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Low-Dimensional Subspace Estimation of

Continuous-Doppler-Spread Channel in OTFS
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Abstract—Orthogonal time frequency space (OTFS) has
shown to be a promising modulation technology that achieves
the robust wireless transmission in high-mobility environments.
The high mobility incurred Doppler effect in OTFS system, is
represented as a continuous and relatively large band in the
Doppler frequency. It yields the equivalent channel responses
(ECRs) in the system change significantly within one symbol
block, posing a challenge to channel estimation (CE) or tracking.
In order to tackle this issue, in this paper, a set of transform-
domain basis functions is designed to span a low-dimensional
subspace for modeling the OTFS channel. Then, the CE can be
performed by estimating a few projection coefficients of ECRs
in the developed subspace, with training pilots. According to the
individual transmission characteristic of OTFS signal, we pro-
pose a corner-inserted pilot pattern, which targets the low pilot
overhead and satisfactory CE performance. Moreover, an OTFS
signal detector, leveraging the time-domain channel equalization,
linear-complexity interference cancellation and delay-Doppler
domain maximal ratio combining detection, is developed to
retrieve the transmitted data symbols. The simulations show
the precisely estimated ECRs enable the detector to ideally
demodulate 256-ary quadrature amplitude modulation signaling,
under a velocity of 550 km/h at 5.9 GHz carrier frequency.

Index Terms—Orthogonal time frequency space (OTFS),
channel estimation, channel equalization, high mobility, 256-
QAM

I. INTRODUCTION

Future wireless communications are envisioned to support

diverse use cases and requirements. Identified as one of the

most challenging communication scenarios, reliable commu-

nications in high-mobility environments, such as vehicles to

everything networks (V2X) [1], [2], high-speed trains [3], [4],

and unmanned aerial vehicles [5], [6], have attracted much

attention from both academia and industry. Unlike other use

cases, the high-mobility scenarios feature severe dispersion

of radio channel in the time-frequency (TF) domain, which

poses a performance bottleneck to the traditional multi-carrier
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modulation system, such as orthogonal frequency division

multiplexing (OFDM) [7]–[9] or its varieties [10]–[12].

Recently, the so-called orthogonal time frequency space

(OTFS) modulation technique, has been developed to improve

the wireless transmission performance in high mobilities

[13]–[15]. The key point of OTFS is to model the radio

channel in the delay-Doppler (DD) domain [16]. Based on

this representation, OTFS maps data symbols on grid points

in a DD plane and employs inverse symplectic finite Fouri-

er transform (ISFFT) [17] to spread them over the whole

considered TF grids. Then, the TF-domain data symbols

are modulated by a multi-carrier scheme, e.g., OFDM [18].

The OTFS signaling enables the transmitted data symbols

to be equally impacted from the doubly-dispersive channel,

meanwhile the full diversity from the channel can be reaped

by the efficient receiver’s equalization [19]–[22].

Accurate channel estimation (CE) is a prerequisite for the

robust demodulation in the OTFS receiver. In some high-

mobility environments, such as high-speed train running in

a clear and open signal-transmission space [23], the channel

scattering components are limited and the channel responses

may appear as a few impulses in the Doppler frequency [24].

In such a limited-Doppler-shift channel (LDSC), the existing

CE schemes [25]–[28] are efficient to acquire the sparse DD-

domain channel gains. For instance, in [25], the base station

transmits a single impulse (SI) signal as pilot with a proper

guard to estimate the DD-domain channel gains by means

of a threshold method. The SI based CE was extended to

MIMO-OTFS system in [26]. An alternative approach is the

pseudo-random pilot based CE [27], which reconstructs the

DD channel by utilizing the estimated parameters, e.g., the

delay/Doppler shifts and the corresponding gains. Moreover,

the compressive sensing (CS) technique has also been used

to estimate the DD channel in [28].

To the best of our knowledge, the existing schemes are

designed only to estimate LDSCs. However, a more general

communication environment involves a large number of scat-

tering objects, like in V2X. The scattering-abundant channel

is treated as continuous-Doppler-spread channel (CDSC) [29],

in which the Doppler frequency components of each transmis-

sion path are infinite and the Doppler spectrum is continuous

in frequency rather than a set of discrete frequency elements.

The motivations of this paper originate from the case that
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OTFS signal undergoes the CDSC 1. Specifically,

1) Focusing on high-speed mobile scenarios, our study

indicates that the equivalent channel responses (ECRs)

in OTFS system can change quickly within one symbol

block. However, the existing CE algorithms, developed

for the LSDC, are insufficient to accurately track the

inside-one-symbol variations of ECRs. Once ignoring

the variations, severe demodulation error occurs.

2) When the variations can not be ignored, the number of

unknown ECRs is much larger than the observations

(pilot symbols), which means the CE becomes an un-

dertermined estimation problem. Thus, how to precisely

estimate the unknowns with the limited number of

training pilots is another concern of this paper.

To solve this problem, a low-dimensional subspace based

CE scheme is proposed to track the variable ECRs. The

designed channel estimator is capable of achieving the whole

(not just a part of) ECRs, and preserving a low pilot overhead.

Benefitting from the accurate channel estimates, the develope-

d detector can ideally retrieve the OTFS data symbols in the

CDSC. Our contributions are summarized as follows.

1) By investigating the characteristics of OTFS channels, a

low-dimensional subspace is constructed to characterize

the variations of the ECRs. The subspace is expanded

by a series of transform-domain basis functions. Then,

the ECRs are precisely modeled in the subspace, by

a sum of the projection coefficients and the basis

functions.

2) The subspace channel modeling significantly reduces

the number of unknowns, and meanwhile simplifies the

OTFS CE as acquiring the projection coefficients of

ECRs, by solving an overdertermined estimation prob-

lem. The linear minimum mean square error (LMMSE)

based channel estimator employs the training pilots,

which are inserted in a form of the proposed corner-

inserted pilot pattern (CIPP), to obtain the projection

coefficients.

3) Combining with the channel estimator, an iterative

OTFS symbol detector, which involves least squares QR

decomposition (LSQR) channel equalization, linear-

complexity interference cancellation and maximal ratio

combing (MRC), is developed for OTFS system. The

simulation results demonstrate the superiority of OTFS

receiver adopting the proposed CE and equalization

schemes. For example, when the maximum Doppler

frequency normalized to the subcarrier spacing f̃d =

20%, corresponding to a velocity of 550 km/h at 5.9

GHz carrier frequency, the proposed receiver can ro-

bustly demodulate 256-ary quadrature amplitude mod-

ulation (QAM) symbols at a suitable signal-to-noise

ratio (SNR) regime. Moreover, from this paper, an op-

1The CDSC can be treated as a kind of definition or expression of the
channels that have continuous Doppler spectrum S (f) in the frequency
f . Note that the channel Doppler spectrum S (f) is a result of Fourier
transform to the channel correlation function, i.e., S (f) = FT (r (τ)),
where r (τ) = E {h (t)h∗ (t− τ)}. In the scattering-abundant scenarios,
the infinite electromagnetic waves arrive at the reviver, yielding a continuous
Doppler spread in the frequency.

timal OTFS transmission scheme considering the data

transmission efficiency, pilot power and demodulation

performance, can be achieved for the diverse mobile

scenarios and traffic loads.

The remainder of this paper is organized as follows. The

OTFS signaling and the ECRs are formulated in Section II.

In Section III, the low-dimensional subspace is developed to

model the OTFS channel and transform the CE into projection

coefficient estimation. The proposed pilot pattern and training

pilot based coefficient estimation are presented in Section IV.

In Section V, the LSQR channel equalization aided MRC

detector is detailed. Finally, simulation results are presented

in Section VI and conclusions are given in Section VII.

Notations: In this paper, we use upper (lower) boldface

letters denote matrices (column vectors). The element in the

v-th row and l-th column of matrix Y is denoted as Y (l, v).
The m-th row and n-th column of matrix X are denoted

as X (m, :) and X (:, n), respectively. We use (·)−1
, (·)T

and (·)H to represent inverse, transpose and conjugate trans-

pose, respectively. Rc = blkdiag {R0,R1, · · · ,RN−1} is a

block diagonal matrix with the matrices R0,R1, · · · ,RN−1

on its main diagonal. Circ (·) represents cyclic shift op-

eration on row vector x ∈ C
1×N , and Circ (x, a) =

[x (N − a) , · · · , x (N − 1) , x (0) , · · · , x (N − a− 1)]. Op-

erators vec (·), ⊙, ⊗, (·)N ⌈·⌉, ‖·‖, Tr(·) and E(·) are denoted

as the vectorizing of a matrix, Hadamard product, kronecker

product, modulo-N operation, ceil operator, Frobenius norm,

trace operation and expectation operation, respectively. C

stands for the set of complex numbers. IM denotes the M×M
identity matrix. Finally, we denote the zeroth order Bessel

function of the first kind as J0 (·).

II. OTFS TRANSMISSION OVER CDSC

In this section, we first formulate the input-output relation

of OTFS signal transmission over CDSC. Then, the ECRs

are derived by transforming the channel impluse responses

(CIRs) from time-delay (TD) domain to DD domain. The

transformation provides us some insights into the OTFS CE

in high mobilities.

A. OTFS Signaling

The discrete-time OTFS transmission architecture is illus-

trated in Fig. 1. The modulated data symbols and the pilot

sequences are arranged into a signal matrix X ∈ C
M×N ,

where M and N are the numbers of resource grids along

the delay and Doppler dimensions, respectively. The ISFFT

converts X from the DD domain to the TF domain, i.e.,

D = FMXFH
N , D ∈ C

M×N , where FM ∈ C
M×M and

FN ∈ C
N×N are the fast Fourier transform (FFT) matrices

[17]. Subsequently, the time-domain signal block is generated

by S = FH
MD, S ∈ C

M×N . By column-wise reading the

entries in S, the data samples within one OTFS transmission

block are: s = vec (S), s ∈ C
MM×1. A cyclic prefix (CP)

with length Mcp is inserted at the beginning of s [19] to

avoid the inter-block interference. The discrete-time OTFS

sequences go through the doubly selective channel, of which
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Fig. 1. The baseband transmission architecture of OTFS system.

the impulse response is defined as h [n, l′] , l′ ∈ [0, L− 1],
where the maximum channel delay spread L ≤Mcp.

At the receiver side, after removing CP, the received time-

domain signal block R ∈ C
M×N is transformed to the TF

domain by means of FFT in OFDM demodulator, which is

expressed as D′ = FMR, D′ ∈ C
M×N . Then, the symplectic

finite Fourier transform (SFFT) converts D′ back into the DD

domain, according to Y = FH
MD′FN , Y ∈ C

M×N .

Proposition 1: Aided by the existing works from [28], [30]–

[32], the received signal Y (l, v) , l ∈ [0,M − 1] , v ∈
[0, N − 1], which corresponds to the (l, v)-th element of Y,

is derived as

Y (l, v) =
N−1
∑

v′=0

M−1
∑

l′=0

Ω {l, l′, v′}X ((l − l′)M , (v − v′)N )

+W (l, v) .
(1)

In (1), W (l, v) represents the additive white Gaussian noise

with zero mean and variance σ2; X ((l − l′)M , (v − v′)N )
denotes the ((l − l′)M , (v − v′)N )-th entry of X;

Ω {l, l′, v′} , l ∈ [0,M − 1] , l′ ∈ [0, L− 1] , v′ ∈ [0, N − 1]
is the ECR in OTFS system

Ω {l, l′, v′} =
1

N

N−1
∑

i=0

e
−j2πiv′

N h [iM +Mcp + l, l′]. (2)

Note that Ω {l, l′, v′} is the function of three variables: l,
l′ and v′, which represent the delay-direction index in DD

plane, channel delay-sampling index and channel Doppler-

sampling index, respectively. The l-th delay-direction index

corresponds to the symbol Y (l, v) that located in the l-th
delay grid, and it varies from 0 to M − 1. As the maximum

channel delay spread is L, the channel delay-sampling index l′

changes from 0 to L−1. The v′-th channel Doppler sampling

is associated with the i-th OFDM symbol in (2), where v′ and

i change from 0 to N − 1. To distinguish l from l′, we call

l as group index hereafter.

Ä

2-D Convolution

Transmitted OTFS symbols The ECRs Received OTFS symbols

Fig. 2. The illustration of 2-D convolution in (1), where the maximum
channel delay spread L = 4.

Fig. 2 is presented to demonstrate the 2-D convolution in

(1), where a single OTFS impulse is allocated in the trans-

mitted DD plane. From Fig. 2, the transmitted OTFS signal

is circularly shifted by the channel delay/Doppler spreads

and scaled by the ECR Ω {l, l′, v′} , l ∈ [0,M − 1] , l′ ∈
[0, L− 1] , v′ ∈ [0, N − 1]. In particular, when Doppler

spread is zero, the channel is time-invariant, of which the

CIR at the l′-th path can be denoted as al′ . In this case, (2)

is transformed to Ω {l, l′, v′} = al′δ (v
′)u (l), demonstrating

the ECR is constant at the l′-th delay spread and zero-

th Doppler frequency. Thus, in (1), the transmitted OTFS

symbols will only be circularly shifted by the delay spread

and scaled by al′ . When the delay spread is zero, we can

derive the similar conclusion.
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Fig. 3. The conversion process between the CIRs and ECRs in OTFS
system.

Fig. 3 demonstrates the transformation between the CIRs

and ECRs in OTFS system. The TD-domain CIR samples

of the l′0-th path2, within one OTFS transmission block, are

rearranged into M groups, each of which includes N points.

The CIR samples in the l-th group (l = 0, · · · ,M − 1),

i.e., h [iM +Mcp + l, l′0] , i ∈ [0, N − 1], are converted to

Ω {l, l′0, v′} , v′ ∈ [0, N − 1] through N -point FFT as (2).

B. Analysis of Ω {l, l′, v′} over CDSC

The CDSC is based on the statistical channel modeling

method, which has been widely used in the practical wire-

less communications. According to the existing measurement

campaigns in the high-mobility wireless communications

[29], [33], there can be abundant scatters/reflectors around the

mobile terminals [34]. The scattered/reflected electromagnetic

waves uniformly distributing around the reviver (which has

isotropic antenna), results in a continuous U-shaped Doppler

2Here, we take one channel path, with delay spread l′
0

, to demonstrate the
transformation.
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spread/spectrum in the frequency, directly corresponding to

that in the classical Clarke channel [35]. As shown in Fig. 4,

the Clarke channel occupies a continuous band in the Doppler

frequency, i.e., [−fd, fd], where fd is the maximum Doppler

frequency. As a typical case of CDSC, the classical Clarke

channel model [35] is selected in this paper to help us analyze

Ω {l, l′, v′}. Note that our analysis is not only applicable to

Clarke channel, but also can be valid in other cases of CDSC.

q
a

d
fcos

d q
f a

0
f

q
f

1Q
f

-

�U-shaped� Spectrum

Sinusoids-sampled

Spectrum

d
f-

d
fd

f-

d
f- d

f

... ...

... ...

Fig. 4. Clarke channel spectrum in the Doppler frequency, 1) “U-shaped”
spectrum; 2) “Sinusoids-sampled/approximated” spectrum.

In general, a series of sinusoids with frequencies are

commonly adopted to approximate the continuous U-shaped

spectrum. Thus, the time-variant CIR of the l′-th path can be

modeled as

h [n, l′] =

Q−1
∑

q=0

αl′,qe
j(2πfl′,qnTs+θl′,q) ∆

=

Q−1
∑

q=0

α̃l′,qe
j2πfl′,qnTs ,

(3)

where α̃l′,q = αl′,qe
jθl′,q , Ts is the system sampling period

and Q denotes the number of sinusoids (or approximated

Doppler shift components) of the transmission path3. Param-

eters θl′,q , αl′,q and fl′,q represent the q-th initial phase,

complex gain and Doppler shift associated with the l′-th path,

respectively. Substituting (3) into (2), we have

Ω (l, l′, v′) =

Q−1
∑

q=0

α̃l′,qe
j2πf̄l′,q(Mcp+l)/MNΞN

(

v′ − f̄l′,q
)

,

(4)

where

ΞN (x) =
1

N

∑N−1

i=0
e

−j2πix

N =
sin (πx)

N sin
(

π x
N

)e−jπ
x(N−1)

N .

In (4), f̄l′,q = fl′,qNMTs
∆
= fl′,qTD denotes the sampled

channel Doppler shift, where TD = NMTs = ∆f/N is

the sampling resolution of OTFS system in the Doppler

dimension.

According to (4), the changes of Ω (l, l′, v′) related to

the group index l, are reflected in the phase accumulation

ej2πf̄l′,q(Mcp+l)/MN . In some low-speed scenarios, the chan-

nel Doppler bandwidth 2fd is much lower than the signal

bandwidth. Thus, ej2πf̄l′,q(Mcp+l)/MN can be regarded as

constant for l ∈ [0,M − 1], since the values of f̄l′,q are

3The number of Doppler-shifted sinusoids, Q, must be large enough to
approximate the amplitude of the fading channel with a Rayleigh distribution.
In general, it has been known that Q ≥ 8 or 16 is satisfied [36].

considerably small. As a result, for each group l, Ω {l, l′, v′}
is almost identical in Fig. 3. However, in high-mibility envi-

ronments, the values of f̄l′,q are significant due to the larger

channel Doppler bandwidth. In this case, ej2πf̄l′,q(Mcp+l)/MN

is variable, and Ω {l, l′, v′} can change obviously between

groups.

(a) The real part of the time-domain CIR curve
(corresponding to the l′

0
-th path).

(b) The real parts of the ECRs of the l′
0

-th path.

Fig. 5. The TD-domain CIRs h
[

n, l′
0

]

and ECRs Ω
{

l, l′
0
, v′

}

, where the
OTFS transmission block MN = 32× 32. The maximum channel Doppler

frequency normalized to the subcarrier spacing f̃d is 20%, corresponding to
a velocity of 550 km/h.

To illustrate this, we plot h [n, l′] and Ω {l, l′, v′} of a

certain path with the delay spread l′0 in Fig. 5, where

f̃d
∆
= fd/∆f= 20%. It can be seen from Fig. 5(a) that the TD-

domain CIR varies significantly within N OFDM symbols

(in Fig. 5, N = 32). Fig. 5(b) demonstrates the real parts

of Ω {l, l′0, v′}. We can see that, at some Doppler indices

v′, Ω {l, l′0, v′} changes rapidly with respect to the group

index l, l ∈ [0,M − 1] (in Fig. 5, M = 32). As a result,

the intra-group variations of Ω {l, l′, v′} cannot be ignored in

high mobilities.

The CE task is to acquire Ω {l, l′, v′} in (1), including

M × L × N unknown gains. However, it might be hard

to directly estimate these unknowns since the number of

observation data Y (l, v) is M × N . In other words, it is

an underdetermined estimation problem. Thus, an effective

modeling scheme has to be taken to reduce the dimension

of channel responses, which necessitates the low-dimensional

subspace based channel modeling in Section III.

Remark 1: There is a natural and effective CE method, i.e.,

transmitting an SI as pilot signal to experience the channel

[25]. In this way, we can estimate one group of Ω (l, l′, v′)
from the observed signal in the DD plane, and further

reconstruct α̃l′,q and f̄l′,q to predict the responses in other

groups. The problem is that reconstructing α̃l′,q and f̄l′,q in

(4) is not easy, since the Doppler-sampling resolution TD may
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not sufficient to distinguish each physical channel Doppler

shift. As a result, the prediction accuracy of Ω (l, l′, v′) in

other groups would not be reliable over high-Doppler-spread

channels.

Remark 2: A straightforward strategy for compensating the

above shortage is to increase the value of N [28], yielding a

higher Doppler-sampling resolution. In particular, when N →
∞, each f̄l′,q can be ideally quantized and (4) is transformed

as

Ω {l, l′, v′}N→∞
= e

j2π(Mcp+l)v′

NM Ω {0, l′, v′} . (5)

Hence, from (5), the prediction for all groups becomes much

easier. Unfortunately, in practical OTFS system, N cannot

be considered so large due to the limited computational

capability and low-latency decoding requirement. When N
is relatively small, it will introduce a considerably large

formulation error in (5) and thus deteriorate the CE accuracy.

III. LOW-DIMENSIONAL SUBSPACE BASED CHANNEL

MODELING

The low-dimensional subspace based channel modeling

is proposed in this section, for reducing the dimension of

Ω {l, l′, v′}. The developed channel modeling scheme enables

to simplify the OTFS CE as acquiring the projection coeffi-

cients of ECRs, by solving an overdertermined estimation

problem.

A. Low-Dimensional Subspace Construction

A set of transform-domain basis functions is designed to

construct a K-dimensional (K ≪ M ) subspace for charac-

terizing the variations of Ω {l, l′, v′}. Specifically, Ω {l, l′, v′}
is approximated in this subspace, i.e.,

Ω {l, l′, v′} =

K
∑

k=1

ck,l′A (l, k, v′) + eD {l, l′, v′} , (6)

where eD {l, l′, v′} is the residual error and ck,l′ denotes the

k-th projection coefficient of the l′-th path. In (6), A (l, k, v′)
is the k-th transform-domain basis function, describing the

variable l at the v′-th Doppler frequency. From (6), the

variable l is separated from Ω {l, l′, v′} and then incorporated

into A (l, k, v′). Since A (l, k, v′) is a known function of l,
the number of unknowns corresponding to the l′-th path is

reduced from MN to K. Note that the value of K is crucial to

the accuracy of subspace channel modeling and how to select

K will be discussed in detail in Sections III-B and III-C.

Recalling (2), for the l′-th path, the variations of Ω {l, l′, v′}
in the group and Doppler directions, directly relates to

the time variation of h [iM +Mcp + l, l′]. Accordingly, we

propose to construct a time-domain orthogonal space V1 to

model the time variations of h [iM +Mcp + l, l′]. Then, by

transforming the basis functions in V1 from the time domain

to transform domain, we can further achieve the subspace V2,

to model Ω {l, l′, v′} as (6).

Specifically, the time-domain orthogonal subspace V1 is

expanded by a series of time-domain basis functions, i.e.,

V1 : span {b1,b2, · · · ,bK} , (7)

where bk denotes the k-th basis function,

bk = [b (0, k) , b (1, k) , · · · , b (MN +Mcp − 1, k)]
T ∈

C
(MN+Mcp)×1. For any k, p ∈ [1,K], it follows bH

k bk = 1
and bH

k bp = 0, ∀p 6= k. The time-domain CIR samples of

the l′-th path are rearranged into the vector

hl′ = [h [0, l′] , h [1, l′] , · · · , h [MN +Mcp − 1, l′]]
T
,

which is projected into V1 as

hl′ =
K
∑

k=1

cl′,kbk + el
′

T, (8)

where el
′

T is the modeling error corresponding to the CIR

of l′-th path and takes the same form as hl′ . For brevity,

a time-index set is defined as Z = {Mcp, · · · ,M +Mcp −
1, · · · , (N − 1)M +Mcp, · · · , NM +Mcp− 1}. Relying on

(8), we have

hZ
l′ =

K
∑

k=1

cl′,kb
Z
k + e

l′,Z
T , (9)

where hZ
l′ = [h [Mcp, l

′] , · · · , h [MN +Mcp − 1, l′]]
T ∈

C
MN×1; bZ

k and e
l′,Z
T take the same form as hZ

l′ .

For the l′-th path, the ECRs within one OTFS transmission

period are rewritten as

Ωl′ =
[

Ω0
l′ , · · · ,Ωv′

l′ , · · · ,ΩN−1
l′

]T

∈ C
MN×1, (10)

where Ωv′

l′ = [Ω {0, l′, v′} , · · · ,Ω {M − 1, l′, v′}]T ∈
C

M×1. By using (2) and (9), Ωl′ is derived as

Ωl′ =
1√
N

K
∑

k=1

cl′,k (FN ⊗ IM )bZ
k +

1√
N

(FN ⊗ IM ) el
′,Z
T .

(11)

Proposition 2: Defining the k-th transform-domain basis

function as

ak
∆
=

1√
N

(FN ⊗ IM )bZ
k ∈ C

MN×1, (12)

the ECRs of the l′-th path is modeled by

Ωl′ =

K
∑

k=1

cl′,kak + el
′

D (13)

in the subspace

V2 : span {a1,a2, · · · ,aK} , (14)

where el
′

D is the modeling error of the l′-th path, i.e.,

el
′

D
∆
=

1√
N

(FN ⊗ IM ) el
′,Z
T ∈ C

MN×1. (15)

At the end, the relation between (6) and (13) can be realized

by defining

ak
∆
= [A (0, k, 0) , · · · , A (l, k, v′) , · · · , A (M − 1, k,N − 1)]

T
,

(16)

where

A (l, k, v′) =
1

N

N−1
∑

i=0

b [iM +Mcp + l, k] e
−j2πiv′

N . (17)



6

Relying on (13), the OTFS channel is modeled in the low-

dimensional subspace V2. For the whole L channel paths, the

number of unknowns is K×L (K ≪M ), which is obviously

less than the number of the ERCs, i.e., M × L×N .

B. Analysis of Channel Modeling Accuracy

We analyze the accuracy of subspace channel modeling

by evaluating the square bias of the modeling error, which

provides us some insights into the selection of subspace

dimension K. Specifically, the square bias of the modeling

error is defined as

ξD
∆
=

1

L

L−1
∑

l′=0

ξl
′

D, (18)

where ξl
′

D is the the square bias of el
′

D, i.e.,

ξl
′

D
∆
=

1

MN
E

{

(

el
′

D

)H

el
′

D

}

. (19)

Substituting (15) into (19), we have

ξl
′

D
∆
=

1

N
ξl

′

T, (20)

where ξl
′

T
∆
= 1

MN
E

{

(

e
l′,Z
T

)H

e
l′,Z
T

}

is defined as the

square bias of e
l′,Z
T , which can be rewritten as ξl

′

T =

1
MN+Mcp

E

{

(

el
′

T

)H

el
′

T

}

. From (20), the square bias of the

modeling error of Ωl′ depends on ξl
′

T. The value of ξl
′

T directly

relies on the selection of bk and K. In this paper, the Slepian

sequences are adopted as time-domain basis functions thanks

to their superior channel fitting performance [8]. Specifically,

the sequences are the eigenvectors of matrix Θ

Θbk = λkbk, (21)

where the entries of Θ are

Θ(a, b) =
sin [2π (a− b) fdTs]

π (a− b)
, (22)

a, b ∈ {0, 1, · · · ,MN +Mcp − 1}.

When the number of dimension K =Mtotal
∆
=MN +Mcp,

V1 becomes a completely orthogonal space. For arbitrary

channel vector hl′ , it can be represented by

hl′ =

Mtotal
∑

k=1

cl′,kbk, (23)

where cl′,k = bH
k hl′ . Combing (8) and (23), el

′

T is rewritten

as

el
′

T = hl′ −
K
∑

k=1

cl′,kbk =

Mtotal
∑

k=K+1

cl′,kbk. (24)

Substituting (24) into (20), ξl
′

D is expressed as

ξl
′

D =
1

NMtotal
E

{

Mtotal
∑

k=K+1

bH
k hl′h

H
l′ bk

}

=
1

NMtotal

Mtotal
∑

k=K+1

bH
k Rl′

hbk.

(25)

where Rl′

h is the covariance matrix of the l′-th channel path.

According to (25), the theoretical modeling error of the

l′-th path depends on: OTFS transmission block size MN ,

basis functions {bk}, channel correlation matrix of the l′-th
path Rl′

h , and subspace dimension K. More importantly, in

practical wireless transmission scenarios, the channel corre-

lation function r (τ) can be diverse, which means Rl′

h does

not have an inherent attribute. Hence, the subspace dimension

K, corresponding to the modeling error, should be properly

designed targeting the specific propagation environments.

The Clarke channel model, which has a continuous “U-

shaped” Doppler spectrum, has been verified by the existing

measurement campaigns [29], [33], [34], yielding its applica-

tion into extensive wireless communication scenarios. In Sec.

III-C, we will select the classic Clarke channel to analyze the

accuracy of subspace channel modeling, which can show the

advantages of the proposed scheme. Note that for the other

cases of CDSC, our measurements can be also used.

C. Modeling Error in Clarke Channel

In classical Clarke channel, h [n, l′] follows Rayleigh dis-

tribution in time, of which the autocorrelation function is

E {h [n, l′]h∗ [m, l′]} = σ2
l′δ (l

′ − l′′) J0 (2πfd |m− n|Ts) .

Hence, for the (u, t)-th element in Rl′

h , we have

Rl′

h (u, t) = σ2
l′J0 (2πfd|u− t|Ts) , u, t ∈ [0,Mtotal − 1] .

(26)

Using (25) and (26), the square bias of the modeling error

ξD in (18) is derived as

ξD =
1

LNMtotal

L−1
∑

l′=0

σ2
l′

Mtotal
∑

k=K+1

bH
k Rhbk

=
1

LNMtotal

Mtotal
∑

k=K+1

bH
k Rhbk,

(27)

where Rh is composed of Rh (u, t) = J0 (2πfd|u− t|Ts),
u, t ∈ [0,Mtotal − 1].

Fig. 6. The square bias ξD comparison of dimension K. The velocities

are 137, 270, 550 and 820 km/h, corresponding to f̃d = 5%, 10%, 20% and
30%, respectively.

Fig. 6 compares the square bias ξD versus the subspace

dimension K. As K increases, ξD decreases quickly. Given

ξD less than 10−10, the least required orders for velocity

= 137, 270, 550 and 820 km/h cases are 6, 8, 11 and 14,
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Fig. 7. The distribution of bH
k
Rhbk in (27), when f̃d = 30%.

respectively. Additionally, by (27), we plot the distribution of

bH
k Rhbk in Fig. 7, which can be treated as the modeling

error at the k-th dimension of the subspace. As we can see,

in high dimensions, e.g., k > 20, the value of bH
k Rhbk is

so small that can be neglected.

(a) The distribution of the projection coefficients of
the l′

0
-th path: cl′0,k

.

(b) The subspace DD channel modeling at the l′
0

-th

delay and v′
0

-th Doppler indices Ω
{

l, l′
0
, v′

0

}

.

Fig. 8. The distribution of the projection coefficients and the modeling

results of the ECRs in the subspace V2, where f̃d = 20%, corresponding to
a velocity of 550 km/h.

Fig. 8 gives an example to show the modeling results of

the OTFS channel (path l′0) when f̃d = 20%. The distribution

of the projection coefficients cl′0,k in V2 is demonstrated in

Fig. 8(a), where the components for k > 10 can be neglected.

Substituting the first ten coefficients cl′0,k, k = 1, 2, · · · , 10
into (6), the ECRs Ω {l, l′0, v′0} , l ∈ [0,M−1] can be perfectly

reconstructed in Fig. 8(b) 4. As we can see, by leveraging the

subspace channel modeling, the original channel responses of

the l′0-th path Ωl′0
can be approximated by only utilizing a

small number of the projection coefficients. In other words,

4Here, limited by space, we plot the fitting curve of the channel response
at the l′

0
-th delay and v′

0
-th Doppler indices. Actually, utilizing these ten

coefficients cl′0,k
, k = 1, 2, · · · , 10, the overall responses of the l′

0
-th path,

i.e., Ωl′0
, can be ideally reconstructed by (13).

the dimension of the unknown gains in Ω (l, l′0, v
′) can be

reduced from MN to K.

Benefiting from the precisely subspace channel modeling,

the DD CE can be implemented by estimating the projection

coefficients in V2. For all transmission paths, the number

of the projection coefficients that need to be estimated is

KL, which is much less than the size of OTFS transmission

block MN . Thus, by inserting the pilots into the OTFS

transmission block, where the number of pilots is not less than

KL, the projection coefficients can be acquired by solving an

overdetermined least squares (LS) problem in Section IV.

IV. CHANNEL ESTIMATION IN THE SUBSPACE

In order to estimate the projection coefficients of ECRs in

V2, the training pilots are inserted into the OTFS transmission

frame. As shown in Fig. 9, a CIPP is proposed, which aims to

achieve the relatively low pilot overhead and satisfactory CE

performance. At each corner of transmission frame, the pilots

occupy MP × NP grids, where MP ≪ M and NP ≪ N .

In the Doppler direction, to avoid the interference between

the pilots and data, the guard interval (GI) with length NGI

is inserted at the both sides of pilot block. The value of

NGI depends on the channel maximum Doppler frequency fd,

which follows NGI > 2 ⌊Nfd/∆f⌋. Then, the rest grids with

number of Ndata = N−2NP−2NGI in the Doppler direction

are used for assigning data symbols. In the delay direction,

to protect the data symbols from interference generated by

the pilots, the GI with length MGI (MGI ≥ L−1) is inserted

at the both sides of data block. Note that the values of NGI,

NP and Ndata can be changeable when considering different

OTFS transmission block size and channel Doppler spread.

It would result in different shapes of CIPP, which will be

detailed in Sec. VI.

Pilot DataGI

Delay

direction

Doppler direction

GI
M

GI
M

GI
N

GI
N

data
N

P
N

P
N

data
M

P
M

P
M

 

Fig. 9. The developed CIPP in OTFS system.

From Fig. 9, the resource grids for mapping pilot symbols

and data symbols are

Pis = 4MPNP, (28)

and

Das =MdataN + 2Ndata (MP +MGI) , (29)

respectively. We define the transmission efficiency for OTFS

system as

η =
Das

MN
× 100%. (30)
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Before projection coefficient estimation, we formulate the

OTFS signal transmission in the proposed subspace.

Proposition 3: The received DD-domain vector y =
vec
(

YT
)

∈ C
MN×1 is expressed as

y = Sc+w, (31)

where w is the noise vector and takes the same form of y,

and c denotes the projection coefficients, i.e.,

c =
[

cT0 , · · · , cTl′ , · · · , cTL−1

]T ∈ C
KL×1,

cl′ = [cl′,1, · · · , cl′,k, · · · , cl′,K ]
T ∈ C

K×1.
(32)

In (31), S consists of the transmitted DD-domain data that

coupled with the subspace basis functions:

S =







X̄0 (IL ⊗A0)
...

X̄M−1 (IL ⊗AM−1)






∈ C

MN×KL, (33)

where

Al =







A (l, 1, 0) · · · A (l,K, 0)
...

. . .
...

A (l, 1, N − 1) · · · A (l,K,N − 1)






∈ C

N×K .

(34)

In (33), X̄l, l ∈ [0,M − 1] follows

X̄l =
[

(

X̄l (0, :)
)T
, · · · ,

(

X̄l (N − 1, :)
)T
]T

∈ C
N×NL,

(35)

where X̄l (n, :) = [Circ (x̄l,0, n− 1) , · · ·,Circ (x̄l,L−1, n− 1)] ∈
C

1×NL and x̄l,l′ = [X ((l − l′)M , 0) , · · · , X ((l − l′)M , 1)] ∈
C

1×N .

A. Projection Coefficient Estimation

The purpose of coefficient estimation is to obtain c in (31),

relying on the training pilots. According to the CIPP in Fig. 9

and Proposition 3, we can formulate the transmission that

only corresponding to pilot symbols. To help analyze, we

define two matrices, i.e., FTx
P ∈ C

M×N and FRx
P ∈ C

M×N

illustrated in Fig. 10. Matrix FTx
P is to pick out the pilots at

the transmitter side, i.e,

Xpilot = FTx
P ⊙X. (37)

At the receiver side, due to the channel delay and Doppler

spreads, the transmitted pilot symbols will dispersive along

both delay and Doppler directions. Accordingly, we expand

the range of “nonzero area” in FTx
P . The increased lengths in

delay and Doppler directions are MD and NB, respectively.

For the received pilot symbols, we have

Ypilot = FRx
P ⊙Y. (38)

...1 1 1 1...

...1 1 1 1...

...1 1 1 1...

...1 1 1 1...

D
elay

 d
irectio

n

Doppler direction

1...1 ...1 1... 1...1

1...1 ...1 1... 1...1

...

...

...

...

...

...
11 1 1 11

1...1 ...1 1... 1...1

1...1 ...1 1... 1...1

0 0

P
N

P
M

B
N

D
M

Tx

P
F

Rx

P
F

Fig. 10. The illustration of matrices FTx

P
and FRx

P
.

Note that the values of MD and NB should be properly

considered. On the one hand, the bigger values of MD and

NB are, the more observation symbols we can obtain. As a

result, it helps to improve the CE accuracy. In contrast, with

relatively large values of MD and NB, the more interference

components will be involved by data symbols, deteriorating

the CE accuracy. Hence, to tradeoff the observations and

interference, we consider

0 ≤MD ≤ L− 1,
0 ≤ NB ≤ min {⌊Nfd/∆f⌋ , NGI − ⌈Nfd/∆f⌉} . (39)

Relying on (31), we have

yP = SPc+ χ
P +wP, (40)

where

yP = vec
(

(

Xpilot
)T
)

= vec
(

(

FRx
P ⊙Y

)T
)

, (41)

χ
P and wP denote the interference and noise vector, respec-

tively. They take the same form as yP. In (40), SP is defined

as

SP =







X̄P
0 (IL ⊗A0)

...

X̄P
M−1 (IL ⊗AM−1)






, (42)

where X̄P
l , l ∈ [0,M − 1] can be found from (43)-(45).

We do not propose to estimate the coefficients c from (40),

since the dimension of yP is quite large. Fortunately, the num-

ber of nonzero elements in yP is Q = 4 (NP +NB)MP +
2MDNP, which follows Q ≪ MN . Hence, we use a

Q×MN matrix T to multiply yP, picking out the nonzero

entries. By doing so, the dimension of yP can be significantly

decreased. Recalling (40), we have

TyP = TSPc+Tχ
P +TwP. (46)

Defining ỹP = TyP ∈ C
Q×1, S̃P = TSP ∈ C

Q×KL, χ̃P =
Tχ

P ∈ C
Q×1 and w̃P = TwP ∈ C

Q×1, (46) is rewritten as

ỹP = S̃Pc+ χ̃
P + w̃P. (47)

X̄P
l =

{

(

X̄P
l (0, :)

)T
, · · · ,

(

X̄P
l (n, :)

)T
, · · · ,

(

X̄P
l (N − 1, :)

)T
}T

∈ C
N×NL (43)

X̄P
l (n, :) =

[

Circ
(

x̄P
l,0, n− 1

)

, · · · ,Circ
(

x̄P
l,l′ , n− 1

)

, · · ·,Circ
(

x̄P
l,L−1, n− 1

)]

∈ C
1×NL (44)

x̄P
l,l′ = FTx

P ((l − l′)M , :)⊙ [X ((l − l′)M , 0) , X ((l − l′)M , N − 1) , · · ·, X ((l − l′)M , 1)] ∈ C
1×N (45)
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The LMMSE method is performed to estimate c

ĉmmse = Λmmseỹ
P, (48)

where

Λmmse =

(

(

S̃P
)H

S̃P + σ2(Rc)
−1

)−1
(

S̃P
)H

. (49)

In (49), Rc is the covariance matrix of c, which follows

Rc = blkdiag
{

Rc0 , · · · ,Rcl′
, · · · ,RcL−1

}

∈ C
KL×KL.

(50)

where Rcl′
= BHRΩl′

B and B = [a1, · · · ,aK ].

B. Channel Estimation Accuracy

We evaluate the CE accuracy by investigating the

mean squared error (MSE). Based on the estimat-

ed projection coefficients ĉ, the whole ECRs Ω =
[

ΩH
0 , · · · ,ΩH

l′ , · · · ,ΩH
L−1

]

∈ C
MNL×1 are reconstructed

by

Ω̂ = (IL ⊗B) ĉ. (51)

The MSE of CE is defined as

MSE
∆
=

1

MNL
E

{

∥

∥

∥
Ω− Ω̂

∥

∥

∥

2
}

. (52)

With (13) and (52), MSE is calculated by

MSE =
1

MNL
E

{

‖(IL ⊗B) (ĉ− c) + eD‖2
}

(53)

=
1

MNL
E

{

‖eest + eD‖2
}

, (54)

where eD =
[

(

e0D
)T
, · · · ,

(

eL−1
D

)T
]T

∈ C
MNL×1 and

eest = (IL ⊗B) (ĉ− c) ∈ C
MNL×1. (55)

Note that the CE error consists of two parts: 1) The modeling

error for all paths (eD) in the constructed subspace and

2) The estimation error (eest) introduced by the estimated

coefficients. They are uncorrelated to each other. According

to the analysis of the channel modeling error in Section III-B,

(53) can be rewritten as

MSE = ψD + ξD, (56)

where ξD is the square bias of modeling error, shown in (27),

and ψD denotes the variance of estimation error, i.e.,

ψD =
1

MNL
E

{

‖eest‖2
}

(57)

In the following part, we focus on analyzing ψD.

Recalling (47), the received pilot signal suffers from both

noise and interference. Due to the channel Doppler spread,

the data symbols diffuse along the Doppler dimension, thus

involving the interference χ̃
P. It is difficult to theoretically

evaluate the influence of χ̃
P to the CE accuracy. Hence,

we propose to derive a lower bound, which is obtained by

considering χ̃
P = 0. Or rather, the lower bound corresponds

to the case that Ndata in Fig. 9 is zero. Thus, the variance of

the estimation error ψD is bounded by ψ′
D, i.e.,

ψD ≥ ψ′
D, (58)

where ψ′
D is derived as

ψ′
D = 1

MNL
Tr

{

(

ΛmmseS̃
P − IKL

)

Rc

(

ΛmmseS̃
P − IKL

)H

+ 1
σ2ΛmmseΛ

H
mmse

}

.
(59)

Hence, according to (56) and (58), the MSE of CE is

bounded by

MSE ≥ ψ′
D + ξD. (60)

As analyzed above, the CE accuracy depends on the design

of subspace channel modeling and estimation of projection

coefficients. In the subspace channel modeling, the dimension

K should be set as a appropriate value, not as big as

possible. Although the bigger value of K can achieve a

more accurate modeling result, it also involves more unknown

projection coefficients. According to (59) and (60), estimating

the projection coefficients with a large amount deteriorates

the CE accuracy. On the other hand, for the projection

coefficient estimation, we still have to face a challenge that

how to arrange the pilot symbols with limited overhead, thus

achieving a satisfactory CE accuracy. The above issues will

be addressed in Sec. VI.

C. Computational Complexity of Coefficient Estimation

The computational complexity of the coefficient estimation

is analyzed in terms of the number of complex multiplications

(CMs). The main calculational overhead of acquiring the

coefficients ĉmmse, derives from the calculation of Λmmse

in (49). If the pilot sequences in each OTFS transmission

period are changeable, it will cause calculational burden due

to the update of S̃P in (49). However, in practice, we can set

the pilot sequences are fixed, which means S̃P is constant

rather variable. Note that using the fixed pilot sequences

will not affect the proposed CE scheme. Hence, in this way,

the computational complexity of obtaining ĉmmse can be

significantly decreased. Specifically, obtaining ĉmmse in (48)

requires QKL = (4 (NP +NB)MP + 2MDNP)KL CMs.

The dimension of subspace: K and the number of channel

taps: L are much smaller than M . Also, from Section IV-

A, we have Q ≪ MN . Hence, the implementation of the

proposed CE scheme is cost effective.

V. ITERATIVE OTFS SYMBOL DETECTION

By means of the channel responses acquired by the sub-

space CE, we propose an iterative detection scheme in this

section, to retrieve the OTFS data symbols. The basic ideas

can be concluded as: 1) we propose a time-domain channel

equalizer, which relies on the mathematical LSQR algorithm,

to remove the channel distortion on OTFS symbols; 2) by

leveraging the equalized OTFS symbols (we call them as the

initial OTFS symbol estimates hereafter), the inter-symbol

interference (ISI) can be reconstructed, and further removed

from observation vector y; 2) after ISI cancellation, the

“pure” signal components are accumulated together by using

the MRC technique, so as to efficiently extract the multi-path

diversity of OTFS channel.
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A. Matrix Form of OTFS Transmission

Before introducing the proposed detection scheme, we use

matrix form to express the OTFS transmission. It can help us

investigate the characteristics of channel matrix, and further

design the symbol detector.

...
...

...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

IDI

ISI

=

...
...

...
...

´

0
x

1
x

1M -
x

1M -
y

1
y

0
y

(a) The observed OTFS signal: y = Gx.

 

(b) An instance of G.

Fig. 11. The matrix form of OTFS transmission.

Based on (1) and (2), the OTFS transmission can be

expressed as (the noise is omitted for simplicity)

y = Gx. (61)

As shown in Fig. 11, x ∈ C
MN×1 and y ∈ C

MN×1 contains

the transmitted and received OTFS symbols, respectively,

which are x =
[

xT
0 , · · · ,xT

M−1

]T
; y =

[

yT
0 , · · · ,yT

M−1

]T
.

Matrix G ∈ C
MN×MN denotes the OTFS transmission

matrix, which is block-banded and follows [30]

G =











G0,0 · · · GL−1,0 G1,0

G1,1 G0,1 · · · G2,1

...
...

. . .
...

· · · GL−1,M−1 · · · G0,M−1











, (62)

where G(l−l′)
M

,l ∈ C
N×N ; l, l′ = 0, · · · ,M − 1

is a submatrix. The element in the v-th row and

v′-th column of G(l−l′)
M

,l, is G(l−l′)
M

,l (v, v
′) =

Ω {l, (l − l′)M , v − v′} ; v, v′ = 0, · · · , N − 1. From the

structure of matrix G, the interference in the OTFS system is

generated from two dimensions, namely ISI and inter-Doppler

interference (IDI). The ISI is contributed by the submatrices

G1,l, · · · ,GL−1,l, l = 0, · · · ,M − 1. Meanwhile, the IDI

is contributed by the off-diagonal elements of G(l−l′)
M

,l in

(62).

B. The Proposed Iterative Detector

The proposed OTFS symbol detector is detailed in Fig. 12,

where the inputs come from the equalized OTFS symbols

xIni, received data samples y and DD-domain channel matrix

ISI

Cancellation

QAM

Mapping

Soft or hard

decision

Bits output

 From channel 

equalizer

MRC
0k =

0k ¹

Estimating 

Symbol vector

Ini
x

�x

,G y

l
K

l
gl

l

¢

b

est
�
l
x

(a) The architecture of the proposed iterative OTFS detector.
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Fig. 12. The proposed OTFS symbol detector

G. As illustrated in Fig. 12, the detector mainly consists of

ISI cancellation and MRC operation. In the k-th iteration, the

ISI corresponding to each received OTFS sub-block is recon-

structed by the estimated symbols and channel matrix, accord-

ing to
∑N−1

l′′=0,l′′ 6=l′ Gl+l′,l′′ x̂l+l′−l′′ . Then, the observed sub-

vector will be updated through subtracting the resulting ISI:

bl′

l = yl+l′ −
∑N−1

l′′=0,l′′ 6=l′ Gl+l′,l′′ x̂l+l′−l′′ , where bl′

l can be

treated as the “pure” signal of transmit sub-block spreading at

the delay direction. After ISI elimination, the MRC is invoked

to combine these “pure” signal components, which generates

the accumulated signal vector gl and channel matrix Kl.

Specifically, the iteration process is summarized in Algorithm

1. The iteration process is described in the following part.

LSQR based time-domain equalization: Recalling (7) in

[31], we formulate the time-domain OTFS transmission as

the matrix form (omitting noise vector for simplicity)

yTD = HTDxTD, (63)

where yTD and xTD denote the time-domain received and

transmitted vectors, respectively; HTD ∈ C
MN×MN is the

time-domain channel matrix constructed by CIR samples.

From (63), the time-domain channel equalization is performed

by solving the following LS problem

min
x̂TD∈CMN×1

‖HTDx̂TD − yTD‖2. (64)

The main features of HTD can be summarized: 1) the size

of HTD can be quite large due to the 2-D block-wise trans-

mission of OTFS; 2) matrix HTD is probably ill-conditioned

[37]–[39]; 3) it is a sparse matrix. The features motive us to

adopt mathematical method, i.e., LSQR, to realize (64). In

mathematics, the LSQR [40], was developed to solve large-

scale, ill-conditioned and sparse LS problems as (64). The

method use a recursive strategy to obtain the LS solution

with precision similar as the LMMSE method. Meanwhile,

by exploiting the sparsity of HTD, the iteration process needs
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Algorithm 1 Iterative OTFS symbol detection

Input: yTD, HTD, G, y

Output: x̂

1: Initialization: 1) The LSQR based time-domain equal-

ization: x̂TD = LSQR (yTD,HTD)
2) DD-domain initial symbol estimates: xIni =
Π (FN ⊗ IM ) x̂TD

2: for k = 1 : max iterations do

3: for l = 0 :M − 1 do

4: for l′ = 0 : L− 1 do

5: ISI cancellation:

bl′

l = yl+l′ −
N−1
∑

l′′=0,l′′ 6=l′
Gl+l′,l′′ x̂l+l′−l′′

6: end for

7: MRC operation:

gl =
L−1
∑

l′=0

(Gl,l′)
H
bl′

l ;

Kl =
L−1
∑

l′=0

(Gl,l′)
H
Gl,l′ ;

x̂est
l =

(

(Kl)
H
Kl

)−1

(Kl)
H
gl

Decision: soft or hard decision on x̂est
l ;

8: end for

9: end for

much lower computational overhead. The details of LSQR

algorithm can be found in our existing work [8].

DD-domain initial symbol estimates: By transforming the

time-domain LSQR estimates to DD domain, we can obtain

the accurate initial symbol estimates for the MRC detector.

The initial DD-domain symbol estimates are denoted as xIni,

which follows

xIni = Π (FN ⊗ IM ) x̂TD, (65)

where Π is a permutation matrix [31].

ISI cancellation: In each iteration of MRC scheme, we

first propose to calculate bl′

l ∈ C
N×1, which is also denoted

as ISI cancellation. We have

bl′

l = yl+l′ −
N−1
∑

l′′=0,l′′ 6=l′

Gl+l′,l′′ x̂l+l′−l′′ , (66)

which is denoted as the channel impaired signal component of

xl in the received vector yl+l′ after removing the interference

generated by the other transmitted symbol vectors x̂l+l′−l′′

for l′ − l′′ 6= 0 [32].

MRC operation: From (66), we have











(Gl,0)
H
b0
l = (Gl,0)

H
Gl,0x̂l +wl

...

(Gl,L−1)
H
bL−1
l = (Gl,L−1)

H
Gl,L−1x̂l +wl+L−1

(67)

By combing the whole equations in (67), we have

L−1
∑

l′=0

(Gl,l′)
H
bl′

l =

(

L−1
∑

l′=0

(Gl,l′)
H
Gl,l′

)

x̂l + w̃l, (68)

where w̃l =
L−1
∑

l′=0

w̃l+l′ . Defining

gl =
L−1
∑

l′=0

(Gl,l′)
H
bl′

l ;Kl =
L−1
∑

l′=0

(Gl,l′)
H
Gl,l′ , (69)

the estimation of x̂l is performed as

x̂est
l =

(

(Kl)
H
Kl

)−1

(Kl)
H
gl. (70)

At the end, the hard or soft decision strategy will be adopted

for detecting x̂est
l as data symbols.

VI. SIMULATIONS AND DISCUSSIONS

In this section, the performance of CE and data detection is

evaluated for the OTFS system, where the carrier frequency fc
= 5.9 GHz and subcarrier spacing ∆f =15 KHz. Two OTFS

transmission frames with grid sizes of (M,N) = 32×32 and

32×128 are considered. A recursive systematic convolutional

code with the generator [1, 5/7]8 and coding rate of 1/2 is

employed. The data bits, out of the channel encoder, are

mapped to the 16-QAM, 64-QAM and 256-QAM symbols
5. The pilots, generated by the Zadoff Chu sequences, are

inserted into the OTFS transmission frame as illustrated in

Fig. 9. The averaged pilot power is denoted as T dBW. The

extended vehicular A model, which is specified by 3GPP

for high-speed mobile scenarios [33], is adopted. In the

channel simulator, each path is assumed as independently

and identically distributed random variables correlated in

time according to the classical Clarke model with maximum

Doppler frequency fd [41]. In this paper, we simulate some

scenarios with f̃d = fd/∆f ranging from 5% to 30%,

corresponding the velocities from 137 km/h to 685 km/h. To

acquire validated results, as least 1× 105 OTFS transmission

blocks are simulated in each case.

A. CE and Demodulation Performance in (32, 32) OTFS

System

We first investigate the CE and demodulation performance

in (32, 32) OTFS System. In the system, we consider NP =
N/2 and MP = 1, 2, 3 in the CIPP, corresponding to the

transmission efficiency η = 68.75 %, 75% and 81.25 %,

respectively. Note that when NP = N/2, the shape of CIPP

in Fig. 9 is changed, where the pilot symbols occupies the

whole grids in the Doppler direction. Additionally, two state-

of-the-art schemes, i.e., the SI-based CE [25] and CS-based

CE [28], are included for comparison. The pilot overhead

ratio is set as 50% for both of them, corresponding to η =

50%.

Fig. 13 compares the equivalent channel responses (ECRs)

tracking curves of the l′0-th path and v′0-th Doppler frequency.

The f̃d is set as 20% to demonstrate significant variation

of the ECRs Ω {l, l′0, v′0} with respect to group index l.
The estimated ECRs through our method, denoted as the

red line, highly coincide with the ideal response. However,

5 Note that the proposed CE and symbol detection schemes are not only
applicable to QAM constellation, but also can be used to other constellations,
e.g., pulse amplitude modulation or phase shift keying.
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Fig. 13. The ECRs tracking curves of the l′
0

-th path and v′
0

-th Doppler fre-
quency. The maximum Doppler frequency normalized to subcarrier spacing

f̃d = 20%, corresponding to a velocity of 550 km/h.

the SI-based CE approach [25], can only obtain a single-

point response during the whole groups. The CS-based CE

method [28] can estimate the first few channel responses

while introduces obvious estimation error as l increases.

Fig. 14. The MSE versus SNR in (32, 32) OTFS system, where the pilot

power T is 0 dBW. In the Clarke channel, f̃d = 20%, corresponding to
velocities of 550 km/h.

Fig. 15. The MSE floor comparison of f̃d in (32, 32) OTFS system. The
pilot power T = 0 dBW and the noise variance σ2 = 0.01.

Fig. 14 demonstrates the MSE performance comparison

against the SNR when f̃d = 20%. The SI based CE approach

[25] is to obtain the single-point ECR during one symbol

duration. Therefore, to evaluate the average MSE, the es-

timated ECRs are regarded as constant within the interval

l ∈ [0,M−1]. From Fig. 14, the proposed CE scheme signif-

icantly outperforms the CE schemes respectively developed

in [25] and [28]. As the SI-based CE scheme [25] ignores

the variation of Ω {l, l′, v′} with respect to group index l,

an MSE floor exists when SNR ≥ 20 dB. For the CS-based

CE scheme [28], it outperforms the SI-based CE but still

introduces an MSE floor. The comparison of the MSE floor

against f̃d is presented in Fig. 15, where noise variance is

0.01. For the proposed CE scheme, given the threshold MSE

less than 2× 10−3, the f̃d thresholds for η = 68.75%, 75%

and 81.25% cases are 0.3, 0.23 and 0.12, respectively. In

contrast, for the considered f̃d regime, the MSE values of

other CE schemes cannot reach the level.

Fig. 16. The BER comparison of SNR in (32, 32) OTFS system when f̃d
= 5%. The pilot power T = 0 dBW.

Fig. 17. The BER comparison of SNR in (32, 32) OTFS system when f̃d
= 20%. The pilot power T = 0 dBW.

Figs. 16 and 17 compare the BER versus SNR for different

modulation schemes in velocities of 137 km/h and 550 km/h,

respectively. In Fig. 16, for BER = 1 × 10−5, the required

demodulation SNRs with ideal CE for 16-QAM, 64-QAM

and 256-QAM signaling are about 17 dB, 22.2 dB and

27.3 dB, respectively. The SNR loss under three CE cases,

corresponding to η = 68.75%, 75% and 81.25%, is less than

1.3 dB. From Fig. 17, when f̃d = 20%, the SNR loss under

the CE cases of η = 68.75% and 75% is less than 2.5 dB.

In practice, increasing the pilot power is an alternative

method to improve the CE accuracy in high-mobility envi-

ronments. By doing so, the transmission power for the whole

OTFS block is magnified by

Υ = 10 lg

(

Pis× 10T/10 +Das

Pis+Das

)

dB. (71)

Figs. 18 and 19 demonstrate the BER and peak-to-average

power ratio (PAPR) performance when adopting different
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Fig. 18. The BER performance for different pilot power T in (32, 32) OTFS

system with 64-QAM signaling, where f̃d = 20%. In the CIPP, NP = N/2
and MP = 1, related to η = 81.75%.

Fig. 19. The PAPR performance in (32, 32) OTFS system with 64-QAM
signaling and different pilot power T .

pilot power. In Fig. 18, the black line without marker denotes

the BER performance of 64-QAM signaling with ideal CE.

Without pilot power improvement, the SNR loss under case

“T = 0 dBW,Υ = 0 dB” is about 4 dB. When enhancing

the pilot power by 1 to 2 dB, the MSE curve of case

“T = 0 dBW,Υ = 0 dB” in Fig. 14 will move toward

the left by 1 to 2 dB. Thus, the SNR gaps in Fig. 18

can be directly reduced by 1 to 2 dB. Since the pilot

overhead is relatively small, the increased power Υ for the

whole OTFS block in (71) could be neglected. On the other

hand, the PAPR performance will be deteriorated with the

pilot power enhancement, which is illustrated in Fig. 19. As

we can see, given a complementary cumulative distribution

function (CCDF) level of 3 × 10−4, the threshold for case

“T = 2 dBW,Υ = 0.08 dB” will be magnified by 1 dB,

in contrast to case “T = 0 dBW,Υ = 0 dB”. Hence, in the

practical OTFS system, there should be a tradeoff between the

BER performance, pilot overhead (transmission efficiency),

pilot power and PAPR when facing the high mobilities.

B. CE and Demodulation Performance in (32, 128) OTFS

System

We also investigate the proposed CE and data detection

schemes in (32, 128) OTFS System, where the maximum

Doppler frequency normalized to the subcarrier spacing f̃d =

10%, corresponding to a moderate velocity of 275 km/h. We

consider two pilot configurations, i.e., “Pattern I: NP = N/8,

MP = 2” and “Pattern II: NP = N/8, MP = 1”.

Fig. 20. The MSE versus SNR in (32, 128) OTFS system, where the pilot

power T is 0 dBW. In the Clarke channel, f̃d = 10%, corresponding to a
velocity of 275 km/h.

Fig. 21. The error surface of the proposed and SI-based CE [25] schemes,
where the noise variance σ2 = 0.01. In the CIPP, pilot configuration is
NP = N/8, MP = 1 and Ndata = N/16, which yields η = 81.75%.

Accordingly, the extra grids in Fig. 9 with the number of

2Ndata(MPMGI) are used to place QAM symbols, achieving

an improved transmission efficiency.

Fig. 20 compares the MSE versus SNR for patterns I and

II. The MSE lower bound is calculated from (59) and (60) by

considering Ndata = 0. When SNR < 25 dB, the extra data

symbols hardly affect the CE accuracy. At a high SNR regime,

such as SNR ≥ 25 dB, the interference generated by data

symbols, gradually deteriorates the CE accuracy. To achieve

the satisfactory CE performance and transmission efficiency

simultaneously, we choose NP = N/8,MP = 2, Ndata =
N/16 for Pattern I, and NP = N/8,MP = 1, Ndata = N/16
for Pattern II.

Fig. 21 demonstrates the CE error surface of the l′0-th path

under the SI-based CE method and ours, where

ε (l, l′0, v
′) = Ω (l, l′0, v

′)− Ω̂ (l, l′0, v
′) .

We can see that the proposed CE method significantly out-

performs the SI-based CE scheme [25]. Benefiting from the

precise channel estimates, the values of ‖ε (l, l′0, v′)‖2 are

mostly lower than 1× 10−5 in our scheme.

Fig. 22 compares the BER versus SNR in (32,128) OTFS

system, where the pilot power T is set as 2 dBW. For 256-

QAM signaling, the SNR losses under cases NP = N/8,

MP = 2, Ndata = N/16 and NP = N/8, MP = 1, Ndata =
N/16 are about 0.9 dB and 2.1 dB, respectively, at BER =

2 × 10−5. For 64-QAM signaling, the maximum SNR loss

caused by CE error is about 1.3 dB.
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Fig. 22. The BER comparison of SNR in (32, 128) OTFS system when

f̃d = 10%. The pilot power T = 2 dBW.

VII. CONCLUSIONS

In this paper, we studied the orthogonal time frequen-

cy space (OTFS) signal transmission over the continuous-

Doppler-spread channel with the focus on the channel estima-

tion (CE) and data detection. Specifically, through analyzing

the equivalent channel responses (ECRs) in OTFS system, we

found that the ECRs change significantly within one symbol

block in high-mobility environments. To precisely track the

variations of ECRs, we constructed a low-dimensional sub-

space to characterize the OTFS channel, and further develop

the subspace CE scheme. Based on the estimated ECRs,

an iterative maximal ratio combing detector was developed

by introducing the liner-complexity interference eliminator,

as well as least-squares QR decomposition based channel

equalizer. Simulation results verified that, in high-mobility

environments, the developed OTFS receiver can ideally de-

modulate 256-ary quadrature amplitude modulation symbols,

and the CE error introduced demodulation performance loss

is less than 3 dB.
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