
F2.An-module of dimension at most 250 is a composition factor of the restriction to 2.An
of the reduction modulo ℓ of < n > or of < n >∗. A direct computation with MOC shows
that this is true even for n = 14 and ℓ = 13. (Note that this is a cyclic defect case.) The
modular composition factors of < n > and < n >∗ are determined in [55]. In addition, it
is also determined there which of them restrict irreducibly to 2.An.

We thus obtain, from [55, Table III], the following corollary.

Corollary 6. Let n > 14, let ℓ 6= 2, and let D be a faithful absolutely irreducible 2.An-

module of dimension dim(D) 6 250. Then n 6 18 andD is a composition factor of a basic

spin representation of 2.An. We have the following cases for (n, dim(D)):

(1) (14, 32) for ℓ = 7 (two modules D);

(2) (14, 64) for ℓ 6= 7 (one D);

(3) (15, 64) for ℓ = 3, 5 (one D);

(4) (15, 64) for ℓ 6= 3, 5 (two modules D);

(5) (16, 128) (one D);

(6) (17, 128) for ℓ = 17 (one D);

(7) (17, 128) for ℓ 6= 17 (two modules D);

(8) (18, 128) for ℓ = 3 (two modules D).

4. The sporadic groups

Our first source was the Modular Atlas [34], which contains the modular character tables
for ten of the 26 sporadic groups (and their covering groups). Apart from these ten groups,
the largest of which is the McLaughlin group, the modular character tables are completely
known for the six sporadic groups He, 2.Ru, 6.Suz, 3.O′N, Co3 and Co2. Modular character
tables for some of the larger groups are also available in some characteristics, for example
for the Fischer groups 6.Fi22 and Fi23 in characteristic 5, or for the Conway group 2.Co1

in characteristic 7. Moreover, for primes dividing the group order only once, the character
degrees can be computed from the Brauer trees given in [21].

There are several sources for these character tables, not all of which have as yet been
published. The only published source on the Held group is Ryba’s paper [47]. The 2-
modular character table for the covering group of the Rudvalis group was determined by
Wilson (unpublished); its 3-modular tables are contained in [19], and its 5-modular tables in
[24]. On the Suzuki group, there is only one paper, by Jansen and Müller [31]. The relevant
papers for the O’Nan group and its covering group are [32], by Jansen and Wilson, and
[17], by Henke, Hiss and Müller. The 2-modular characters of the two smallest Conway
groups have been computed by Suleiman and Wilson [51, 52], their 3-modular characters
by Jansen in his PhD thesis [30], and the 5-modular characters of Co3 by Müller [43].
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The 5-modular character table for Co2 is contained in [33], as well as the 7-modular table
for 2.Co1. The 5-modular Brauer characters for the Fischer groups 6.Fi22 and Fi23 have
been computed by Hiss, Lux, and White in [22] and [25]. This completes the list of known
modular tables for the sporadic groups and their covering groups. The MOC website [42]
contains the corresponding decomposition matrices and Brauer character degrees.

The latter reference also contains a list of minimal degrees of non-trivial representations
of sporadic groups and their covering groups (except for the double cover of the Baby
Monster), compiled by Christoph Jansen. It follows from this list that we do not have to
consider the two Fischer groups Fi23 and Fi′24, nor the Baby Monster, B, or the Monster, M.
For example, the minimal degree of a non-trivial representation of Fi23 is 253. Since Fi23

is a subgroup of the double cover 2.B of the Baby Monster, the smallest degree of the latter
group is well over 250.

The same list also shows that for the Lyons group, Ly, we have only to worry about
representations in characteristic 5, and for the largest Janko group, J4, only about char-
acteristic 2. The case of the Lyons group was handled by Klaus Lux and Alex Ryba (in
unpublished work). They showed, using the condensation techniques of the Meat-Axe (see
[48] or [40]), that the only non-trivial representation in characteristic 5 of the Lyons group
of degree smaller than 250 is the known one of degree 111, constructed by Meyer, Neutsch
and Parker [41]. Lux and Ryba also settled the case of the Harada–Norton group in char-
acteristic 5 using the same techniques, but this has been checked independently, using the
methods described in Section 2. The minimal degree of a faithful representation of the
Conway group Co1 in odd characteristic equals 276. Hence for 2.Co1 and odd characteris-
tics, we have only to consider blocks containing faithful characters. The diploma thesis of
Hensing [18] gives enough information on the 5-modular decomposition numbers of 2.Co1

to show that our list is correct in this case. Unpublished work of Rosenboom settles the
case of Co1 in characteristic 2, but we have also checked this case independently. The case
of the smallest Fischer group Fi22 and its covering group has been handled by Christoph
Jansen, in unpublished work.

We are thus left with the groups HN, Th, 2.Co1 and J4, the latter only in characteristic 2,
and the Conway group only in characteristic 3. To deal with these cases, we used the methods
and the MOC system described in Section 2.

5. The Frobenius–Schur indicators

We comment briefly on the methods used to determine the Frobenius–Schur indicators
of the characters occurring in the tables below. Let us begin with the definition. Suppose
that G is a finite group, K a field, and M a finitely generated, absolutely irreducible KG-
module. Suppose first that M is self-dual. Then M carries a non-degenerate G-invariant
bilinear form, which is symmetric or alternating. Moreover, this form is unique up to scalar
multiplication. If the characteristic of K is 2, and M is not the trivial module, then the
invariant form is alternating. If the characteristic ofK is odd andM carries a non-degenerate
symmetric bilinear form, this form is the polarization of a quadratic form on M , which is
non-degenerate and G-invariant. If M is not self-dual, it does not carry any non-trivial
G-invariant bilinear form.

The Frobenius–Schur indicator ofM is an integer of the set {−1, 0,+1}. It is defined to
be 0 if and only if M is not self-dual. The Frobenius–Schur indicator of M is set to be +1
if and only if M carries a non-degenerate G-invariant quadratic form. Thus the indicator
of M is −1 if and only if M is self-dual and carries a non-degenerate G-invariant bilinear
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alternating form, but no G-invariant quadratic form.
In our tables the indicators are represented by one of the three symbols {−, ◦,+}, with

the obvious bijection.
To compute the Frobenius–Schur indicators, we used several well-known methods. We

begin our discussion with the case whereK has odd characteristicp, andM is self-dual. Then
the Frobenius–Schur indicator of M can be computed from the p-modular decomposition
matrix of G and the ordinary character table of G as follows. There is a self-dual ordinary
irreducible moduleV ofGwhose reduction modulop containsM with odd multiplicity, and
the Frobenius–Schur indicator ofM is equal to that of V . This result is due, independently,
to Thompson [53] and Willems [59] (see the survey [60], in particular Theorem 2.8 therein).

In our case, the self-dual ordinary irreducible modules containing M with odd multi-
plicity can be easily found; in fact, most of the time M is liftable to a self-dual ordinary
irreducible module. Thus it remains only to compute the Frobenius–Schur indicators of
certain ordinary irreducible modules.

Let V be an irreducible CG-module with character χ . Then the Frobenius–Schur indi-
cator of V is equal to

ν2(χ) :=
1

|G|
∑

g∈G
χ(g2).

Thus the indicators in characteristic 0 can be computed from the ordinary character table
and the 2-power map of G. Also, ν2(χ) = +1 if and only if V ∼= C ⊗R V0 for some
RG-module V0; in other words, if and only if χ is afforded by a real representation of G
(see [26, Chapter 4]). If the character table ofG is not available, we use the latter criterion.

Let χ be real-valued. To decide whether or not χ is afforded by a real representation, we
use the real Schur index mR(χ) (see [26, Definition 10.1]). By the definition of the Schur
index and the discussion above, we have ν2(χ) = −1 if and only if mR(χ) 6= 1. Since
|C: R| = 2, the latter condition is equivalent to mR(χ) = 2, and implies that χ(1) is even
(see [26, Corollary 10.2(g) and (h)]). Suppose thatψ is the character of a real representation
of G. Then, by [26, Corollary 10.2(c)], the Schur index mR(χ) divides the scalar product
(ψ, χ). This can be applied in particular in cases where ψ is induced or restricted from a
character of a real representation of a subgroup or overgroup of G.

Results on Schur indices of characters of groups of Lie type can be found in the papers
[10, 11] by Rod Gow. We also made use of the results of Przygocki [46], on the Schur
indices of the symplectic groups, and of Tiep [54, Corollary 4.5], on the Schur indices of
the Weil representations of the unitary groups.

Let us suppose now that the characteristic of K equals 2. Here, no simple method is
known for computing the Frobenius–Schur indicators. A collection of various methods is
contained in the articles [13, 14] of Gow and Willems. We made use of [13, Lemmas 1.1
and 1.2] in particular, and of [14, Theorem 1.1 and its proof].

If theKG-moduleM lifts to an absolutely irreducible QG-module, then the Frobenius–
Schur indicator ofM equals +1. This is a well-known, elementary result, which is included
in the much more general [13, Theorem 2.2].

To determine the indicators of the basic spin representations of the alternating groups,
we followed a suggestion of Rod Gow. First, by [12, Corollary 4.3], the spin module of the
symplectic group S2m(q) (where q is even) of degree 2m has indicator +1, if m > 3 (see
also [35, Proposition 5.4.9]). The restriction of the spin module of S2m(q) to the subgroup
S2m+1 orS2m+2 remains irreducible. Thus the basic spin representation of the symmetric
group Sn has indicator +1 if n > 7. This implies, using for example [13, Lemma 1.2],
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Table 1: Some Frobenius–Schur indicators

d G ℓ ind

32 2.A14 7 −
104 U4(5) 2 −
174 S4(7) 2 +
208 A14 2 +
218 3D4(3) 2 +

that the basic spin representations for An also have indicator +1, provided that they are
self-dual. The splitting of the basic spin representation ofSn on restriction to An has been
determined by Benson [2, Theorems 1.1 and 6.1].

The Frobenius–Schur indicators for the sporadic groups have mainly been determined
by Richard Parker and Rob Wilson, using the computational methods described in [52].
In addition, Rob Wilson computed the indicators of the representations shown in Table 1,
which remained open in a previous version of this paper.

6. A table of low-dimensional absolutely irreducible representations

of quasi-simple groups

In order to shorten the table of low-dimensional representations, we have grouped some
generic cases together in Table 2. The corresponding entries have been omitted from Table 3
for An with n > 14, and for L2(q) for q 6= 9. The indicators for L2(q) when ℓ = 2 were
taken from [13, Theorem 2.3] for the characters of degree q±1, and from [14, Theorem 1.2]
for the Weil character of degree (q − 1)/2.

It may be helpful to point out that, in accordance with the formulation of Theorem 1, the
following pairs (G/Z(G), ℓ) have been omitted from the tables:

A6
∼= S4(2)′ ∼= L2(9) in characteristic ℓ = 3,

A8
∼= L4(2) in characteristic ℓ = 2,

L2(7) ∼= L3(2) in characteristic ℓ = 2, 7,

U4(2) ∼= S4(3) in characteristic ℓ = 2, 3,

G2(2)′ ∼= U3(3) in characteristic ℓ = 3,
2G2(3)′ ∼= L2(8) in characteristic ℓ = 2.
The Tits group, that is, the derived group 2F4(2)′ of the Ree group of type F4 over F2,

cannot be obtained as a factor group of the group of fixed points under a Frobenius morphism
of an algebraic group, so it is not considered as a group of Lie type in characteristic 2 here.

Let us briefly explain the notation used in the tables. The columns headed ‘d’ contain
the degrees. The columns headed ‘ℓ’ specify the characteristics of the fields over which
the respective representations are defined. An entry ‘ 6= ℓ’ for a prime ℓ indicates that a
representation of this degree exists for all other characteristics than ℓ, including 0. The
‘field’ columns give the irrationalities of the Brauer characters (using Atlas notation, except
for the irrationalities occurring in Table 2). Finally, the last column gives the Frobenius–
Schur indicators, which are defined in the section above.
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Low-dimensional representations of quasi-simple groups

Table 2: Generic examples

(a) Alternating groups

d G ℓ field ind

n− 2 An ℓ | n +
n− 1 An ℓ ∤ n +

(b) L2(q), q ≡ 1 (mod 4), ℓ ∤ q

d G condition on ℓ field ind

(q − 1)/2 L2(q) 2
√
q −

(q − 1)/2 2.L2(q) ℓ 6= 2
√
q −

(q + 1)/2 L2(q) ℓ 6= 2
√
q +

q − 1 L2(q) ζ
j

q+1 + ζ
−j
q+1 +

q − 1 2.L2(q) ((q + 1)/2)ℓ′ 6= 1 ζ
j

q+1 + ζ
−j
q+1 −

q L2(q) ℓ ∤ (q + 1) +
q + 1 L2(q) ((q − 1)/4)ℓ′ 6= 1 ζ

2j
q−1 + ζ

−2j
q−1 +

q + 1 2.L2(q) ℓ 6= 2 ζ
j

q−1 + ζ
−j
q−1 −

(c) L2(q), q ≡ 3 (mod 4), ℓ ∤ q

d G condition on ℓ field ind

(q − 1)/2 L2(q)
√

−q ◦
(q + 1)/2 2.L2(q) ℓ 6= 2

√
−q ◦

q − 1 L2(q) ζ
2j
q+1 + ζ

−2j
q+1 +

q − 1 2.L2(q) ℓ 6= 2 ζ
j

q+1 + ζ
−j
q+1 −

q L2(q) ℓ ∤ (q + 1) +
q + 1 L2(q) ((q − 1)/2)ℓ′ 6= 1 ζ

j

q−1 + ζ
−j
q−1 +

q + 1 2.L2(q) ((q − 1)/2)ℓ′ 6= 1, ℓ 6= 2 ζ
j

q−1 + ζ
−j
q−1 −

(d) L2(q), q ≡ 0 (mod 2), ℓ ∤ q

d G condition on ℓ field ind

q − 1 L2(q) ζ
j

q+1 + ζ
−j
q+1 +

q L2(q) ℓ ∤ (q + 1) +
q + 1 L2(q) (q − 1)ℓ′ 6= 1 ζ

j

q−1 + ζ
−j
q−1 +
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Low-dimensional representations of quasi-simple groups

Table 3: Absolutely irreducible representations of quasi-simple groups

d G ℓ field ind

3 3.A6 0, 2 z3, b5 ◦
3 3.A6 5 z3 ◦
3 3.A7 5 z3, b7 ◦
4 A6 2 −
4 2.A6 0, 5 −
4 A7 2 b7 ◦
4 2.A7 7 −
4 2.A7 6= 2, 7 b7 ◦
4 42.L3(4) 3 i1, r7 ◦
4 2.U4(2) 0, 5 z3 ◦
5 A6 0, 5 +
5 A7 7 +
5 U4(2) 0, 5 z3 ◦
5 M11 3 i2, b11 ◦
6 3.A6 0, 5 z3 ◦
6 6.A6 0, 5 z3, r2 ◦
6 A7 6= 7 +
6 2.A7 3 r2 −
6 3.A7 6= 3 z3 ◦
6 6.A7 6= 2, 3 z3, r2 ◦
6 2.L3(4) 3 +
6 6.L3(4) 6= 2, 3 z3 ◦
6 U3(3) 6= 3 −
6 U4(2) 0, 5 +
6 31.U4(3) 2 z3 ◦
6 61.U4(3) 6= 2, 3 z3 ◦
6 2.M12 3 i2, i5, b11 ◦
6 3.M22 2 z3, b11 ◦
6 J2 2 b5 −
6 2.J2 5 −
6 2.J2 6= 2, 5 b5 −
7 A8 6= 2 +
7 A9 3 +
7 U3(3) 0, 7 +
7 U3(3) 0, 7 i1 ◦
7 S6(2) 6= 2 +
7 J1 11 b5, c19 +
8 A6 0, 2 b5 +
8 A6 5 +
8 2.A6 0 b5 −
8 A7 5 +
8 2.A8 6= 2 +

Continued on the next page
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Low-dimensional representations of quasi-simple groups

Table 3: Absolutely irreducible representations of quasi-simple groups

Continued from the previous page

d G ℓ field ind

8 A9 6= 3 +
8 2.A9 6= 2 +
8 A10 2 −
8 A10 5 +
8 2.A10 5 r6, r21 +
8 41.L3(4) 5 i1 ◦
8 41.L3(4) 6= 2, 5 i1, b5 ◦
8 2.S6(2) 6= 2 +
8 2.O+

8 (2) 6= 2 +
8 2.Sz(8) 5 c13 +
9 A6 0 +
9 3.A6 0, 2 z3 ◦
9 3.A7 7 z3 ◦
9 A10 6= 2, 5 +
9 A11 11 +
9 M11 11 +
9 3.J3 2 z3, b17, b19 ◦

10 A6 0, 5 +
10 2.A6 0, 5 r2 −
10 A7 7 +
10 A7 6= 2, 7 b7 ◦
10 A11 6= 11 +
10 A12 2, 3 +
10 2.L3(4) 7 +
10 2.L3(4) 6= 2, 7 b7 ◦
10 U4(2) 0, 5 z3 ◦
10 U5(2) 6= 2 −
10 M11 6= 11 +
10 M11 6= 2 i2 ◦
10 M12 2, 3 +
10 2.M12 6= 2 i2 ◦
10 M22 2 b7 ◦
10 2.M22 7 +
10 2.M22 6= 2, 7 b7 ◦
11 A12 6= 2, 3 +
11 A13 13 +
11 U5(2) 6= 2, 3 z3 ◦
11 M11 6= 2, 3 +
11 M12 6= 2, 3 +
11 M23 2 b7, i15, b23 ◦
11 M24 2 b7, i15, b23 ◦

Continued on the next page
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Low-dimensional representations of quasi-simple groups

Table 3: Absolutely irreducible representations of quasi-simple groups

Continued from the previous page

d G ℓ field ind

12 6.A6 0 z3, b5 ◦
12 6.A7 5 z3, b7 ◦
12 A13 6= 13 +
12 122.L3(4) 7 z12, b5 ◦
12 U3(4) 6= 2 −
12 S4(5) 2 b5 −
12 2.S4(5) 6= 2, 5 b5 −
12 2.G2(4) 6= 2 −
12 2.M12 6= 2, 3 +
12 2.Suz 3 −
12 3.Suz 2 z3 ◦
12 6.Suz 6= 2, 3 z3 ◦
13 A7 3, 5 +
13 A8 3, 5 +
13 U3(4) 6= 2, 5 z5 ◦
13 S4(5) 6= 2, 5 b5 +
13 S6(3) 6= 3 z3 ◦
13 J2 3 b5 +
14 A7 6= 3, 5 +
14 2.A7 6= 2, 3 r2 −
14 A8 0, 7 +
14 U3(3) 6= 3 +
14 S6(2) 3 +
14 2.S6(3) 6= 2, 3 z3 ◦
14 Sz(8) 6= 2 i1 ◦
14 G2(3) 6= 3 +
14 J1 11 b5, c19 +
14 J2 5 +
14 J2 6= 3, 5 b5 +
14 2.J2 6= 2 −
15 3.A6 0, 5 z3 ◦
15 A7 6= 2, 7 +
15 3.A7 6= 3 z3 ◦
15 L3(4) 3 +
15 3.L3(4) 6= 2, 3 z3 ◦
15 U4(2) 0, 5 +
15 31.U4(3) 6= 3 z3 ◦
15 S6(2) 6= 2, 3 +
15 M12 3 b11 ◦
15 3.M22 2 z3, b11 ◦
16 2.A7 7 −

Continued on the next page
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Low-dimensional representations of quasi-simple groups

Table 3: Absolutely irreducible representations of quasi-simple groups

Continued from the previous page

d G ℓ field ind

16 2.A8 7 −
16 A10 2 +
16 2.A10 6= 2, 5 +
16 A11 2 b11 ◦
16 2.A11 11 +
16 2.A11 6= 2, 11 b11 ◦
16 A12 2 z3 ◦
16 2.A12 3 i2, i5, r7, b11 ◦
16 42.L3(4) 3 i1, r7 ◦
16 2.Sz(8) 13 y7 +
16 M11 11 +
16 M11 6= 3, 11 b11 ◦
16 M12 11 +
16 M12 6= 3, 11 b11 ◦
16 4.M22 7 i1, r11 ◦
18 3.A7 5 z3, b7 ◦
18 S4(4) 6= 2 +
18 J3 3 b5 +
18 3.J3 5 z3 ◦
18 3.J3 6= 3, 5 z3, b5 ◦
19 A8 7 +
19 A9 7 +
19 L3(4) 3, 7 +
20 A7 2 −
20 2.A7 6= 2, 3 −
20 A8 0, 5 +
20 A9 2 i15 ◦
20 L3(4) 0, 5 +
20 42.L3(4) 6= 2, 3 i1 ◦
20 U3(5) 6= 5 −
20 U4(2) 0, 5 +
20 2.U4(2) 0, 5 −
20 2.U4(2) 0, 5 z3 ◦
20 U4(3) 2 +
20 2.U4(3) 6= 2, 3 −
20 4.U4(3) 6= 2, 3 i1 ◦
20 M22 11 +
20 J1 2 +
20 HS 2 −
21 A7 0, 7 +
21 3.A7 6= 2, 3 z3 ◦

Continued on the next page
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Low-dimensional representations of quasi-simple groups

Table 3: Absolutely irreducible representations of quasi-simple groups

Continued from the previous page

d G ℓ field ind

21 A8 0, 7 i15 ◦
21 A8 6= 2 +
21 A9 0, 7 i15 ◦
21 A9 3, 5 +
21 3.L3(4) 6= 2, 3 z3 ◦
21 U3(3) 0, 7 +
21 U3(3) 0, 7 i1 ◦
21 U3(5) 6= 2, 5 +
21 3.U3(5) 6= 3, 5 z3 ◦
21 U4(3) 6= 2, 3 +
21 31.U4(3) 6= 2, 3 z3 ◦
21 U6(2) 3 +
21 3.U6(2) 6= 2, 3 z3 ◦
21 S6(2) 6= 2 +
21 M22 6= 2, 11 +
21 3.M22 6= 2, 3 z3 ◦
21 M23 23 +
21 J2 5 +
21 J2 6= 2, 5 b5 +
21 HS 5 +
21 McL 3, 5 +
22 2.L3(4) 3 b5 +
22 U6(2) 6= 2, 3 +
22 M23 6= 2, 23 +
22 M24 3 +
22 J1 19 b5 +
22 HS 6= 2, 5 +
22 McL 6= 3, 5 +
22 Co3 2 −
22 Co3 3 +
22 Co2 2 +
23 U4(2) 5 +
23 M24 6= 2, 3 +
23 Co3 6= 2, 3 +
23 Co2 6= 2 +
24 3.A7 0, 2 z3, b7 ◦
24 6.A7 7 z3 ◦
24 6.A7 0, 5 z3, b7 ◦
24 2.A8 6= 2, 7 b7 ◦
24 41.L3(4) 3 i1, r7 ◦
24 121.L3(4) 7 z12 ◦

Continued on the next page

36https://doi.org/10.1112/S1461157000000796 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000796


Low-dimensional representations of quasi-simple groups

Table 3: Absolutely irreducible representations of quasi-simple groups

Continued from the previous page

d G ℓ field ind

24 121.L3(4) 0, 5 z12, b7 ◦
24 U4(2) 0 +
24 S4(7) 2 b7 ◦
24 2.S4(7) 6= 2, 7 b7 ◦
24 2.Sz(8) 13 y7 +
24 M11 3 +
24 12.M22 11 z24, b7 ◦
24 Co1 2 +
24 2.Co1 6= 2 +
25 S4(7) 6= 2, 7 b7 ◦
25 3D4(2) 3 +
26 A9 2 +
26 A10 2 +
26 2.L3(4) 7 +
26 L4(3) 6= 3 +
26 U3(3) 7 +
26 S6(2) 7 +
26 3D4(2) 6= 2, 3 +
26 2F4(2)′ 2 +
26 2F4(2)′ 6= 2 i2 ◦
27 A9 6= 2, 7 +
27 U3(3) 0 +
27 S6(2) 6= 2, 7 +
27 3.O7(3) 6= 3 z3 ◦
27 3.G2(3) 6= 3 z3 ◦
27 2F4(2)′ 6= 2 i1 ◦
27 J1 11 b5, c19 +
27 3.Fi22 2 z3, b11 ◦
28 A8 6= 2, 5 +
28 A9 6= 2, 3 +
28 A10 5 +
28 2.L3(4) 5 +
28 2.L3(4) 0, 7 b5 +
28 42.L3(4) 5 i1 ◦
28 42.L3(4) 6= 2, 5 i1, b5 ◦
28 U3(3) 0, 7 i1 ◦
28 U3(5) 6= 5 +
28 O+

8 (2) 6= 2 +
28 2.M22 5 i1, r11 ◦
28 2.HS 5 i1, r11 ◦
28 Ru 2 +

Continued on the next page
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Table 3: Absolutely irreducible representations of quasi-simple groups

Continued from the previous page

d G ℓ field ind

28 2.Ru 6= 2 i1 ◦
29 L3(5) 31 +
29 L5(2) 31 +
29 M12 11 +
30 L3(5) 6= 5, 31 +
30 L5(2) 6= 2, 31 +
30 U4(2) 0, 5 +
30 U4(2) 0, 5 z3 ◦
31 L3(5) 6= 2, 5 +
31 L3(5) 6= 2, 5 i1 ◦
31 J1 7 c19 +
32 2.A8 5 z3, b7 ◦
32 2.A12 6= 2, 3 −
32 A13 2 b13 +
32 2.A13 13 −
32 2.A13 6= 2, 13 b13 −
32 2.A14 7 r3, r6, r10, b5, b13, b33 −
32 U3(3) 0, 2 b7 ◦
32 2.U4(2) 5 z3 ◦
32 2.M12 6= 2, 3 −
33 S4(4) 5 +
33 O−

8 (2) 7 +
34 A9 5 +
34 A10 3, 5 +
34 A11 3 +
34 U4(3) 2 −
34 S4(4) 6= 2, 5 +
34 S6(2) 3 +
34 O−

8 (2) 6= 2, 7 +
34 M12 3 +
34 M22 2 −
34 J1 19 b5 +
35 A7 6= 2, 3 +
35 A8 6= 2 +
35 A9 6= 2 +
35 A10 6= 2, 3 +
35 A10 5 r21 +
35 L3(4) 6= 2, 3 +
35 U4(3) 6= 2, 3 +
35 S6(2) 6= 2 +
35 S8(2) 6= 2 +

Continued on the next page
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Table 3: Absolutely irreducible representations of quasi-simple groups

Continued from the previous page

d G ℓ field ind

35 O+
8 (2) 6= 2 +

35 Sz(8) 13 +
35 Sz(8) 6= 2, 13 c13 +
36 2.A7 0, 3 −
36 6.A7 0 z3 ◦
36 A10 6= 2, 5 +
36 A11 11 +
36 2.L3(4) 6= 2, 7 +
36 42.L3(4) 6= 2 i1 ◦
36 6.L3(4) 6= 2, 3 z3 ◦
36 122.L3(4) 6= 2, 3 z12 ◦
36 2.U4(2) 0 z3 ◦
36 32.U4(3) 6= 3 z3 ◦
36 122.U4(3) 6= 2, 3 z12 ◦
36 6.M22 11 z12 ◦
36 J2 6= 5 +
36 2.J2 3 i1 ◦
38 L4(3) 2, 5 +
39 L4(3) 0, 13 +
39 U3(4) 5 +
39 U3(4) 6= 2, 5 b5 +
40 2.L4(3) 6= 2, 3 +
40 41.L3(4) 3 i1 ◦
40 U4(2) 0, 5 z3 ◦
40 S4(5) 6= 5 +
40 S4(9) 2 −
40 2.S4(9) 6= 2, 3 −
40 2.S6(2) 7 +
40 S8(3) 2 z3 ◦
40 2.S8(3) 6= 2, 3 z3 ◦
40 2.Sz(8) 7 +
40 2.Sz(8) 6= 2, 7 y7 +
41 A9 3 +
41 A10 3 +
41 S4(9) 6= 2, 3 +
41 S8(3) 6= 2, 3 z3 ◦
41 J2 5 +
42 A9 0, 7 +
42 A10 0, 7 +
42 6.L3(4) 0, 7 z3, b5 ◦
42 U3(7) 6= 7 −
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Table 3: Absolutely irreducible representations of quasi-simple groups

Continued from the previous page

d G ℓ field ind

42 U7(2) 6= 2 −
43 A8 5 +
43 A11 5 +
43 A12 5 +
43 U3(7) 6= 2, 7 +
43 U3(7) 6= 2, 7 i1 ◦
43 U3(7) 6= 2, 7 z8 ◦
43 U5(2) 5 +
43 U7(2) 6= 2, 3 z3 ◦
43 J1 19 b5 +
44 A11 6= 3, 5 +
44 A12 2 +
44 42.L3(4) 7 i1 ◦
44 U5(2) 6= 2, 5 +
44 M11 6= 3, 5 +
44 M12 2 +
44 2.M12 6= 2, 5 i5 ◦
44 M23 2 b7 ◦
44 M24 2 b7 ◦
45 A8 7 +
45 A8 6= 2, 7 b7 ◦
45 A11 6= 2, 11 +
45 A12 3 +
45 L3(4) 7 +
45 L3(4) 6= 2, 7 b7 ◦
45 3.L3(4) 0, 5 z3, b7 ◦
45 U4(2) 0, 5 z3 ◦
45 32.U4(3) 7 z3 ◦
45 32.U4(3) 6= 3, 7 z3, b7 ◦
45 M11 6= 2, 11 +
45 M12 6= 2, 11 +
45 M22 7 +
45 M22 6= 2, 7 b7 ◦
45 3.M22 7 z3 ◦
45 3.M22 6= 3, 7 z3, b7 ◦
45 M23 7 +
45 M23 6= 2, 7 b7 ◦
45 M24 7 +
45 M24 6= 2, 7 b7 ◦
45 J1 7 c19 +
45 3.McL 5 z3, b7 ◦
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Table 3: Absolutely irreducible representations of quasi-simple groups

Continued from the previous page

d G ℓ field ind

45 3.O′N 7 ◦
47 A9 7 +
48 2.A8 6= 2 −
48 A9 0, 2 +
48 2.A9 3 +
48 2.A9 6= 2, 3 i6 ◦
48 A10 2 +
48 2.A10 3 +
48 2.A10 6= 2, 3 i6 ◦
48 121.L3(4) 0, 7 z12, b5 ◦
48 122.L3(4) 0, 7 z12, b5 ◦
48 122.L3(4) 5 z12 ◦
48 3.U3(5) 6= 3, 5 z3 ◦
48 2.S6(2) 6= 2, 7 +
48 O+

8 (2) 3 +
48 2.Sz(8) 5 c13 +
48 12.M22 5 z12, b11 ◦
49 S4(4) 17 +
49 S6(2) 3 +
49 M22 3 b11 ◦
49 J1 11 b5, c19 +
49 HS 3 i5, b11 ◦
50 S4(4) 6= 2, 17 +
50 S8(2) 3 +
50 O+

8 (2) 6= 2, 3 +
50 O−

8 (2) 3 +
50 2.J2 3 b5 −
50 2.J2 6= 2, 3 i1 ◦
50 He 7 +
51 U4(4) 5 +
51 U4(4) 6= 2, 5 z5 ◦
51 S4(4) 6= 2, 5 b5 +
51 S8(2) 6= 2, 3 +
51 O−

8 (2) 6= 2, 3 +
51 He 6= 7 b7 ◦
52 L4(3) 6= 2, 3 +
52 U3(4) 6= 2, 5 z5 ◦
52 U4(4) 6= 2, 5 +
52 2.S4(5) 6= 2, 5 b5 −
52 3D4(2) 6= 2 +
52 2.F4(2) 6= 2 +
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Table 3: Absolutely irreducible representations of quasi-simple groups

Continued from the previous page

d G ℓ field ind

53 A12 11 +
53 A13 11 +
53 M12 11 +
54 A12 0, 3, 7 +
54 6.L3(4) 7 z3 ◦
54 M12 0, 3 +
54 M22 7 +
54 6.M22 7 z3 ◦
55 A10 5 +
55 A11 5 +
55 A12 6= 2, 3 +
55 A13 13 +
55 L3(7) 3, 19 +
55 U5(2) 6= 2 +
55 U5(2) 6= 2, 3 z3 ◦
55 M11 6= 2, 3 +
55 M12 6= 2, 3 +
55 M22 6= 2, 7 +
55 J1 19 b5 +
55 HS 5 +
56 A8 0, 7 +
56 2.A8 0, 7 z3 ◦
56 2.A8 0, 7 i15 ◦
56 A9 6= 2, 3 +
56 2.A9 6= 2, 3 +
56 A10 5 +
56 2.A10 5 r6, r21 +
56 2.A11 5 r6, r21 +
56 41.L3(4) 6= 2, 3 i1 ◦
56 L3(7) 0, 2 +
56 U3(8) 6= 2 −
56 2.U4(3) 6= 2, 3 +
56 2.U6(2) 6= 2 +
56 S6(2) 6= 2, 3 +
56 2.S6(2) 3 i5 ◦
56 2.O+

8 (2) 6= 2 +
56 2.Sz(8) 6= 2, 13 c13 +
56 2.M22 6= 2, 5 +
56 4.M22 6= 2 z8 ◦
56 J1 2 b5 −
56 J1 5 +
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Table 3: Absolutely irreducible representations of quasi-simple groups
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d G ℓ field ind

56 J1 6= 5, 19 b5 +
56 2.J2 5 −
56 2.J2 0, 7 b5 −
56 HS 2 +
56 2.HS 6= 2, 5 +
57 L3(7) 6= 2, 7 +
57 3.L3(7) 6= 3, 7 z3 ◦
57 U3(8) 6= 2, 3 z3 ◦
57 3.U3(8) 6= 2, 3 z9 ◦
57 J2 3 b5 +
58 U4(2) 5 +
58 2.J2 7 b5 −
60 42.L3(4) 3 i1, r7 ◦
60 6.L3(4) 0, 5 z3, b7 ◦
60 122.L3(4) 0, 5 z12, b7 ◦
60 U4(2) 0, 5 +
60 2.U4(2) 0, 5 −
60 2.U4(2) 0, 5 z3 ◦
60 U5(3) 6= 3 −
60 S4(11) 2 b11 ◦
60 2.S4(11) 6= 2, 11 b11 ◦
61 L6(2) 3, 7 +
61 U5(3) 6= 2, 3 i1 ◦
61 S4(11) 6= 2, 11 b11 ◦
62 L6(2) 0, 5, 31 +
62 S6(5) 6= 5 b5 −
63 L3(4) 5 +
63 L3(4) 6= 2, 5 b5 +
63 3.L3(4) 5 z3 ◦
63 3.L3(4) 0, 7 z3, b5 ◦
63 U3(4) 13 +
63 2.S6(5) 6= 2, 5 b5 +
63 Sz(8) 5 +
63 J2 6= 2, 5 +
64 A8 0 +
64 2.A8 0 −
64 A10 2 +
64 2.A10 0, 7 +
64 A13 2 −
64 A13 3 +
64 A14 2, 3 +
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64 2.A14 6= 2, 7 −
64 A15 2 b15 ◦
64 2.A15 3, 5 −
64 2.A15 6= 2, 3, 5 b15 ◦
64 A16 2 b7, b15, b39, b55 ◦
64 L3(4) 0 +
64 2.L3(4) 0, 7 +
64 41.L3(4) 0, 7 i1 ◦
64 42.L3(4) 0 i1 ◦
64 U3(4) 0, 3 +
64 U4(2) 0 +
64 2.U4(2) 0 −
64 S4(5) 2 −
64 S4(5) 3 +
64 2.S6(2) 5 +
64 2.S6(2) 0, 7 i5 ◦
64 Sz(8) 0, 7 +
64 2.Sz(8) 0, 7 +
64 G2(3) 6= 3 z3 ◦
64 G2(4) 3 +
64 2.M22 11 +
64 4.M22 3 i1 ◦
64 J1 11 b5, c19 +
64 J2 2 b5 +
64 2.J2 5 −
64 2.J2 0 b5 −
64 Suz 3 +
65 A13 6= 2, 3, 11 +
65 L4(3) 6= 2, 3 +
65 U3(4) 0, 13 z5 ◦
65 U3(4) 6= 2, 3 +
65 S4(5) 0, 13 +
65 Sz(8) 6= 2, 7 y7 +
65 G2(4) 6= 2, 3 +
66 A10 7 +
66 A11 7 +
66 A13 6= 2, 13 +
66 A14 7 +
66 U5(2) 6= 2, 3 z3 ◦
66 M12 6= 2, 3 +
66 6.M22 7 z3 ◦
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66 6.M22 0, 5, 11 z3, b7 ◦
66 3.Suz 6= 3 z3 ◦
69 J1 11 b5, c19 +
70 A8 6= 2, 3 +
70 2.L3(4) 6= 2, 3 +
70 U4(3) 2 z3 ◦
70 2.U4(3) 6= 2, 3 +
70 2.U4(3) 6= 2, 3 z3 ◦
70 S6(2) 6= 2, 3 +
70 M22 2 b11 ◦
70 J2 5 +
70 J2 0, 7 b5 +
71 L3(8) 73 +
72 2.A9 7 z3, r2 ◦
72 L3(8) 6= 2, 73 +
72 U3(9) 6= 3 −
73 L3(8) 6= 2, 7 z7 ◦
73 U3(9) 6= 2, 3 +
73 U3(9) 6= 3, 5 z5 ◦
75 A10 0, 5 +
75 U3(4) 6= 2, 13 d13 ◦
75 J1 7 +
76 A14 13 +
76 A15 13 +
76 J1 2 −
76 J1 6= 7, 11 +
77 A14 6= 2, 3, 13 +
77 2F4(2)′ 3 +
77 J1 6= 2, 3, 19 +
77 J1 6= 2, 5 b5 +
77 HS 6= 2, 5 +
77 Fi22 3 +
78 A9 2 +
78 A14 6= 2, 7 +
78 A15 3, 5 +
78 61.U4(3) 5 z3 ◦
78 S4(5) 6= 2, 5 b5 +
78 S6(3) 6= 3 +
78 O7(3) 6= 3 +
78 G2(3) 6= 3 +
78 G2(4) 6= 2 +
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78 2F4(2)′ 6= 2, 3 +
78 M12 5 +
78 3.M22 5 z3 ◦
78 J3 2 b5, b17 +
78 Suz 3 +
78 3.Suz 6= 2, 3 z3 ◦
78 Fi22 2 +
78 Fi22 6= 2, 3 +
80 41.L3(4) 0, 5 i1, r7 ◦
80 42.L3(4) 0, 5 i1, r7 ◦
80 2.U4(2) 0, 5 −
80 J3 2 b17 +
81 U4(2) 0 +
83 A9 5 +
83 L4(4) 5, 17 +
83 S6(2) 5 +
83 O+

8 (2) 5 +
83 O−

8 (2) 17 +
84 A9 0, 7 +
84 A10 6= 2, 5 +
84 A11 11 +
84 3.L3(4) 0, 7 z3 ◦
84 122.L3(4) 0, 7 z12 ◦
84 L4(4) 0, 3, 7 +
84 U3(5) 6= 2, 5 +
84 3.U3(5) 6= 3, 5 z3 ◦
84 31.U4(3) 2 z3 ◦
84 61.U4(3) 0, 7 z3 ◦
84 121.U4(3) 6= 2, 3 z12 ◦
84 S4(13) 2 b13 −
84 2.S4(13) 6= 2, 13 b13 −
84 S6(2) 0, 7 +
84 O+

8 (2) 0, 7 +
84 O−

8 (2) 0, 5, 7 +
84 2.M12 3 i5, b11 ◦
84 3.M22 11 z3 ◦
84 3.M22 2 z3, b11 ◦
84 J2 2 +
84 2.J2 0, 7 −
84 J3 2, 3 b19 ◦
85 L4(4) 6= 2, 3 z3 ◦
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85 U8(2) 3 +
85 U8(2) 6= 2, 3 z3 ◦
85 S4(4) 6= 2, 3 +
85 S4(13) 6= 2, 13 b13 +
85 S8(2) 6= 2, 3 +
85 J2 5 +
85 J3 19 +
85 J3 0, 5, 17 b19 ◦
86 U8(2) 6= 2, 3 +
88 4.M22 5 z8, b7 ◦
89 A10 7 +
89 A11 5 +
89 A12 5 +
89 A15 7 +
89 A16 7 +
89 L3(9) 7, 13 +
89 L4(3) 13 +
89 U4(3) 7 +
89 S4(5) 13 +
89 J1 7 c19 +
89 J2 7 +
90 A10 0, 3 +
90 A15 6= 7, 13 +
90 A16 2 +
90 2.L3(4) 6= 2, 7 +
90 6.L3(4) 0, 5 z3 ◦
90 L3(9) 0, 2, 5 +
90 L4(3) 0, 5 +
90 U4(3) 0, 5 +
90 31.U4(3) 2 z3 ◦
90 62.U4(3) 6= 2, 3 z3 ◦
90 S4(5) 0, 3 +
90 O7(3) 2 +
90 G2(3) 2 +
90 6.M22 11 z12 ◦
90 J2 6= 2, 7 +
91 A15 6= 2, 3, 5 +
91 L3(9) 6= 2, 3 +
91 L3(9) 6= 2, 3 i1 ◦
91 L3(9) 6= 2, 3 z8 ◦
91 S6(2) 3 +
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91 S6(3) 6= 2, 3 z3 ◦
91 O7(3) 6= 2, 3 +
91 Sz(8) 6= 2, 5 +
91 G2(3) 6= 2, 3 +
91 M12 11 +
92 2.G2(4) 5 −
94 L5(2) 7 +
94 S6(2) 7 +
96 L3(5) 31 +
96 L3(5) 6= 5, 31 x31 ◦
96 L3(7) 3 +
96 3.L3(7) 6= 3, 7 z3 ◦
96 12.M22 11 z12 ◦
98 S6(2) 3 +
98 M12 5 +
98 M22 2 −
98 M22 5 +
98 HS 5 +
99 M12 6= 2, 5 +
99 M22 0, 3, 11 +
99 3.M22 0, 7, 11 z3 ◦

100 A11 2 +
100 A12 2 +
100 U5(2) 3 +
101 A9 7 +
101 A10 7 +
101 J2 7 +
101 He 2 b7 ◦
103 A16 3, 5 +
103 A17 3, 5 +
103 G2(3) 7 +
104 2.A9 3 +
104 A16 0, 11, 13 +
104 U3(5) 2 −
104 U4(5) 2 −
104 U4(5) 3 +
104 U4(5) 6= 3, 5 z3 ◦
104 2.U4(5) 0, 7, 13 z3 ◦
104 2.U4(5) 6= 2, 5 −
104 S4(5) 6= 5 +
104 2.S4(5) 0, 13 −
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104 2.S6(2) 3, 5 +
104 O7(3) 2 +
104 2.O+

8 (2) 3, 5 +
104 2.Sz(8) 0, 13 +
104 G2(3) 0, 13 +
104 2.G2(4) 6= 2, 5 b5 −
104 M23 3 b11, b23 ◦
104 McL 3 b11 ◦
104 He 5 r21 +
105 A9 6= 2, 3 +
105 A16 6= 2 +
105 A17 17 +
105 U3(5) 0, 7 +
105 3.U3(5) 0, 7 z3 ◦
105 31.U4(3) 6= 2, 3 z3 ◦
105 U4(5) 0, 7, 13 +
105 S6(2) 6= 2, 3 +
105 S6(3) 6= 2, 3 +
105 O7(3) 6= 2, 3 +
105 3.M22 0, 5, 7 z3, b11 ◦
106 J1 11 b5, c19 +
108 2.M12 11 +
109 A11 3 +
109 2F4(2)′ 5 r2, r3, b13 +
110 A11 0, 5, 11 +
110 U3(11) 6= 11 −
110 U5(2) 6= 2 −
110 U5(2) 6= 2, 3 z3 ◦
110 2.M12 6= 2, 3 i2 ◦
110 J3 19 b17, y9 +
110 Suz 2 b5, b13, r21 +
111 U3(11) 6= 2, 11 +
111 U3(11) 6= 2, 11 i1 ◦
111 3.U3(11) 6= 3, 11 z3 ◦
111 3.U3(11) 0, 5, 37 z12 ◦
111 Ly 5 +
112 2.A9 0, 7 +
112 2.S6(2) 0, 7 +
112 2.O+

8 (2) 0, 7 +
112 J4 2 +
114 61.U4(3) 7 z3 ◦
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115 A9 7 +
118 A17 2 +
118 A18 2 +
118 S8(2) 3, 5 +
119 A17 6= 2, 3, 5 +
119 L5(3) 11 +
119 U5(2) 11 +
119 S8(2) 0, 7, 17 +
119 J1 11 c19 +
120 A9 0, 5 +
120 2.A9 0, 5 z3 ◦
120 A11 6= 2, 11 +
120 A12 3 +
120 A17 6= 2, 17 +
120 A18 3 +
120 121.L3(4) 0, 5 z12 ◦
120 L5(3) 6= 3, 11 +
120 U4(3) 2 +
120 2.U4(3) 6= 2, 3 +
120 4.U4(3) 6= 2, 3 i1 ◦
120 61.U4(3) 0, 5 z3 ◦
120 121.U4(3) 6= 2, 3 z12 ◦
120 U5(2) 0, 5 +
120 2.U6(2) 3 +
120 6.U6(2) 6= 2, 3 z3 ◦
120 S6(2) 0, 5 +
120 2.S6(2) 6= 2, 3 +
120 M12 0, 5 +
120 2.M12 0, 5 +
120 2.M22 6= 2, 11 +
120 6.M22 0, 5, 11 z3 ◦
120 12.M22 6= 2, 3 z24 ◦
120 M23 2 +
120 M24 2 +
120 J1 6= 11, 19 c19 +
120 2.HS 5 i1 ◦
121 L5(3) 6= 2, 3 +
121 S10(3) 6= 3 z3 ◦
122 2.S10(3) 6= 2, 3 z3 ◦
123 L5(2) 5 +
124 A10 7 +
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124 L3(5) 6= 5 +
124 L3(5) 2 −
124 L3(5) 6= 2, 5 i1 ◦
124 L3(5) 0, 31 y24′ ◦
124 L5(2) 0, 3, 31 +
124 U3(5) 7 +
124 Sz(32) 6= 2 i1 ◦
124 G2(5) 6= 5 +
124 2F4(2)′ 3 b13 +
124 J2 7 +
125 L3(5) 0 +
125 L7(2) 127 +
125 U3(5) 0 +
126 A10 6= 2, 5 +
126 A11 11 +
126 A11 6= 2, 11 b11 ◦
126 A12 3 b11, i35 ◦
126 L7(2) 6= 2, 127 +
126 U3(5) 6= 2, 5 +
126 U3(5) 6= 2, 5 i2 ◦
126 3.U3(5) 0, 7 z3 ◦
126 3.U3(5) 0, 7 z3, i2 ◦
126 32.U4(3) 6= 2, 3 z3 ◦
126 61.U4(3) 6= 2, 3 z3 ◦
126 62.U4(3) 6= 2, 3 z3 ◦
126 62.U4(3) 6= 2, 3 z12 ◦
126 S4(7) 2 +
126 S4(7) 6= 2, 7 +
126 2.M22 11 +
126 2.M22 6= 2, 11 b11 ◦
126 6.M22 0, 5, 7 z3, b11 ◦
126 J2 0, 7 +
126 2.J2 6= 2, 5 b5 −
126 3.J3 2 z3, b17, b19 ◦
126 3.McL 11 z3 ◦
126 3.McL 6= 3, 11 z3, b11 ◦
126 Co3 3 i5, b11, b23 ◦
128 2.A11 11 +
128 2.A12 11 +
128 2.A16 6= 2 +
128 A17 2 b17 +
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128 2.A17 17 +
128 2.A17 6= 2, 17 b17 +
128 2.A18 3 r2, r5, r14, b17, b65, b77 +
130 S4(5) 0, 13 +
131 A11 3, 7 +
131 A12 3, 7 +
131 L3(11) 7, 19 +
132 A11 0, 11 +
132 A12 0, 11 +
132 L3(11) 0, 2, 3, 5 +
132 121.U4(3) 5 z12 ◦
132 HS 2 −
132 HN 2 b5 +
133 A9 5 +
133 A10 5 r21 +
133 A11 5 r21 +
133 L3(11) 6= 2, 11 +
133 L3(11) 6= 5, 11 z5 ◦
133 U3(8) 6= 2 +
133 S6(2) 5 +
133 M22 5 +
133 J1 6= 2, 11 +
133 J1 0, 7, 19 b5 +
133 J2 3 +
133 HS 5 +
133 Ru 5 +
133 HN 5 +
133 HN 6= 2, 5 b5 +
134 A9 5 +
134 A18 17 +
134 A19 17 +
134 S8(2) 17 +
135 A18 6= 2, 17 +
135 S8(2) 6= 2, 17 +
136 A18 6= 2, 3 +
136 A19 19 +
140 U4(3) 6= 2, 3 +
140 4.U4(3) 6= 2, 3 i1 ◦
141 S6(2) 5 +
142 Suz 2 +
143 A12 3 +
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143 A13 3 +
143 Suz 6= 2, 3 +
144 A11 2 +
144 2.A11 0, 3, 7 +
144 A12 5 +
144 A12 2 i35, z3 ◦
144 2.A12 3 i2, i5, r7 ◦
144 A13 5 +
144 A13 2 i35, z3 ◦
144 2.A13 3 i2, i5, r7 ◦
144 U3(5) 6= 5, 7 b7 ◦
144 3.U3(5) 0, 2 z3, b7 ◦
144 S4(17) 2 b17 −
144 2.S4(17) 6= 2, 17 b17 −
144 M12 0, 2 +
144 4.M22 7 i1 ◦
144 4.M22 0, 3, 11 i1, r7 ◦
144 12.M22 7 z12 ◦
144 12.M22 0, 5, 11 z12, b7 ◦
145 S4(17) 6= 2, 17 b17 +
147 O+

8 (2) 3 +
150 31.U4(3) 2 z3, b7 ◦
150 S4(7) 6= 2, 7 b7 ◦
151 A19 3 +
151 A20 3 +
152 2.A10 7 +
152 A19 6= 3, 17 +
152 A20 2 +
152 L3(7) 6= 3, 7 +
152 2.O+

8 (2) 7 +
153 A12 5 +
153 A19 6= 2, 19 +
153 A20 5 +
153 32.U4(3) 5 z3 ◦
153 S4(4) 6= 2 +
153 O−

10(2) 3, 5 +
153 3.M22 5 z3 ◦
153 J3 3 b5 +
153 3.J3 5 z3 ◦
153 3.J3 6= 3, 5 z3, b5 ◦
153 3.McL 5 z3, b7 ◦

Continued on the next page

53https://doi.org/10.1112/S1461157000000796 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000796


Low-dimensional representations of quasi-simple groups

Table 3: Absolutely irreducible representations of quasi-simple groups

Continued from the previous page

d G ℓ field ind

153 He 7 +
153 He 6= 2, 7 b7 ◦
153 3.O′N 2 z3 ◦
154 A12 0, 7, 11 +
154 L4(5) 2, 3, 13 +
154 O−

8 (2) 3 +
154 O−

10(2) 6= 2, 3, 5 +
154 M22 0, 7, 11 +
154 2.M22 6= 2, 5 i1 ◦
154 HS 6= 2, 5 +
154 O′N 3 r7 +
155 A10 5 +
155 A11 7 +
155 L3(5) 0, 31 +
155 L3(5) 0, 31 i1 ◦
155 L4(5) 0, 31 +
155 L5(2) 6= 2 +
155 S10(2) 6= 2 +
155 O+

10(2) 6= 2 +
156 2.L4(5) 6= 2, 5 +
156 4.L4(5) 6= 2, 5 i1 ◦
156 U3(13) 6= 13 −
156 S4(5) 6= 2, 5 +
156 2.S4(5) 6= 2, 5 −
157 U3(13) 6= 2, 13 +
157 U3(13) 6= 7, 13 z7 ◦
160 A9 2 +
160 2.A9 0, 5 +
160 A10 6= 3, 7 +
160 2.A10 5 r6, r21 +
160 2.A12 0, 5, 7 b11 ◦
160 2.O+

8 (2) 0, 5 +
160 2.M12 0, 5 b11 ◦
160 4.M22 11 i1 ◦
160 4.M22 6= 2, 11 i1, r11 ◦
160 J2 0, 2 +
162 A9 0, 3 +
162 3.G2(3) 2 z3, b13 ◦
164 A11 2 −
164 A12 2 −
165 A11 0, 11 +
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165 A12 6= 2, 3 +
165 A13 13 +
165 U5(2) 6= 2, 3 +
167 S6(3) 13 +
167 O7(3) 13 +
167 G2(3) 13 +
168 A9 0, 7 +
168 2.A9 5 +
168 2.A9 0, 7 i15 ◦
168 2.A10 5 r21 +
168 S6(2) 6= 2, 3 +
168 2.S6(2) 6= 2, 3 +
168 S6(3) 6= 3, 13 +
168 O7(3) 0, 5, 7 +
168 2.O+

8 (2) 5 +
168 G2(3) 0, 7 +
169 A20 19 +
169 A21 19 +
170 A20 6= 2, 3, 19 +
170 U9(2) 6= 2 −
171 A20 6= 2, 5, +
171 A21 3, 7 +
171 3.U9(2) 6= 2, 3 z3 ◦
171 S6(7) 6= 7 b7 ◦
171 O−

8 (2) 7 +
171 3.J3 6= 2, 3 z3 ◦
171 3.J3 0, 17, 19 z3, b5 ◦
172 2.S6(7) 6= 2, 7 b7 ◦
174 S4(7) 2 +
174 6.M22 11 z12 ◦
174 HS 11 +
175 S4(7) 6= 2, 7 +
175 O+

8 (2) 6= 2, 3 +
175 J2 6= 2, 3 +
175 HS 0, 5, 7 +
176 U5(2) 6= 2, 3 +
176 2.U6(2) 6= 2, 3 +
176 M12 0, 11 +
176 4.M22 0, 11 i1 ◦
176 2.HS 6= 2, 5 i1 ◦
176 2.Fi22 3 b13 +
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180 S4(19) 2 b19 ◦
180 2.S4(19) 6= 2, 19 b19 ◦
181 L3(13) 3, 61 +
181 S4(19) 6= 2, 19 b19 ◦
182 L3(13) 0, 2, 7 +
182 U6(3) 6= 3 −
182 2.U6(3) 6= 2, 3 i1 ◦
182 2.S6(3) 6= 2, 3 −
182 2.S6(3) 6= 2, 3 z3 ◦
182 O7(3) 6= 2, 3 +
182 G2(3) 6= 2, 3 +
183 L3(13) 6= 2, 13 +
183 L3(13) 6= 2, 13 i1 ◦
183 3.L3(13) 0, 7, 61 z12 ◦
183 3.L3(13) 6= 3, 13 z3 ◦
183 U6(3) 6= 2, 3 +
185 O+

10(2) 3, 17 +
186 A11 2 +
186 L3(5) 6= 2, 5 +
186 S10(2) 3 +
186 O+

10(2) 6= 2, 3, 17 +
186 O−

10(2) 3 +
187 S10(2) 6= 2, 3 +
187 O−

10(2) 6= 2, 3 +
188 A11 5 +
188 A21 2, 5 +
188 A22 2, 5 +
188 U4(3) 5 +
189 A9 6= 2, 5 +
189 A21 6= 2, 5, 19 +
189 L4(4) 5 +
189 L4(4) 6= 2, 5 b5 +
189 3.U3(8) 6= 2, 3 z3 ◦
189 U4(3) 0, 7 +
189 32.U4(3) 6= 3, 5 z3 ◦
189 S6(2) 6= 2, 5 +
189 3.G2(3) 13 z3 ◦
189 3.G2(3) 0, 7 z3, b13 ◦
189 J2 5 +
189 J2 6= 2, 5 b5 +
190 A21 6= 2, 3, 7 +

Continued on the next page

56https://doi.org/10.1112/S1461157000000796 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000796


Low-dimensional representations of quasi-simple groups

Table 3: Absolutely irreducible representations of quasi-simple groups

Continued from the previous page

d G ℓ field ind

190 A22 11 +
190 M22 11 +
190 2.J2 5 −
194 S6(3) 7 +
194 O7(3) 7 +
195 S6(3) 0, 5, 13 +
195 O7(3) 0, 5, 13 +
196 A13 5 +
196 A14 5 +
196 S4(8) 6= 2 +
196 S6(2) 3 +
196 3D4(2) 6= 2 +
198 A10 2 +
198 A11 2 +
199 A10 7 +
199 A11 7 +
199 J2 7 +
200 A10 2 +
200 2.S4(7) 6= 2, 7 b7 ◦
201 S6(2) 7 +
202 2.J2 5 −
203 S8(2) 3 +
203 O−

8 (2) 3, 5 +
204 31.U4(3) 2 z3 ◦
204 U5(4) 6= 2 ◦
204 S4(4) 6= 2, 5 b5 +
204 O−

8 (2) 6= 2, 3 +
205 5.U5(4) 6= 5 z5 ◦
207 A13 11 +
207 S4(4) 17 +
208 A13 6= 3, 5, 11 +
208 A14 2 +
208 A22 3, 7 +
208 A23 3, 7 +
208 L4(3) 2, 5 +
208 2.L4(3) 6= 2, 3 i2 ◦
208 S4(5) 6= 5 b5 +
208 2.S4(5) 6= 2, 5 b5 −
208 M23 7 +
208 2.Suz 3 −
209 A22 6= 2, 3, 5, 7 +
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d G ℓ field ind

209 J1 0, 11, 19 +
210 A10 0, 7 +
210 A11 6= 2, 11 +
210 A12 3 +
210 A22 6= 2, 11 +
210 A23 23 +
210 U4(3) 6= 2, 3 +
210 2.U4(3) 6= 2, 3 i1 ◦
210 31.U4(3) 6= 2, 3 z3 ◦
210 61.U4(3) 6= 2, 3 z3 ◦
210 U6(2) 3 +
210 3.U6(2) 6= 2, 3 z3 ◦
210 S6(2) 6= 2, 3 +
210 O+

8 (2) 6= 2, 3 +
210 M22 6= 2, 11 +
210 2.M22 6= 2, 11 +
210 3.M22 6= 2, 3 z3 ◦
210 6.M22 0, 5, 7 z3 ◦
210 6.M22 6= 2, 3 z12 ◦
210 M23 23 +
210 HS 5 +
210 McL 3, 5 +
214 J3 19 b17, y9 +
216 A9 0 +
216 2.A10 0, 3 +
216 121.U4(3) 0, 7 z12 ◦
216 122.U4(3) 6= 2, 3 z12 ◦
216 S6(2) 0 +
216 2.J2 0, 3 −
217 A10 5 +
217 L5(2) 6= 2 +
217 L6(2) 6= 2 +
218 3D4(3) 2 +
218 3D4(3) 73 +
219 3D4(3) 6= 2, 3, 73 +
220 A13 6= 2, 13 +
220 A14 7 +
220 U4(4) 5 +
220 U5(2) 6= 2, 3 z3 ◦
220 M23 2 b7, b23 ◦
220 M24 2 b7, b23 ◦
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d G ℓ field ind

220 2.Suz 6= 2, 3 −
221 A12 7 +
221 A13 7 +
221 U4(4) 6= 2 b5 +
223 S4(7) 5 +
224 2.A9 0, 7 +
224 A10 6= 2, 5 +
224 4.U4(3) 6= 2, 3 z12 ◦
224 S4(7) 6= 2, 5, 7 +
224 2.O+

8 (2) 6= 2, 5 +
224 J2 0, 7 b5 +
225 A10 0, 5 +
225 S4(4) 6= 2, 17 d17 +
225 J2 6= 2, 7 +
229 A23 11 +
229 A24 11 +
229 U6(2) 3 +
229 M23 11 +
229 M24 11 +
230 A23 6= 3, 7, 11 +
230 A24 2 +
230 M23 0, 5, 23 +
230 McL 2, 5 +
230 Co3 2, 5 +
230 Co2 2 +
231 A11 0, 7, 11 +
231 A23 6= 2, 23 +
231 A24 3 +
231 U6(2) 6= 2, 3 +
231 3.U6(2) 6= 2, 3 z3 ◦
231 M22 6= 2, 5 +
231 3.M22 6= 2, 3 z3 ◦
231 M23 6= 2, 23 +
231 M23 6= 2, 3, 5 i15 ◦
231 M24 3, 5 +
231 M24 6= 2, 3, 5 i15 ◦
231 HS 6= 2, 5 +
231 McL 0, 7, 11 +
231 Co3 3 +
233 A13 5 +
233 A14 5 +
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234 L4(3) 0, 13 +
236 2.J2 3 −
238 S8(2) 6= 2, 3 +
240 U3(16) 6= 2 −
241 U3(16) 6= 2, 17 z17 ◦
244 J3 2 b17 +
245 O−

8 (3) 13 +
246 O−

8 (3) 6= 3, 13 +
246 2F4(2)′ 2 +
246 He 2 b17 +
248 S4(5) 2 b5 +
248 Th all +
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