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Abstract

The continuous development and extensive use of CT in medical practice has raised a public 

concern over the associated radiation dose to the patient. Reducing the radiation dose may lead to 

increased noise and artifacts, which can adversely affect the radiologists judgement and 

confidence. Hence, advanced image reconstruction from low-dose CT data is needed to improve 
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the diagnostic performance, which is a challenging problem due to its ill-posed nature. Over the 

past years, various low-dose CT methods have produced impressive results. However, most of the 

algorithms developed for this application, including the recently popularized deep learning 

techniques, aim for minimizing the mean-squared-error (MSE) between a denoised CT image and 

the ground truth under generic penalties. Although the peak signal-to-noise ratio (PSNR) is 

improved, MSE- or weighted-MSE-based methods can compromise the visibility of important 

structural details after aggressive denoising. This paper introduces a new CT image denoising 

method based on the generative adversarial network (GAN) with Wasserstein distance and 

perceptual similarity. The Wasserstein distance is a key concept of the optimal transport theory, 

and promises to improve the performance of GAN. The perceptual loss suppresses noise by 

comparing the perceptual features of a denoised output against those of the ground truth in an 

established feature space, while the GAN focuses more on migrating the data noise distribution 

from strong to weak statistically. Therefore, our proposed method transfers our knowledge of 

visual perception to the image denoising task and is capable of not only reducing the image noise 

level but also trying to keep the critical information at the same time. Promising results have been 

obtained in our experiments with clinical CT images.
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I. Introduction

X-ray computed tomography (CT) is one of the most important imaging modalities in 

modern hospitals and clinics. However, there is a potential radiation risk to the patient, since 

x-rays could cause genetic damage and induce cancer in a probability related to the radiation 

dose [1], [2]. Lowering the radiation dose increases the noise and artifacts in reconstructed 

images, which can compromise diagnostic information. Hence, extensive efforts have been 

made to design better image reconstruction or image processing methods for low-dose CT 

(LDCT). These methods generally fall into three categories: (a) sinogram filtration before 

reconstruction [3]–[5], (b) iterative reconstruction [6], [7], and (c) image post-processing 

after reconstruction [8]–[10].

Over the past decade, researchers were dedicated to developing new iterative algorithms (IR) 

for LDCT image reconstruction. Generally, those algorithms optimize an objective function 

that incorporates an accurate system model [11], [12], a statistical noise model [13]–[15] and 

prior information in the image domain. Popular image priors include total variation (TV) and 

its variants [16]–[18], as well as dictionary learning [19], [20]. These iterative reconstruction 

algorithms greatly improved image quality but they may still lose some details and suffer 

from remaining artifacts. Also, they require a high computational cost, which is a bottleneck 

in practical applications.

On the other hand, sinogram pre-filtration and image post-processing are computationally 

efficient compared to iterative reconstruction. Noise characteristic was well modeled in the 

sinogram domain for sinogram-domain filtration. However, sinogram data of commercial 
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scanners are not readily available to users, and these methods may suffer from resolution 

loss and edge blurring. Sinogram data need to be carefully processed, otherwise artifacts 

may be induced in the reconstructed images.

Differently from sinogram denoising, image post-processing directly operates on an image. 

Many efforts were made in the image domain to reduce LDCT noise and suppress artifacts. 

For example, the non-local means (NLM) method was adapted for CT image denoising [8]. 

Inspired by compressed sensing methods, an adapted K-SVD method was proposed [9] to 

reduce artifacts in CT images. The block-matching 3D (BM3D) algorithm was used for 

image restoration in several CT imaging tasks [10], [21]. With such image post-processing, 

image quality improvement was clear but over-smoothing and/or residual errors were often 

observed in the processed images. These issues are difficult to address, given the non-

uniform distribution of CT image noise.

The recent explosive development of deep neural networks suggests new thinking and huge 

potential for the medical imaging field [22], [23]. As an example, the LDCT denoising 

problem can be solved using deep learning techniques. Specifically, the convolutional neural 

network (CNN) for image super-resolution [24] was recently adapted for low-dose CT 

image denoising [25], with a significant performance gain. Then, more complex networks 

were proposed to handle the LDCT denoising problem such as the RED-CNN in [26] and 

the wavelet network in [27]. The wavelet network adopted the shortcut connections 

introducted by the U-net [28] directly and the RED-CNN [27] replaced the pooling/

unpooling layers of U-net with convolution/deconvolution pairs.

Despite the impressive denoising results with these innovative network structures, they fall 

into a category of an end-to-end network that typically uses the mean squared error (MSE) 

between the network output and the ground truth as the loss function. As revealed by the 

recent work [29], [30], this per-pixel MSE is often associated with over-smoothed edges and 

loss of details. As an algorithm tries to minimize per-pixel MSE, it overlooks subtle image 

textures/signatures critical for human perception. It is reasonable to assume that CT images 

distribute over some manifolds. From that point of view, the MSE based approach tends to 

take the mean of high-resolution patches using the Euclidean distance rather than the 

geodesic distance. Therefore, in addition to the blurring effect, artifacts are also possible 

such as non-uniform biases.

To tackle the above problems, here we propose to use a generative adversarial network 

(WGAN) [31] with the Wasserstein distance as the discrepancy measure between 

distributions and a perceptual loss that computes the difference between images in an 

established feature space [29], [30].

The use of WGAN is to encourage that denoised CT images share the same distribution as 

that of normal dose CT (NDCT) images. In the GAN framework, a generative network G 

and a discriminator network D are coupled tightly and trained simultaneously. While the G 

network is trained to produce realistic images G(z) from a random vector z, the D network is 

trained to discriminate between real and generated images [32], [33]. GANs have been used 

in many applications such as single image super-resolution [29], art creation [34], [35], and 
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image transformation [36]. In the field of medical imaging, Nie et al. [37] proposed to use 

GAN to estimate CT image from its corresponding MR image. Wolterink et al. [38] are the 

first to apply GAN network for cardiac CT image denoising. And Yu et al. [39] used GAN 

network to handle the de-alising problem for fast CS-MRI. Promising results were achieved 

in these works. We will discuss and compare the results of those two networks in Section III 

since the proposed network is closely related with their works.

Despite its success in these areas, GANs still suffer from a remarkable difficulty in training 

[33], [40]. In the original GAN [32], D and G are trained by solving the following minimax 

problem

min 
G

max 
D

LGAN(D, G) = �
x P

r
[log D(x)] + �

z P
z
[log (1 − D(G(z)))] (1)

where (·) denotes the expectation operator; Pr and Pz are the real data distribution and the 

noisy data distribution. The generator G transforms a noisy sample to mimic a real sample, 

which defines a data distribution, denoted by Pg. When D is trained to become an optimal 

discriminator for a fixed G, the minimization search for G is equivalent to minimizing the 

Jensen-Shannon (JS) divergence of Pr and Pg, which will lead to vanished gradient on the 

generator G [40] and G will stop updating as the training continues.

Consequently, Arjovsky et al. [31] proposed to use the Earth-Mover (EM) distance or 

Wasserstein metric between the generated image samples and real data for GAN, which is 

referred to as WGAN, because the EM distance is continuous and differentiable almost 

everywhere under some mild assumptions while neither KL nor JS divergence is. After that, 

an improved WGAN with gradient penalty was proposed [41] to accelerate the convergence.

The rationale behind the perceptual loss is two-fold. First, when a person compares two 

images, the perception is not performed pixel-by-pixel. Human vision actually extracts and 

compares features from images [42]. Therefore, instead of using pixel-wise MSE, we 

employ another pre-trained deep CNN (the famous VGG [43]) for feature extraction and 

compare the denoised output against the ground truth in terms of the extracted features. 

Second, from a mathematical point of view, CT images are not uniformly distributed in a 

high-dimensional Euclidean space. They reside more likely in a low-dimensional manifold. 

With MSE, we are not measuring the intrinsic similarity between the images, but just their 

superficial differences in the brute-force Euclidean distance. By comparing images 

according their intrinsic structures, we should project them onto a manifold and calculate the 

geodesic distance instead. Therefore, the use of the perceptual loss for WGAN should 

facilitate producing results with not only lower noise but also sharper details.

In particular, we treat the LDCT denoising problem as a transformation from LDCT to 

NDCT images. WGAN provides a good distance estimation between the denoised LDCT 

and NDCT image distributions. Meanwhile, the VGG-based perceptual loss tends to keep 

the image content after denoising. The rest of this paper is organized as follows. The 

proposed method is described in Section II. The experiments and results are presented in 

Section III. Finally, relevant issues are discussed and a conclusion is drawn in Section IV.
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II. Methods

A. Noise Reduction Model

Let z ∈ ℝN × N denote a LDCT image and x ∈ ℝN × N denote the corresponding NDCT 

image. The goal of the denoising process is to seek a function G that maps LDCT z to 

NDCT x:

G: z x (2)

On the other hand, we can also take z as a sample from the LDCT image distribution PL and 

x from the NDCT distribution or the real distribution Pr. The denoising function G maps 

samples from PL into a certain distribution Pg. By varying the function G, we aim to change 

Pg to make it close to Pr. In this way, we treat the denoising operator as moving one data 

distribution to another.

Typically, noise in x-ray photon measurements can be simply modeled as the combination of 

Poisson quantum noise and Gaussian electronic noise. On the contrary, in the reconstructed 

images, the noise model is usually complicated and non-uniformly distributed across the 

whole image. Thus there is no clear clue that indicates how data distributions of NDCT and 

LDCT images are related to each other, which makes it difficult to denoise LDCT images 

using traditional methods. However, this uncertainty of noise model can be ignored in deep 

learning denoising because a deep neural network itself can efficiently learn high-level 

features and a representation of data distribution from modest sized image patches through a 

neural network.

B. WGAN

Compared to the original GAN network, WGAN uses the Wasserstein distance instead of the 

JS divergence to compare data distributions. It solves the following minimax problem to 

obtain both D and G [41]:

min 
G

max 
D

LWGAN(D, G) = − �
x
[D(x)] + �

z
[D(G(z))] + λ�

x
[(‖∇

x
D(x)‖

2
− 1)2], (3)

where the first two terms perform a Wasserstein distance estimation; the last term is the 

gradient penalty term for network regularization; x̂ is uniformly sampled along straight lines 

connecting pairs of generated and real samples; and λ is a constant weighting parameter. 

Compared to the original GAN, WGAN removes the log function in the losses and also 

drops the last sigmoid layer in the implementation of the discriminator D. Specifically, the 

networks D and G are trained alternatively by fixing one and updating the other.

C. Perceptual Loss

While the WGAN network encourages that the generator transforms the data distribution 

from high noise to a low noise version, another part of the loss function is added for the 

network to keep image details or information content. Typically, a mean squared error 
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(MSE) loss function is used, which tries to minimize the pixel-wise error between a 

denoised patch G(z) and a NDCT image patch x as [25], [26]

LMSE(G) = �(x, z)

1

N
2

‖G(z) − x‖F
2 , (4)

where ‖ · ‖F denotes the Frobenius norm. However, the MSE loss can potentially generate 

blurry images and cause the distortion or loss of details. Thus, instead of using a MSE 

measure, we apply a perceptual loss function defined in a feature space

LPerpceptual(G) = �(x, z)

1

whd
‖ϕ(G(z)) − ϕ(x)‖F

2 , (5)

where ϕ is a feature extractor, and w, h, and d stand for the width, height and depth of the 

feature space, respectively. In our implementation, we adopt the well-known pre-trained 

VGG-19 network [43] as the feature extractor. Since the pre-trained VGG network takes 

color images as input while CT images are in grayscale, we duplicated the CT images to 

make RGB channels before they are fed into the VGG network. The VGG-19 network 

contains 16 convolutional layers followed by 3 fully-connected layers. The output of the 

16th convolutional layer is the feature extracted by the VGG network and used in the 

perceptual loss function,

LVGG(G) = �(x, z)

1

whd
‖VGG(G(z)) − VGG(x)‖F

2 (6)

For convenience, we call the perceptual loss computed by VGG network VGG loss.

Combining Eqs. (3) and (6) together, we get the overall joint loss function expressed as

min 
G

max 
D

LWGAN(D, G) + λ1LVGG(G) (7)

where λ1 is a weighting parameter to control the trade-off between the WGAN adversarial 

loss and the VGG perceptual loss.

D. Network Structures

The overall view of the proposed network structure is shown in Fig. 1. For convenience, we 

name this network WGAN-VGG. It consists three parts. The first part is the generator G, 

which is a convolutional neural network (CNN) of 8 convolutional layers. Following the 

common practice in the deep learning community [44], small 3 × 3 kernels were used in 

each convolutional layer. Due to the stacking structure, such a network can cover a large 

enough receptive field efficiently. Each of the first 7 hidden layers of G have 32 filters. The 
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last layer generates only one feature map with a single 3 × 3 filter, which is also the output 

of G. We use Rectified Linear Unit (ReLU) as the activation function.

The second part of the network is the perceptual loss calculator, which is realized by the pre-

trained VGG network [43]. A denoised output image G(z) from the generator G and the 

ground truth image x are fed into the pre-trained VGG network for feature extraction. Then, 

the objective loss is computed using the extracted features from a specified layer according 

to Eq. (6). The reconstruction error is then back-propagated to update the weights of G only, 

while keeping the VGG parameters intact.

The third part of the network is the discriminator D. As shown in Fig. 2, D has 6 

convolutional layers with the structure inspired by others’ work [29], [30], [43]. The first 

two convolutional layers have 64 filters, then followed by two convolutional layers of 128 

filters, and the last two convolutional layers have 256 filters. Following the same logic as in 

G, all the convolutional layers in D have a small 3 × 3 kernel size. After the six 

convolutional layers, there are two fully-connected layers, of which the first has 1024 

outputs and the other has a single output. Following the practice in [31], there is no sigmoid 

cross entropy layer at the end of D.

The network is trained using image patches and applied on entire images. The details are 

provided in Section III on experiments.

E. Other Networks

For comparison, we also trained four other networks.

• CNN-MSE with only MSE loss

• CNN-VGG with only VGG loss

• WGAN-MSE with MSE loss in the WGAN framework

• WGAN with no other additive losses

• Original GAN

All the trained networks are summarized in Table. I.

III. Experiments

A. Experimental Datasets

We used a real clinical dataset authorized for “the 2016 NIH-AAPM-Mayo Clinic Low Dose 

CT Grand Challenge” by Mayo Clinic for the training and evaluation of the proposed 

networks [45]. The dataset contains 10 anonymous patients’ normal-dose abdominal CT 

images and simulated quarter-dose CT images. In our experiments, we randomly extracted 

100,096 pairs of image patches from 4,000 CT images as our training inputs and labels. The 

patch size is 64 × 64. Also, we extracted 5,056 pairs of patches from another 2,000 images 

for validation. When choosing the image patches, we excluded image patches that were 

mostly air. For comparison, we implemented a state-of-the-art 3D dictionary learning re-

Yang et al. Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



construction technique as a representative IR algorithm [19], [20]. The dictionary learning 

reconstruction was performed from the LDCT projection data provided by Mayo Clinic.

B. Network Training

In our experiments, all the networks were optimized using Adam algorithm [46]. The 

optimization procedure for WGAN-VGG network is shown in Fig. 3. The mini-batch size 

was 128. The hyper-parameters for Adam were set as α = 1e − 5, β1 = 0.5, β2 = 0.9, and we 

chose λ = 10 as suggested in [41], λ1 = 0.1, λ2 = 0.1 according to our experimental 

experience. The optimization processes for WGAN-MSE and WGAN are similar except that 

line 12 was changed to the corresponding loss function, and for CNN-MSE and CNN-VGG, 

lines 2–10 were removed and line 12 was changed according to their loss functions.

The networks were implemented in Python with the Tensorflow library [47]. A NVIDIA 

Titan XP GPU was used in this study.

C. Network Convergence

To visualize the convergence of the networks, we calculated the MSE loss and VGG loss 

over the 5,056 image patches for validation according to Eqs. (4) and (6) after each epoch. 

Fig. 4 shows the averaged MSE and VGG losses respectively versus the number of epochs 

for the five networks. Even though these two loss functions were not used at the same time 

for a given network, we still want to see how their values change during the training. In the 

two figures, both the MSE and VGG losses decreased initially, which indicates that the two 

metrics are positively correlated. However, the loss values of the networks in terms of MSE 

are increasing in the following order, CNN-MSE<WGAN-MSE<WGAN-VGG<CNN-VGG 

(Fig. 4a), yet the VGG loss are in the opposite order (Fig. 4b). The MSE and VGG losses of 

GAN network are oscillating in the converging process. WGAN-VGG and CNN-VGG have 

very close VGG loss values, while their MSE losses are quite different. On the other hand, 

WGAN perturbed the convergence as measured by MSE but smoothly converged in terms of 

VGG loss. These observations suggest that the two metrics have different focuses when 

being used by the networks. The difference between MSE and VGG losses will be further 

revealed in the output images of the generators.

In order to show the convergence of WGAN part, we plotted the estimated Wasserstein 

values defined as | − [D(x)] + [D(G(z))]| in Eq. (3). It can be observed in Fig. 4(c) that 

increasing the number of epochs did reduce the W-distance, although the decay rate 

becomes smaller. For the WGAN-VGG curve, the introduction of VGG loss has helped to 

improve the perception/visibility at a cost of a compromised loss measure. For the WGAN 

and WGAN-MSE curves, we would like to note that what we computed is a surrogate for 

the W-distance which has not been normalized by the total number of pixels, and if we had 

done such a normalization the curves would have gone down closely to zero after 100 

epochs.

D. Denoising Results

To show the denoising effect of the selected networks, we took two representative slices as 

shown in Figs. 5 and 7. And Figs. 6 and 8 are the zoomed regions-of-interest (ROIs) marked 
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by the red rectangles in Figs. 5 and 7. All the networks demonstrated certain denoising 

capabilities. However, CNN-MSE blurred the images and introduced waxy artifacts as 

expected, which are easily observed in the zoomed ROIs in Figs. 6e and 8e. WGAN-MSE 

was able to improve the result of CNN-MSE by avoiding over-smooth but minor streak 

artifacts can still be observed especially compared to CNN-VGG and WGAN-VGG. 

Meanwhile, using WGAN or GAN alone generated stronger noise (Figs. 6g and 8g) than the 

other networks enhanced a few white structures in the WGAN/GAN generated images, 

which are originated from the low dose streak artifact in LDCT images, while on the 

contrary the CNN-VGG and WGAN-VGG images are visually more similar to the NDCT 

images. This is because the VGG loss used in CNN-VGG and WGAN-VGG is computed in 

a feature space that is trained previously on a very large natural image dataset [48]. By using 

VGG loss, we transferred the knowledge of human perception that is embedded in VGG 

network to CT image quality evaluation. The performance of using WGAN or GAN alone is 

not acceptable because it only maps the data distribution from LDCT to NDCT but does not 

guarantee the image content correspondence. As for the lesion detection in these two slices, 

all the networks enhance the lesion visibility compared to the original noisy low dose FBP 

images as noise is reduced by the different approaches.

As for iterative reconstruction technique, the reconstruction results depend greatly on the 

choices of the regularization parameters. The implemented dictionary learning 

reconstruction (DictRecon) result gave the most aggressive noise reduction effect compared 

to the network outputs as a result of strong regularization. However, it over-smoothed some 

fine structures. For example, in Fig. 8, the vessel pointed by the green arrow was smeared 

out while it is easily identifiable in NDCT as well as WGAN-VGG images. Yet, as an 

iterative reconstruction method, DictRecon has its advantage over post-processing method. 

As pointed by the red arrow in Fig 8, there is a bright spot which can be seen in DictRecon 

and NDCT images, but is not observable in LDCT and network processed images. Since the 

WGAN-VGG image is generated from LDCT image, in which this bright spot is not easily 

observed, it is reasonable that we do not see the bright spot in the images processed by 

neural networks. In other words, we do not want the network to generate structure that does 

not exist in the original images. In short, the proposed WGAN-VGG network is a post-

processing method and information that is lost during the FBP reconstruction cannot easily 

be recovered, which is one limitation for all the post-processing methods. On the other hand, 

as an iterative reconstruction method, DictRecon algorithm generates images from raw data, 

which has more information than the post-processing methods.

E. Quantitative Analysis

For quantitative analysis, we calculated the peak-to-noise ratio (PSNR) and structural 

similarity (SSIM). The summary data are in Table II. CNN-MSE ranks the first in terms of 

PSNR, while WGAN is the worst. Since PSNR is equivalent to the per-pixel loss, it is not 

surprising that CNN-MSE, which was trained to minimize MSE loss, outperformed the 

networks trained to minimize other feature-based loss. It is worth noting that these 

quantitative results are in decent agreement with Fig. 4, in which CNN-MSE has the 

smallest MSE loss and WGAN has the largest. The reason why WGAN ranks the worst in 

PSNR and SSIM is because it does not include either MSE or VGG regularization. 
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DictRecon achieves the best SSIM and a high PSNR. However, it has the problem of image 

blurring and leads to blocky and waxy artifacts in the resultant images. This indicates that 

PSNR and SSIM may not be sufficient in evaluating image quality.

In the reviewing process, we found two papers using similar network structures. In [38], 

Wolterink et al. trained three networks, i.e. GAN, CNN-MSE, and GAN-MSE for cardiac 

CT denoising. Their quantitative PSNR results are consistent with our counterpart results. 

And Yu et al. [39] used GAN-VGG to handle the de-alising problem for fast CS-MRI. Their 

results are also consistent with ours. Interestingly, despite the high PSNRs obtained by 

MSE-based networks, the authors in the two papers all claim that GAN and VGG loss based 

networks have better image quality and diagnostic information.

To gain more insight into the output images from different approaches, we inspect the 

statistical properties by calculating the mean CT numbers (Hounsfield Units) and standard 

deviations (SDs) of two flat regions in Figs. 5 and 7 (marked by the blue rectangles). In an 

ideal scenario, a noise reduction algorithm should achieve mean and SD to the gold standard 

as close as possible. In our experiments, the NDCT FBP images were used as gold standard 

because they have the best image quality in this dataset. As shown in Table III, Both CNN-

MSE and DictRecon produced much smaller SDs compared to NDCT, which indicates they 

over-smoothed the images and supports our visual observation. On the contrary, WGAN 

produced the closest SDs yet smaller mean values, which means it can reduce noise to the 

same level as NDCT but it compromised the information content. On the other hand, the 

proposed WGAN-VGG has outperformed CNN-VGG, WGAN-MSE and other selected 

methods in terms of mean CT numbers, SDs, and most importantly visual impression.

In addition, we performed a blind reader study on 10 groups of images. Each group contains 

the same image slice but processed by different methods. NDCT and LDCT images are also 

included for reference, which are the only two labeled images in each group. Two 

radiologists were asked to independently score each image in terms of noise suppression and 

artifact reduction on a five-point scale (1 = unacceptable and 5 = excellent), except for the 

NDCT and LDCT images, which are the references. In addition, they were asked to give an 

overall image quality score for all the images. The mean and standard deviation values of the 

scores from the two radiologists were then obtained as the final evaluation results, which are 

shown in Table. IV. It can be seen that CNN-MSE and DictRecon give the best noise 

suppression scores while the proposed WGAN-VGG outperforms the other methods for 

artifact reduction and overall quality improvement. Also, *-VGG networks provide higher 

scores than *-MSE networks in terms of artifact reduction and overall quality but lower 

scores for noise suppression. This indicates that MSE loss based networks are good at noise 

suppression at a loss of image details, resulting in an image quality degradation for 

diagnosis. Meanwhile, the networks using WGAN give better overall image quality than the 

networks using CNN, which supports the use of WGAN for CT image denoising.

F. VGG Feature Extractor

Since VGG network is trained on natural images, it may cause concerns on how well it 

performs on CT image feature extraction. Thus, we displayed two feature maps of normal 

dose and quarter dose images and their absolute difference in Fig. 9. The feature map 
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contains 512 small images of size 32 × 32. We organize these small images into a 32 × 16 

array. Each small image emphasizes a feature of the original CT image, i.e. boundaries, 

edges, or whole structures. Thus, we believe VGG network can also serve a good feature 

extractor for CT images.

IV. Discussions and Conclusion

The most important motivation for this paper is to approach the gold standard NDCT images 

as much as possible. As described above, the feasibility and merits of GAN has been 

investigated for this purpose with the Wasserstein distance and the VGG loss. The difference 

between using the MSE and VGG losses is rather significant. Despite the fact that networks 

with MSE would offer higher values for traditional figures of merit, VGG loss based 

networks seem desirable for better visual image quality with more details and less artifacts.

The experimental results have demonstrated that using WGAN helps improve image quality 

and statistical properties. Comparing the images of CNN-MSE and WGAN-MSE, we can 

see that the WGAN framework helped to avoid over-smoothing effect typically suffered by 

MSE based image generators. Although CNN-VGG and WGAN-VGG visually share a 

similar result, the quantitative analysis shows WGAN-VGG enjoys higher PSNRs and more 

faithful statistical properties of denoised images relative to those of NDCT images. 

However, using WGAN/GAN alone reduced noise but at the expense of losing critical 

features. The resultant images do not show a strong noise reduction. Quantitatively, the 

associated PSNR and SSIM increased modestly compared to LDCT but they are much lower 

than what the other networks produced. Theoretically, WGAN/GAN network is based on 

generative model and may generate images that look naturally yet cause a severe distortion 

for medical diagnostics. This is why an additive loss function such as MSE and VGG loss 

should be added to guarantee the image content remains the same.

It should be noted that the experimental data contain only one noise setting. Networks 

should be re-trained or re-tuned for different data to adapt for different noise properties. 

Especially, networks with WGAN are trying to minimize the distance between two 

probability distributions. Thus, their trained parameters have to be adjusted for new datasets. 

Meanwhile, since the loss function of WGAN-VGG is a mixture of feature domain distance 

and the GAN adversarial loss, they should be carefully balanced for different dataset to 

reduce the amount of image content alternation.

The denoising network is a typical end-to-end operation, in which the input is a LDCT 

image while the target is a NDCT image. Although we have generated images visually 

similar to NDCT counterparts in the WGAN-VGG network, we recognize that these 

generated images are still not as good as NDCT images. Moreover, noise still exists in 

NDCT images. Thus, it is possible that VGG network has captured these noise features and 

kept them in the denoised images. This could be a common problem for all the denoising 

networks. How to outperform the so-called gold standard NDCT images is an interesting 

open question. Moreover, image post-denoising methods also suffer from the information 

loss during the FBP reconstruction process. This phenomena is observed in the comparison 

with DictRecon result. A better way to incorporate the strong fitting capability of neural 
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network and the data completeness of CT data is to design a network that maps directly from 

raw projection to the final CT images, which could be a next step of our work.

In conclusion, we have proposed a contemporary deep neural network that uses a WGAN 

framework with perceptual loss function for LDCT image denoising. Instead of focusing on 

the design of a complex network structure, we have dedicated our effort to combine 

synergistic loss functions that guide the denoising process so that the resultant denoised 

results are as close to the gold standard as possible. Our experiment results with real clinical 

images have shown that the proposed WGAN-VGG network can effectively solve the well-

known over-smoothing problem and generate images with reduced noise and increased 

contrast for improved lesion detection. In the future, we plan to incorporate the WGAN-

VGG network with more complicated generators such as the networks reported in [26], [27] 

and extend these networks for image reconstruction from raw data by making a neural 

network counterpart of the FBP process.
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Fig. 1. 

The overall structure of the proposed WGAN-VGG network. In Part 1, n stands for the 

number of convolutional kernels and s for convolutional stride. So, n32s1 means the 

convolutional layer has 32 kernels with stride 1.
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Fig. 2. 

The structure of the discriminator network. n and s have the same meaning as in Fig. 1

Yang et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 

Optimization procedure of WGAN-VGG network.
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Fig. 4. 

Plots of validation loss versus the number of epochs during the training of the 5 networks. 

(a) MSE loss convergence, (b) VGG loss convergence and (c) Wasserstein estimation 

convergence.
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Fig. 5. 

Transverse CT images of the abdomen demonstrate a low attenuation liver lesion (in the red 

box) and a cystic lesion in the upper pole of the left kidney (in the blue box). This display 

window is [−160, 240]HU.
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Fig. 6. 

Zoomed ROI of the red rectangle in Fig. 5. The low attenuation liver lesion with in the 

dashed circle represents metastasis. The lesion is difficult to assess on quarter dose FBP 

recon (b) due to high noise content. This display window is [−160, 240]HU.
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Fig. 7. 

Transverse CT images of the abdomen demonstrate small low attenuation liver lesions. The 

display window is [−160, 240]HU.
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Fig. 8. 

Zoomed ROI of the red rectangle in Fig. 7 demonstrates the two attenuation liver lesions in 

the red and blue circles. The display window is [−160, 240]HU.
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Fig. 9. 

VGG feature maps of full dose and quarter dose images in Fig. 5 and their absolute 

difference.
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TABLE I

Summary of all trained networks: their loss functions and trainable networks.

Network Loss

CNN-MSE minG LMSE (G)

WGAN-MSE minG maxG LWGAN (G, D) + λ2LMSE (G)

CNN-VGG minG LVGG (G)

WGAN-VGG minG maxG LWGAN (G, D) + λ1LVGG (G)

WGAN minG maxG LWGAN (G, D)

GAN minG maxG LGAN (G, D)
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TABLE II

Quantitative results associated with different network outputs for Figs. 5 and 7

Fig. 5 Fig. 7

PSNR SSIM PSNR SSIM

LDCT 19.7904 0.7496 18.4519 0.6471

CNN-MSE 24.4894 0.7966 23.2649 0.7022

WGAN-MSE 24.0637 0.8090 22.7255 0.7122

CNN-VGG 23.2322 0.7926 22.0950 0.6972

WGAN-VGG 23.3942 0.7923 22.1620 0.6949

WGAN 22.0168 0.7745 20.9051 0.6759

‘1 GAN 21.8676 0.7581 21.0042 0.6632

DictRecon 24.2516 0.8148 24.0992 0.7631
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TABLE III

Statistical properties of the blue rectangle areas in Figs. 5 and 7. The values are in Hounsfield Unit (HU).

Fig. 5 Fig. 7

Mean SD Mean SD

NDCT 9 36 118 38

LDCT 11 74 118 66

CNN-MSE 12 18 120 15

WGAN-MSE 9 28 115 25

CNN-VGG 4 30 104 28

WGAN-VGG 9 31 111 29

WGAN 23 37 135 33

GAN 8 35 110 32

DictRecon 4 11 111 13
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