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a b s t r a c t

Accurate location awareness is of paramount importance in most ubiquitous and pervasive

computing applications. Numerous solutions for indoor localization based on IEEE802.11,

bluetooth, ultrasonic and vision technologies have been proposed. This paper introduces a

suite of novel indoor positioning techniques utilizing signal-strength (SS) fingerprints col-

lected from access points (APs). Our first approach employs a statistical representation of

the received SS measurements by means of a multivariate Gaussian model by considering

a discretized grid-like form of the indoor environment and by computing probability distri-

bution signatures at each cell of the grid. At run time, the system compares the signature at

the unknown position with the signature of each cell by using the Kullback–Leibler Diver-

gence (KLD) between their corresponding probability densities. Our second approach applies

compressive sensing (CS) to perform sparsity-based accurate indoor localization, while

reducing significantly the amount of information transmitted from a wireless device, pos-

sessing limited power, storage, and processing capabilities, to a central server. The perfor-

mance evaluation which was conducted at the premises of a research laboratory and an

aquarium under real-life conditions, reveals that the proposed statistical fingerprinting

and CS-based localization techniques achieve a substantial localization accuracy.

� 2012 Published by Elsevier B.V.

1. Introduction

Location-sensing has been impelled by the emergence of

location-based services in the transportation industry,

emergency situations for disaster relief, the entertainment

industry, and assistive technologies in the medical commu-

nity. Location-sensing systems can be classified according

to their dependency on and/or use of (a) specialized infra-

structure and hardware, (b) signal modalities, (c) training,

(d) methodology and/or use of models for estimating

distances, orientation, and position, (e) the coordination

system (absolute or relative), scale, and location descrip-

tion, (f) localized or remote computation, their mechanisms

for device identification, classification, and recognition, and

their accuracy and precision requirements. The distance

can be estimated using time-of-arrival (e.g., GPS, PinPoint

[1]) or signal-strength measurements, if the velocity of

the signal and a signal attenuation model for the environ-

ment can be accurately estimated, respectively. Positioning

systems may employ different modalities, such as,

IEEE802.11 (e.g., Radar [2,3], Ubisense, Ekahau [4]), infrared

(e.g., Active Badge [5]), ultrasonic (e.g., Cricket [6,7], Active
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Bat), Bluetooth [3,8–11], 4G [12], vision (e.g., EasyLiving

project), and physical contact with pressure (e.g., Smart

Floor), touch sensors or capacitive detectors. They may also

combine multiple modalities to improve the localization,

such as optical, acoustic and motion attributes (e.g.,

SurroundSense [13]).

The popularity of IEEE802.11 infrastructures, their low

deployment cost, and the advantages of using them for both

communication and positioning, make them an attractive

choice. Most of the signal-strength based localization

systems can be classified into the following two categories,

namely signature- or map-based and distance-prediction-

based techniques. The first type creates a signal-strength

signature or map of the physical space during a training

phase and compares it with the signature generated at

runtime (at the unknown position) [2,14,15]. To build such

signatures, signal-strength data is gathered from beacons

received from APs. During a training phase, such measure-

ments are collected at various predefined positions (of the

map) and signatures are generated that associate the corre-

sponding positions of the physical space with statistical

measurements based on signal-strength values acquired at

those positions. Such maps can be formed with data from

different sources or signal modalities to improve location-

sensing [3,6]. The distance-prediction-based techniques

use the signal-strength values and radio-propagation mod-

els to predict the distance of a wireless client from an AP (or

any landmark) or even between twowireless clients (peers)

with estimated position (such as CLS [16]). In situations

where a deployment of a wireless infrastructure may not

be feasible, positioning mechanisms may exploit coopera-

tion by enabling devices to share positioning estimates

[1,16–22]. A survey of positioning systems can be found in

[23].

In this paper, first we build on our earlier work on CLS

[16,20],which generates statistical-basedfingerprintsusing

the received signal-strength (RSSI) measurements from an

IEEE802.11 infrastructure. The vast majority of current fin-

gerprint positioning methods does not take into account

the interdependencies among the RSSI measurements at a

certain position from the various APs. These interdependen-

cies provide important information about the geometry of

the environment and can be quantified using the second-or-

der spatial correlations among the measurements. Hence,

the employment of multi-dimensional distributions is ex-

pected to provide amore accurate representation of the RSSI

signatures, leading to improved positioning performance.

Simple models whose second-order statistics can be accu-

rately and easily estimated could be used in practice. In

particular, a multivariate Gaussian-based approach is em-

ployed to take into consideration the statistics of the RSSI

measurements not only from each distinct AP but also the

interplay (covariance) of measurements collected from

pairs of APs. The signature comparison and position estima-

tion is based on the Kullback–Leibler divergence (KLD): the

cell corresponding to the minimum KLD is reported as the

estimated position. This approach is generalized by apply-

ing it iteratively in different spatial scales.

The difficult to predict nature of the RSSI measure-

ments, due to the impact of transient phenomena on the

RSSI values, impels for extensive training, which increases

the overhead of the fingerprint-based positioning systems:

a larger training set and more sophisticated algorithms are

often employed to capture the dynamic complex nature of

the RSSI measurements. On the other hand, the inherent

sparse nature of the localization of a mobile device in the

physical space (since it can be placed at a single position

of a discretized grid-like form of the environment) moti-

vates the use of the recently introduced theory of compres-

sive sensing (CS) [24,25] for target localization [26]. CS

states that signals which are sparse in a suitable transform

basis can be recovered from a highly reduced number of

incoherent random projections. Hence, the CS-based

approach comes as an evolution to the traditional methods

dominated by the well-established Nyquist–Shannon sam-

pling theory, and consequently it could be exploited in the

design of efficient localization systems characterized by

limited resources.

In a recent work [27], a CS-based indoor localization

method was introduced based on RSSI measurements. In

particular, the location estimation algorithm is carried

out on the mobile device by using the average RSSI values

in order to construct the transform basis. The sparsity-

based CS localization algorithm proposed in this paper

differs from the work in [27] in several aspects. In contrast

to [27], where the estimation is performed by the wireless

device with the potentially limited resources, in our pro-

posed algorithm the computational burden can be as-

signed to a central node (fusion center), where increased

storage and processing resources are available. Unlike in

[27] that uses the average RSSI values, the proposed CS

approach is applied directly on the raw RSSI measure-

ments, thus exploiting their time-varying behavior. Then,

the estimation of the unknown position is performed by

solving a constraint optimization problem for reconstruct-

ing a sparse vector with its coordinates being ‘‘1’’ or ‘‘0’’

depending on whether the mobile device is placed or not

at the corresponding cell.

This paper makes the following contributions:

1. It proposes and evaluates a novel fingerprinting

approach that exploits the spatial correlations of sig-

nal-strength measurements collected from various

wireless APs based on a multivariate Gaussian model.

2. It introduces a novel localization approach that applies

compressive sensing (CS), which can achieve an

increased accuracy in the position estimation, while

reducing the communication overhead required for

the exchange of measurements, and thus, becoming

more appropriate for energy-constrained devices.

3. It performs a comparative performance analysis of var-

ious signal-strength fingerprinting methods in the pre-

mises of a research laboratory and an aquarium under

different conditions.

The paper is organized as follows: Section 2 presents re-

cently introduced statistical signal-strength signature tech-

niques, along with the proposed statistical approach based

on the use ofmultivariate Gaussian distributions formodel-

ling the statistics of the RSSImeasurements. In Section 3, the

main principles of CS are introduced and the proposed CS-

based localization method is analyzed in detail. Section 4
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presents a comparative performance evaluation of these

techniques in the premises of the Telecommunications

and Networks Lab (TNL) at ICS-FORTH aswell as in the Cret-

aquarium. Section 5 overviews related positioning systems

formobile computing,while Section6 summarizes ourmain

results and provides directions for future work.

2. Statistical fingerprint methods

A wireless device that listens to a channel receives the

beacons sent by APs (at that channel) periodically and

records their RSSI values. Typically wireless devices that

run fingerprint-based positioning systems acquire such

measurements at various positions in a given physical space

(with a deployment of wireless APs) and generate finger-

prints for these positions applying various statistical met-

rics (e.g., confidence intervals, percentiles, empirical

distributions or the parameters of a theoretical distribution)

on the collected measurements. The physical space is often

represented as a grid of cellswith fixed size andwell-known

coordinates. During a training phase, at known positions of

the physical space, such measurements are collected by a

wireless client (training measurements). At each position,

the wireless client scans all the available channels and lis-

tens for beacons from APs. During the runtime phase, the

system also records the RSSI values from the received bea-

cons (runtime measurements). As in the case of training, the

wireless client scans all the available channels.

A statistical-based signature is constructed for each cell

of the grid using the signal-strength measurements col-

lected during the training phase (training signature). Simi-

larly, applying the same statistical method, at runtime, a

statistical-based signature is also generated using the run-

time measurements collected at the location of the device

(at anunknowncell) on-the-fly (runtime signature). The run-

time signature is then comparedwith all the training signa-

tures. Thefingerprint of a cell is a vector of training signatures

with size equal to the number of APs deployed in the area.

Each entry of the vector corresponds to one AP. The finger-

print of the unknown position is the corresponding vector

of the runtime signatures. The cell with a training finger-

print that has the smallest distance from the runtimefinger-

print is reported as the estimated position. The next

paragraphs present the various methods for generating the

statistical-based signatures used in this work.

2.1. Confidence intervals

In the confidence-interval approach the signature is a

vector of confidence intervals, each corresponding to an

AP. Each confidence interval is generated using the RSSI

values of the beacons received from the corresponding

AP by the mobile device. Let us denote as T�
i ðtÞ; T

þ
i ðtÞ

� �

the confidence interval for AP i at cell t during the training

phase. The fingerprint of a cell is the vector of these confi-

dence intervals (for all APs) at that cell. Similarly, at run-

time, at the unknown position, the system records the

RSSI values from a number of beacons sent by the APs

and computes a confidence interval for each AP. For exam-

ple, the runtime confidence interval for AP i is the R�
i ; R

þ
i

� �

.

The runtime fingerprint is a vector composed by all confi-

dence intervals formed at runtime from all APs. An AP i

participates in this technique by assigning a vote (weight)

for a cell t that indicates the similarity of its training confi-

dence interval T�
i ðtÞ; T

þ
i ðtÞ

� �

with the runtime confidence

interval R�
i ; R

þ
i

� �

according to the following rule:

wðtÞ ¼

Tþ
i
ðtÞ�R�

i

Rþ
i
�T�

i
ðtÞ

if T�
i ðtÞ < R�

i < Tþ
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Rþ
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i
ðtÞ

Tþ
i
ðtÞ�R�

i
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i < T�

i ðtÞ < Rþ
i < Tþ

i ðtÞ

1 if R�
i 6 T�

i ðtÞ < Tþ
i ðtÞ 6 Rþ

i

or T�
i ðtÞ 6 R�

i < Rþ
i 6 Tþ

i ðtÞ
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i < Rþ
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i ðtÞ < Tþ

i ðtÞ 6 R�
i < Rþ
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By adding these weights, the confidence-interval ap-

proach computes a weight for that cell that indicates its

likelihood to be the unknown position (at which the corre-

sponding runtime measurements were collected).

At the start of the runtime phase, each cell has a zero

weight. For each cell, the training confidence interval of

each AP is compared with the corresponding (for that AP)

runtime confidence interval at the unknown cell c. The

algorithm assigns a weight at cell c, w(c), that indicates

the likelihood that this cell is the position of the device.

Each AP participates by assigning a vote to that cell. Specif-

ically, the weight of that cell is increased by a specific

value, as follows: In the case that the training confidence

interval is included in the runtime confidence interval or

the runtime confidence interval is included in the training

confidence interval, the weight of that cell is increased by

one. In the case of a partial overlap of these two confidence

intervals, the value indicates the ratio of this overlap. The

cell with the maximumweight is reported as the estimated

position.

A drawback of this method, and especially of the voting

assignment (as defined in (1)), is its sensitivity to the rela-

tive position of the endpoints (boundaries) of the confi-

dence interval. Even a small displacement of an endpoint

(in the runtime confidence interval relative to the training

confidence interval) may affect significantly the value of

the weight. Furthermore, there are cases in which two rel-

atively distant cells may report the samemaximumweight.

Let us illustrate these caseswith some examples. For conve-

nience, consider the simplified scenario of a single AP and

the signatures of one runtime and two training cells,

c´ [R�(c),R+(c)], t1´ [T�(t1), T
+(t1)], t2´ [T�(t2), T

+(t2)].

� Example 1: Let us form the cases A and B, as shown in

Fig. 1a, case A: T�(t1) < R�(c) < R+(c) < T+(t1) case B:

T�(t1) < R�(c) < T+(t1) < R+(c) with R�(c) = T+(t1) � �,
R+(c) = T+(t1) + �
In case A, the rule (1) reports a weight equal to 1, while

in case B the weight is equal to

Tþðt1Þ � R�ðcÞ

RþðcÞ � T�ðt1Þ
¼

Tþðt1Þ � Tþðt1Þ þ �
Tþðt1Þ þ �� T�ðt1Þ

¼
�

Tþðt1Þ � T�ðt1Þ þ �
:
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For a displacement �? 0, the weight in case B is equal to 0.

That is, even if the unknown runtime cell c coincides with

the training t1, a small variation of the RSSI measurements

may affect significantly the corresponding weight.

� Example 2: Let us now assume that the endpoints of the

confidence intervals of the cells c, t1 and t2 are related as

follows:T�(t1) < R�(c) < T+(t1) < R+(c),

R�(c) < T�(t2) < R+(c) < T+(t2) with

jT�ðt1Þ � R�ðcÞj ¼ jR�ðcÞ � T�ðt2Þj

jR�ðcÞ � Tþðt1Þj ¼ jT�ðt2Þ � RþðcÞj

jTþðt1Þ � RþðcÞj ¼ jTþðt2Þ � RþðcÞj

In that case (as shown in Fig. 1b), the confidence interval

method assigns the same weight to both training cells,

being unable to distinguish between t1 and t2.

2.2. Percentiles

This approach is similar to the confidence-interval one.

However, instead of using confidence intervals for con-

structing the fingerprints, percentiles are employed. A set

of percentiles can capture more detailed information about

the signal-strength distribution than a confidence interval.

The weight of a cell c, w(c), is computed as follows:

wðcÞ ¼
X

P

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xnp

j¼1
ðRi

j � T i
jðcÞÞ

2

r

; ð2Þ

where P is the number of APs, np the number of percentiles,

Ri
j the jth percentile of runtime measurements from the ith

AP and T i
jðcÞ the jth percentile using the training measure-

ments from the ith AP at the cell c. The cell with the min-

imum weight is reported as the estimated position. In the

case of the top 5 weighted percentiles approach, a ‘‘weighted

centroid’’ of the five cells with the smallest weight is re-

ported, with the weights being the normalized votes of

these cells.

2.3. Empirical distribution

The signature of a cell is a vector of size equal to the

number of APs that appear in both the training and run-

time measurements. Each entry of a training (runtime) sig-

nature corresponds to the complete set of RSSI values

collected during the training (runtime) phase, respectively.

Fig. 1. Drawback of the weighting process in the confidence interval method.

D. Milioris et al. / Ad Hoc Networks 12 (2014) 100–114 103



This method creates a signature based on the set of signal-

strength measurements collected at each cell from all APs.

At runtime, at an unknown position, each cell is assigned a

weight which corresponds to the average empirical KLD of

each AP (at that cell) from the runtime measurements

collected at the unknown position from the same AP. The

cell with the smallest weight is reported as the position.

2.4. Multivariate Gaussian model

Unlike other fingerprint positioning approaches, the

Multivariate Guassian model (MvG) aims to exploit the

interdependencies among the RSSI measurements in a cell

from various APs. These interdependencies may reveal

information about the geometry/topology of the environ-

ment and can be quantified using the second-order spatial

correlations among the measurements. According to this

approach, a statistical signature is generated for each cell

of the grid by modelling the acquired signal-strength mea-

surements using a multivariate Gaussian distribution. The

density function of a multivariate Gaussian in RK with a

mean vector l and covariance matrix R is given by:

pðxjl;RÞ ¼
1

ð2pÞK=2jRj1=2
exp �

1

2
ðx� lÞTR�1ðx� lÞ

� �

; ð3Þ

where jRj is the determinant of R.

Let P be the number of APs from which the mobile de-

vice receives the measurements, M be the number of mea-

surements from each AP, and Si = [y1, . . . ,yP] denote the

M � P matrix for the ith cell ci, whose jth column yj 2 R
M

contains the received signal-strength values from the jth

AP. The signal-strength measurements are modelled by a

multivariate Gaussian distribution due to its simplicity

and the closed-form expression of the associated similarity

measure (KLD). More specifically, the signature Si of the ith

cell is given by:

ci # Si ¼ fli;Rig; ð4Þ

where li = [li,1, . . . , li,P], with li,j being the mean of the jth

column of the measurement matrix Si, and Ri is the corre-

sponding covariance matrix, with its mnth element being

equal to the covariance between the mth and nth columns

of Si. Hence, themnth element ofRi corresponds to the spa-

tial correlation between the RSSI measurements of the ith

cell received from the m � th and nth APs. Thus, if C is

the number of cells in the grid representing the physical

space, during the training phase, the following set of train-

ing signatures (T) is generated:

fSi; Tg
C
i¼1 ¼ ffli;T ;Ri; Tgg

C
i¼1: ð5Þ

In addition, the ith training cell, ci,T, is also associated to

a set of indices Ii,T indicating its corresponding ‘‘active’’ APs,

that is, the APs from which it acquires the measurements

during the training phase.

During the runtime phase (R), we assume that the mo-

bile user is placed at an unknown cell (cR), whose location

must be estimated. Following the approach used in the

training phase, if SR ¼ ½y1;R; . . . ; yP0 ;R� is the M0 � P0 runtime

signal-strength measurement matrix of cR, a signature is

generated as follows:

cR # SR ¼ flR;RRg: ð6Þ

Notice here that in general the dimensions of the run-

time measurement matrix are smaller than the dimensions

of the corresponding training matrix (M � P) due to the in-

creased time constraints to collect extensive measure-

ments during runtime. Furthermore, the set of APs

operating during the training phase is not necessarily the

same with the set of APs at runtime.

Let us denote as Ii;TR the set of APs from which signal-

strength measurements were collected both at runtime

and training at cell i. For the runtime (cR) and the ith train-

ing cell (ci,T), we extract their corresponding mean sub-vec-

tors ls
R; l

s
i;T and covariance sub-matrices R

s
R; R

s
i; T

according to the indices of Ii;TR . Finally, if pRðxjl
s
R;R

s
RÞ and

pi;Tðxjl
s
i;T ;R

s
i; TÞ denote the multivariate Gaussian densities

of cR and ci,T, respectively, their KLD is given by the follow-

ing closed-form expression:

DðpRkpi;TÞ ¼
1

2
ðls

i;T � l
s
RÞ

TðRs
i; TÞ

�1ðls
i;T � l

s
RÞ

�

þtr R
s
RðR

s
i; TÞ

�1 � I
� �

� ln jRs
RðR

s
i; TÞ

�1j
�

; ð7Þ

where tr(�) denotes the trace of a matrix (sum of its diago-

nal elements) and I is the identity matrix. KLD is a (non-

symmetric) measure of the difference between two proba-

bility distributions, well-established and widely-used in

probability and information theory. The estimated location

x�R; y
�
R

� �

is given by the coordinates of the i⁄th cell which

minimizes (7), that is,

i
�
¼ arg min

i¼1;...;C
DðpRkpi;TÞ : ð8Þ

Algorithm 1.

The multivariate Gaussian-based positioning method

Note: This is the main algorithm which corresponds to

one spatial level (region) and one iteration. The

region-based multivariate Gaussian approach

extends it by performing it in a multi-level iterative

fashion.

1. During training phase, collect RSSI measurements

from APs at each cell trainingAP(c): set of APs from

which data are collected at cell c

2. During runtime, collect RSSI measurements from

each AP at the unknown position runtimeAPs: set

of APs from which data are collected effectiveAP(c):

trainingAP(c) \ runtimeAP

3. During runtime, perform the following steps for

each cell c:

� Generate the training signature for cell c using

only training measurements collected from

APs 2 effectiveAP(c) (i.e., training signature(c))

� Generate the runtime signature using only run-

time measurements collected from APs 2

effectiveAP(c) (i.e., runtime signature(c))

� Estimate the KLD distance of the training and

runtime signatures

4. Report the cell c⁄ with the smallest KLD distance as

the estimated position
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2.4.1. An iterative multi-layer spatial aggregation of

fingerprints

To improve the accuracy, we propose a generalization of

the approach presented in Algorithm 1: instead of applying

themultivariate Gaussian per cell, we apply it in an iterative

fashion in multiple spatial levels (e.g., regions). First the

physical space is divided into overlapping regions of equal

size and the multivariate Gaussian algorithm is applied for

each region separately. To generate the fingerprint of a re-

gion, we employ all the signal-strengthmeasurements from

all APs collected at positions within that region. This spatial

aggregation reduces the likelihoodof selectinga false region/

cell (a region/cell that does not include/correspond to the

actual position) over the correct one. Essentially, via this

aggregation, it is likely that an incorrect regionwill be elim-

inated (in the first iteration), while the ‘‘weight’’ of the cor-

rect region will be enhanced by considering the signatures

of the neighboring to the actual position cells. The region-

based multivariate Gaussian algorithm proceeds iteratively:

after it estimates the region at which the device is located,

it repeats the process by dividing the selected region into

sub-regions and applying the algorithmon them. This paper

considers only two spatial levels: (i) at the top level, a grid

representationof the entirephysical spacewith coarse gran-

ularity is considered, with the entire area being divided into

regions and (ii) at the second level, a finer granularity grid is

adopted, with each region being divided into cells.

The physical space of interest is discretized in G regions,

each of N cells. Let Ai be a GK � N matrix whose jth column

(2 R
GK ) contains the received signal-strength values from

the jth AP collected at cells of region i during training.

Let us denote with Ai;T xjls
i;T ;R

s
i; T

� �

the multivariate

Gaussian density of region i and pR xjls
R;R

s
R

	 


the multivar-

iate Gaussian density of the unknown position (runtime

signature). The KLD distance can be computed as in (7)

and the region closest to the unknown position is given by

i
�
A ¼ arg min

i¼1;...;G
DðpRkAi;TÞ: ð9Þ

After the estimation of the correct region, the process is

repeated (using Algorithm 1) to compute the cell in that re-

gion that corresponds to the unknown position, consider-

ing only the cells of that region.

3. Compressive sensing WLAN localization

Let us first describe the main theoretical concepts of CS

as applied in the context of positioning. Let x 2 RN denote

the signal of interest, that is, a vector of RSSI measure-

ments. The efficiency of a CS method for signal approxima-

tion or reconstruction depends highly on the sparsity

structure of the signal in a suitable transform domain asso-

ciated with an appropriate sparsifying basis W 2 RN�D. It

has been demonstrated [24,25] that if x is K-sparse in W

(meaning that the signal is exactly or approximately repre-

sented by K elements of this basis), it can be reconstructed

from M = rK� N non-adaptive linear projections onto a

second measurement basis, which is incoherent1 with the

sparsity basis, and where r is a small overmeasuring factor

(r > 1). For instance, in standard signal processing applica-

tions, several natural signals are often sparse in a discrete

cosine transform (DCT) or in a Fourier basis.

The measurement model in the original space-domain

is expressed as follows,

g ¼ Ux; ð10Þ

where g 2 RM is the measurement vector andU 2 RM�N de-

notes the measurement matrix. By noting that x can be ex-

pressed in terms of the basis W as x =Ww, where w 2 RD

denotes the vector of transform coefficients, the measure-

ment model has the following equivalent transform-do-

main representation

g ¼ UWw: ð11Þ

Examples of measurement matrices U, which are inco-

herentwith any fixed transformbasisWwith high probabil-

ity (universality property [25]), are random matrices with

independent and identically distributed (i.i.d.) Gaussian or

Bernoulli entries. Since the original vectors of RSSImeasure-

ments, x, are not sparse in general, in the following studywe

focuson themoregeneral case of reconstructing their equiv-

alent sparse representations,w, givena low-dimensional set

of measurements g and the measurement matrix U. The

inherent sparsity in the problem of location estimation

comes from the fact that the device to be localized can be

placed in exactly one of the C non-overlapping cells. Let

w ¼ ½0 0 � � � 0 1 0 � � � 0�T 2 RC be an indicator vector with

its jth component being equal to ‘‘1’’ if the device is located

in the jth cell. Thus, in the framework of CS, the problem of

estimating the location of a mobile device is reduced to a

problem of recovering the one-sparse vector w. Of course

in practicewe do not expect an exact sparsity, thus, the esti-

matedposition corresponds simply to the largest-amplitude

component ofw.

By employing the M compressive measurements and

given the K-sparsity property in basis W, the sparse vector

w, and consequently the original signal x, can be recovered

perfectly with high probability by taking a number of

different approaches. In the case of noiseless CS measure-

ments the sparse vector w is estimated by solving a con-

strained ‘0-norm optimization problem of the form,

ŵ ¼ argmin
w

kwk0; s:t: g ¼ UWw; ð12Þ

where kwk0 denotes the ‘0 norm of the vector w, which is

defined as the number of its non-zero components. How-

ever, it has been proven that this is an NP-complete prob-

lem, and the optimization problem can be solved in

practice by means of a relaxation process that replaces

the ‘0 with the ‘1 norm,

ŵ ¼ argmin
w

kwk1; s:t: g ¼ UWw: ð13Þ

In [24,25] it was shown that these two problems are

equivalent when certain conditions are satisfied by the

two matrices U, W (restricted isometry property (RIP)).

In the later case, the sparse vector w can be recovered

using M J K � logD CS measurements.

The objective function and the constraint in (13) can be

combined into a single objective function, and several of

1 Two bases W1, W2 are incoherent if the elements of the first are not

represented sparsely by the elements of the second, and vice versa.
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the most commonly used CS reconstruction methods solve

the following problem,

ŵ ¼ argmin
w

kwk1 þ skg�UWwk2ð Þ; ð14Þ

where s is a regularization factor that controls the trade-off

between the achieved sparsity (first term in (14)) and the

reconstruction error (second term). Commonly used algo-

rithms are based on linear programming [28], convex

relaxation [24,29], and greedy strategies (e.g., Orthogonal

Matching Pursuit (OMP) [30,31]).

As it was mentioned before, a common characteristic of

all RSSI-based fingerprint methods is their implementation

in two distinct phases, namely, a training phase (off-line),

and a runtime phase (on-line). In the following two subsec-

tions, the several requirements of each phase are described

in detail. Besides, for convenience the following notations

are used in the subsequent derivations: i) yT denotes any

quantity y that is related with the training phase, ii) yR
denotes that y is associated with the runtime phase.

3.1. Training phase specifications

During the training phase, a set of RSSI samples is col-

lected at each cell from each AP. Let xi
j;T 2 Rnj;i denote the

vector of training RSSI measurements received at cell j

from AP i. In general nj;i – nj0 ;i0 for j– j0, i– i0. To compen-

sate for the potentially different number of RSSI measure-

ments from cell to cell we set Ni = minj{nj,i}, i = 1, . . . ,P,

j = 1, . . . ,C. These vectors are generated for all cells by a

central server, which forms a single matrix W
i
T 2 RNi�C for

the ith AP by concatenating the corresponding C vectors.

Then, this matrix is used as the appropriate sparsifying dic-

tionary for the ith AP, since in the ideal case the vector of

RSSI measurements at a given cell j received from AP i

should be closer to the corresponding vectors of its neigh-

boring cells, and thus it could be expressed as a linear com-

bination of a small subset of the columns of Wi
T . Moreover,

a measurement matrix U
i
T 2 RMi�Ni is associated with each

transform matrix W
i
T , where Mi is the number of CS mea-

surements. In the proposed algorithm, a standard Gaussian

measurement matrix is employed, with its columns being

normalized to unit ‘2 norm.

3.2. Runtime phase specifications

A similar process is followed during the runtime phase.

More specifically, let xi
c;R 2 Rnc;i be the RSSI measurements

received at the current unknown cell c from the ith AP.

Notice that, since the acquisition time interval during the

runtime phase is smaller than that in the training phase,

it holds that nc;i < n0
c;i, where n0

c;i denotes the length of

the corresponding RSSI vector generated at the same cell

during the training phase. The runtime CS measurement

model associated with the cell c and AP i is written as

gc;i ¼ U
i
Rx

i
c;R; ð15Þ

where U
i
R 2 RMc;i�nc;i denotes the corresponding measure-

ment matrix during the runtime phase.

In order to overcome the problem of the difference in

dimensionality between the training and runtime phase,

while maintaining the robustness of the reconstruction

procedure, we selectUi
R to be a subset ofUi

T with an appro-

priate number of rows such as to maintain equal measure-

ment ratios, Mi

Ni
¼

Mc;i

nc;i
. The measurement vector gc,i is formed

for each AP i according to (15) and transmitted to the

server, where the reconstruction takes place via the solu-

tion of (14), with the training matrix W
i
T being used as

the appropriate sparsifying dictionary. We emphasize at

this point the significant conservation of the processing

and bandwidth resources of the wireless device by com-

puting only low-dimensional matrix–vector products to

form gc,i (i = 1, . . . ,P) and then transmitting a highly re-

duced amount of data (Mc,i � nc,i). Then, the CS reconstruc-

tion can be performed remotely (e.g., at a server) for each

AP independently. The final location estimate is the cen-

troid of the estimated cells.

Finally, the overall CS-based localizationmethod is sum-

marized in Algorithm 2, while Table 1 gathers the symbols

used in the CS setup. Here, we assume that the CS-based

positioning method involves the mobile device (client) that

collects the RSSI measurements from the beacons sent from

the APs of the wireless infrastructure and a server that per-

forms the core CS algorithm. The performance analysis

(described in Section 4) reveals an increased accuracy of

the proposed CS-based localization algorithm when com-

pared with the statistical localization methods introduced

in the previous sections.

Algorithm 2.

The compressive sensing positioning method

1. Training phase: collect RSSI measurements from all

APs at each cell For each AP i, generate U
i
T and W

i
T

2. Runtime phase: collect RSSI measurements from

each AP at the unknown position For each AP i,

generate xi
c;R

3. At runtime perform the following steps:

� Send the length of runtime RSSI measurements,

nc,i, to the server

� From each U
i
T , extract the columns until line nc,i

and send it to the wireless device

� Compute the measurements vector gc,i and send

it to the server

� Perform CS reconstruction at the server by solv-

ing (14)

4. Report the centroid of the individual estimates

given by the CS reconstruction scheme per AP c⁄

as the estimated position

4. Performance analysis

The following two subsections evaluate the performance

of the proposed algorithms in two distinct real-world envi-

ronments. As described, the training signatures are gener-

ated based on the collected signal-strength measurements

at each cell of the two grid-based representations of the

environments. In both cases, runtime measurements were

collectedat 35 randomly selected cells. The trainer (user) re-

mained still for approximately 60 s (30 s) to collect beacons
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at eachpositionduring training (runtime), respectively. This

resulted inmore than100 and200RSSI values per AP at each

cell for the runtime and training phases, respectively. To

capture signal-strength values, iwlist, which polls each

channel and acquires the MAC address and RSSI measure-

ments from each AP (in dBm), and tcpdump, a packet ana-

lyzer relying on libpcap, were employed. A Sony Vaio and a

Toshiba laptop with the same wireless adapter (ipw2200)

were used for the collection of training and runtime sig-

nal-strength values. In the subsequent experiments, we

evaluated our algorithms under the presence of different

number of people. Let ‘‘Sc-A’’ and ‘‘Sc-B’’ denote the scenario

corresponding to the presence of a small and a large number

of people, respectively. We also note that in the subsequent

evaluations, the MvG approach corresponds to the region-

based implementation.

4.1. Evaluation at FORTH

The evaluation at FORTH took place in an area of

7 m � 12 m at TNL, which was discretized in a grid struc-

ture with cells of 55 cm � 55 cm. During the runtime phase

two datasets are collected corresponding to the two sce-

narios: (i) Sc-A: the dataset was collected on a Sunday

afternoon, with only one person, apart from the one col-

lecting the measurements, present in the TNL (ii) Sc-B:

the dataset was collected on a typical weekday late after-

noon, during which there were from ten to fifteen people

in the laboratory, and several others walking in the hall-

ways outside. The training set included measurements

from 84 different cells and was collected at the same per-

iod as the Sc-A runtime set. It was used both in the Sc-A

and Sc-B scenarios. The total number of APs covering the

area was 10, while on average 5.4 APs could be detected

at a given cell.

In order to evaluate the performance of the various fin-

gerprinting methods, we computed the localization error,

measured as the Euclidean distance between the centers

of the reported cell and the cell at which the mobile user

was actually located at runtime. Note that the cell size

affects the accuracy of the algorithms.

Fig. 2a and b presents the localization error of the differ-

ent signature-based approaches during the Sc-A and the

Sc-B scenario, respectively. As shown, the multivariate

Gaussian model (MvG) outperforms the percentiles, the

confidence interval (95%), and the empirical distribution

approaches. More specifically, for the Sc-A dataset, the

median error is equal to 2.19 m and 1.10 m for the confi-

dence interval and percentiles, respectively, while the

MvGs results in an error of 1.09 m. In Sc-B, the median

error of the MvGs is 1.10 m, while the confidence interval

(95%) and the percentiles methods report an error of

2.60 m and 2.20 m, respectively.

It is expected that as the number of APs that participate

in the signature generation increases, so does the accuracy

of distinguishing the correct cell from other further-away

cells. To measure the impact of the number of APs on the

accuracy, we associate each AP with a popularity index that

indicates the number of cells at which measurements from

the beacons of that AP were collected during both training

and runtime phases. Let j{cjAP i 2 effectiveAP(c)}j denote

the popularity index of AP i. The APs were sorted in a

descending order based on their popularity indices and

the analysis was repeated using the top k most popular

APs for the Sc-A and Sc-B datasets. Fig. 3 shows the average

localization error for the MvG algorithm as a function of

the number of APs from which the RSSI measurements

are employed. The larger the number of APs, the smaller

the localization error. Interestingly, the effect of an increas-

ing number of APs diminishes after a certain threshold. The

number of APs affects more the performance of the MvG

algorithm during the Sc-B than the Sc-A scenario.

Fig. 4a and b shows the localization accuracy as a func-

tion of the number of RSSI measurements for the MvG

method. The % indicates the percentage of RSSI measure-

ments considered in both the training and runtime data-

sets. We observe that the larger the measurement set,

the more accurate the position estimation, since the statis-

tical signature (mean and covariance) associated with the

MvG method is estimated with a higher accuracy. More-

over, the increase in the number of RSSI measurements

affects more the performance in the Sc-B scenario, where

the environment is more dynamic with the presence of

an increased number of people.

Finally, we comparatively analyze the performance of

the CS-based localization and the MvG-based one. For this

purpose, the CS reconstruction problem (14) is solved

using a primal–dual interior point method (L1) and the

orthogonal matching pursuit (OMP) algorithm2.

Both CS methods employ only the 25% of the total run-

time RSSI measurements. Fig. 5a and b shows the corre-

sponding cumulative probability distributions of the

localization error for the three methods. In particular, the

median error for the Sc-A scenario is equal to 1.09 m for

the MvG, and 1.08 m for the L1 and OMP approaches. Sim-

ilar results are obtained for the Sc-B scenario with a med-

ian error of 1.09 m for the MvG and 1.08 m for the L1 and

OMP methods. The similarity in performance in the case of

TNL can be attributed to the simple topology of the indoor

space and the relative position of the APs with respect to

the people which were present in the lab, that did not

affect significantly the variability of the RSSI measure-

ments between the two scenarios.

Table 1

CS-WLAN symbols and notation.

P Number of APs

C Number of cells

xi
j;T ; xi

j;R
Training/runtime RSSI set of measurements

collected at cell j

From the beacons sent by AP i

nj,i Number of RSSI measurements at cell j from AP i

Ni = minj{nj,i} Number of RSSI measurements kept at all cells for

AP i

Mi Number of CS measurements generated for AP i

gj,i CS measurement vector at cell j for AP i

U
i
T ; U

i
R

Training/runtime measurement matrix for AP i

W
i
T

Sparsifying matrix (dictionary) for AP i

w PSosition indicator (sparse) vector

2 http://www.acm.caltech.edu/l1magic/, http://sparselab.stanford.edu/.
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Note an important difference on how the different algo-

rithms employ the estimations per AP into the reported

estimated position: The CS-based approach is carried out

for each AP separately, using the compressed RSSI mea-

surements, and the final estimate is given by the centroid

of the individual estimated positions. On the other hand,

the confidence interval, percentiles and empirical distribu-

tion methods perform an averaging over all APs of the

values of the corresponding distance function before the fi-

nal location estimation. For instance, in the case of the

empirical distribution method, each cell is assigned a

weight which corresponds to the average empirical KLD

of each AP (at that cell) from the runtime measurements

collected at the unknown position from the same AP. As

a result, two cells with different KLD values between the

individual APs may be reported erroneously to be close

to each other after taking the average KLD, since the aver-

aging operator eliminates the distinct contribution of each

separate AP. This is not the case for a CS-based approach,

where a ‘‘wrong estimation’’ based on a single AP can be

‘‘defused’’ if the estimates based on the remaining APs

are close to the true cell.

4.2. Evaluation at the Cretaquarium

Cretaquarium is the largest and most popular aquarium

in Greece, covering an area of 1760 m2 and consisting of

more than 40 tanks. The physical space was represented as

a grid with cells of 1 m � 1 m. Seven IEEE802.11 APs were

deployed, out of which 3.4 on average could be detected at

a given cell. The training and runtime signal-strength

measurements were collected in December, January and

February of 2011 for the entire testbed under two different

scenario conditions, with respect to the presence of visitors.

Fig. 2. Accuracy of various fingerprint positioning methods at FORTH.

Fig. 3. Impact of the number of APs on localization error of the MvG

method. The x-axis indicates the number of the top x APs considered in

both training and runtime datasets.
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Fig. 4. Localization error as a function of the number of RSSI measure-

ments for the MvG method.
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In the first set of measurements (i.e., scenario Sc-C), there

were only the two people that collected the signal-strength

measurements present. During the collection of the second

set ofmeasurements (i.e., scenario Sc-D), a groupof students

were visiting the Cretaquarium (with approximately 25

people near the trainers during that period).

Under the quiet conditions (Sc-C), the median localiza-

tion error using the MvG method is 1.48 m, while the per-

centiles result in a median localization error of 2.20 m, as

shown in Fig. 6a. Under the busier conditions (Sc-D), the

median error of the percentiles method increases at

3.29 m, while the MvG results in an estimation error of

4.15 m (Fig. 6b). In both scenarios, the confidence intervals

and the empirical distribution approaches exhibit signifi-

cantly higher errors compared to the MvG method. As it

was also the case for the experimental evaluation in the

premises of TNL, the largest the measurement set, the

more accurate the position estimation. Moreover, the large

variance of the RSSI values affects more the estimation per-

formance of the MvG method in the Sc-D scenario.

The presence of a large number of people, along with

the complex topological layout of the Cretaquarium with

its several tanks impose further challenges in the position-

ing. We compared the performance of the proposed CS-

based localization technique with the MvG region-based

one. As mentioned earlier, one of the advantages of a

CS-based approach is its inherent ability to extract the

salient information content of the signal by suppressing

potential noise-like features. The complex topology of the

Cretaquarium, as opposed to the simple topology of the

TNL, and the particular conditions in the environment un-

der which the experiments were performed cause the pres-

ence of such noise-like features.

As shown in Fig. 7a and b, for the Sc-C scenario the med-

ian error is equal to 1.48 m and 1.10 m for the MvG and the

L1 method, respectively, while OMP results in a median

error of 1.09 m. Besides, for the Sc-D scenario, the corre-

sponding median error is equal to 4.15 m and 4.14 m for

the MvG and the L1 method, respectively, while the OMP

approach results in a median error of 3.59 m. The higher

accuracy in the Sc-C scenario is due to the smaller variance

of the RSSI measurements. As before, only 25% of the total

runtime RSSI measurements were employed in the CS-

based approach.

The proposed CS-based approach improves the localiza-

tion accuracy compared to the MvG method in challenging

environments, such as the Cretaquarium. This is because

the CS-based scheme exploits directly the raw RSSI mea-

surements, via the low-dimensional measurement vectors,

and thus, it is able to take advantage of the full information

content of the RSSI readings. On the other hand, the MvG

method employs second-order RSSI statistics: it suppresses

the RSSI measurements to their mean, variance and

Fig. 5. Performance evaluation of the CS-based methods at FORTH.
Fig. 6. Performance evaluation of various fingerprint positioning meth-

ods at Cretaquarium.
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covariance values. In addition, the CS approach suppresses

the noise-like features of the signal to be reconstructed,

but at the same time, it extracts its prominent information

content. This is not the case with the MvG method, where

the potential noise-like fluctuations in RSSI measurements

may have a significant impact on the signatures, and conse-

quently, on the computed KLD value. The ability to suppress

the noise-like features, thatmay adversely affect the perfor-

mance of a positioning algorithm, is important, since often

positioning algorithms use explicitly or implicitly large-

scale radio propagation (path-loss) attenuation models to

estimate distances. A few very low RSSI values (‘‘outliers’’)

are often caused by small-scale transient phenomena in

radio propagation. This observation enforces the need for a

proper preprocessing of the RSSImeasurements before their

statistical analysis.

Moreover, the experimental evaluation using the col-

lected data from two distinct environments shows that

apart from the sparsifying basis W and the measurement

matrix U, the reconstruction algorithm that will be used

can affect significantly the accuracy of the localization. For

the present experimental configurations in the TNL and

Cretaquarium, the OMP algorithm is an appropriate choice.

However, one of the advantages of the CS framework is that

the generation of CS measurements is fully decoupled with

the process of reconstructing the corresponding sparse vec-

tor, that is, with the same set of CS measurements g, the

localization performance can be improved by developing a

more efficient reconstruction technique.

5. Related work

Significant work has been published in the area of

location-sensing using RF signals. Radar [2] employs

signal-strength maps that integrate signal-strength mea-

surements acquired during the training phase from APs at

different positionswith the physical coordinates of each po-

sition. Each measured signal-strength vector is compared

against the reference map and the coordinates of the best

match will be reported as the estimated position. Bahl et

al. [32] improved Radar to alleviate side effects that are

inherent properties of the signal-strength nature, such as

aliasing and multipath. Ladd et al. [14] proposed another

location-sensing algorithm that utilizes the IEEE802.11

infrastructure. In its first step, a host employs a probabilistic

model to compute the conditional probability of its location

for a number of different locations, based on the received

signal-strength measurements from nine APs. The second

step exploits the limited maximum speed of mobile users

to refine the results and reject solutions with a significant

change in the location of the mobile host. Kung et al. [33]

proposed a method for evaluating the impact of the

IEEE802.11 APs on positioning in order to strengthen the

role/contribution of a ‘‘good’’ AP while ‘‘de-emphasizing’’

the role of the ‘‘bad’’ APs. The ‘‘goodness’’ of an AP indicates

the capability of that AP to estimate accurately its distance

from the others. Youssef’s et al. Horus [15] substantially im-

proved the accuracy (e.g., an 1.3 m error in 90% of their

experiments) by employing an autoregressive model that

captures the autocorrelation in signal strength measure-

ments of the same AP at a particular location. Specifically,

the time series generated from signal-strength measure-

ments collected from an AP is represented by a first-order

autoregressive model. The fingerprints are formed for each

cell andAPbasedon thedegreeof autocorrelation, themean,

and the variance of the empirical measurements collected

from that AP at that cell. Finally, fingerprints based on attri-

butes that characterize the effects ofmultipath (e.g., channel

response) for detecting changes of the positions of wireless

hosts were presented in [34,35].

Researchers have also explored the cooperation for

performing positioning. Niculescu and Badri Nath [36]

designed and evaluated a cooperative location-sensing sys-

tem that uses specialized hardware for calculating the angle

between two hosts in an ad hoc network. This can be done

through antenna arrays or ultrasound receivers. Hosts

gather data, estimate their position, and propagate them

throughout the network. Previously, these authors [19]

introduced a cooperative location-sensing system in which

position information of landmarks is propagated towards

hosts that are further away, while during this process, hosts

may further enrich this information by determining their

own location. A location-sensing system in ad hoc networks

that does not use landmarks or GPS was discussed in [18].

The location-sensing systems presented in [17 and 37]were

the closest to our earlier work on cooperative location sens-

ing (CLS) and were compared in detail in [20].

Fig. 7. Performance evaluation of CS-based methods at Cretaquarium.
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Active Badge [38] uses diffuse infrared technology and

requires each person to wear a small infrared badge that

emits a globally unique identifier every ten seconds or on

demand. A central server collects this data from fixed infra-

red sensors around the building, aggregates it and provides

an application programming interface for using the data.

The system suffers in the case of fluorescent lighting and

direct sunlight, because of the spurious infrared emissions

these light sources generate. A different approach, Smart-

Floor [39], employs a pressure sensor grid installed in all

floors to determine presence information in a building

without requiring users to wear tags or carry devices, al-

beit without being able to identify individuals.

Examples of localization systems that combine multiple

technologies are UbiSense [40], Active Bats [41] and Sur-

roundSense [13]. UbiSense can provide a high accuracy

using a network of ultra wide band (UWB) sensors in-

stalled and connected into a building existing network.

The UWB sensors use Ethernet for timing and synchroniza-

tion. They detect and react to the position of tags based on

time difference of arrival and angle of arrival. An RF tag is a

silicon chip that emits an electronic signal in the presence

of the energy field created by a reader device in proximity.

Location can be deduced by considering the last reader to

see the card. RFID proximity cards are in widespread use,

especially in access control systems. The Active Bats archi-

tecture consists of a controller that sends a radio signal and

a synchronized reset signal simultaneously to the ceiling

sensors using a wired serial network. Bats respond to the

radio request with an ultrasonic beacon. Ceiling sensors

measure time-of-flight from a reset to an ultrasonic pulse.

Active Bat applies statistical pruning to eliminate errone-

ous sensor measurements caused by a sensor hearing a re-

flected pulse instead of one that travelled along the direct

path from the Bat to the sensor. A relatively dense deploy-

ment of ultrasound sensors in the ceiling can provide with-

in 9 cm of the true position for 95 % of the measurements.

SurroundSense runs on a mobile phone to provide logical

localization by generating fingerprints using sound, accel-

erometers, cameras and IEEE802.11. Tesoriero et al. [42]

propose a passive RFID-based indoor location system that

is able to accurately locate autonomous entities, such as

robots and people, within a physical-space. Yang et al.

[43] present an integrated framework for location estima-

tion and action prediction, that combines two areas of

interest, namely, location estimation and plan recognition.

Working in this framework, action and plan recognition are

carried out from low-level signals and location estimation,

by employing an appropriate set of APs.

Ariadne [44] is an automated location determination

system. It uses a two dimensional construction floor plan

and only a single actual strength measurement. It gener-

ates an estimated signal strength map comparable to those

generated manually by actual measurements. Given the

signal measurements for a mobile, a proposed clustering

algorithm searches that signal strength map to determine

the current location of the mobile device.

In a recentwork [45], the problemof indoor location esti-

mation was also treated in a probabilistic framework. In

particular, a reduced number of locations sampled to con-

struct a radiomap is employed in conjunctionwith an inter-

polationmethod,which is developed to effectively patch the

radio map. Furthermore, a Hidden Markov Model (HMM)

that exploits the user traces to compensate for the loss of

accuracy is employed to achieve further improvement of

the radio map due to motion constraints, which could con-

fine possible location changes. Both the proposedmultivar-

iate Gaussian model-based algorithm and the HMM-based

approach belong to the class of the probabilistic localization

techniques. Usually, a probabilistic localization method is

characterized by an increased performancewhen compared

with a deterministic one, since it provides not only a point

estimate of the user’s position but also gives a confidence

interval for the quality of this estimate. This can be used to

improve further the estimation accuracy with the goal of

reducing the uncertainty. However, a first key observation

is the highly reduced complexity of our method compared

to the HMM-based approach. In particular, it is a one-itera-

tion method, where in each iteration only the simple esti-

mate of a mean vector, a covariance matrix, and the

computation of the Kullback–Leibler divergence between

multivariate Gaussians (given in closed form) are required.

On the other hand, the HMM-based localization technique

requires several iterations to converge, while in each itera-

tion several model parameters have to be estimated

(approximately of the same dimensions as the parameters

of our proposed method). However, the reduced computa-

tional complexity of the Gaussian-based technique comes

at the cost of a potentially degraded location estimate under

certain circumstances. For instance, in the case of ‘‘cor-

rupted’’measurements (e.g., due to anAP failure or the pres-

ence of an obstacle), our method is much more sensitive,

since it is based on measurements collected instanta-

neously. In contrast, the HMM-based approach could pro-

vide a more accurate estimate via the prior knowledge of a

transition-probability matrix, which is preserved and re-

estimated in each iteration in conjunction with the refine-

ment achieved by an Expectation Maximization algorithm.

In conclusion, the major benefit of our proposed algorithm,

when compared with the HMM-based approach, is the sig-

nificantly reduced computational complexity and imple-

mentation simplicity, as well as the high accuracy in

several specific environments (obstacle-free, robust mea-

surements) as it was revealed by the experimental evalua-

tion. On the other hand, the HMM-based approach can be

proved to be more robust in the case of system failures,

but at the cost of requiring increased computational

resources.

Although recent enough, the theory of CS has already

motivated an increasing number of emerging applications

in almost every signal processing field (http://dsp.rice.

edu/cs). However, the development of CS-based localiza-

tion methods using wireless LANs is still at an early stage.

In [27,46], the location estimation algorithm is carried out

on the mobile device by using the average RSSI values in

order to construct the sparsifying basis W. Our proposed

CS approach is applied directly on the raw RSSI measure-

ments and not on their average as in [27,46], and thus,

exploiting their time-varying behavior.

In a recent work [47], the problem of location estima-

tion was treated in a framework that also takes advantage

of the spatial sparsity. In particular, the location estimation
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is formulated as a constrained ‘1-norm minimization prob-

lem based on a suitably learned dictionary. A signature is

associated with each AP by averaging the RSSI measure-

ments, which would be received by the AP from each

potential cell of the discrete spatial domain. Then, the sys-

tem builds the dictionary by concatenating the signatures

from all APs. A similar signature is generated at the un-

known runtime cell, which is then projected on the dictio-

nary to form the vector of measurements. However, the

lack of a random measurement matrix required when

working in the framework of CS may decrease the system’s

robustness under unpredictable environmental conditions.

One of our recent related projects was the design and

implementation of a guiding application that provides

personalized information to visitors in an area. The appli-

cation was integrated with a positioning system and was

evaluated in the aquarium. For this purpose, the physical

space was divided into 17 zones according to the applica-

tion requirement. The positioning system reported the

zone in which the visitor was located. Experiments were

contacted using the Ekahau [4], a commercial positioning

system, which also employs RSSI-based fingerprints. The

tests took place at the same period and for the same run-

time cells as in the Sc-D scenario described in Section

4.2, under a relatively large number of visitors walking

close to the trainers. In each zone, the system was tested

at three different positions. The correct zone was reported

in 80% of the times, resulting in a median error of 4.6 m.

This paper builds on our earlier work on positioning

[49,50,20].

6. Conclusions and future work

This paper introduced two novel localization methods

based on RSSI measurements. In the first case, statistical

signal-strength fingerprints are created using multivariate

Gaussian distributions. The position of the device is esti-

mated by computing the region with the training finger-

print that has the minimum KLD from the runtime

fingerprint. In the second case, the localization problem

was reduced in a sparse reconstruction problem in the

framework of CS. The dimensionality of the original RSSI

measurements was reduced significantly via random linear

projections on a suitable measurement basis, while main-

taining an increased localization accuracy.

The empirical evaluation revealed that the multivariate

Gaussian method usually outperforms previous statistical

signal-strength fingerprint approaches, while the CS-based

approach achieved a superior performance when com-

pared to the multivariate Gaussian-based technique. We

performed an evaluation of various fingerprint methods

in the premises of a research lab and an aquarium. The

presence of people and the density and placement of APs

have a prominent impact on the positioning accuracy. Fur-

thermore, in the case of the multivariate Gaussian-based

algorithm we experimented with a spatial multiscale iter-

ative approach in which we applied the algorithm on larger

regions to select the correct one, and then within the se-

lected region to estimate the correct cell. Something simi-

lar was performed in the case of percentiles by selecting

the top five candidate cells. We showed that it improves

the accuracy by eliminating the distant incorrect cells

and taking also into consideration the neighboring cells

around the position of the user. In the context of the aquar-

ium, mobility patterns can be formed and their integration

in the localization system can further improve its accuracy.

We have been also experimenting with other modali-

ties, such as infrared, cameras and QR codes to improve

the location estimation. Specifically, in front of each land-

mark (e.g., tank of the aquarium or office in the lab), a un-

ique QR code can be placed along with three infrared

sensors (e.g., WII bar). The camera of the mobile device of

a visitor may capture the QR code, recognize it, and thus

identify the landmark, in front of which this visitor is

standing [48]. Similarly, when the camera captures the

infrared light from at least two infrared sources, it can esti-

mate its distance from the landmark by measuring the

distance of the two infrared sources on the recorded image.

We plan to extend our localization system by incorporat-

ing these multi-modalities measurements.

There is a growing interest in statistical methods that

exploit various spatio-temporal statistical properties of

the received signal to form robust fingerprints. In general,

a channel exhibits very transient phenomena and is highly

time-varying. At the same time, the collection of signal

measurements is subject to inaccuracies due to various

issues, such as hardware misconfigurations, limitations,

time synchronization, fine-grain data sampling, incom-

plete information, and vendor-specific dependencies (often

not publicly available). A proper pre-processing of the RSSI

measurements is required before applying the various sta-

tistical-analysis algorithms.

There are several potential extensions of the CS-based

localization framework. In CS-based localization, the un-

known location was estimated by performing separate

reconstruction for each AP. A straightforward extensionwill

be the use of the joint sparsity structure of the indicator vec-

torw among the APs for the simultaneous location estima-

tion. Moreover, the random nature of the measurement

vectors associated with an RSSI vector could be exploited

in order to enhance the encryption capabilities of the pro-

posedCS localization approach,without the additional com-

putational cost of a separate encryption protocol. The choice

of appropriate sparsifying andmeasurement bases is crucial

for an increased localization accuracy. The design of new

transform and measurement bases that are adaptive to the

specific characteristics of the RSSI data is also of significant

importance. A new sparsifying basis being able to increase

the degree of sparsity of an RSSI measurements vector, rep-

resented in terms of this basis, is critical in the framework of

CS, since the reconstruction accuracy increases as the spar-

sity increases. Furthermore, an improved performance can

be guaranteed with high probability by employing an

appropriate measurement matrix, which is highly incoher-

ent with the sparsifying basis.
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