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ABSTRACT
Low-distortion embeddings are critical building blocks for
developing random sampling and random projection algo-
rithms for common linear algebra problems. We show that,
given a matrix A ∈ Rn×d with n� d and a p ∈ [1, 2), with a
constant probability, we can construct a low-distortion em-
bedding matrix Π ∈ RO(poly(d))×n that embeds Ap, the `p
subspace spanned by A’s columns, into (RO(poly(d)), ‖ · ‖p);
the distortion of our embeddings is only O(poly(d)), and
we can compute ΠA in O(nnz(A)) time, i.e., input-sparsity
time. Our result generalizes the input-sparsity time `2 sub-
space embedding by Clarkson and Woodruff [STOC’13]; and
for completeness, we present a simpler and improved analy-
sis of their construction for `2. These input-sparsity time `p
embeddings are optimal, up to constants, in terms of their
running time; and the improved running time propagates to
applications such as (1 ± ε)-distortion `p subspace embed-
ding and relative-error `p regression. For `2, we show that
a (1 + ε)-approximate solution to the `2 regression problem
specified by the matrix A and a vector b ∈ Rn can be com-
puted in O(nnz(A) + d3 log(d/ε)/ε2) time; and for `p, via
a subspace-preserving sampling procedure, we show that a
(1 ± ε)-distortion embedding of Ap into RO(poly(d)) can be
computed in O(nnz(A) · logn) time, and we also show that
a (1 + ε)-approximate solution to the `p regression problem
minx∈Rd ‖Ax − b‖p can be computed in O(nnz(A) · logn +
poly(d) log(1/ε)/ε2) time. Moreover, we can also improve
the embedding dimension or equivalently the sample size to
O(d3+p/2 log(1/ε)/ε2) without increasing the complexity.

Categories and Subject Descriptors
F.2 [ANALYSIS OF ALGORITHMS AND PROB-
LEM COMPLEXITY]: Numerical Algorithms and Prob-
lems
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1. INTRODUCTION
Regression problems are ubiquitous, and the fast compu-

tation of their solutions is of interest in many large-scale data
applications. A parameterized family of regression problems
that is of particular interest is the overconstrained `p regres-
sion problem: given a matrix A ∈ Rn×d, with n > d, a
vector b ∈ Rn, a norm ‖ · ‖p parameterized by p ∈ [1,∞],
and an error parameter ε > 0, find a (1 + ε)-approximate
solution x̂ ∈ Rd to:

f∗ = min
x∈Rd

‖Ax− b‖p,

i.e., find a vector x̂ such that ‖Ax̂− b‖p ≤ (1 + ε)f∗, where

the `p norm of a vector x is ‖x‖p =
(∑

i |xi|
p
)1/p

, defined
to be maxi |xi| for p = ∞. Special cases include the `2 re-
gression problem, also known as the Least Squares problem,
and the `1 regression problem, also known as the Least Ab-
solute Deviations or Least Absolute Errors problem. The
latter is of particular interest as a robust estimation or ro-
bust regression technique, in that it is less sensitive to the
presence of outliers than the former. We are most interested
in this paper in the `1 regression problem due to its robust-
ness properties, but our methods hold for general p ∈ [1, 2],
and thus we formulate our results in `p.

It is well-known that for p ≥ 1, the overconstrained `p
regression problem is a convex optimization problem; for
p = 1 and p = ∞, it is an instance of linear program-
ming; and for p = 2, it can be solved with eigenvector-
based methods such as with the QR decomposition or the
Singular Value Decomposition of A. In spite of their low-
degree polynomial-time solvability, `p regression problems
have been the focus in recent years of a wide range of ran-
dom sampling and random projection algorithms, largely
due to a desire to develop improved algorithms for large-
scale data applications [3, 24, 10]. For example, Clark-
son [9] uses subgradient and sampling methods to compute
an approximate solution to the overconstrained `1 regres-
sion problem in roughly O(nd5 logn) time; and Dasgupta et
al. [12] use well-conditioned bases and subspace-preserving
sampling algorithms to solve general `p regression problems,
for p ∈ [1,∞), in roughly O(nd5 logn) time. A similar
subspace-preserving sampling algorithm was developed by
Drineas, Mahoney, and Muthukrishnan [16] to compute an
approximate solution to the `2 regression problem. The al-
gorithm of [16] relies on the estimation of the `2 leverage
scores1 of A to be used as an importance sampling distribu-

1Recall that for an n × d matrix A, with n � d, the `2
leverage scores of the rows of A are equal to the diagonal el-
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tion, but when combined with the results of Sarlós [28] and
Drineas et al. [17] (that quickly preprocess A to uniformize
those scores) or Drineas et al. [15] (that quickly computes ap-
proximations to those scores), this leads to a random projec-
tion or random sampling (respectively) algorithm for the `2
regression problem that runs in roughlyO(nd log d) time [17,
20]. More recently, Sohler and Woodruff [29] introduced
the Cauchy Transform to obtain improved `1 embeddings,
thereby leading to an algorithm for the `1 regression problem
that runs in O(nd1.376+) time; and Clarkson et al. [10] use
the Fast Cauchy Transform and ellipsoidal rounding meth-
ods to compute an approximation to the solution of general
`p regression problems in roughly O(nd logn) time.

These algorithms, and in particular the algorithms for
p = 2, form the basis for much of the large body of recent
work in randomized algorithms for low-rank matrix approx-
imation, and thus optimizing their properties can have im-
mediate practical benefits. See, e.g., the recent monograph
of Mahoney [20] and references therein for details. Although
some of these algorithms are near-optimal for dense inputs,
they all require Ω(nd log d) time, which can be large if the
input matrix is very sparse. Thus, it was a significant re-
sult when Clarkson and Woodruff [11] developed an algo-
rithm for the `2 regression problem (as well as the related
problems of low-rank matrix approximation and `2 leverage
score approximation) that runs in input-sparsity time, i.e.,
in O(nnz(A) + poly(d/ε)) time, where nnz(A) is the number
of non-zero elements in A and ε is an error parameter. This
result depends on the construction of a sparse embedding
matrix Π for `2. By this, we mean the following: for an
n× d matrix A, an s× n matrix Π such that,

(1− ε)‖Ax‖2 ≤ ‖ΠAx‖2 ≤ (1 + ε)‖Ax‖2,

for all x ∈ Rd. That is, Π embeds the column space of A into
Rs, while approximately preserving the `2 norms of all vec-
tors in that subspace. Clarkson and Woodruff achieve their
improved results for `2-based problems by showing how to
construct such a Π with s = poly(d/ε) and showing that it
can be applied to an arbitrary A in O(nnz(A)) time [11].
(In particular, this embedding result improves the result of
Meng, Saunders, and Mahoney [24], who in their develop-
ment of the parallel least-squares solver LSRN use a re-
sult from Davidson and Szarek [14] to construct a constant-
distortion embedding for `2 that runs in O(nnz(A) ·d) time.)
Interestingly, the analysis of Clarkson and Woodruff cou-
pled ideas from the data streaming literature with the struc-
tural fact that there cannot be too many high-leverage con-
straints/rows in A. In particular, they showed that the
high-leverage parts of the subspace may be viewed as heavy-
hitters that are “perfectly hashed,” and thus contribute no
distortion, and that the distortion of the rest of the subspace
as well as the “cross terms” may be bounded with a result
of Dasgupta, Kumar, and Sarlós [13].

In this paper, we provide improved low-distortion sub-
space embeddings for `p, for all p ∈ [1, 2], in input-sparsity
time. We also show that, by coupling with recent work on
fast subspace-preserving sampling from [10], these embed-
dings can be used to provide (1+ε)-approximate solutions to

ements of the projection matrix onto the span of A. See [20,
15] for details; and note that they can be generalized to `1
and other `p norms [10] as well as to arbitrary n×d matrices,
with both n and d large [21, 15].

`p regression problems, for p ∈ [1, 2], in nearly input-sparsity
time. In more detail, our main results are the following.

First, for `2, we obtain an improved result for the input-
sparsity time (1± ε)-distortion embedding of [11]. In partic-
ular, for the same embedding procedure, we obtain improved
bounds for the embedding dimension with a much simpler
analysis than [11]. See Theorem 1 of Section 3 for a pre-
cise statement of this result. Our analysis is direct and does
not rely on splitting the high-dimensional space into a set
of heavy-hitters consisting of the high-leverage components
and the complement of that heavy-hitting set. Since our re-
sult directly improves the `2 embedding result of Clarkson
and Woodruff [11], it immediately leads to improvements
for the `2 regression, low-rank matrix approximation, and
`2 leverage score estimation problems that they consider.

Second, for `1, we obtain a low-distortion sparse embed-
ding matrix Π such that ΠA can be computed in input-
sparsity time. That is, we construct an embedding matrix
Π ∈ RO(poly(d))×n such that, for all x ∈ Rd,

1/O(poly(d)) · ‖Ax‖1 ≤ ‖ΠAx‖1 ≤ O(poly(d)) · ‖Ax‖1,

with a constant probability, and ΠA can be computed in
O(nnz(A)) time. See Theorem 2 of Section 4 for a precise
statement of this result. Here, our proof involves splitting
the set Y = {Ux | ‖x‖∞ = 1, x ∈ Rd}, where U is an `1
well-conditioned basis for the span of A, into two parts,
informally a subset where coordinates of high `1 leverage
dominate ‖y‖1 and the complement of that subset. This `1
result leads to immediate improvements in `1-based prob-
lems. For example, by taking advantage of the fast version
of subspace-preserving sampling from [10], we can construct
and apply a (1± ε)-distortion sparse embedding matrix for
`1 in O(nnz(A) · logn+poly(d/ε)) time. In addition, we can
use it to compute a (1 + ε)-approximation to the `1 regres-
sion problem in O(nnz(A) · logn+ poly(d/ε)) time, which in
turn leads to immediate improvements in `1-based matrix
approximation objectives, e.g., for the `1 subspace approxi-
mation problem [6, 29, 10].

Third, for `p, for all p ∈ (1, 2), we obtain a low-distortion
sparse embedding matrix Π such that ΠA can be computed
in input-sparsity time. That is, we construct an embedding
matrix Π ∈ RO(poly(d))×n such that, for all x ∈ Rd,

1/O(poly(d)) · ‖Ax‖p ≤ ‖ΠAx‖p ≤ O(poly(d)) · ‖Ax‖p,

with a constant probability, and ΠA can be computed in
O(nnz(A)) time. See Theorem 4 of Section 5 for a precise
statement of this result. Here, our proof generalizes the `1
result, but we need to prove upper and lower tail bound
inequalities for sampling from general p-stable distributions
that are of independent interest. Although these distribu-
tions don’t have closed forms for p ∈ (1, 2) in general, we
prove that there exists an order among the Cauchy distribu-
tion, a p-stable distribution with p ∈ (1, 2), and the Gaussian
distribution such that for all p ∈ (1, 2) we can use the upper
bound from the Cauchy distribution and the lower bound
from the Gaussian distribution. As with our `1 result, this `p
result has several extensions: in O(nnz(A)·logn+poly(d/ε))
time, we can construct and apply a (1± ε)-distortion sparse
embedding matrix for `p; in O(nnz(A) · logn + poly(d/ε))
time, we can compute a (1 + ε)-approximation to the `p re-
gression problem; and in O(nnz(A) · d log d) time, we can
construct and apply a near-optimal (in terms of embedding
dimension and distortion factor) embedding matrix.
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The (1 ± ε)-distortion subspace embedding (for `p, p ∈
[1, 2), that we construct from the input-sparsity time embed-
ding and the fast subspace-preserving sampling) has embed-
ding dimension s = O(poly(d) log(1/ε)/ε2), where the some-
what large poly(d) term directly multiplies the log(1/ε)/ε2

term. We can also improve this, showing that it is possible,
without increasing the overall complexity, to decouple the
large poly(d) and log(1/ε)/ε2 via another round of sampling
and conditioning, thereby obtaining an embedding dimen-
sion that is a small poly(d) times log(1/ε)/ε2. See Theorem 7
of Section 6 for a precise statement of this result.

Remark. Subsequent to our posting the first version
of this paper on arXiv [23], Clarkson and Woodruff let us
know that, independently of us, they used a result from [10]
to extend their `2 subspace embedding from [11] to pro-
vide a nearly input-sparsity time algorithm for `p regres-
sion, for all p ∈ [1,∞). This is now posted as Version 2
of [11]. Their approach requires solving a rounding prob-
lem of size O(n/ poly(d))× d, which depends on n (possibly
very large). Our approach via input-sparsity time oblivious
low-distortion `p subspace embeddings does not contain this
intermediate step and it only needs O(poly(d)) storage.
Remark. In the first version of this paper, the embedding

dimension for `2 in Theorem 1 was O(d4/ε2). Subsequent to
the dissemination of this version, Drineas pointed out to us
that our result could very easily be improved to O(d2/ε2).
Nelson and Nguyen also let us know that, at about the same
time and using the same technique, but independent of us,
they first published the O(d2/ε2) embedding result [26].

2. BACKGROUND
We use ‖ · ‖p to denote the `p norm of a vector, ‖ · ‖2

the spectral norm of a matrix, ‖ · ‖F the Frobenius norm
of a matrix, and | · |p the element-wise `p norm of a matrix.
Given A ∈ Rn×d with full column rank and p ∈ [1, 2], we use
Ap to denote the `p subspace spanned by A’s columns. We
are interested in fast embedding of Ap into a d-dimensional
subspace of (Rpoly(d), ‖ · ‖p), with distortion either poly(d)
or (1± ε), for some ε > 0, as well as applications of this em-
bedding to problems such as `p regression. We assume that
n � poly(d) ≥ d � logn. To state our results, we assume
that we are capable of computing a (1+ε)-approximate solu-
tion to an `p regression problem of size n′×d for some ε > 0,
as long as n′ is independent of n. Denote the running time
needed to solve this smaller problem by T p(ε;n′, d). In the-
ory, we have T 2(ε;n′, d) = O(n′d log(d/ε) +d3) (see Drineas
et al. [17]), and T p(ε;n′, d) = O((n′d2 + poly(d)) log(n′/ε)),
for general p (see Mitchell [25]).

Conditioning.
The `p subspace embedding and `p regression problems

are closely related to the concept of conditioning. We state
here two related notions of `p-norm conditioning and then a
lemma that characterizes the relationship between them.

Definition 1 ([10]). Given an n×d matrix A and p ∈
[1,∞], let σmax

p (A) = max‖x‖2≤1 ‖Ax‖p and let σmin
p (A) =

min‖x‖2≥1 ‖Ax‖p. Then, we denote by κp(A) the `p-norm

condition number of A: κp(A) = σmax
p (A)/σmin

p (A). For

simplicity, we will use κp, σmin
p , and σmax

p when the un-
derlying matrix is clear.

Definition 2 ([12]). Given an n×d matrix A and p ∈
[1,∞], let q be the dual norm of p. Then A is (α, β, p)-
conditioned if (1) |A|p ≤ α, and (2) for all z ∈ Rd, ‖z‖q ≤

β‖Az‖p. Define κ̄p(A) as the minimum value of αβ such
that A is (α, β, p)-conditioned.

Lemma 1 ([10]). Given an n × d matrix A and p ∈
[1,∞]: d−|1/2−1/p|κp(A) ≤ κ̄p(A) ≤ dmax{1/2,1/p}κp(A).

Remark. Given the equivalence established by Lemma 1,
we will say that A is well-conditioned in the `p norm if κp(A)
or κ̄p(A) = O(poly(d)), independent of n.

Although for an arbitrary matrix A ∈ Rn×d, the condition
numbers κp(A) and κ̄p(A) can be arbitrarily large, we can
find a matrix R ∈ Rd×d such that AR−1 is well-conditioned.
This procedure is called conditioning, and there exist two
approaches for conditioning: via low-distortion `p subspace
embedding and via ellipsoidal rounding.

Definition 3. Given an n × d matrix A and a number
p ∈ [1,∞], Π ∈ Rs×n is a low-distortion embedding of Ap
if s = O(poly(d)) and ∀x ∈ Rd:

1/O(poly(d)) · ‖Ax‖p ≤ ‖ΠAx‖p ≤ O(poly(d)) · ‖Ax‖p.

Remark. Given a low-distortion embedding matrix Π of
Ap, let R be the “R” matrix from the QR decomposition of
ΠA. Then, AR−1 is well-conditioned in the `p norm.

For a discussion of ellipsoidal rounding, we refer readers
to Clarkson et al. [10]. In this paper, we simply cite the
following lemma, which is based on ellipsoidal rounding.

Lemma 2 ([10]). Given an n × d matrix A and p ∈
[1,∞], it takes at most O(nd3 logn) time to find a matrix
R ∈ Rd×d such that κp(AR

−1) ≤ 2d.

Subspace-preserving sampling and `p regression.
Given R ∈ Rd×d such that AR−1 is well-conditioned in

the `p norm, we can construct a (1 ± ε)-distortion embed-
ding, specifically a subspace-preserving sampling, of Ap in
O(nnz(A) · logn) additional time and with a constant prob-
ability. This result from Clarkson et al. [10, Theorem 5.4]
improves the subspace-preserving sampling algorithm pro-
posed by Dasgupta et al. [12] by estimating the row norms
of AR−1 (instead of computing them exactly) to define im-
portance sampling probabilities.

Lemma 3 ([10]). Given a matrix A ∈ Rn×d, p ∈ [1,∞),
ε > 0, and a matrix R ∈ Rd×d such that AR−1 is well-
conditioned, it takes O(nnz(A) · logn) time to compute a
sampling matrix S ∈ Rs×n (with only one nonzero element

per row) with s = O(κ̄pp(AR
−1)d|p/2−1|+1 log(1/ε)/ε2) such

that with a constant probability,

(1− ε)‖Ax‖p ≤ ‖SAx‖p ≤ (1 + ε)‖Ax‖p, ∀x ∈ Rd .

Given a subspace-preserving sampling algorithm, Clarkson
et al. [10, Theorem 5.4] show it is straightforward to compute
a 1+ε

1−ε -approximate solution to an `p regression problem.

Lemma 4 ([10]). Given an `p regression problem speci-
fied by A ∈ Rn×d, b ∈ Rn, and p ∈ [1,∞), let S be a (1± ε)-
distortion embedding matrix of the subspace spanned by A’s
columns and b from Lemma 3, and let x̂ be an optimal solu-
tion to the subsampled problem minx∈Rd ‖SAx−Sb‖p. Then
x̂ is a 1+ε

1−ε -approximate solution to the original problem.

Remark. Collecting these results, we see that low-distortion
`p subspace embedding is a fundamental building block (and
very likely a bottleneck) for (1 ± ε)-distortion `p subspace
embeddings, as well as for a (1 + ε)-approximation to an `p
regression problem. This motivates our work and its em-
phasis on finding low-distortion subspace embeddings.
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Stable distributions.
We use properties of p-stable distributions for analyzing

input-sparsity time low-distortion `p subspace embeddings.

Definition 4. A distribution D over R is called p-stable,
if for any m real numbers a1, . . . , am, we have

m∑
i=1

aiXi '

(
m∑
i=1

|ai|p
)1/p

X,

where Xi
iid∼ D and X ∼ D. By “X ' Y ”, we mean X and

Y have the same distribution.

By Lévy [19], it is known that p-stable distributions exist
for p ∈ (0, 2]; and from Chambers et al. [7], it is known that
p-stable random variables can be generated efficiently, thus
allowing their practical use. Let us use Dp to denote the
“standard” p-stable distribution, for p ∈ [1, 2], specified by

its characteristic function ψ(t) = e−|t|
p

. It is known that
D1 is the standard Cauchy distribution, and that D2 is the
Gaussian distribution with mean 0 and variance 2.

Tail inequalities.
We note two inequalities from Clarkson et al. [10] regard-

ing the tails of the Cauchy distribution.
Lemma 5. For i = 1, . . . ,m, let Ci be m (not necessarily

independent) standard Cauchy variables, and γi > 0 with
γ =

∑
i γi. Let X =

∑
i γi|Ci|. For any t > 1,

Pr[X > tγ] ≤ 1

πt

(
log(1 + (2mt)2)

1− 1/(πt)
+ 1

)
.

For simplicity, we assume that m ≥ 3 and t ≥ 1, and then
we have Pr[X > tγ] ≤ 2 log(mt)/t.

Lemma 6. For i = 1, . . . ,m, let Ci be independent stan-
dard Cauchy random variables, and γi ≥ 0 with γ =

∑
i γi.

Let X =
∑
i γi|Ci|. Then, for any t > 0,

log Pr[X ≤ (1− t)γ] ≤ −γt2

3 maxi γi
.

The following result about Gaussian variables is a direct
consequence of Maurer’s inequality ([22]), and we will use it
to derive lower tail inequalities for p-stable distributions.

Lemma 7. For i = 1, . . . ,m, let Gi be independent stan-
dard Gaussian random variables, and γi ≥ 0 with γ =

∑
i γi.

Let X =
∑
i γi|Gi|

2. Then, for any t > 0,

log Pr[X ≤ (1− t)γ] ≤ −γt2

6 maxi γi
.

3. MAIN RESULTS FOR `2 EMBEDDING
Here is our result for input-sparsity time low-distortion

subspace embeddings for `2. See also Nelson and Nguyen [26]
for a similar result with a slightly better constant.

Theorem 1. Given a matrix A ∈ Rn×d and ε ∈ (0, 1),
let Π = SD where S ∈ Rs×n has each column chosen in-
dependently and uniformly from the s standard basis vectors
of Rs and D ∈ Rn×n is a diagonal matrix with diagonal
entries chosen independently and uniformly from ±1. Let
s = (d2 + d)/(ε2δ). Then with probability at least 1− δ,

(1− ε)‖Ax‖2 ≤ ‖ΠAx‖2 ≤ (1 + ε)‖Ax‖2, ∀x ∈ Rd .

In addition, ΠA can be computed in O(nnz(A)) time.

The construction of Π in this theorem is the same as in
Clarkson and Woodruff [11]. There, s = O((d/ε)4 log2(d/ε))
in order to achieve (1 ± ε) distortion with a constant prob-
ability. Theorem 1 shows that it actually suffices to set
s = O((d2 + d)/ε2). Surprisingly, the proof is rather simple.
Let X = UTΠTΠU , where U is an orthonormal basis for
A2. Compute E[‖X − I‖2F ] and apply Markov’s inequality
to ‖X−I‖2F ≤ ε2, which implies ‖X−I‖2 ≤ ε and hence the
embedding result. See Appendix A.1 for a complete proof.
Remark. The O(nnz(A)) running time is indeed optimal,
up to constant factors, for general inputs. Consider the case
when A has an important row aj such that A becomes rank-
deficient without it. Thus, we have to observe aj in order
to compute a low-distortion embedding. However, without
any prior knowledge, we have to scan at least a constant
portion of the input to guarantee that aj is observed with
a constant probability, which takes O(nnz(A)) time. Note
that this optimality result applies to general p.

The results of Theorem 1 propagate to related applica-
tions, e.g., to the `2 regression problem, the low-rank ma-
trix approximation problem and the problem of computing
approximations to the `2 leverage scores. Since it underlies
the other applications, only the `2 regression improvement
is stated here explicitly; its proof is basically combining our
Theorem 1 with Theorem 19 of [11].

Corollary 1. With a constant probability, a (1 + ε)-
approximate solution to an `2 regression problem can be com-
puted in O(nnz(A) + T 2(ε; d2/ε2, d)) time.

Remark. Although our simpler direct proof leads to a bet-
ter result for `2 subspace embedding, the technique used in
the proof of Clarkson and Woodruff [11], which splits coor-
dinates into “heavy” and “light” sets based on the leverage
scores, highlights an important structural property of `2 sub-
space: that only a small subset of coordinates can have large
`2 leverage scores. (We note that the technique of splitting
coordinates is also used by Ailon and Liberty [1] to get an
unrestricted fast Johnson-Lindenstrauss transform; and that
the difficulty in finding and approximating the large-leverage
directions was—until recently [20, 15]—responsible for diffi-
culties in obtaining fast relative-error random sampling al-
gorithms for `2 regression and low-rank matrix approxima-
tion.) An analogous structural fact holds for `1 and other `p
spaces. Using this property, we can construct novel input-
sparsity time `p subspace embeddings for general p ∈ [1, 2),
as we discuss in the next two sections.

4. MAIN RESULTS FOR `1 EMBEDDING
Here is our result for input-sparsity time low-distortion

subspace embeddings for `1.

Theorem 2. Given A ∈ Rn×d, let Π = SC ∈ Rs×n,
where S ∈ Rs×n has each column chosen independently and
uniformly from the s standard basis vectors of Rs, and where
C ∈ Rn×n is a diagonal matrix with diagonals chosen inde-
pendently from the standard Cauchy distribution. Set s =
ωd5 log5 d with ω sufficiently large. Then with a constant
probability, we have ∀x ∈ Rd:

1/O(d2 log2 d) · ‖Ax‖1 ≤ ‖ΠAx‖1 ≤ O(d log d) · ‖Ax‖1.

In addition, ΠA can be computed in O(nnz(A)) time.

The construction of the `1 subspace embedding matrix is
different than its `2 norm counterpart only by the diago-
nal elements of D (or C): whereas we use ±1 for the `2
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norm, we use Cauchy variables for the `1 norm. The proof
of Theorem 2 uses the technique of splitting coordinates, the
fact that the Cauchy distribution is 1-stable, and the upper
and lower tail tail inequalities from Lemmas 5 and 6. See
Appendix A.2 for a complete proof.
Remark. As mentioned above, theO(nnz(A)) running time
is optimal. Whether the distortion O(d3 log3 d) is optimal is
still an open question. However, for the same construction of
Π, we can provide a “bad” case that provides a lower bound.

Choose A =
(
Id 0

)T
. Suppose that s is sufficiently large

such that with an overwhelming probability, the top d rows
of A are perfectly hashed, i.e., ‖ΠAx‖1 =

∑d
k=1 |ck||xk|,

∀x ∈ Rd, where ck is the k-th diagonal of C. Then, the
distortion of Π is maxk≤d |ck|/mink≤d |ck| ≈ O(d2). There-
fore, at most an O(d log3 d) factor of the distortion is due to
artifacts in our analysis.

Our input-sparsity time `1 subspace embedding of Theo-
rem 2 improves the O(nnz(A) · d log d)-time embedding by
Sohler and Woodruff [29] and the O(nd logn)-time embed-
ding of Clarkson et al. [10]. In addition, by combining The-
orem 2 and Lemma 3, we can compute a (1 ± ε)-distortion
embedding in nearly input-sparsity time.

Theorem 3. Given A ∈ Rn×d, it takes O(nnz(A) · logn)
time to compute a sampling matrix S ∈ Rs×n with s =
O(poly(d) log(1/ε)/ε2) such that with a constant probability,
S embeds A1 into (Rs, ‖ · ‖1) with distortion 1± ε.

Our improvements in Theorems 2 and 3 also propagate to
related `1-based applications, including the `1 regression and
the `1 subspace approximation problem considered in [29,
10]. As before, only the regression improvement is stated
here explicitly. For completeness, we present in Algorithm 1
our algorithm for solving `1 regression problems in nearly
input-sparsity time. The brief proof of Corollary 2, our
main quality-of-approximation result for Algorithm 1, may
be found in Appendix A.3.

Algorithm 1 Fast `1 Regression Approximation in
O(nnz(A) · logn+ poly(d) log(1/ε)/ε2) Time

Input: A ∈ Rn×d, b ∈ Rn, and ε ∈ (0, 1/2).
Output: A (1 + ε)-approximation solution x̂ to

minx∈Rd ‖Ax− b‖1, with a constant probability.
1: Let Ā =

(
A b

)
and denote Ā1 the `1 subspace spanned

by A’s columns and b.
2: Compute a low-distortion embedding Π ∈ RO(poly(d))×n

of Ā1 (Theorem 2).

3: Compute R̄ ∈ R(d+1)×(d+1) from ΠĀ such that ĀR̄−1 is
well-conditioned (QR or Lemma 2).

4: Compute a (1 ± ε/4)-distortion embedding matrix S ∈
RO(poly(d) log(1/ε)/ε2)×n of Ā1 (Lemma 3).

5: Compute a (1 + ε/4)-approximate solution x̂ to
minx∈Rd ‖SAx− Sb‖1.

Corollary 2. With a constant probability, Algorithm 1
computes a (1+ε)-approximation to an `1 regression problem
in O(nnz(A) · logn+ T 1(ε; poly(d) log(1/ε)/ε2, d)) time.

Remark. For readers familiar with the impossibility re-
sults for dimension reduction in `1 [8, 18, 5], note that those
results apply to arbitrary point sets of size n and are inter-
ested in embeddings that are “oblivious,” in that they do not

depend on the input data. In this paper, we only consider
points in a subspace, and the subspace-preserving sampling
procedure of [12] that we use is data-dependent.

5. MAIN RESULTS FOR `p EMBEDDING
In this section, we use the properties of p-stable distri-

butions to generalize the input-sparsity time `1 subspace
embedding to `p norms, for p ∈ (1, 2). Generally, Dp does
not have explicit PDF/CDF, which increases the difficulty
for theoretical analysis. Indeed, the main technical difficulty
here is that we are not aware of `p analogues of Lemmas 5
and 6 that would provide upper and lower tail inequality for
p-stable distributions. (Indeed, even Lemmas 5 and 6 were
established only recently [10].)

Instead of analyzing Dp directly, for any p ∈ (1, 2), we
establish an order among the Cauchy distribution, the p-
stable distribution, and the Gaussian distribution, and then
we derive upper and lower tail inequalities for the p-stable
distribution similar to the ones we used to prove Theorem 2.
We state these technical results here since they are of inde-
pendent interest. We start with the following lemma, which
is proved in Appendix A.4 and which establishes this order.

Lemma 8. For any p ∈ (1, 2), there exist constants αp >
0 and βp > 0 such that

αp|C| � |Xp|p � βp|G|2,

where C is a standard Cauchy variable, Xp ∼ Dp, G is a
standard Gaussian variable. By “X � Y ” we mean Pr[X ≥
t] ≥ Pr[Y ≥ t], ∀t ∈ R.

Our numerical results suggest that the constants αp and βp
are not too far away from 1. See [23] for more details.

Lemma 8 suggests that we can use Lemma 5 (regard-
ing Cauchy random variables) to derive upper tail inequal-
ities for general p-stable distributions and that we can use
Lemma 7 (regarding Gaussian variables) to derive lower tail
inequalities for general p-stable distributions. The following
two lemmas establish these results; the proofs of these lem-
mas are provided in Appendixes A.5 and A.6, respectively.

Lemma 9. Given p ∈ (1, 2), for i = 1, . . . ,m, let Xi be
m (not necessarily independent) random variables sampled
from Dp, and γi > 0 with γ =

∑
i γi. Let X =

∑
i γi|Xi|

p.
Assume that m ≥ 3. Then for any t ≥ 1,

Pr[X ≥ tαpγ] ≤ 2 log(mt)

t
.

Lemma 10. For i = 1, . . . ,m, let Xi be independent ran-
dom variables sampled from Dp, and γi ≥ 0 with γ =

∑
i γi.

Let X =
∑
i γi|ci|. Then,

log Pr[X ≤ (1− t)βpγ] ≤ −γt2

6 maxi γi
.

Given these results, here is our main result for input-
sparsity time low-distortion subspace embeddings for `p. The
proof of this theorem is similar to the proof of Theorem 2,
except that we replace the `1 norm ‖ · ‖1 by ‖ · ‖pp and use
Lemmas 9 and 10 (rather than Lemmas 5 and 6).

Theorem 4. Given A ∈ Rn×d and p ∈ (1, 2), let Π =
SD ∈ Rs×n where S ∈ Rs×n has each column chosen inde-
pendently and uniformly from the s standard basis vectors
of Rs, and where D ∈ Rn×n is a diagonal matrix with di-
agonals chosen independently from Dp. Set s = ωd5 log5 d
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with ω sufficiently large. Then with a constant probability,
we have ∀x ∈ Rd:

1/O((d log d)2/p)‖Ax‖p ≤ ‖ΠAx‖p ≤ O((d log d)1/p)‖Ax‖p.

In addition, ΠA can be computed in O(nnz(A)) time.

Then, by combining Theorem 4 and Lemma 3, we can com-
pute a (1±ε)-distortion embedding in O(nnz(A)·logn) time.

Theorem 5. Given A ∈ Rn×d and p ∈ (1, 2), it takes
O(nnz(A) · logn) time to find a sampling matrix S ∈ Rs×n
with s = O(poly(d) log(1/ε)/ε2) such that with a constant
probability, S embeds Ap into (Rs, ‖·‖p) with distortion 1±ε.

Similar to the `1 case, Theorem 5 improves the O(nd logn)-
time embedding of Clarkson et al. [10]. As we mentioned in
Section 1, their construction (and hence the construction of
[11]) works for all p ∈ [1,∞), but it requires solving a round-
ing problem of sizeO(n/ poly(d))×d as an intermediate step,
which may become intractable when n is very large or in a
streaming environment, while our construction only needs
O(poly(d)) storage. Our improvements for `p subspace em-
bedding also propagate to related `p-based applications. In
particular, we can establish an improved algorithm for solv-
ing the `p regression problem in nearly input-sparsity time.

Corollary 3. Given p ∈ (1, 2), with a constant probabil-
ity, it takes O(nnz(A) · logn+ T p(ε; poly(d) log(1/ε)/ε2, d))
time to compute a (1 + ε)-approximate solution to an `p re-
gression problem.

For completeness, we also present a result for low-distortion
dense embeddings for `p that the tail inequalities from Lem-
mas 9 and 10 enable us to construct. See Appendix A.7 for
a proof of the following theorem.

Theorem 6. Given A ∈ Rn×d with full column rank and
p ∈ (1, 2), let Π ∈ Rs×n whose entries are i.i.d. samples from
Dp. If s = ωd log d for ω sufficiently large, with a constant
probability, we have ∀x ∈ Rd:

1/O(1) · ‖Ax‖p ≤ ‖ΠAx‖p ≤ O((d log d)1/p) · ‖Ax‖p.

In addition, ΠA can be computed in O(nnz(A) ·d log d) time.

Remark. The result in Theorem 6 is based on a dense `p
subspace embeddings that is analogous to the dense Gaus-
sian embedding for `2 and the dense Cauchy embedding
of [29] for `1. Although the running time (if one is sim-
ply interested in FLOP counts in RAM) of Theorem 6 is
somewhat worse than that of Theorem 4, the embedding
dimension and condition number quality (the ratio of the
upper bound on the distortion and the lower bound on the
distortion) are much better. Our numerical implementa-
tions, both with the `1 norm [10] and with the `2 norm [24],
strongly suggest that the latter quantities are more impor-
tant to control when implementing randomized regression
algorithms in large-scale parallel and distributed settings.

6. IMPROVED EMBEDDING DIMENSION
In Theorem 2 and Theorem 4, the embedding dimension

is s = O(poly(d) log(1/ε)/ε2), where the poly(d) term is a
somewhat large polynomial of d that directly multiplies the
log(1/ε)/ε2 term. (See the remark below for comments on
the precise value of the poly(d) term.) This is not ideal
for the subspace embedding and the `p regression, because

we want to have a small embedding dimension and a small
subsampled problem, respectively. Here, we show that it
is possible to decouple the large polynomial of d and the
log(1/ε)/ε2 term via another round of sampling and condi-
tioning without increasing the complexity. See Algorithm 2
for details on this procedure. Theorem 7 provides our main
quality-of-approximation result for Algorithm 2; its proof
can be found in Appendix A.8.

Algorithm 2 Improving the Embedding Dimension

Input: A ∈ Rn×d, p ∈ [1, 2), and ε ∈ (0, 1).
Output: A (1 ± ε)-distortion embedding matrix S ∈

RO(d3+p/2 log(1/ε)/ε2)×n of Ap.
1: Compute a low-distortion embedding Π̃ ∈ RO(poly(d))×n

of Ap (Theorems 2 and 4).

2: Compute R̃ ∈ Rd×d from Π̃A such that AR̃−1 is well-
conditioned (QR or Lemma 2).

3: Compute a (1 ± 1/2)-distortion embedding matrix S̃ ∈
RO(poly(d)×n) of Ap (Lemma 3).

4: Compute R ∈ Rd×d such that κp(S̃AR
−1) ≤ 2d (Theo-

rem 2).
5: Compute a (1 ± ε)-distortion embedding matrix S ∈

RO(d3+p/2 log(1/ε)/ε2)×n of Ap (Lemma 3).

Theorem 7. Algorithm 2 computes a (1 ± ε)-distortion

embedding of Ap into (RO(d3+p/2 log(1/ε)/ε2), ‖ · ‖p) in time
O(nnz(A) · logn) with a constant probability.

Then, by applying Theorem 7 to the `p regression problem,
we can improve the size of the subsampled problem and
hence the overall running time.

Corollary 4. Given p ∈ [1, 2), with a constant prob-
ability, a (1 + ε)-approximate solution to an `p regression
problem can be computed in

O(nnz(A) · logn+ T p(ε; d3+p/2 log(1/ε)/ε2, d))

time. The second term comes from solving a subsampled
problem of size O(d3+p/2 log(1/ε)/ε2)× d.

Remark. We have stated our results in the previous sec-
tions as poly(d) without stating the value of the polynomial
because there are numerous trade-offs between the condi-
tioning quality and the running time. For example, let p = 1.
We can use a rounding algorithm instead of QR to com-
pute the R matrix. If we use the input-sparsity time em-
bedding with the O(d)-rounding algorithm of [10], then the
running time to compute the (1 ± ε)-distortion embedding
is O(nnz(A) · logn+d8/ε2) and the embedding dimension is
O(d6.5/ε2) (ignoring log factors). If, on the other hand, we
use QR to compute R, then the running time is O(nnz(A) ·
logn + d7/ε2) and the embedding dimension is O(d8/ε2).
However, with the result from this section, the running time
is simply O(nnz(A) · logn + poly(d) + T p(ε; d3+p/2/ε2, d))
and the poly(d) term can be absorbed by the nnz(A) term.
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APPENDIX
A.1 Proof of Theorem 1

Let the n × d matrix U be an orthonormal basis for the
range of the n× d matrix A. Rather than proving the theo-
rem by establishing that

(1− ε)‖Uz‖2 ≤ ‖ΠUz‖2 ≤ (1 + ε)‖Uz‖2

holds for all z ∈ Rd, as is essentially done in, e.g., [16] and
[11], we note that UTU = Id, and we directly bound the ex-
tent to which the embedding process perturbs this product.
To do so, define X = (ΠU)T (ΠU) = UTDTSTSDU, i.e.,

xkl =

s∑
i=1

(
n∑
j=1

sijdjujk

)(
n∑
j=1

sijdjujl

)
, k, l ∈ {1, . . . , d},
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where sij is the (i, j)-th element of S, dj is the j-th diagonal
element of D, and ujk is the (j, k)-th element of U . We will
use the following facts in the proof:

E[dj1dj2 ] = δj1j2 ,

E[si1j1si2j2 ] =


1
s2

if j1 6= j2,
1
s

if i1 = i2, j1 = j2,

0 if i1 6= i2, j1 = j2.

Given these, it is easy to show that E[xkl] = δkl and that

E[x2kl] =

{
1 + 2

s
(1− ‖U∗k‖44) if k = l,

1
s
(1− 2〈U2

∗k, U
2
∗l〉) if k 6= l.

Given these results, it is easy to obtain that

E[‖X − I‖2F ] =
∑
k,l

E[(xkl − δkl)2]

=
2

s

(∑
k

(1− ‖U∗k‖44) +
∑
k<l

(1− 2〈U2
∗k, U

2
∗l〉)

)
≤ d2 + d

s
.

For any δ ∈ (0, 1), set s = (d2+d)/(ε2δ). Then, by Markov’s
inequality,

Pr[‖X − I‖F ≥ ε] = Pr[‖X − I‖2F ≥ ε2] ≤ d2 + d

ε2s
= δ.

Therefore, with probability at least 1−δ, we have ‖X−I‖2 ≤
‖X − I‖F ≤ ε, which implies

(1− ε)‖Uz‖2 ≤ ‖ΠUz‖2 ≤ (1 + ε)‖Uz‖2.

A.2 Proof of Theorem 2

Lemma 11. (Auerbach [2]) Let (A, ‖·‖) be a d-dimensional
normed vector space. There exists a basis {e1, . . . , ed} of A,
called Auerbach basis, such that ‖ek‖ = 1 and ‖ek‖∗ = 1
for k = 1, . . . , d, where {e1, . . . , en} is a basis of A∗ dual to
{e1, . . . , en}.

This Auerbach’s lemma implies that a (d, 1, 1)-conditioned
basis matrix ofA1 exists, which will be denoted by U through-
out the proof. By definition, U ’s columns are unit vectors in
the `1 norm (thus |U |1 = d, where recall that |·|1 denotes the
element-wise `1 norm of a matrix) and ‖x‖∞ ≤ ‖Ux‖1, ∀x ∈
Rd. Denote by uj the j-th row of U , j = 1, . . . , n. Define
vj = ‖uj‖1 the `1 leverage scores of A. We have

∑
j vj =

|U |1 = d. Let τ > 0 to be determined later, and define two
index sets H = {j | vj ≥ τ} and L = {j | vj < τ}. It is easy
to see that |H| ≤ d

τ
where | · | is used to denote the size of

a finite set, and ‖vL‖∞ ≤ τ where

vLj =

{
vj , if j ∈ L
0, otherwise

, j = 1, . . . , n.

Similarly, when an index set appears as a superscript, we
mean zeroing out elements or rows that do not belong to
this index set, e.g., vL and UL. Define

Y = {y ∈ Rn | y = Ux, ‖x‖∞ = 1, x ∈ Rd}.

For any y = Ux ∈ Y , we have ‖y‖1 = ‖Ux‖1 ≥ ‖x‖∞ = 1,

|yj | = |uTj x| ≤ ‖uj‖1‖x‖∞ = vj , j = 1, . . . , n,

and thus ‖y‖1 ≤ ‖v‖1 = d. Define Y L = {y ∈ Y | ‖yL‖1 ≥
1
2
‖y‖1} and Y H = Y \Y L. Given S, define a mapping φ :

{1, . . . , n} → {1, . . . , s} such that sφ(j),j = 1, j = 1, . . . , n,

and split L into two subsets: L̂ = {j ∈ L |φ(j) ∈ φ(H)} and

L̄ = L\L̂. Consider these events:

• EU : |ΠU |1 ≤ ω1d log d for some ω1 > 0.

• EL: ‖SvL‖∞ ≤ ω2/(d log d) for some ω2 > 0.

• EH : φ(j1) 6= φ(j2), ∀ j1 6= j2, j1, j2 ∈ H.

• EC : minj∈|H| |cj | ≥ ω3/(d
2 log2 d) for some ω3 > 0.

• E L̂: |ΠU L̂|1 ≤ ω4/(d
2 log2 d) for some ω4 > 0.

Recall that we set s = ωd5 log5 d in Theorem 2. We will
show that, with ω sufficiently large and proper choices of
ω1, ω2, ω3, and ω4, the event EU leads to an upper bound of
‖Πy‖1 for all y ∈ range(A), EU and EL lead to a lower bound
of ‖Πy‖1 for all y ∈ Y L with probability at least 0.9, and
EH , E L̂, and EC together imply an lower bound of ‖Πy‖1
for all y ∈ Y H .

Lemma 12. Provided EU , we have

‖Πy‖1 ≤ ω1d log d · ‖y‖1, ∀y ∈ range(A).

Proof. For any y ∈ range(A), we can find an x such
that y = Ux. Then, ‖Πy‖1 = ‖ΠUx‖1 ≤ |ΠU |1‖x‖∞ ≤
|ΠU |1‖Ux‖1 ≤ ω1d log d · ‖y‖1.

Lemma 13. Provided EL, for any fixed y ∈ Y L, we have

log Pr

[
‖Πy‖1 ≤

1

4
‖y‖1

]
≤ −d log d

24ω2
.

Proof. Let z = Πy. We have,

|zi| =

∣∣∣∣∣∑
j

sijcjyj

∣∣∣∣∣ '
(∑

j

sij |yj |

)
|c̃i|

�

(∑
j

sij |yLj |

)
|c̃i| := γ̃i|c̃i|,

where {c̃i} are independent Cauchy variables. Let γ̃ =∑
i γ̃i = ‖yL‖1. Since |y| ≤ v, we have γ̃i ≤ ‖SvL‖∞. By

Lemma 6,

log Pr

[
X ≤ ‖y

L‖1
2

]
≤ −‖yL‖1

12‖SvL‖∞
.

By assumption EL and ‖yL‖1 ≥ 1
2
‖y‖1 ≥ 1

2
, we obtain the

result.

Lemma 14. Assume both EU and EL. If ω1 and ω2 satisfy

d log (6d(1 + 4ω1d log d))− d log d

24ω2
≤ log δ

for some δ ∈ (0, 1) regardless of d, then, with probability at
least 1− δ, we have

‖Πy‖1 ≥
1

8
‖y‖1, ∀y ∈ Y L.

Proof. Set ε = 1/(2 + 8ω1d log d) and create an ε-net
Y Lε ⊆ Y L such that for any y ∈ Y L, we can find a yε ∈ Y Lε
such that ‖y−yε‖1 ≤ ε. Since ‖y‖1 ≤ d for all y ∈ Y L, there
exist such an ε-net with at most (3d/ε)d elements (Bourgain
et al. [4]). By Lemma 13, we can apply a union bound for
all the elements in Y Lε :

Pr[‖Πyε‖1 ≥ 1

4
‖yε‖1, ∀yε ∈ Y Lε ] ≥ 1−

(
3d

ε

)d
e
− d log d

24ω2

= 1− ed log 3d
ε
− d log d

24ω2 ≥ 1− δ.
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For any y ∈ Y L, we have, noting that y − yε ∈ range(A),

‖Πy‖1≥‖Πyε‖1−‖Π(y − yε)‖1≥
1

4
‖yε‖1 − ω1d log d‖y−yε‖1

≥1

4
‖y‖1 −

(
1

4
+ ω1d log d

)
ε ≥ 1

8
‖y‖1.

So we establish a lower bound for all y ∈ Y L.

Lemma 15. Provided EH and E L̂, if ω3 > 4ω4, we have

‖Πy‖1 ≥
ω4

d2 log2 d
‖y‖1, ∀y ∈ Y H .

Proof. For any y = Ux ∈ Y H , we have,

‖Πy‖1≥‖Π(yH + yL̂)‖1 ≥ ‖ΠyH‖1 − ‖ΠU L̂x‖1,

≥
∑
j∈H

|cj ||yj |−|ΠU L̂|1‖x‖∞≥min
j∈H
|cj |‖yH‖1−|ΠU L̂|1

≥
(

ω3

2d2 log2 d
− ω4

d2 log2 d

)
‖y‖1 ≥

ω4

d2 log2 d
· ‖y‖1,

which creates a lower bound for all y ∈ Y H .

We continue to show that, with ω sufficiently large, by
setting τ = ω1/4/(d log2 d) and choosing ω1, ω2, ω3, and
ω4 properly, we have each event with probability at least
1− 0.08 = 0.92 and thus

Pr[EU ∩EL ∩EH ∩E L̂ ∩EC ] ≥ 0.6.

Moreover, the condition in Lemma 14 holds with δ = 0.1,
and the condition in Lemma 15 holds. Therefore, Π = SC
has the desired property with probability at least 0.5, which
would conclude the proof of Theorem 2.

Lemma 16. With probability at least 0.92, EU holds with
ω1 = 500(1 + logω).

Proof. With S fixed, we have,

|ΠU |1 = |SCU |1 =

d∑
k=1

s∑
i=1

|
n∑
j=1

sijcjujk|

'
d∑
k=1

s∑
i=1

n∑
j=1

(|sijujk|) |c̃ik|,

where {c̃ik} are dependent Cauchy random variables. Then

d∑
k=1

s∑
i=1

n∑
j=1

|sijujk| =
d∑
k=1

n∑
j=1

|ujk| = |U |1 = d.

Apply Lemma 5,

Pr[|ΠU |1 ≥ td |S] ≤ 2 log(sdt)

t
.

Setting ω1 = 500(1 + logω) and t = ω1 log d, we have

2 log(sdt)

t
=

2 log(ωω1d
6 log5 d)

ω1 log d
≤ 0.08.

We assume that log d ≥ 1 and logω ≥ 1.

Lemma 17. For any δ ∈ (0, 0.1), if s ≥ d/τ , we have,

Pr

[
‖SvL‖∞ ≥

(
1 + 2 log

d

δτ

)
· τ
]
≤ δ.

Proof. Let Xij = sijv
L
j . Then E[Xij ] = vLj /s, E[X2

ij ] =

(vLj )2/s, and 0 ≤ Xij ≤ vLj ≤ τ . Fixed i, Xij are indepen-
dent, j = 1, . . . , n. By Bernstein’s inequality,

log Pr

[∑
j

Xij ≥
‖vL‖1
s

+ t

]
≤ −t2/2
‖vL‖22/s+ τt/3

≤ −t2/2
τ(‖vL‖1/s+ t/3)

≤ −t
2/(2τ)

d/s+ t/3
.

where we use Holder’s inequality: ‖vL‖22 ≤ ‖vL‖1‖vL‖∞ ≤
dτ . To obtain a union bound for all i with probability 1− δ,
we need

−t2/(2τ)

d/s+ t/3
+ log s ≤ log δ.

Given δ < 0.1, it suffices if s = d/τ and t = 2 log(d/(δτ))τ .
Note that ‖vL‖1/s ≤ ‖v‖1/s = τ . We have

Pr

[
‖SvL‖∞ ≥

(
1 + 2 log

d

δτ

)
· τ
]
≤ δ.

Increasing s will decrease the failure rate, so it holds for all
s ≥ d/τ .

Lemma 18. With probability at least 0.92, EL holds with
ω2 = (15 + logω)/ω1/4.

Proof. By Lemma 17, with probability at least 0.92, EL
holds with

ω2 =
1 + 2 log ω1/4d2 log2 d

0.08

ω1/4 log d
≤ 15 + logω

ω1/4
.

Lemma 19. With above choices of ω1 and ω2, the condi-
tion in Lemma 13 holds with δ = 0.1 for sufficiently large ω.

Proof. With ω1 = 500(1+logω), ω2 = (15+logω)/ω1/4,
the first term in

d log (6d(1 + 4ω1d log d))− d log d

24ω2

increases much slower than the second term as ω increases,
while both are at the order of d log d. Therefore, if ω is
sufficiently large, the condition hold with δ = 0.1.

Lemma 20. If ω ≥ 160, event EH holds with probability
at least 0.92.

Proof. Given j1, j2 ∈ H and j1 6= j2, let Xj1j2 = 1 if
φ(j1) = φ(j2) and Xj1j2 = 0 otherwise. It is easy to see that
Pr[Xj1j2 = 1] = 1

s
. Therefore,

Pr[EH ]≥1−
∑
j1<j2

Pr[Xj1j2 = 1]≥1− |H|
2

s
≥1− d2

sτ2
≥1− 1

ω1/2
.

It suffices if ω ≥ 160.

Lemma 21. With probability at least 0.92, event EC holds
with ω3 = 1/(8ω1/4).

Proof. Let c be a Cauchy variable. We have

Pr[|c| ≤ t] =
2

π
tan−1t ≤ 2t

π
.
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|H| is at most d/τ = ω1/4d2 log2 d. Then

Pr[EC ] ≥ 1− |H| · Pr

[
|c| < ω3

d2 log2 d

]
≥ 1− ω1/4d2 log2 d · 2ω3

πd2 log2 d
.

Therefore, ω3 = 1/(8ω1/4) would suffice.

Lemma 22. With probability at least 0.92, event E L̂ holds

with ω4 = 25000(1 + logω)/ω3/4. Thus with ω sufficiently
large and the above choice of ω3, the condition in Lemma 15
ω3 > 4ω4 holds.

Proof. We have,

E[|U L̂|1] =
|H|
s
|UL|1 ≤

ω1/4d2 log2 d

ωd5 log5 d
· d =

1

ω3/4d2 log3 d
.

By Markov’s inequality,

Pr

[
|U L̂|1 ≥

25

ω3/4d2 log3 d

]
≤ 0.04.

Assume that |U L̂|1 ≤ 25

ω3/4d2 log3 d
. Similar to the proof of

Lemma 16, we have

|ΠU L̂|1 =

d∑
k=1

∑
i∈φ(H)

|
∑
j

sijcju
L̂
jk|

'
d∑
k=1

∑
i∈φ(H)

(∑
j

sij |uL̂jk|

)
|c̃ik|,

where {c̃ik} are dependent Cauchy variables. Apply Lemma 5,

Pr[|ΠU L̂| ≥ |U L̂|t] ≤ 2 log(|H|dt)
t

It suffices to choose t = 1000(1 + logω) log d to make the
RHS less than 0.04. So with probability at least 0.92, we
have E L̂ holds with ω4 = 25000(1 + logω)/ω3/4.

A.3 Proof of Corollary 2
By Theorem 2 and Lemma 3, we know that Steps 2 and

4 of Algorithm 1 succeed with a constant probability. Con-
ditioning on this event, we have

‖Ax̂− b‖1 ≤
1

1− ε/4‖SAx̂− Sb‖1 ≤
1 + ε/4

1− ε/4‖SAx
∗ − Sb‖1

≤ (1 + ε/4)2

1− ε/4 ‖Ax
∗ − b‖1 ≤ (1 + ε)‖Ax∗ − b‖1,

where the last inequality is due to ε < 1/2. By Theorem 2,
Step 2 takes O(nnz(A)) time, and Step 3 takes O(poly(d))
time because ΠA has O(poly(d) rows. Then, by Lemma 3,
Step 4 takes O(nnz(A) · logn) time, and Step 5 takes time
T 1(ε/4;O(poly(d) log(1/ε)/ε2), d). Therefore, the total run-
ning time of Algorithm 1 is as stated.

A.4 Proof of Lemma 8
First, we know that Pr[|Xp|p ≥ t] = Pr[|Xp| ≥ t1/p] =

2 · Pr[Xp ≥ t1/p]. Next, we cite the following lemma:

Lemma 23. (Nolan [27, Thm. 1.12]) Let X ∼ Dp with
p ∈ [1, 2). Then as x→∞,

Pr[X > x] ∼ cpx−p,

where cp = sin πp
2
· Γ(p)/π.

By Lemma 23, it follows that, as t → ∞, Pr[|Xp|p ≥ t] ∼
2cpt

−1. For the Cauchy distribution, we have

Pr[|C| ≥ t] = 1− 2

π
tan−1t =

2

π
tan−1 1

t
∼ 2

π
· t−1.

Hence, there exist α′p > 0 and t1 > 0 such that for all t > t1,

Pr[α′p|C| ≥ t] ≥ Pr[|Xp|p ≥ t].

Note that all the p-stable distributions with p ∈ [1, 2] have
finite and positive density at x = 0. Therefore, there exists
α′′p > 0 such that for all 0 ≤ t ≤ t1,

Pr[α′′p |C| ≥ t] ≥ Pr[|Xp|p ≥ t].

Let αp = max{α′p, α′′p}. We get αp|C| � |Xp|p. For the
Gaussian distribution, we have, as t→∞,

Pr[|G|2 ≥ t] ∼ 2e−t/2t−1/2.

which converges to zero much faster than t−1, so we can
apply similar arguments to obtain βp.

A.5 Proof of Lemma 9
Let Ci = F−1

c (Fp(Xi)), i = 1, . . . ,m, where Fc is the CDF
of the standard Cauchy distribution and Fp is the CDF of
Dp. Ci follows the standard Cauchy distribution, and, by
Lemma 8, we have αp|Ci| ≥ |Xi|p. Therefore, for any t ≥ 1,

Pr[X ≥ tαpγ] ≤ Pr

[∑
i

γi|Ci| ≥ tγ

]
≤ 2 log(mt)

t
.

The last inequality is from Lemma 5.

A.6 Proof of Lemma 10
Let Gi be independent random variables sampled from the

standard Gaussian distribution, i = 1, . . . ,m. By Lemma 8,

log Pr[X ≤ βp(1− t)γ] ≤ log Pr

[∑
i

γi|Gi|2 ≤ (1− t)γ

]
.

The lower tail inequality from Lemma 7 concludes the proof.

A.7 Proof of Theorem 6
The proof is similar to the proof of Sohler and Woodruff [29,

Theorem 5], except that the Cauchy tail inequalities are re-
placed by tail inequalities for the stable distributions. See
the technical report version of this paper [23] for details.

A.8 Proof of Theorem 7
Each of Steps 1, 3, and 5 of Algorithm 2 succeeds with

a constant probability. Following the corresponding proofs
of these steps, we see that we can control the success rate
of each by adjusting the constant factor in the embedding
dimension, such that all steps succeed with a constant prob-
ability. Conditioning on this event, we have κp(AR

−1) = 6d
because

‖AR−1x‖p ≤ 2‖S̃AR−1x‖p ≤ 4d‖x‖2,

‖AR−1x‖p ≥
2

3
‖S̃AR−1x‖p ≥

2

3
‖x‖2, ∀x ∈ Rd .

By Lemma 1, κ̄p(AR
−1) ≤ 6d1/p+1, and by Lemma 3, the

embedding dimension of S is

O(κ̄pp(AR
−1)d|p/2−1|d log(1/ε)/ε2) = O(d3+p/2 log(1/ε)/ε2),

which concludes the proof.
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