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Abstract

We have previously reported that angiotensin type 1 receptor (AT1R) blockade with candesartan 

exerts neurovascular protection after experimental cerebral ischemia. Here, we tested the 

hypothesis that a low, subhypotensive dose of candesartan enhances neuroplasticity and 

subsequent functional recovery through enhanced neurotrophic factor expression in rats subjected 

to ischemia reperfusion injury. Male Wistar rats (290–300 g) underwent 90 min of middle cerebral 

artery occlusion (MCAO) and received candesartan (0.3 mg/kg) or saline at reperfusion and then 

once every 24 h for 7 days. Functional deficits were assessed in a blinded manner at 1, 3, 7, and 14 

days after MCAO. Animals were sacrificed 14-day post-stroke and the brains perfused for infarct 

size by cresyl violet. Western blot and immunohisto-chemistry were used to assess the expression 

of growth factors and synaptic proteins. Candesartan-treated animals showed a significant 

reduction in the infarct size [t (13)=−5.5, P= 0.0001] accompanied by functional recovery in 

Bederson [F (1, 13)=7.9, P=0.015], beam walk [F (1, 13)=6.7, P=0.023], grip strength [F (1, 

13)=15.2, P=0.0031], and rotarod performance [F (1, 14)=29.8, P<0.0001]. In addition, 

candesartan-treated animals showed significantly higher expression of active metalloproteinase-3 

(MMP-3), laminin, and angiopoietin-1 (Ang-1). The expression of vascular endothelial growth 

factor (VEGF) and brain-derived neurotrophic factor (BDNF) and its receptor was significantly 

increased in the animals treated with candesartan. Also, we observed significant increases in 

neuroplasticity markers, synaptophysin, and PSD-95. These results indicate that low-dose 

candesartan had a large and enduring effect on measures of plasticity, and this accompanied the 

functional recovery after ischemic stroke.
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Introduction

Ischemic stroke is one of the most common causes of death and disability in the USA. 

Although much progress has been made toward understanding the mechanistic basis of 

stroke, the effectiveness of drugs available for stroke patients is limited. Tissue plasminogen 

activator (tPA), the only FDA-approved treatment for stroke, has various limitations due to 

neurovascular toxicity [1, 2]. Thus, finding an effective therapeutic strategy for stroke 

remains a high priority.

In stroke patients, acutely elevated blood pressure (BP) is associated with unfavorable stroke 

outcomes [3], but lowering BP acutely is not recommended, due to the potential to worsen 

stroke injury [4]. In fact, both the Scandinavian Candesartan Acute Stroke Trial (SCAST) 

and the China Antihypertensive Trial in Acute Stroke (CATIS) demonstrated no benefit of 
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BP lowering in the acute stroke period [5, 6]. There is preclinical evidence, however, that 

supports a neurovascular benefit of angiotensin receptor blockers (ARBs) beyond lowering 

BP [7, 8], compared with other BP lowering agents [9]. It remains possible that low doses of 

the ARB, candesartan, may have beneficial effects on long-term recovery after ischemic 

stroke.

Recent studies showed that activation of endogenous restorative mechanisms, rather than 

just simply reducing the area of infarction, may provide better functional recovery after 

stroke [10–12]. Several growth factors, including the two most important neurotrophic 

factors, vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor 

(BDNF), have pleiotropic effects on brain function, including neuroprotection, vascular 

remodeling, neurogenesis, neuronal survival, and neuroplasticity [13, 14]. VEGF has been 

shown to stimulate angiogenesis, and this can be beneficial after ischemic stroke [13]. 

Additionally, BDNF regulates neuronal survival, cell migration, and synaptic function [15, 

16]. VEGF and BDNF levels have both been shown to increase in ischemic brain after 

treatment with candesartan and other neurorestorative drugs [17–19, 10, 20]. Molecular 

mediators underlying the effect of candesartan on the induction of neuroplasticity and 

subsequent improvement of functional outcome after treatment of stroke have not been 

adequately determined.

In this study, we examined the effects of low-dose candesartan treatment on neurotrophic 

factors, neuronal plasticity, and functional outcome in a rat model of middle cerebral artery 

occlusion (MCAO). Although this low dose of candesartan did not act as an acute 

neurovascular protectant in our model, repeated administration increased the production of 

neurotrophic factors, which we believe increased vascular remodeling, neuroplasticity, and 

subsequent functional recovery after stroke.

Materials and Methods

Animals and Treatment Regimen

Male Wistar rats (290–300 g; Charles River Laboratories, Wilmington, MA) were used 

according to procedures approved by the Institutional Animal Care and Use Committee 

(IACUC) of the Charlie Norwood VA Medical Center. The rats were quarantined for at least 

5 days before the experiment. The animals were housed in individual cages in a room 

maintained at 21–25 °C, 45–50 % humidity, and 12-h light/dark cycle with free access to 

pellet chow and water.

The animals were separated into three groups: group I, sham-operated saline-treated control 

(S); group II, MCAO and saline-treated stroke (MCAO); and group III, MCAO and 

candesartan (0.3 mg/kg) (MCAO + cand). Consistent with previous research, candesartan 

(Astra-Zeneca) was dissolved in saline and given in a dose of 0.3 mg/kg by intravenous 

injection 90-min postocclusion to ensure rapid delivery following injury. Additional 

injections of 0.3 mg/kg were administered intraperitoneally every 24 h continuing daily for 

up to 7 days after MCAO. In this 14-day survival study, we used 90-min MCAO to reduce 

the mortality. A diagram of the experimental design is shown in Fig. 1. A total of 38 rats 
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were used in the present study; one rat each in the saline and candesartan groups died at 24 h 

and 3-day post-MCAO, respectively.

Candesartan Administration and BP Monitoring

Consistent with our previous published studies on 1-mg/kg dose of candesartan on acute BP 

after 3-h MCAO and 24-h survival [9, 21], here in this separate set of experiment, we 

wanted to demonstrate the subhypotensive effect of low-dose candesartan (0.3 mg/kg) under 

the same conditions, and rats were sacrificed at 24 h. To examine the effect of 0.3 mg/kg 

candesartan on acute BP, we monitored and recorded mean arterial blood pressure (MABP) 

every 10 min using telemetry transmitters (Data Sciences, Inc.) for the 24 h after the onset of 

stroke. After 3 h of occlusion, the animals received either candesartan (Astra-Zeneca) of 0.3 

mg/kg or an equal volume of saline (1 ml/kg) intravenously. Animals were sacrificed at 24 h 

after stroke (detailed experimental design in Supplement Fig. 1). In all animals, baseline 

MAP was between 95 and 97 mmHg and was elevated by 30–35 mmHg upon MCAO. 

When compared to our previous data in the dose of 1 mg/kg candesartan, acute low-dose 

candesartan (0.3 mg/kg) did not lower BP within a few hours of administration (Supplement 

Fig. 2). In fact, we observed a mild effect on early (24 h) BP after candesartan treatment at 

3-h post-MCAO, a critical time point, after which the BP starts to decline in MCAO. Mild 

BP lowering after a single candesartan dose was found to have no protective effect on early 

stroke outcomes. Therefore, we used 0.3-mg/kg dose of candesartan for 7 consecutive days 

to determine the effects on neuroplasticity and long-term functional recovery after MCAO.

Transient Middle Cerebral Artery Occlusion

Prior to MCAO surgery, isoflurane anesthesia was induced at 5 % and then maintained at 

1.5–2 % during surgery. Focal cerebral ischemia was induced by occlusion of the right 

middle cerebral artery as previously described [22]. A midline incision was made on the 

ventral surface of the neck, and the right common carotid arteries were isolated and ligated 

with 6.0 silk suture. The internal carotid artery and the pterygopalatine artery were 

temporarily occluded with a microvascular clip. A 4-0 Doccol filament (Doccol 

Corporation, Redlands, CA) was introduced into the internal carotid artery through the 

incision in the external carotid artery. The filament was advanced approximately 20 mm 

distal to the carotid bifurcation. The animals were kept under anesthesia for only 15 min for 

the surgical procedure. Temperature was maintained at 36.5–37.5 °C all the time using a 

controlled heating system. After 90 min of MCAO, the occluding filament was withdrawn 

back into the common carotid artery to allow for reperfusion. The rats were allowed to 

recover from anesthesia on the heating pad and then returned to their home cages after full 

recovery from anesthesia. Sham-operated rats were subjected only to exposure of the MCA 

without occlusion. Anesthesia duration was similar in all groups.

Cerebral Blood Flow Imaging Using Laser Doppler Imaging System

To ensure relative uniformity of the ischemic insult, in a separate subset of animals (N=5), 

cerebral blood flow was monitored using the Periscan PIM 3 System (Stockholm, Sweden) 

for repeated time interval during 90 min of occlusion. The animals were anesthetized and 

placed on a stereotaxic frame, and the skull was exposed. A whole brain scan was performed 
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using the PIM3 to measure blood flow in both hemispheres. A built-in photo detector 

assisted with LDPI win software (PerimedInc) detected the reflected light from moving 

blood cells within 0.5 cm below of the cortical surface. Color-coded images were acquired 

three times consecutively, and the average blood flow was calculated based on the 

concentration and mean velocity of the blood cells using the LDPI win software. On 

induction of ischemia, cerebral blood flow decreased to 30 to 35 %, remaining stable 

throughout the 90 min of MCA occlusion. Reperfusion was associated with a restoration of 

blood flow to 80–90 % of baseline values in saline-treated control animals (Fig. 2b).

Assessment of Functional Outcome

The experiment was performed between 9:00 a.m. and 4:00 p.m. All animals underwent 

neurobehavioral testing before MCAO and at days 1, 3, 7, and 14 after MCAO. Tests that 

were used included Bederson score, beam walk, grip strength, and rotarod performed in a 

blinded fashion.

Bederson Score—Neurological function was measured using the Bederson score [21]. 

An animal with no apparent deficits obtained a 0; the presence of forelimb flexion, 1; 

decreased resistance to push, 2; and circling, 3. A score of 3 is consistent with eMCAO. 

Only animals with a score of 3 at the time of reperfusion were included in the analysis of 

infarct size, hemoglobin, and neurological function.

Beam Walk—Beam walk in rats was determined as previously described [23]. Animals 

were placed on a beam (60 cm long and 4.5 cm wide) for 1 min and given a score from 0 to 

6 as follows: balances on the beam with a steady posture=0, grasps side of the beam=1, hugs 

the beam with 1 limb falling=2, hugs the beam with 2 limbs falling=3, falls off the beam 

within 40–60 s=4, falls off the beam within 20–40 s=5; and falls off the beam within 20 s=6.

Grip Strength—Forelimb grip strength in rats was determined using a grip strength meter 

(Columbus Instruments, OH, USA) as previously described [24]. We used an electronic 

digital force gauge that measured the peak force exerted by the action of the animal while 

gripping the sensor bar. While being drawn back along a straight line leading away from the 

sensor, the animal released its grip at some point, and the gauge then recorded the maximum 

force attained at the time of release. The digital reading (in Newtons) of three successive 

trials was obtained for each rat, averaged, and used for data analysis. The MCAO rats were 

tested simultaneously with the shams.

Rotarod—Motor impairment was assessed using an accelerating rotarod (Columbus 

Instruments Rotamex 4/8 system, OH, USA). Rotameric tests were performed according to 

our previous published study [24]. All rats were given three training sessions, 10 min apart, 

before surgery to establish baseline performance. Rats were first habituated to the stationary 

rod, and then exposed to the rotating rod. The rod was started at 4 rpm and accelerated 

linearly to 40 rpm within 300 s. Latency to fall off the rotarod was then determined before 

ischemia (presurgery) and at days 1, 3, 7, and 14 after surgery in all rats. The rats were 

required to stay on the accelerating rod up to a minimum of 30 s. If they were unable to 

reach this criterion, the trial was repeated for a maximum of five times. The two best (long 
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duration) fall latency values achieved by each rat were then averaged and used for data 

analysis. Rats not falling off within 5 min were given a maximum score of 300 s.

Histologic and Immunohistochemical Assessment

Cerebral infarct size was evaluated according to previously applied methods [25]. After 

completing the behavior tests, rats were given an overdose of ketamine/xylazine and then 

transcardially perfused with cold saline followed by 10 % buffer-formalin via the ascending 

aorta. The brains were removed and postfixed in 10 % buffer-formalin (Fischer Scientific) 

for 48 h and then stored at 4 °C in a solution of 30 % sucrose–saline for 2 days. The brains 

were embedded in OCT and sectioned coronally in 12-μm-thick slices starting from the 

frontal pole at an interval of 2 mm. The sections were stained with 1 % cresyl violet (Nissl 

staining). The infarct areas, defined as areas showing reduced Nissl staining under light 

microscopy, were traced and quantified with an image analysis system. Infarct volumes are 

expressed as a percentage of the contralateral side ± SEM.

Immunofluorescence was performed to identify the distribution and cell types. 

Colocalization of VEGF and TrkB with the different cellular markers [endothelial (CD31, 

1:100; BD Pharmingen, San Jose, CA), astrocytes (GFAP, 1:200; Sigma, St. Louis, MO), 

and neurons (NeuN, 1:100; Millipore, Billerica, MA)] was processed simultaneously in 10-

μm-thick sections from different animals as described previously [26]. Primary antibodies 

were incubated overnight at 4 °C at the following dilutions: rabbit anti-laminin (1:50; Dako 

Cytomation, Carpinteria, CA), rabbit anti-VEGF (1:100; Calbiochem Gibbstown, NJ), and 

rabbit anti-TrkB (1:100; Santa Cruz biotech, Santa Cruz, CA). After washing, slides were 

incubated with fluorescent secondary antibodies and cover slipped with Vectashield 

mounting medium (Vector Laboratories). Negative controls were prepared by omitting the 

primary antibodies. The number of laminin-stained vessels was counted using ImageJ 

software (NIH) in five different fields per section digitized from the ischemic border zone 

using a ×20 objective lens (Axio Observer fluorescent microscope, Zeiss). To examine the 

effect of candesartan on synaptophysin and PSD-95, after washing with PBS, 12-μm coronal 

sections were incubated with 1 % BSA containing 0.3 % Triton-X 100 for blocking for 1 h 

at room temperature and incubated with mouse anti-synaptophysin (1:200; Abcam, 

Cambridge, MA) and PSD-95 (1:200; Abcam, Cambridge, MA) at 4 °C overnight. After 

washing, slides were incubated with fluorescent secondary antibodies, cover slipped with 

Vectashield mounting medium (Vector Laboratories). All the sections were viewed using 

Zeiss Axio Observer.Z1 fluorescent microscope.

Western Blot

For WB analysis, we used peri-infarct (penumbra) cortical regions. By using a brain matrix, 

the brains were rapidly dissected into 4.0-mm coronal sections (approximately 0.5 and −3.5 

mm from bregma). Brain tissue was homogenized in lysis buffer (RIPA); after 

centrifugation, protein concentration was determined. Fifty micrograms of the protein was 

subjected to electrophoresis in 4–20 % SDS-PAGE gels (BioRad) and transferred to 

nitrocellulose membranes. Membranes were then blocked at room temperature for 1 h in 5 

% bovine serum albumin (BSA) and incubated with anti-VEGF (1:2,000; Calbiochem 

Gibbstown, NJ), BDNF (1:1,000; Santa Cruz biotech, Santa Cruz, CA), TrkB (1:500, Santa 
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Cruz biotech, Santa Cruz, CA), MMP-3 (1:2,000; Abcam Cambridge, MA), angiopoietin-1 

[Ang-1 (1:500; Santa Cruz biotech, Santa Cruz, CA)], synaptophysin (1:2,000; Abcam, 

Cambridge, MA), and density protein-95 [PSD-95 (1:2,000; Abcam, Cambridge, MA)]. All 

blots were stripped and reincubated with loading control antibodies. Intensity of the bands 

was measured by densitometry and quantified using ImageJ analysis software (ImageJ, 

NIH).

Statistical Analysis

All results were expressed as mean ± SEM, and calculations were obtained using GraphPad 

Prism and SAS® 9.3 (SAS Institute, Inc., Cary, NC). Infarct size and laminin density were 

analyzed using the Student’s t test (MCAO vs MCAO + cand). Data obtained from Western 

blot were log transformed prior to analysis by one-way analysis of variance (ANOVA) with 

three groups (Sham, MCAO, and MCAO + cand), and contrasts were obtained for planned 

comparisons (Sham vs MCAO and MCAO vs MCAO + cand). Bederson score, beam walk, 

grip strength, and rotarod performance were analyzed using multivariate repeated measure 

analysis of variance (RMANOVA) to assess group (MCAO or MCAO + cand) and day (1, 

3, 7, and 14) effects along with the interaction between group and day. These tests were 

followed by a Bonferroni correction for the within-day pairwise comparisons of interest. 

Percent difference between presurgical and postsurgical scores for each animal was used to 

control for individual differences in grip strength and rotarod performance. Statistical 

significance was determined at alpha=0.05.

Results

Low-Dose Candesartan Reduces Infarct Size and Promotes Functional Recovery After 

MCAO

The infarct size of saline-treated and candesartan-treated animals 14 days after MCAO are 

presented as a percent of the contralateral hemisphere in Fig. 2d. Low-dose candesartan 

significantly [t (13)=−5.5, P=0.0001] reduced infarct size by 61 % compared to saline-

treated animals.

To examine whether the low-dose candesartan attenuates neurological deficits, we used 

Bederson score and beam walk tests at 24 h and days 3, 7, and 14 after MCAO (Fig. 3a, b). 

All rats improved over time in both Bederson [(F (3, 11)=5.8, P= 0.013)] and beam walk 

score (F (3, 11)=7.3, P=0.0059). Rats treated with candesartan showed significant 

improvement in both Bederson [F (1, 13)=7.9, P=0.015] and beam walk scores [F (1, 

13)=6.7, P=0.023] after MCAO compared with saline-treated animals.

We also examined the effect of candesartan on grip strength, using grip strength meter. The 

maximum digital reading (in Newtons) of three successive trials obtained for each animal 

was used as the dependent variable. Grip strength following MCAO in Fig. 3c is presented 

as percentage of baseline. All rats improved over time [F (3, 10)=7.1, P= 0.0024]. Animals 

treated with candesartan showed significant improvement in the grip strength when 

compared with the saline group [F (1, 13)=15.2, P=0.0031].
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Time spent on the rotarod is expressed as a percentage of presurgery control value. As with 

the other measures of behavior, all rats improved with time [F (3, 12)=12.1, P= 0.0006]. 

Repeated treatments with candesartan resulted in significant improvement compared with 

the saline group across time on latency to remain on the rotarod [F (1, 14)= 29.8, P<0.0001].

Low-Dose Candesartan Preserves Neurovasculature After MCAO

We considered the potential role of MMP-3 after ischemic injury, since MMP-3 is 

associated with neuronal migration and neurite outgrowth and contributes to neuroplasticity 

in the late phase of stroke [27, 28]. To examine the influence of candesartan on active 

MMP-3, Western blot analysis was done 14 days after MCAO and showed a significant [F 

(2, 13)= 13.5, P=0.0011] group difference in active MMP-3 (Fig. 4a). The saline-treated 

MCAO group showed significantly decreased active MMP-3 compared to shams while 

candesartan administration significantly upregulated MMP-3 compared to the saline MCAO.

Importantly, MMP-3 levels correlated with increased expression of its target extracellular 

matrix substrates, molecules necessary to prepare the local environment for reactive 

synaptogenesis [29, 30]. Our previous work using a hypotensive dosage 1-mg/kg 

candesartan treatment demonstrated significant upregulation of laminin staining, a marker of 

components of the extracellular matrix at 7 days after MCAO [21]. Here, we examine the 

effect of low-dose candesartan on laminin density after 14 days of MCAO. 

Immunoflourescent staining of brain sections showed significantly higher vascular density 

in the ischemic border zone with candesartan treatment [t (8)= 4.15, P=0.0032] compared to 

saline treatment for number of vessels per field (Fig. 4b).

We further investigated the effect of candesartan treatment on angiopoietin 1 (Ang-1) 

expression after stroke. Ang-1 exerts a barrier protective function as well as a synergistic 

angiogenic effect after stroke and contributes to nascent vessel maturation [31]. There was a 

significant effect of group [F (2, 13)=27.5, P<0.0001] where Ang-1 expression in the saline-

treated MCAO group was significantly higher than the shams and candesartan treatment 

significantly increased the Ang-1 compared to the saline-treated MCAO group (Fig. 4c).

Low-Dose Candesartan Enhances Endogenous Mediators of Neuroplasticity After MCAO

VEGF and BDNF are two important endogenous factors for vascular remodeling and 

neuroplasticity. Our previous work demonstrated a robust increase in VEGF and BDNF in 

the ischemic hemisphere at 24 h after MCAO, in animals treated with candesartan at a dose 

of 1 mg/kg IV administered at reperfusion [18, 17]. To determine the influence of low-dose 

candesartan (0.3 mg/kg) on VEGF and BDNF expression, Western blot analysis was done 

14 days after MCAO. There were significant group differences for VEGF [F (2, 13)=7.4, 

P=0.0094], ProBDNF [F (2, 13)=16.9, P=0.0004], mature BDNF [F (2, 13)=15.6], and 

TrkB [F (2, 13)=23.7, P= 0.0001]. We found a significant increase in VEGF (Fig. 5a), 

ProBDNF, and mature BDNF (mBDNF) and its receptor, TrkB (Fig. 5c), in the ischemic 

border zone (penumbra) of animals treated with the low-dose candesartan compared to the 

saline-treated MCAO group.
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In order to characterize the role of the different brain cells in VEGF expression, 

immunohistofluorescence for VEGF coupled to NeuN (neurons) and GFAP (astrocytes) was 

performed at 14-day post-MCAO. Following MCAO, repeated treatments with candesartan 

increased the immunopositive signals of VEGF compared to the saline-treated MCAO group 

(Fig. 5b). The immunohistochemical expression of VEGF colocalized with the astrocyte 

marker, GFAP, in the peri-infarct area of brain sections was markedly increased at 14 days 

following MCAO in the candesartan-treated compared to the saline-treated group. We 

further explored the colocalization of TrkB using markers for neurons, astrocytes, and 

endothelial cells. TrkB showed strong colocalization with the neuronal marker, NeuN, in the 

ischemic penumbra. Compared to saline-treated animals, brain sections derived from 

candesartan-treated animals exhibited significantly increased TrkB expression (Fig. 5d).

To confirm that the observed molecular mediators promoted neuroplasticity, we also 

examined the expression of synaptophysin and PSD-95, a key scaffolding protein implicated 

in excitatory synaptic signaling. There was a significant group effect for both synaptophysin 

[F (2, 13)=15.7, P= 0.0006] and PSD-95 [F (2, 13) = 35.3, P < 0.0001]. Synaptophysin 

expression was increased while PSD-95 was reduced significantly in the saline-treated 

MCAO group compared to shams. Candesartan administration significantly up-regulated the 

expression of both proteins compared to the saline-treated MCAO group (Fig. 6a, b). These 

findings were further confirmed by immunohistochemistry, with increased expression of 

synaptophysin and PSD-95 in the candesartan-treated group (Fig. 6c).

Discussion

Our study demonstrated that a low-dose candesartan enhances neuroplasticity and 

subsequent functional neurologic recovery after ischemic reperfusion injury in rats. Further, 

we report here that the beneficial effects of candesartan are mediated through enhanced 

expression of VEGF and BDNF and the subsequent increase in neuroplasticity markers 

(synaptophysin and PDS95). We are encouraged that even the low-dose candesartan had a 

large and enduring effect on measures of plasticity, and this accompanied the sensorimotor 

recovery at 14 days. These findings are consistent with our previous studies with 

candesartan [17–19].

In the present study, the 0.3-mg/kg dose was selected based on previous findings showing 

the beneficial effects of candesartan on BP [32, 33]. Brdon et al. [32] found functional 

improvement during treatment with low-dose candesartan (0.3 mg/kg) consecutive for 7 

days after MCAO. We now document a sustained motor recovery for 14 days even after the 

treatment is stopped, and we further elucidate the possible molecular mechanisms involved. 

We also reported that an acute single dose of candesartan (0.3 mg/kg) at 3 h after MCAO 

only mildly reduced BP and did not improve early (24 h) stroke outcomes (Supplement Figs. 

1–3). While we can not rule out an acute neuroprotective effect when the drug was 

administered at 90 min, versus 3 h, as in the BP substudy (Supplement data), the behavior 

assessment and molecular data are consistent with a neurorestorative response. Recent 

clinical trials suggest that the BP lowering effects of AT1 receptor blockade in the acute 

stroke period could outweigh any benefit [5]. Subsequently, we considered it more relevant 

to administer candesartan in a low dose (0.3 mg/kg) because it only mildly affected BP.
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Most studies report candesartan to be effective on acute reduction in lesion size and early 

behavioral impairments, but less is known about its long-term neurorestorative effects 

following stroke. To address this, we examined candesartan’s effects on a panel of 

behavioral tests (Bederson score, beam walk, grip strength, and accelerating rotarod) 

sensitive to unilateral ischemic insult. Consistent with the earlier observations [32, 33], we 

found that behavioral deficits caused by MCAO were significantly improved by candesartan 

treatment when measured at repeated intervals (1, 3, 7, and 14 days) after the MCAO. The 

degree of improvement was substantial (almost return to normal functioning) at days 7 and 

14 post-MCAO. Further, treatment with candesartan significantly reduced the infarct size 

following MCAO in rats.

The matrix metalloproteinases (MMPs) are a gene family of extracellular matrix enzymes 

which damage the blood brain barrier (BBB) by degrading extracellular matrix proteins 

(e.g., laminin) and cause neuronal death in the acute injury phase [34]. However, at a later 

stage of injury, these same proteases have a beneficial role in accelerating neurovascular 

remodeling [35]. A recent study has shown that MMPs may promote vascular remodeling by 

accelerating angiogenesis [36] and are required for improving long-term recovery [37]. 

Emerging evidence suggests that inhibition of MMPs during the late phase is associated with 

more severe brain injury and worsened functional outcome [38]. Although there are many 

MMPs, an important role for MMP-3 (stromelysin-1) in particular has been identified, 

leading to increased expression of its target extracellular matrix proteins and plasticity [29, 

30, 39]. Our results demonstrate that low-dose candesartan increased the expression of 

MMP-3 and prevented the degradation of laminin.

Ang-1 plays a prominent role in angiogenesis as well as vascular stability [40–42]. Ang-1 

exerts a barrier protective function as well as anangiogenic effect after stroke [31, 43]. The 

expression of Ang-1 is acutely downregulated after focal cerebral ischemia [44] and linked 

to increased BBB permeability and edema [40]. On the other hand, treatment with 

recombinant adenoviruses expressing Ang-1 reduces BBB leakage in ischemic brain and 

decreases infarction in mice [45], and transgenic overexpression of Ang-1 increases vascular 

stabilization [46]. In the present study, Ang-1 expression was significantly increased after 

low-dose candesartan administration. Our data is consistent with our previous findings of 

candesartan’s vascular protective effects after ischemic stroke [19, 18]. This sheds light on 

the possible molecular mediators involved in such a response.

Neurotrophic factors are crucial in brain development and cell survival in adults. They 

participate in protection and proliferation of neuronal, glial, and endothelial cells. Among 

others, VEGF and BDNF are two important neurotrophic factors with pleiotropic effects on 

brain function, including neuroprotection, vascular remodeling, neurogenesis, neuronal 

survival, and plasticity [13, 14, 10]. As one of the most potentangiogenic factors, VEGF is 

upregulated by focal cerebral ischemia not only in animal models but also in human patients 

[47, 48] as an angiogenic, neurotrophic, and neuroprotective factor [49, 50]. VEGF also 

plays a vital role during neural [50] and vascular remodeling [51] after stroke. BDNF 

regulates neuronal survival, cell migration, and neuroplasticity [15, 16]. Increased 

production of neurotrophic factors has been proposed as a mechanism of functional recovery 

and neuroplasticity after cerebral ischemia [10, 52]. Neuroplasticity enhances functional 
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recovery after brain injury [53] and is partially regulated by synaptic proteins 

(synaptophysin and PSD-95). Synaptophysin, also known as the major synaptic vesicle 

protein p38, is a transmembrane glycoprotein of neuroendocrine vesicles [54]. 

Synaptophysin plays an important role in presynaptic plasticity and synaptogenesis [55]. 

Additionally, PSD-95 plays an important function in the maturation of presynaptic and 

postsynaptic components [56–58]. The expression of PSD-95 is markedly decreased in the 

hippocampus after brain injury including TBI and stroke [23, 59]. Our results showed that 

ischemia-induced VEGF expression but candesartan treatment further increased VEGF 

expression, resulting in increased microvessel formation. We also found that candesartan 

treatment significantly increased the expression of BDNF and TrkB. Increased expression of 

BDNF and its receptors after ischemic injury to the brain can improve synaptic functional 

processes. Moreover, candesartan treatment increased the expression of synaptophysin and 

PSD-95. Our study, which is the first to document the long-term effect of candesartan on 

VEGF, BDNF, and synaptic protein expression after cerebral ischemia, suggests that 

candesartan’s induction of neurotrophic factors results in improved post-stroke plasticity.

This study focused on the efficacy of low-dose candesartan to promote neurotrophic factor 

involvement in plasticity and long-term recovery after ischemic injury and did not explore in 

detail the underlying mechanisms of this therapy. Further studies are needed to determine 

the specific role of VEGF or BDNF in neurogenesis and functional recovery by using VEGF 

or BDNF-targeting methods (such as gene transfer methods) locally in the brain.

In conclusion, our data suggest that repeated treatments with a low, subhypotensive dose of 

candesartan enhanced neuroplasticity through increased VEGF and BDNF after stroke, 

which may be the mechanism by which candesartan reduced ischemic neuronal damage and 

enhanced functional recovery (Fig. 7). Taken together, these data suggest that blockade of 

AT1R after stroke promotes stroke recovery when excessive BP lowering is avoided.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic representation of study design. MCAO middle cerebral artery occlusion, VEGF 

vascular endothelial growth factor, BDNF brain-derived neurotrophic factor, TrkB 

tropomyosin-related kinase-B, MMP-3 matrix metalloproteinase-3, Ang-1 angiopoietin-1, 

PSD-95 postsynaptic density protein 95. Day 0 refers to the day of MCAO surgery
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Fig. 2. 
Low-dose candesartan treatment reduces infarct size 14 days after MCAO. a Representative 

images of cerebral blood flow (CBF) detected with laser doppler imaging system (Periscan 

PIM 3, laser scanner). The image illustrates the percentage of CBF change in ischemic 

(ipsilateral) versus contralateral hemisphere at baseline, 10 min after occlusion, and 10 min 

after reperfusion. b Measurement of CBF in the ipsilateral parietal cortex using laser 

Doppler flowmetry during the 90-min MCAO and 5-min postreperfusion. CBF was 

expressed as percentage of baseline. c Representative images of cresyl violet-stained coronal 

sections collected from saline- and candesartan-treated animals 14-day post-MCAO. Infarcts 

are shown as unstained regions. d Quantification of infarct size in saline- and candesartan-

treated animals 14 days after MCAO. Results are expressed as % of contralateral side (mean 

± SEM, #P=0.0001= MCAO+saline vs MCAO + cand, n=6–8/group)
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Fig. 3. 
Low-dose candesartan treatment improves functional outcome after MCAO. Assessment of 

neurological deficit 1, 3, 7, and 14 days after MCAO using Bederson score (a), beam walk 

score (b), grip strength (c), and rotarod performance (d). Values are expressed as mean ± 

SEM [n=6–8/group, Bederson (#P=0.015), beam walk (#P= 0.023), grip strength (#P= 

0.0031), and rotarod performance (#P<0.0001)=MCAO + saline vs MCAO + cand]
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Fig. 4. 
Low-dose candesartan treatment attenuates ischemia/reperfusion-induced neurovascular 

injury. a Representative and quantitative analysis of Western blots showing that expression 

of active MMP-3 was significantly decreased in the ipsilateral hemisphere 14 days after 

MCAO and salvaged by low-dose candesartan treatment. b Representative micrographs of 

laminin-stained brain sections collected 14 days after MCAO from saline- and candesartan-

treated groups. Quantification of laminin-positive vessels shows higher vascular density in 

low-dose candesartan treatment as compared to saline-treated animals. c Representative and 

quantitative analysis of Western blots showing that low-dose candesartan treatment 

significantly increased Ang-1 expression after MCAO. Values are expressed as mean ± 

SEM [n=4–5/group, *P<0.05=MCAO + saline vs sham; MMP-3 (#P=0.0011), laminin 

(#P=0.0032), and Ang-1 (#P<0.0001)=MCAO + saline vs MCAO + cand]
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Fig. 5. 
Low-dose candesartan treatment upregulates neurotrophic growth factor expression at 14-

day post-MCAO. a Representative and quantitative analysis of Western blots showing that 

candesartan significantly increased VEGF expression as compared to the saline-treated or 

sham-operated animals. b Immunolocalization of VEGF in astrocytes around the penumbra 

14 days after MCAO. Overlay of double immunohistofluorescence for GFAP (astrocytic 

marker, green) and VEGF (red) increased in candesartan-treated group as compared to their 

saline-treated counterparts. c Representative and quantitative analysis of Western blots 

showing that candesartan significantly increased BDNF and TrkB expression as compared to 

saline-treated and sham-operated animals. d Immunolocalization of TrkB in neurons around 

the penumbra 14 days after MCAO. Overlay of double immunohistofluorescence for NeuN 

(neuronal marker, green) and TrkB (red) increased in the candesartan-treated group as 

compared to saline treatment. Values are expressed as mean ± SEM [n=4–5, *P<0.05=saline 

vs sham; VEGF (#P=0.0094), ProBDNF (#P=0.0004), and TrkB (#P=0.0001)=saline vs 

candesartan]
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Fig. 6. 
Low-dose candesartan treatment upregulates neuroplasticity markers 14-day post-MCAO. a 
Representative and quantitative analysis of Western blots showing that synaptophysin 

significantly increased after MCAO and further increased by candesartan treatment 

compared to saline-treated and sham-operated animals. b Representative and quantitative 

analysis of Western blots showing a significant reduction of PSD-95 expression that was 

ameliorated by low-dose candesartan treatment. c Immunohistochemical representation 

showing that candesartan increased the immunopositive signals of synaptophysin and 

PSD-95 in candesartan-treated animals as compared to their saline-treated counterparts. 

Values are expressed as mean ± SEM [n=4–5, *P<0.05=saline vs sham; synaptophysin 

(#P=0.0006) and PSD-95 (#P<0.0001)=saline vs candesartan]
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Fig. 7. 
Schematic representation of the ischemia reperfusion injury cascade and the steps influenced 

by candesartan treatment. MMP-3 matrix metalloproteinases-3, Ang-1 angiopoietin-1, BDNF 

brain-derived neuro-trophic factor, VEGF vascular endothelial growth factor, TrkB 

tropomyosin-related kinase B, PSD-95 postsynaptic density protein-95
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