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Abstract

One of the promising strategies for neural repair therapies is the transplantation of olfactory ensheathing cells (OECs) which
are the glial cells of the olfactory system. We evaluated the effects of curcumin on the behaviour of mouse OECs to
determine if it could be of use to further enhance the therapeutic potential of OECs. Curcumin, a natural polyphenol
compound found in the spice turmeric, is known for its anti-cancer properties at doses over 10 mM, and often at 50 mM, and
it exerts its effects on cancer cells in part by activation of MAP kinases. In contrast, we found that low-dose curcumin
(0.5 mM) applied to OECs strikingly modulated the dynamic morphology, increased the rate of migration by up to 4-fold,
and promoted significant proliferation of the OECs. Most dramatically, low-dose curcumin stimulated a 10-fold increase in
the phagocytic activity of OECs. All of these potently stimulated behavioural characteristics of OECs are favourable for neural
repair therapies. Importantly, low-dose curcumin gave a transient activation of p38 kinases, which is in contrast to the high
dose curcumin effects on cancer cells in which these MAP kinases tend to undergo prolonged activation. Low-dose
curcumin mediated effects on OECs demonstrate cell-type specific stimulation of p38 and ERK kinases. These results
constitute the first evidence that low-dose curcumin can modulate the behaviour of olfactory glia into a phenotype
potentially more favourable for neural repair and thereby improve the therapeutic use of OECs for neural repair therapies.
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Introduction

Transplantation of olfactory ensheathing cells (OECs) for neural

repair therapies has been the subject of markedly increasing

research over the last decade. The glial cells from the olfactory

system have a number of attributes that make them particularly

favorable and place them at the upper end of potentially useful

cells. OECs have been shown to reduce inflammation [1],

promote axon regeneration [2–5], phagocytose cellular debris

[6–8] and bacteria [9,10], as well as integrate with astrocytes to

potentially allow them to penetrate astrocytic glial scar tissue

[11,12]. When transplanted into the injured spinal cord in rodents

[13–17] and dogs [18], OECs have been shown to promote axonal

regeneration and improve functional restoration. It is known that

the beneficial effects of OEC transplantations are mediated by

different mechanisms, including the creation of a nerve-promoting

environment, the production of neurotrophic factors, reduction of

inhibitory factors and the remyelination of the damaged nerves

[19]. However, OEC transplant results can be variable with some

studies concluding that no significant differences in axon

regeneration or functional outcomes were achieved after OEC

transplantation [20–22]. The factors for these contradictory

outcomes are diverse, however OEC transplantation appears to

be safe and offers unique properties as a leading candidate in

transplantation therapies for nerve repair [23]. A deeper

understanding of the biology of OECs as well as the identification

of molecular factors that can further enhance OEC properties are

highly warranted to develop a better strategy in the use of OECS

in cellular therapies.

Curcumin, a natural polyphenol compound found in the spice

turmeric, is known for its anti-inflammatory and anti-cancer

properties and has been used in traditional Chinese and Indian

medicine for centuries [24]. High concentrations of curcumin (10–

50 mM) induced apoptosis and autophagy in different types of

cancer cells by activation of extracellular signal-related (ERK) and

p38 MAP kinases [25]. However, curcumin can exert a dual effect

in some cell types depending on the dosage [26]. In neural

progenitor cells, high doses of curcumin (20–50 mM) are cytotoxic

whereas low doses (0.1–0.5 mM) stimulate cell proliferation [27].

Therefore, curcumin at different doses can elicit different cell

responses while activating the same kinases pathways.

The effect of curcumin on glial cells has been examined on

Schwann cells and astrocytes. Curcumin (2–10 mM) promote

Schwann cell differentiation and improve neuropathy in model of
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early onset Charcot-Marie-Tooth disease [28]. Within the injured

spinal cord, curcumin has been reported to have anti-inflamma-

tory and anti-oxidative effects [29,30] at concentration of 40–

60 mg/kg and to be neuroprotective by reducing neuron loss and

minimizing activation of astrocytes (1 mM) [31]. To date, however,

the effect of curcumin on the behaviour of OECs has been not

determined.

In this study, we have examined the effect of curcumin on the

behaviour of mouse OECs using time-lapse microscopy. We found

that curcumin dramatically stimulated the dynamic activity of

OECs leading to a potent increase in the phagocytic activity as

well as increased migration and proliferation. These results

provide further insight into the cellular mechanisms that regulate

phagocytic activity of OECs. In addition, as neuronal growth is

dependent on the growth and behaviour of glia, these results

indicate that curcumin could be used to enhance the activity of

OECs and subsequently improve neural regeneration in cell

transplant therapies.

Materials and Methods

Animals
Two different transgenic reporter mouse lines were used: (1)

OMP-ZsGreen mice, in which the olfactory marker protein

promoter drives expression of ZsGreen fluorescent protein in

primary olfactory sensory neurons [32]; (2) S100ß-DsRed mice in

which the human S100ß promoter drives expression of DsRed

fluorescent protein in cells that express S100ß including OECs

[33]. S100ß-DsRed transgenic mice were used for obtaining

cultures of DsRed-OECs; OMP-ZsGreen transgenic mice were

used for explant cultures of olfactory mucosa and for generating

fluorescently labelled cellular debris from olfactory axons.

Breeding pairs of mice were housed in micro-isolation cages and

postnatal day 7 (P7) offspring (n = 3–6 male/female pups per assay)

were sacrificed by decapitation.

Ethics Statement
Animals were used with approval of the animal ethics

committee of Griffith University (permit number: ESK/05/12/

AEC). All experiments were implemented according to the

guidelines established by National Health and Medical Research

Council of Australia (NHMRC).

OEC cultures
OECs were purified from the lamina propria of S100b-DsRed

transgenic mice using our previously published techniques [33]; in

these mice OECs express the bright fluorescent red protein

DsRed. Cells were maintained in Dulbecco’s Modified Eagle

Medium (DMEM) with 10% fetal bovine serum, G5 supplement

(Invitrogen), gentamicin, L-glutamine and 5% CO2 for one week

and then replated for analyses.

Verification of OEC identity
Immunochemistry was used to verify the identity of the DsRed-

positive OECs. For in vivo verification, heads from postnatal day 7

S100ß-DsRed mice were fixed in 4% paraformaldehyde (PFA) at

4uC for 24 h, cryoprotected in 30% sucrose, frozen and sectioned

on a cryostat microtome in 30 mm thick sections. For in vitro

immunocytochemistry, OECs were fixed in 4% PFA for 10 min.

Cryostat sections or cultured OECs were incubated for 30 min at

room temp in 0.1 M phosphate buffered saline (PBS) with 2%

bovine serum albumin (BSA) and 0.3% Triton X-100 (TX).

Rabbit polyclonal anti-p75 ntr (1:500, Promega, G3231, raised

against the cytoplasmic domain of recombinant human p75,

AB_430853 [34]) or rabbit polyclonal anti-S100ß (1:500, Dako,

Z031129-2, raised against full length S100 isolated from cow

brain, AB_2315306 [35]) antibodies (Table S1) were diluted in 0.1

M PBS/2% BSA/0.3% TX. Cells and tissue sections were

incubated with the antibodies overnight at 4uC, washed and

incubated with goat anti-rabbit secondary antibodies conjugated

to Alexafluor 488 (1 mg/mL, Invitrogen, AB_10049650) or

Alexafluor 594 (1:200, Invitrogen, AB_10049744) in PBS/BSA/

TX at room temp for 1 h and then stained with DAPI to visualise

nuclei.

Generation of immortalized mOEC-GFP cells
Primary cultures of olfactory bulb ensheathing glia were

prepared from GFP-expressing mice (C57BL/6-Tg(ACTB-EGF-

P)1Osb/J, Jackson Laboratory, Bar Harbor, USA) by a previously

described method [36,37] with modifications. Briefly, superficial

layers of olfactory bulbs from postnatal day 11 (P11) mice were

dissected out and the tissue dissociated. After incubation of 15 min

with 0.1% trypsin in Hank’s buffered salt solution (HBSS),

digestion was stopped with 20% fetal calf serum (FCS) in HBSS,

and the cells centrifuged and dissociated by several passes through

Pasteur pipettes. The OECs seeded in 6 cm tissue culture plates

were pretreated with poly-L-lysine and were maintained in

DMEM-F12 supplemented with 10% FCS, 20 mg/ml pituitary

extract and 2 mM forskolin (ME) until confluence was reached.

Immortalized clonal lines were established by transfection of the

primary cultures with the plasmid pEF321-T, which expresses the

viral oncogene SV40 large T antigen under the control of the EF1

promoter [38] using Lipofectamine (Gibco-BRL Life Tech.) as

indicated by the manufacturer’s instructions. Three clones (1, 2

and 3) with rapid growth in DMEM supplemented with 10% fetal

calf serum (FCS) were selected by limited dilution and re-cloned

twice. After their initial selection, the clonal lines were maintained

in ME. All three clones were also confirmed as positive for axonal

regenerative activity using a rat retinal ganglion neuron co-culture

assay [39].

For immunocytochemical characterisation, cells were seeded on

coverslips (36103 per coverslip) and after 2 days of culture, fixed

with 4% paraformaldehyde in phosphate-buffered saline (PBS)

followed by incubation with anti-p75ntr and anti-S100ß antibodies

(Table S1) as described above for verification of the identity of the

DsRed mouse OECs.

Curcumin
Curcumin (purity.80%) was obtained from Sigma (catalogue

number C7727) and a stock solution (30 mM) was prepared in

DMSO. For cell treatments, stock solution of curcumin was

diluted in culture medium to the concentration of 0.1, 0.5, 1, 10

and 20 mM. Treatments were always added 24 h post-seeding.

Ontology map
The network map was generated using Ingenuity Pathway

Analysis (IPA) (http://www.ingenuity.com). IPA is built upon a

knowledge base comprised of extensive peer-reviewed literature.

The significance value (p,0.01) for network over-representation

was calculated using a right-tailed Fisher’s exact test.

Proliferation assay
To examine the effect of curcumin on the proliferation of

primary cultures of OECs, cells were plated into 96 well plates at a

density of 3000 cells per well in total media for 24 h and then

exposed to different treatments (1) control medium (DMEM, 10%

FBS, gentamicin, L-glutamine), or media containing (2) increasing
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Figure 1. Immunofluorescence of OECs in vivo and in vitro. (A–A99) A cross section through olfactory nerve bundles within the lamina propria
of a postnatal day 7 mouse pup; OECs that surrounded and formed the nerve bundles expressed S100b-DsRed (A) and p75ntr (A9); the merged image
together with nuclei stained with DAPI is shown in A99. (B–B99) In cultures of purified OECs, the OECs continued to express DsRed (B); 95% of DsRed
OECs were positive for anti-p75ntr immunostaining (B9); the merged image is shown in B99 together with nuclei which are stained with DAPI. Arrow in
B99 points to a cell that did not express DsRed or p75ntr. (C–D) Characterization of clonal cell line of mouse OECs expressing GFP. OECs were positive
for anti-s100b (C) and anti-p75ntr (D). Scale bar = 50 mm in A–A99, C–D; 100 mm in B–B99.
doi:10.1371/journal.pone.0111787.g001

Figure 2. Low-dose curcumin treatment increases OEC proliferation. (A–D). Increased proliferation of OECs was observed after treatment
with 0.5 mM curcumin (B) or 0.5 mM curcumin combined with G5 supplement (D); cells appeared to have longer processes and formed a net-like
structure. Cells treated with higher concentrations of curcumin (C) displayed a more flattened morphology (arrows) and the number of cells was
lower compared to the control (A). Scale bar = 100 mm in A–D. (E–F) Quantification of the proliferation rate in MTS assays. (E) After two days in culture
0.5 mM curcumin with or without G5, and G5 supplement alone had significantly higher proliferation compared to control treatment. Higher doses of
curcumin (10, 20 mM) showed a significant decrease in OEC proliferation compared to control treatment p,0.05 (*), p,0.001 (**). After four days in
culture, 1 mM curcumin, 0.5 mM curcumin with G5, and G5 supplement alone significantly increased OEC proliferation; whereas 10 mM and 20 mM
curcumin decreased proliferation compared to control treatment (F). p,0.05(*), p,0.001(**), one way ANOVA post-hoc Tukey test. (G) ERK (PD98059)
and p38 kinase (SB203580) inhibitors blocked curcumin-induced proliferation of OECs p,0.05 (*); p,0.01 (**) compared with control; p,0.01 (##)
compared with cultures treated with curcumin alone; (n = 30–36 cells per treatment). Values are expressed as mean 6 s.e. of triplicates. Low-dose
curcumin induced transient-activation of ERK and p38 MAP kinases in OEC cells (H). Whole cell extracts (40 mg for p–p38 and 20 mg for p-ERKs) from
OECs treated with and without curcumin (0.5 mM) for the indicated time periods were subjected to western blot analysis using antibodies against
phospo-ERK1/2 and phospo-p38. Data represent the mean of three independent experiments 6 s.e. Statistical significance was determined by
Student’s t-test p,0.05 (*). Levels of b-tubulin were used as loading control.
doi:10.1371/journal.pone.0111787.g002
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concentrations of curcumin (0.1, 0.5, 1, 10, 20 mM (3) G5

supplement (Invitrogen), or (4) a combination of G5 and 0.5 mM

curcumin. G5 supplement was used as a positive control since G5

is known to stimulate proliferation of OECs [40]. For these assays

we used primary cultures of OECs dissected from transgenic

reporter mice as we have previously characterised these cells

[33,40,41].

After two or four days of treatment, proliferation of OECs was

determined by colorimetric assay using MTS assay CellTiter96

Aqueous One Solution reagent (Promega, Madison, WI) for 1 h

with absorbance at 490 nm measured in a plate reader. Images of

all wells were also taken before and after the set time period to

verify proliferation assay results. Inhibition of proliferation was

assayed using ERK (Extracellular signal-regulated kinases) and

p38 MAP (mitogen-activated protein) kinase inhibitors to block

curcumin-induced proliferation of OECs. Cultures of purified

S100b-DsRed OECs were plated in 96 well plates. After 24 h cells

were incubated with the inhibitors SB203580 (p38 MAP kinase

inhibitor, Sigma-Aldrich) and PD98059 (MEK/ERK inhibitor,

Sigma-Aldrich) at 100 mM for 24 h and then treated with 0.5 mM

curcumin for 48 h, followed by MTS assays and morphological

assays as describe above to determine the effects of p38 and ERK

kinases inhibitors in OEC lamellipodia.

Western blotting
Cell line OECs were cultured on six wells plates. After the cells

reached 70% confluence, curcumin (0.5 mM) treatment was

applied by direct dilution into the culture medium and samples

Figure 3. Ontology map of molecular and pathway interactions with curcumin. The ontology map was generated by IPA and identified
numerous molecules that interacted with curcumin. The five biological processes listed on the right that operated through the associated molecules
were all significantly over-represented (p,0.05).
doi:10.1371/journal.pone.0111787.g003
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collected at different time points (0.5, 1, 2, 4, 6 and 12 h). Cell

pellets obtained from each time point were washed with HBSS

and RIPA lysis buffer (150 mM NaCl, 1.0% Triton X-100, 0.5%

sodium deoxycholate, 0.1% sodium dodecyl sulphate, 50 mM

Tris, pH 8.0). Homogenized and lysed samples were boiled for

5 min in a gel-loading buffer at a sample/buffer ratio 1:2. Equal

amounts of protein (40 mg for p–p38 and 20 mg for p-ERKs) were

separated by SDS-PAGE using 10% gels. Proteins were

transferred from the gel onto a PVDF transfer membrane

(Thermo Fisher Scientific). Membrane was placed in blocking

solution (5% skim dry milk in TBS-Tween (TBS-T) buffer) for

30 min at room temp. Primary antibodies (Table S1): mouse

monoclonal antibodies against phospo-ERK (1:1000, Cell signal-

ling, 9101) [42] and phospo-p38 (1:500, Cell Signaling Technol-

ogy, 9211) [43] were incubated overnight at 4uC followed by

horseradish peroxidase (HRP) (1:5000 Life Technologies, 65–

6120) for 3 h at room temp. Bands were visualized using a

chemiluminescence kit (Millipore). Levels of phospo-p38 and

phospo-ERKS relative to b-tubulin (1:2000, Cell Signaling, 2128S)

were quantified by densitometric analysis and expressed in

arbitrary units.

Phagocytosis assays
To determine how curcumin affected the degree of OEC-

mediated phagocytosis, whole explants of olfactory mucosa tissue

were cultured in the absence and presence of 0.5 mM curcumin.

Explants were established from crosses of OMP-ZsGreen and

S100ß-DsRed transgenic mice as described previously [32,33].

The cultures were imaged after four days in culture to visualise the

green fluorescent axonal debris within OECs.

To verify that OECs phagocytosed fragments from olfactory

neurons, we generated green fluorescent axonal debris from

OMP-ZsGreen mice by dissecting out the nerve fibre layer and

briefly digesting the axons with a lysis buffer (TrypLE Express (Life

Technologies) and collagenase (0.1 mg/mL, Life Technologies))

followed by trituration. We used OECs from S100b-DsRed

transgenic mice so that they did not contain any ZsGreen axonal

debris prior to the assay. OECs were plated at the same density

(66103 cells/chamber in 8-well glass chamber slides) and the same

amount of axonal debris was added to the medium (50 ml) and

imaged over time. The axonal debris (identifiable by expression of

ZsGreen protein) was added to dissociated cultures of DsRed

OECs. Cells were studied using time-lapse imaging. LysoTracker

Red DN-99 (Molecular Probes, 1 mM) staining was carried to

determine co-localization of the cellular debris with lysosome by

confocal microscope. Phagocytosis of bacteria was conducted

using heat-killed FITC labelled E. coli.

For quantification of phagocytosis of axonal debris, after 12 and

24 h the dissociated OEC cultures were washed to remove

external axonal debris, fixed in 4% PFA and imaged using

confocal microscopy. Confocal microscope images were taken of

the dissociated cells (seeding density: 66103 cells/chamber in 8-

well glass chamber slides)with the laser and imaging parameters

Figure 4. Curcumin increases the phagocytic activity of OECs in explant cultures. (A) In explants in control medium some OECs
(arrowheads) migrated out from explants (large solid mass) and axonal debris (numerous small dots, arrows) was present in the medium. (B) Higher
magnification view of OECs migrating out of an explant together with green axon debris in control medium. Axonal debris was present in the
medium (arrows) as well as within the OECs (arrow with tail); a migrating neuron is indicated (arrowhead); B9 ZsGreen debris was present in the
medium (arrows); B99 red fluorescence of OECs. (C) When grown in medium containing 0.5 mM curcumin, numerous OECs had migrated out of the
explant and contained high levels of green axon debris (arrows), and there was little axon debris in the medium. (D) Higher magnification view shows
accumulation of ZsGreen within OECs (arrows); D9 ZsGreen debris was not detected in the medium (arrows with tail); D99 red fluorescence of OECs.
Scale bar = 100 mm in A, C; 45 mm in B, D.
doi:10.1371/journal.pone.0111787.g004
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held constant (473 laser at 6.0% power and PMT voltage of 607)

and with the levels set so that saturation of the green fluorescent

channel (to visualise axon debris) did not occur. Quantification of

the amount of internalised axonal debris was performed using

ImageJ software to measure the mean intensity of green

fluorescence (8 bit images were used giving a range of 0–255)

within the entire cell boundaries as defined by the DsRed

fluorescence of the cells.

Live Cell Imaging
For all experiments where live cell imaging was used, OECs

were plated onto glass culture plates (66103 cells/chamber in 8-

well glass chamber slides) and imaged in CO2 independent

medium (Invitrogen) in a chamber maintaining cells at 37uC.

Epifluorescent live cell imaging was carried out using a

Hamamatsu digital camera on an Olympus IX81 CellR micro-

scope fitted with epifluorescence and differential contrast optics

with time-lapse images taken every 10 min for up to 24 h. For

Figure 5. Curcumin increases the phagocytic activity of OECs in vitro. (A–A9) After 24 h OECs in control medium accumulated a small
amount of axonal debris (arrows) whereas (B–B9) OECs treated with curcumin showed high accumulation of axonal debris localized inside the cell
body. (C–C9) Co-localization of cellular debris (green) with lysosomes (red) indicating internalization of the debris. (D) Densitometric quantification of
the amount of axonal debris within OECs after 12 and 24 h incubation; graph shows a box and whisker plot, **p,0.001 for Mann-Whitney U test for
independent samples, n = 20. (E–F) OECs treated with curcumin show higher phagocytosis of FITC-labelled E. coli. (G–H) Live cell imaging of OECs in
control medium (G) and with curcumin (H); time is in h:min. (G) In control medium, lamellipodia were present (arrow with tail) and axon debris
external to the OEC (arrow) was internalised by the OEC over time. (H) When incubated with curcumin, large motile lamellipodia were present (arrow
with tail) and axon debris was rapidly internalised (arrowhead). Entire sequences are shown in Movie S1 and Movie S2. Scale bar = 25 mm in E–F
10 mm in C; 25 mm in E–F; 35 mm in G–H.
doi:10.1371/journal.pone.0111787.g005
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Figure 6. Curcumin increases OECs migration rate. (A) An example of live cell OEC migration in dissociated cultures with the track of migration
visualised using AxioVision software from the first (arrowhead) to last (arrow) frame. (B) Average migration rate from three different time-lapse videos
for each treatment, with n= 10 cells in each treatment. OECs treated with 0.5 mM curcumin and/or G5 migrated significantly faster than control; cells
exposed to combined 0.5 mM curcumin/G5 were significantly faster than all other treatments. (C–E) Migration of individual OECs in a scratch assay: (C)
the displacement of OECs that entered the scratch; (D) the mean velocity as measured along the tortuous path of migration; (E) the number of cells
that had migrated into the scratch region. Values are the mean and s.e. (n = 3 cultures) *p,0.05 and **p,0.01 Friedman non parametric test.
doi:10.1371/journal.pone.0111787.g006
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Figure 7. Curcumin increases morphology dynamics of OECs. (A–B) Schematic representation of the dynamic activity of OECs in vitro during
2 h of time-lapse imaging. (A) In control medium the morphology of cells underwent little change, (B) when incubated with 0.5 mM curcumin the
cells underwent rapid changes in morphology with increased size of lamellipodia and formation of branches. (C) OECs in control media showed
typical bipolar morphology with a long process (arrow) and lamellipodia (*). (D) OECs treated with curcumin displayed dynamic morphology with
rapid retraction and extension of branches (arrow) and numerous and larger lamellipodia (*). Scale bar = 60 mm. (E–H) OECs treated with curcumin
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some assays, confocal live cell imaging was carried out on an

Olympus CV1000 confocal microscope with images taken every

3 min.

Morphology assay
Time-lapse image sequences were analysed using AxioVision

(Zeiss, Germany) software to track the migration of cells. Image J

software (freehand/segmented line tools) was used to measure the

area of lamellipodia and length of branches. Counts of the number

of branches and lamellipodia were also performed. To evaluate the

changes in OEC lamellipodia after addition of ERK (Extracellular

signal-regulated kinases) and p38 MAP (mitogen-activated protein)

kinase inhibitors, cultures of purified S100b-DsRed OECs were

plated in 96 well plates. After 24 h cells were incubated with the

inhibitors SB203580 (p38 MAP kinase inhibitor, Sigma-Aldrich)

and PD98059 (MEK/ERK inhibitor, Sigma-Aldrich) at 100 mM

for 24 h and then treated with 0.5 mM curcumin for 48 h,

followed by morphological assays as described above.

Migration assays
To investigate how curcumin affected migration of OECs, cells

were tracked over 24 h in the absence and presence of curcumin

(0.5 mM). To study multidirectional migration within dissociated

cell cultures, cells were cultured to 50% confluency and then

imaged every 10 min for 24 h using time-lapse live cell imaging.

Quantification of the migrated distance for individual cells was

performed on every second frame and the average migration rate

over entire period was calculated using Axiovision software. For

scratch assays, OECs were cultured to 70% confluency followed

by serum starvation for 24 h. After that, a wide scratch (,700 mm)

was made using a pipette tip. Cells were left to migrate for 24 h

during which individual cell migration was tracked using live-cell

time-lapse microscopy with images taken every 10 min. The

number of cells that had entered the scratched region was counted

and Image J software was used to measure (1) the mean migration

velocity over the entire path of movement and (2) the final

displacement (s) of the cells from their initial position. Cell

migration analyses were performed by tracking individual cells

over the course of the live-cell imaging period both in the

dispersed cultures and in scratch assays.

Statistical analyses
To determine whether the data was normally distributed,

normality tests (skewness and excess kurtosis coefficients) were

used. Measurements of proliferation and morphological parame-

ters (lamellipodia and branches) were tested for statistical

significance using ANOVA one-way Tukey and LSD post-hoc

analyses. Statistical significance of cell migration data collected

from tracking cells in AxioVision was tested using Friedman non-

parametric test. Phagocytosis data statistical significance was tested

using Mann-Whitney U test.

Results and Discussion

Purification of OEC cultures
To easily visualise and identify OECs in vivo and in vitro, we

used the previously generated S100ß-DsRed mice in which the

human S100ß promoter drives expression of DsRed in OECs [33].

We first verified the expression of DsRed by OECs in vivo in

healthy postnatal pups (n = 3) using tissue sections through the

olfactory nerve bundles within the lamina propria lining the nasal

septum. Immunostaining using antibodies against the p75

neurotrophin receptor, which is a standard marker of OECs,

showed that all OECs expressed both DsRed fluorescent protein

and p75 neurotrophin receptor (Fig. 1A–A0). After purification,

in vitro cultures of OECs showed that 95% of cells expressed

DsRed fluorescent protein (Fig. 1B) and 95% of the DsRed cells

also expressed the p75 neurotrophin receptor (Fig. 1 B9–B0) and

thus these OEC cultures had a purity of at least 90%. The

had significantly higher (E) number of branches, (F) length of branches, (G) number of lamellipodia, (H) area of lamellipodia. (I) OECs treated with
SB203580 and PD98059 inhibitors had significantly fewer (*p,0.05) lamellipodia compared to control cells (n = 30–36 cells per treatment). Values are
expressed as mean 6 s.e. of triplicates. *p,0.05, **p,0.01, one-way ANOVA (Tukey Post-hoc analysis).
doi:10.1371/journal.pone.0111787.g007

Figure 8. Curcumin can be of potential use for transplant
therapies. (A) Typically OECs transplanted into the injured spinal cord
have limited migration and integration. (B) Structure of curcumin. (C)
Curcumin stimulates proliferation and migration of OECs and strongly
promotes phagocytosis of cellular debris. (D) The potential resultant
effect is to improve the integration of OECs within the injury site and
promote axon growth.
doi:10.1371/journal.pone.0111787.g008
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morphology of the cells in these primary cultures was predomi-

nantly bipolar.

Curcumin increases proliferation of OECs
As curcumin has been shown to regulate the proliferation of

neural progenitors [27] we determined whether curcumin

regulates the proliferation of OECs. We assayed curcumin at the

concentrations of 0.1, 0.5, 1, 10, 20 mM and found that curcumin

at low dose (0.5 mM) promoted proliferation of OECs, whereas at

higher concentrations ($10 mM), proliferation was instead re-

duced (Fig. 2A–C). In the curcumin treated wells, proliferation

was not uniform across the wells with localised regions showing

considerably higher concentrations of cells, particularly those that

had close cell-cell contact (Fig. 2B). Interestingly, cells treated with

the combination of curcumin and G5 showed the highest

proliferation (Fig. 2D). Proliferation rates were calculated to

confirm the results. After two days of incubation, there was a

significant increase of OEC proliferation in cultures treated with

0.5 mM curcumin (p,0.05), G5+0.5 mM curcumin (p,0.01) and

G5 alone (p,0.05) (Fig. 2E). Curcumin at concentrations of 10

and 20 mM curcumin had significantly lower rates of proliferation

compared to cells grown in control media (p,0.05; Fig. 2E). At

concentrations of 0.5–1.0 mM, the OECs had a largely bipolar

morphology and underwent increased proliferation in comparison

to controls (Fig. 2A, B). At concentrations above 1 mM, many of

the OECs adopted a flattened morphology, consistent with lower

dynamic activity (Fig. 2C) [33]. After four days of incubation,

1 mM curcumin, 0.5 mM curcumin with G5, and G5 alone

significantly increased proliferation compared to control media

(p,0.05; Fig. 2F). Concentrations of curcumin of $10 mM

significantly decreased proliferation compared to control media

(p,0.05; Fig. 2F).

Among the concentrations of curcumin tested, 0.5 mM was the

most effective in stimulating OEC proliferation, and this

concentration was used for all following assays. Curcumin has

been shown to regulate proliferation of other cell types in a similar

concentration-dependent manner. At low concentrations (0.1–

0.5 mM) curcumin stimulated cell proliferation of cultured multi-

potent neural progenitors cells [27], whereas high concentrations

of curcumin (.12.5 mM) are often cytotoxic to various cancer cell

lines [27,44].

To assess the role of the ERK and p38 kinase pathways in

curcumin-mediated cell proliferation, OECs were incubated with

PD98059 (ERK inhibitor) and SB203580 (p38 MAP kinase

inhibitor), which have been shown to block growth factor-induced

mitogen activation on OECs [45]. Both the ERK and p38 MAP

kinase inhibitors significantly reduced proliferation of OECs

grown without curcumin (Fig. 2G), suggesting that both pathways

play important roles in the basal proliferation of OECs. Incubation

with both inhibitors blocked the proliferative effect of curcumin

(Fig. 2G) indicating that MEK/ERK and p38 MAP kinase are

involved in the curcumin-mediated effect on proliferation of

OECs. Although, these results suggest that ERK and p38 kinase

pathways are involved in the proliferation of OECs as the

inhibitors significantly suppress the effect of curcumin, it is unclear

if the phosphorylation levels of these kinases in OECs change after

administration of curcumin.

Protein kinases regulate proliferation, survival, migration and

other cellular events. Activation of p38 MAP kinases by curcumin

has been reported in ovarian cancer cell lines, where curcumin was

able to induce cell apoptosis [46]. The effect of curcumin is

dependent on the cell types as curcumin differentially affects

proliferation of neural stem cells and non-neural cancer cells even

if the same MAP kinases pathways are activated [47].

Curcumin has been shown to selectively regulate the activation

of the ERK and p38 MAPK pathways in different cells types.

Curcumin (10–50 mM) induce cell apoptosis and autophagy

[46,48] in different cancer cells [25], whilst in neural progenitors,

curcumin (0.5 mM) was able to increase proliferation [27]. These

results suggest that the effect of curcumin is dependent on the cell

types and dosage, as curcumin differentially affects proliferation of

neural stem cells and non-neural cancer cells even if the same

MAP kinases pathways are activated [27]. As glial cells are of a

neural lineage, we therefore performed western blot analysis using

low-dose curcumin (0.5 mM) to determine if these kinases are

activated by curcumin treatment (Fig. 2H). We used the clonal cell

line of mouse OECs as these cells would provide a uniform

response to curcumin. The cell line OECs were confirmed positive

for expression of S100b and p75 neurotrophin receptor (Fig. 1 C–

D). Stimulation by curcumin (0.5 mM) transiently increased the

activation of p38 pathway at 6 h returning to basal levels within

12 h. A delayed activation of p38 in control cells was observed at

12 h. Levels of phosphorylated ERK-1 on curcumin cells treated

were reduced at 2 h with later peaks at 6 h and 12 h.

Phosphorylated ERK-2 showed activation at 6 h and 12 h. These

results suggest that low-dose curcumin stimulates the activity of

these MAP kinases in OECs. Previous studies have shown that

MAP signalling pathways are involved in multiple functions such

as proliferation, phagocytosis and generation of cytokine expres-

sion. Curcumin is known to regulate these pathways in a

differential manner according to the cell type [49].

Curcumin interacts with molecules and pathways
involved in different glial biology features
In order to identify other biological pathways associated with

curcumin that may be relevant to glia biology, we applied a

network knowledge database to highlight curcumin key functions

and interactions according to published literature. Ingenuity

Pathway Analysis (IPA) provides a bioinformatic method to build

first order molecular interactions and subsequently generate

pathways of highest significance from genome-wide expression

data [50]. Network nodes shown in Fig. 3 were all significantly

(p,0.01) over-represented in the first order curcumin network,

compiled from data validated in multiple model organisms. The

ontology map of molecular interactions of curcumin showed that it

has been implicated in pathways regulating phagocytosis of

microglia, activation of glia, differentiation of phagocytosis,

recruitment of phagocytes [51,52] and proliferation of immune

cells [53]. Curcumin has been reported to interact with numerous

molecular targets, including growth factors, inflammatory cyto-

kines, transmembrane receptors, transcription factors, protein

kinases and regulatory enzymes [54]. As the ontology analysis

indicated that curcumin may affect phagocytosis, migration and

morphology we therefore examined these behaviours in detail.

Curcumin modulates the behaviour of OECs in explants
of olfactory mucosa
The effect of curcumin on OEC behaviour was further

examined in cultured explants of olfactory mucosa. To easily

visualise olfactory sensory neurons, we used the previously

generated OMP-ZsGreen transgenic mice in which ZsGreen is

strongly expressed by the olfactory neurons and their axons [32].

The OMP-ZsGreen mice were crossed with the S100b-DsRed

transgenic mice so that explants of olfactory mucosa from the

offspring contained olfactory neurons that expressed ZsGreen

fluorescent protein, and OECs that expressed DsRed fluorescent

protein. After four days incubation in control medium (DMEM/
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10% FBS), OECs had started to migrate out of the explants

(Fig. 4A, B), however, extension of olfactory axons require

external growth factors to be present in the culture [40], and

thus no axons were seen in these cultures. A considerable amount

of axon-derived debris was present in the culture medium

immediately surrounding the explants (arrows, Fig. 4B). The

majority of OECs contained green fluorescent debris in the

cytoplasm, suggesting that the cells had phagocytosed the axonal

debris (arrow with tail, Fig. 4B).

In the presence of curcumin (0.5 mM), the number of OECs that

had migrated out of the explants, as well as the distance migrated,

was markedly increased (Fig. 4C vs 4A). At higher magnification it

appeared that the OECs contained considerably more green

fluorescent axonal debris than the cells in control medium (arrows,

Fig. 4D). Further, axonal debris could not be detected in the

medium surrounding the explant (arrows with tail, Fig. 4D9), in

stark contrast to the large amounts of debris observed under

control conditions (Fig. 4B9).

Since it was observed that curcumin appeared to induce

changes in phagocytic activity and migration on OECs, these

effects were further investigated.

Phagocytosis of axonal debris by OECs is potently
stimulated by curcumin
We examined the degree of phagocytosis of axonal debris in

dissociated cultures of OECs. After 24 h, OECs in control

medium had taken up small amounts of green fluorescent axonal

debris (Fig. 5A). The phagocytosis of axonal debris varied amongst

the OECs, with some OECs having taken up large amounts of

debris, while other OECs did not contain any debris at all

(Fig. 5A–A9). When OECs were incubated in medium containing

curcumin (0.5 mM) there was a dramatic difference in the

phagocytosis of axonal debris and all OECs in the culture

contained large amounts of axonal debris (Fig. 5B–B9). The OECs

in the curcumin cultures also exhibited numerous large lamelli-

podia emanating from the shafts of the cell processes and cell

bodies (arrows with tails, Fig. 5B) which were not detected on

OECs in control medium (Fig. 5A). We confirmed that the cell

debris was localized within lysosomes by using Lysotracker

(Fig. 5C–C9) and confocal imaging. We then quantified the

phagocytosis of the green fluorescent axonal debris by densito-

metric measurement of the fluorescent intensity contained within

the cells. The phagocytosis of axonal debris by OECs treated with

curcumin was significantly increased by over ten-fold after 12 h

incubation and over 5-fold after 24 h incubation compared to

controls (Fig. 5D). In addition to axonal debris, the phagocytosis

assay was also conducted using heat-killed FITC labelled E. coli.

OECs in curcumin media showed a dramatically higher amount of

bacteria inside the bodies when compared with OECs in control

media (Fig. 5E–F) suggesting that the increase in the phagocytic

activity is not limited to axonal debris.

Live cell imaging showed that OECs in control medium

displayed dynamic motility and morphology changes (Fig. 5G);

typically they had a long process emanating from the cell body that

extended and retracted over time as well as small motile

lamellipodia that moved along the process (arrow with tail,

Fig. 5G; Movie S1). In contrast, curcumin-treated OECs had large

lamellipodia that rapidly changed shape, and the cells moved

considerably faster and changed direction much more frequently

than OECs in control medium (Fig. 5H). OECs treated with

curcumin actively searched and rapidly internalized axonal debris

that came into contact with them (Movie S2). Interestingly,

activation of p38 kinases has been reported to be involved in the

engulfment of debris and to be required for the process of

phagocytosis of neuronal debris by OECs [55]. Therefore,

curcumin regulation of p38 and other MAP described previously

[27,56] may provide a new insight in the use of this natural

product for stimulation of OEC phagocytic activity.

The potent stimulation of phagocytosis by curcumin is of

particular interest for neural repair therapies. After spinal cord

injury, phagocytosis of dead nerve cells is crucial for creating a

favourable environment for nerve regeneration and restoration of

nerve connections [57]. In normal conditions, phagocytic microg-

lia travel to the site of the injury, engulf debris from dead and

damaged cells and secrete pro-inflammatory factors to promote

more cells to proliferate and do the same [58,59]. However, the

resultant inflammatory cascade can be harmful to cells because of

the release of oxygen free radicals and neurotoxic enzymes [60]. A

recent study showed that OECs in an in vitro model of spinal

injury phagocytosed degenerated neuronal debris which enhanced

not just neuron survival but neurite outgrowth [55]. Therefore

stimulation of phagocytosis by curcumin could promote a more

rapid and efficient clearing of the toxic debris by OECs,

diminishing down-stream posterior pro-inflammatory responses

given its known anti-inflammatory properties [29,30], facilitating

neuronal survival and axonal growth and therefore enhancing the

overall therapeutic effect of OEC in spinal cord injury repair cell

therapies.

Curcumin increases OEC migration
In our initial explant experiment (Fig. 4A), we observed that

OECs appeared to have migrated further in the presence than in

the absence of curcumin. Consequently we examined the effect of

curcumin on OEC migration using time-lapse microscopy. We

first examined the migration rate of individual OECs in dispersed

cultures by tracking the movement of the cell body during a 24 h

period after curcumin treatment (Fig. 6A). We included both

curcumin and G5 supplement in this series of experiments, and

thus the different conditions were as follows: (1) control medium,

(2) 0.5 mM curcumin, (3) G5 supplement, or (4) a combination of

0.5 mM curcumin and G5 supplement. Curcumin and G5

supplement, as well as the G5+curcumin, significantly increased

the migration rates of OECs in comparison to controls (p,0.05,

p,0.05 and p,0.01, respectively; Fig. 6B).

After careful assessment of the time-lapse imaging sequences, it

was apparent that the cell movements were strongly influenced by

the presence of neighbouring cells. Therefore, we examined

migration of individual OECs using a scratch assay which allowed

the cells to migrate into the cell-free scratch which may better

reflect conditions as were seen in the explant assays (Fig. 4A–D).

The cells did not migrate into the scratch in a straight line, but

instead followed a tortuous route. We performed two measure-

ments: (1) the displacement (s) of individual cells from their initial

starting point to the end of the imaging period and (2) the velocity

of individual cells taking into account the entire route. Both G5

and curcumin, alone or in combination significantly increased the

distance migrated into the scratch. However, incubation with

curcumin alone resulted in the most dramatic response (Fig. 6C).

Similarly, curcumin and G5 also increased the mean velocity of

migration when the entire route for each cell was taken into

account, and again, curcumin alone resulted in the largest

response, increasing the mean migration velocity almost three-

fold in comparison to control (Fig. 6D; p-values shown in figure

legend). Curcumin also significantly increased the number of cells

present in the scratch by over three-fold in comparison to control

(Fig. 6E), further corroborating our finding that curcumin

promotes migration of OECs.
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Curcumin modulates the morphology of OECs
Changes in the local environment may induce changes in the

morphology of OECs which affect their behavior [61–63] and

morphology plasticity strongly impacts the rate of migration of

OECs [64]. The changes in cell morphology observed in response

to the addition of curcumin in the proliferation and phagocytosis

assays were further explored using live cell imaging; the

morphology changes that occurred over time were determined

and quantified. Cultured OECs were incubated in (1) control

medium, (2) 0.5 mM curcumin, and (3) G5 supplement, imaged

every 10 min, and the number and length of branches, as well as

the number and area of lamellipodia were quantified and then

averaged over the total period.

OECs in control medium, displayed distinct alterations in

morphology occurring over 30 min or more (Fig. 7A). Curcumin

treatment (0.5 mM) resulted in morphology changes in OECs, in

particular the presence of large, active lamellipodia (Fig. 7B). After

6 h incubation, OECs in control medium continued to exhibit a

bipolar morphology, often displaying a single process emanating

from the cell body (arrow in Fig. 7C) and a large lamellipodia

directly protruding from the other polar end of the cell body

(asterisk, Fig. 7C). Curcumin-treated OECs also had a largely

bipolar appearance but, in contrast to control OECs, they rapidly

produced and retracted additional branches or lamellipodia over

time (Fig. 7D). Incubation with curcumin significantly increased

all parameters assessed, indicating that curcumin modulates the

morphology of OECs by increasing the number and length of

branches and the number and area of lamellipodia for up to at

least 24 h (Fig. 7E–H). G5 supplement treatment did not show

any significant difference compared with the control, in any of the

factors examined. We have previously reported that growth factors

such as GDNF stimulate proliferation, mediate migration and

have an effect on lamellipodial activity of OECs [41]. As well,

previous studies have reported that OECs undergo morphological

changes and reorganization of cytoskeleton before functioning as

phagocytes and engulfing apoptotic neuron debris [6] as observed

in the phagocytosis assays.

In OECs, it has been shown that changes in peripheral

lamellipodia are a result of activation of the enzyme MEK1 (ERK

kinases pathway) after stimulation with GDNF [33]. The

stimulation of lamellipodial activity led to increased cell-cell

contact and resulted in contact-mediated migration [33,41].

Additionally, after olfactory bulbectomy, in the absence of axons,

extensive OEC cell-cell contact resulted in subsequent superior

OEC proliferation and axon growth [65]. Our current results

show that curcumin had a distinct effect on lamellipodial activity

of OECs and that the changes in proliferation and migration could

be as a result of the increased cell-cell contact that is induced by

curcumin. We addressed this by evaluation of changes in the

number and area of lamellipodia in OECs treated with p38 and

ERK kinase inhibitors and found that fewer lamellipodia were

present in cells treated by the ERK inhibitor (Fig. 7I). Thus, the

increase of proliferation by curcumin is likely to act via a

combination of direct stimulation of proliferation via the p38 MAP

and ERK pathways and indirectly via modification of cell-cell

contact via the ERK pathway.

OECs combined with GDNF have been trialled for neural

transplant therapies and resulted in improved regeneration of the

optic nerve [66] and spinal cord [67] due to the enhancement on

the activity of lamellipodia, resulting in increased migration rate of

OECs [33,41]. In this study, we also showed that low-dose

curcumin promoted OEC migration, and increased lamellipodial

activity. Therefore, GDNF and curcumin appear to have similar

effects on OECs. However, one important difference is that unlike

GDNF, curcumin also increased the proliferation rate of OECs.

Moreover, the adoption of the bipolar morphology at low

concentrations of curcumin is likely to be more suitable for

promoting migration of OECs in neural transplant therapies, as it

has been shown that OECs with the bipolar morphology are more

motile whereas OECs with the flattened morphology in which

large lamellipodial surround the cells have lower rates of migration

[17,32,33]. Curcumin’s effects on extension of OEC’s lamellipodia

and cell-cell contact may be ideal for stimulating proliferation of

glia whilst maintaining the morphology most amenable for

migration.

After widespread degeneration of sensory neurons within the

olfactory system, the axons that initially regenerate often project to

incorrect target sites [68] or are limited to the periphery of the

injury site when target tissue is removed [65]. However, when

OECs are transplanted into the injury site the glia create a

uniform environment which leads to superior axon regeneration

[65]. Since we have now shown that curcumin increases the

proliferation and migration of OECs, it may increase the density of

transplanted OECs in neural transplant therapies, promote cell-

cell contact via stimulating peripheral lamellipodia and subse-

quently lead to increase production of neurotrophic factors [69]

that will together promote extension of axons across the injury site

(Fig. 8). Moreover, the remarkable enhancement of the OEC

phagocytic activity by curcumin could promote a clean beneficial

environment essential for axon regeneration and survival [19].

It is also important to note that is necessary to improve

curcumin’s in vivo bio-availability to enhance its utility as

therapeutic agent [70]. Animal studies have reported that

curcumin undergoes fast metabolism by conjugation and reduc-

tion [26] and its disposition after oral dosing is characterized by

poor systemic bioavailability [71,72]. Several studies have been

undertaken to enhance the bio-availability of curcumin, resulting

in new strategies that enhance bioactivity and significantly increase

the bio-availability of curcumin in vivo [73–75] such as structural-

related modifications and synthesis of new curcumin derivatives.

In conclusion, here we present the first evidence that low dose

curcumin significantly stimulated dynamic changes in morpholo-

gy, resulting in increased migration and proliferation, as well as a

dramatic increase in the phagocytic activity. These results suggest

that curcumin may have an important potential in stimulating

OECs therapeutic properties that could be of relevance for neural

transplant therapies.
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Movie S2 Time-lapse movie of OECs with axonal debris

in medium with 0.5 mM curcumin. Select frames are shown

in Fig. 5H. Time is h:min.

(MPG)
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