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Similar Effects on Affective Behavior in Mice
Shawn M. Anderson1, Darlene H. Brunzell1,2*

1 Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America, 2 Interdepartmental
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Abstract

Nicotine leads to both activation and desensitization (inactivation) of nicotinic acetylcholine receptors (nAChRs). This study
tested the hypothesis that nicotine and a selective antagonist of b2*nAChRs would have similar effects on affective
behavior. Adult C57BL/6J male mice were tested in a conditioned emotional response (CER) assay which evaluates the
ability of an aversive stimulus to inhibit goal-directed behavior. Mice lever-pressed for a saccharin reinforcer according to a
variable schedule of reinforcement during sessions in which two presentations of a compound light/tone conditioned
stimulus (CS) co-terminated with a 0.1 or 0.3 mA, 0.5 s footshock unconditioned stimulus (US). During testing in the
absence of the US, mice received doses of i.p. nicotine (0, 0.0032, 0.01, 0.032, 0.1 mg/kg) or a selective b2 subunit containing
nAChR (b2*nAChR) antagonist dihydro-beta-erythroidine (0, 0.1, 0.3, 1.0, 3.0 mg/kg DHbE). There was a dose-dependent
effect of nicotine revealing that only low doses (0.01, 0.032 mg/kg) increased CER suppression ratios (SR) in these mice.
DHbE also dose-dependently increased SR at the 3 mg/kg dose. In ethological measures of fear2/anxiety-like behavior,
these doses of nicotine and DHbE significantly reduced digging behavior in a marble burying task and 0.3 mg/kg DHbE
promoted open-arm activity in the elevated plus maze. Doses of nicotine and DHbE that altered affective behavior had no
effect on locomotor activity. Similar to previous reports with anxiolytic drugs, low dose nicotine and DHbE reversed SR in a
CER assay, decreased digging in a marble burying assay and increased open arm activity in the elevated plus maze. This
study provides evidence that inactivation of b2*nAChRs reduces fear-like and anxiety-like behavior in rodents and suggests
that smokers may be motivated to smoke in part to desensitize their b2*nAChRs. These data further identify b2*nAChR
antagonism as a potential therapeutic strategy for relief of negative affect and anxiety.
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Introduction

Human and animal studies indicate that nicotine exerts its

psychoactive effects by binding to nicotinic acetylcholine receptors

(nAChRs) in the brain [1,2]. nAChRs comprised of the b2 subunit

(b2*nAChRs; *denotes assembly with other subunits) have high

binding affinity for nicotine and the endogenous neurotransmitter,

acetylcholine (ACh) [3–6]. b2*nAChRs are enriched on neurons

in limbic system brain areas that regulate both affect and reward

[3,6–16] suggesting that these nAChR subtypes may serve a dual

role in supporting reward-like behavior and relieving negative

affect. nAChRs are ion channels that can be activated as well as

desensitized (inactivated) by nicotine [17–20]. A preponderance of

the evidence suggests that activation of b2*nAChRs supports

nicotine conditioned place preference and nicotine self-adminis-

tration, models of nicotine reward and reinforcement [21–32] (but

see [33]). These studies used a conditioned emotional response

(CER) assay, a marble burying task and an elevated plus maze

experiment to test the hypothesis that inactivation of b2*nAChRs

attenuates fear and anxiety-like behavior in mice.

CER is an appetitive, operant task in which lever pressing

maintained by a positive reinforcer (saccharin solution) is

interrupted by presentation of a conditioned stimulus (CS, light

and tone) that co-terminates with an aversive unconditioned

stimulus (US, 0.1 or 0.3 mA, 0.5 s mild footshock). This study

tested if nicotine and a selective antagonist of b2*nAChRs,

dihydro-beta-erythroidine (DHbE), would attenuate conditioned

suppression of responding in the presence of an aversive CS in the

absence of footshock. During CER, subjects serve as their own

controls within sessions to return a suppression ratio (SR) score =

A/(A+B) where A is lever pressing during the 60 s CS period and

B is lever pressing during the 60 s prior to CS presentation (Pre-

CS). An SR < 0 is indicative of conditioned suppression whereas

SR < 0.5 indicates that rodent responding is unaffected by

presentation of the CS. The CER assay has good face validity for

tobacco users who experience stressors during goal-oriented

behavior on a daily basis. Separate groups of mice were tested
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using an ethological marble burying task where increased digging,

rather than suppression of activity, is thought to be interpretive of

negative affective behavior, and in an elevated plus maze assay

where increased activity in the open arms, relative to the enclosed

arms of the maze, is thought to reflect anxiolysis-like behavior. As

a follow-up to experiments that evaluated affective-like phenotype,

a locomotor activity assay using a beam-break apparatus

confirmed that doses of nicotine and DHbE in these experiments

did not affect locomotor activity.

Materials and Methods

Subjects
Twenty nine C57BL/6J, adult, male mice from Jackson Labs

(Bar Harbor, ME) or derived in a Virginia Commonwealth

University (VCU) breeding colony were used in these studies. Mice

had ad libitum access to both food and water in their home cages.

Animals were group-housed (2–5 per cage) with 1/8 inch corn cob

bedding in a vivarium with a 12 h light/dark cycle (lights on

0600). Mice were habituated to the test room and experimenter

handling for 3 days prior to any training or testing.

Ethics Statement
Efforts were made to minimize mouse discomfort in these

experiments. Mild footshock without analgesia and experimenter

injections were necessary to perform these studies that model

affective-like behavior in mice. Experiments were approved by the

VCU Institutional Animal Care and Use Committee (Protocol

Number: AM-10163) and were in compliance with the Guide for

Care and Use of Laboratory Animals (Institute of Laboratory Animal

Resources, 2010).

Apparatus
CER experiments were conducted in mouse operant chambers

(21.6 cm617.8 cm612.7 cm; Med Associates, St. Albans, VT).

An LED cue light with an opaque cover was positioned 5.5 cm

above the operant lever with a liquid dipper receptacle centered

on the same wall. A speaker and a 2.24 watt incandescent house-

light were positioned 9.5 cm from the floor on the opposite wall of

the operant chamber. The floor consisted of steel rods (0.32 cm in

diameter placed 0.79 cm apart) connected to a Med Associates

shock generator/scrambler. All data were collected via Med PC

software. Marble burying took place in a polycarbonate cage

(33 cm621 cm69 cm high) filled with 5 cm of loose wood chip

bedding (Harlan Sani-Chip, Indianapolis, IN). The elevated plus

maze was constructed of wood with white laminated flooring on

two (5630 cm) open arms that were perpendicular to two

equivalent, white, laminated, enclosed arms with 15.25 cm black

Plexiglass wall enclosures. The entire apparatus was elevated

68 cm above the floor. Experimentation took place under

fluorescent light illumination. A ceiling-mounted camera was

interfaced to a PC for collection of data using ANY-maze tracking

software by Stoelting (Wood Dale, IL). Locomotor testing was

conducted in two adjoining chambers (measuring

26.5 cm612.7 cm626.2 cm and 16.8 cm612.7 cm612.7 cm). A

locomotor unit was defined as the breaking of two adjacent light

beams (3 cm apart). Illumination was provided by a single 23 watt

fluorescent light bulb. Data was collected using Med Associates

software. All experimental chambers were cleaned between

animals with 2% Nolvosan (Pfizer Animal Health, Madison, NJ).

Drugs
Nicotine hydrogen tartrate (Sigma Aldrich, St. Louis, MO) was

dissolved in 0.9% sterile saline with pH adjusted to 7.1–7.3. DHbE

(Sigma Aldrich, St. Louis, MO) was dissolved in 0.9% sterile

saline. Nicotine doses are expressed as freebase and DHbE doses

are expressed as hydrogen bromide salt. As with previous nicotine

place conditioning studies [28,34], injections were delivered i.p. in

volumes of 0.1 ml/30 g. Nicotine was administered immediately

prior to CER, marble burying and locomotor tests. After DHbE

injection, animals were returned to their home cages for 15

minutes before CER, elevated plus maze and locomotor testing

and for 30 minutes prior to the marble burying task. Weights were

measured approximately 1 h prior to behavioral assays.

Behavioral Procedures
Conditioned emotional response (CER). The CER para-

digm consisted of several phases of operant and Pavlovian training

followed by drug testing sessions where operant responding was

tested in the presence of a footshock-paired CS but in the absence

of the US footshock (Figure 1).

Magazine training. Subjects received eighty presentations of

10 mMol saccharin solution according to a variable interval 30

second (VI-30 s) schedule. Mice met criteria when they entered

the magazine for 20% of the dipper presentations. Animals failing

to meet this criteria were given a second, and if necessary, a third

exposure to magazine training before moving on to acquisition of

operant responding during overnight sessions.

CER acquisition of lever-pressing behavior. Mice were

trained to lever press for 0.01 ml of 10 mMol saccharin solution

delivered via liquid dipper during a single 16 hour overnight

session (adapted from [35]). Responding for saccharin reinforce-

ment was maintained on increasing fixed ratio (FR) schedules, FR

1 up to 10 reinforcers, FR 2 up to the subsequent 10 reinforcers

and FR 4 for the subsequent 20 reinforcers. This was followed by a

variable ratio (VR) 5 or variable interval (VI) 15 second schedule

of reinforcement until the end of the session. Mice were next

trained to lever press during 30 minute daily sessions (1400–

1800 h) for a saccharin reinforcer at the assigned variable schedule

of reinforcement for which they were trained. Mice meeting a

criterion of 10 reinforcers and 40 lever presses in a single session

advanced to CER training. The house light was on during all

acquisition and CER procedures in the absence of the CS.

CER training (operant responding with pavlovian CS + US

footshock conditioning). During 30 minute CER sessions,

saccharin continued to be available according to the variable

schedule of reinforcement presented during acquisition. Pseudo-

random presentation of two 60 s, compound CSs (house light off +
cue light on +70 dB, 2000 Hz tone) co-terminated with a 0.5 s,

0.3 mA footshock US. A second cohort of animals received all the

same conditions but was administered a 0.1 mA footshock US

shown previously to not affect suppression ratios [36]. The first CS

presentation occurred between min 3 and 12 and the second CS

between min 18 and 27. The number of lever presses were

recorded both for the 60 s Pre-CS period, immediately preceding

the onset of the CS, as well as during the CS. The suppression

ratio was calculated using the equation A/(A+B), where A is the

number of responses during the CS and B equals lever presses

during the Pre-CS period [37]. A suppression ratio of 0.5 indicates

no suppression of responding during the CS and a suppression

ratio of 0 reflects total suppression of responding during the CS.

All active lever-pressing in the absence of the CS was also

evaluated (NON-CS). Increases in suppression ratio following drug

treatment were interpreted as anxiolytic-like behavior. Once stable

baseline responding and suppression ratios (#0.1 for the 0.3 mA

condition) were established for 3 consecutive days, mice proceeded

to drug testing.

Nicotinic Inactivation Promotes Anxiolysis
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CER drug testing. Drug testing took place in the absence of

footshock US using a within-subject Latin square design. Animals

received 0, 0.0032, 0.01, 0.032 or 0.1 mg/kg i.p. nicotine or 0, 0.1,

0.3, 1 or 3 mg/kg i.p. DHbE before CER. At least 2 days of CER

training were administered between doses to allow for wash-out of

drug. These intermediate training sessions further assured that

responding returned to baseline between doses of drug.

Marble burying. Using a within-subject, Latin Square

design, separate groups of mice received 0, 0.01 and 0.032 mg/

kg i.p. nicotine or 0 and 3 mg/kg i.p. DHbE. Marble burying

sessions were separated by at least 5 days as has been

demonstrated to provide a steady level of digging behavior in

the absence of treatment [38,39]. Prior to each test, 20 green, glass

marbles (10 mm diameter) were evenly arranged in a 465 grid on

sawdust bedding. Individual mice were placed into the side of the

experimental cage so as to not disturb any of the marbles. At the

conclusion of the 15 minute test, mice were returned to the home

cage; marbles at least 50% covered by the bedding were counted

as buried.

Elevated plus maze. Using a between-subject design, mice

receiving 0, 0.03 or 3 mg/kg i.p. DHbE were returned to their

home cage for a 15 min wait period and subsequently placed on

the center of an elevated plus maze apparatus (n = 9211 per dose).

Behavior was evaluated for a period of 10 minutes. Subjects were

scored for open arm entries, time spent in the open arms and

latency to explore the terminal zones (the extreme 5 cm) of the

open arms.

Locomotor test. Using a between-subject design, animals

received nicotine (0, 0.01 or 0.032 mg/kg i.p.) immediately prior

to placement into the small chamber of the Med Associates

apparatus. The door separating the two chambers was opened,

allowing animals free mobility throughout the apparatus. Breaking

of two adjacent beams (3 cm equidistant apart) constituted a

locomotor activity count. Behavior was assessed for ten minutes.

Mice that received DHbE (0, 0.3 or 3 mg/kg i.p.) were placed in

their home cages for 15 min following injections with the other

locomotor procedures as described for nicotine subjects.

Statistical Analysis
For CER experiments, repeated measures ANOVA assessed the

effect of nicotine and DHbE on suppression ratio, lever presses/

minute during the CS period, the Pre-CS period and the NON-CS

period. Paired t-tests were used as post hoc tests where appropriate.

Student’s t-test was used to assess the effect of footshock intensity

on suppression ratios. Repeated measures ANOVA and paired t-

tests were used to evaluate the effect of nicotine and DHbE on

number of marbles buried. ANOVA tests assessed elevated plus

maze activity as measured by open arm entries, time on the open

arms and latency to reach the end terminus of the open arms. Post

hoc t-tests and planned comparisons were performed between

vehicle- and drug-injected subjects. One-way ANOVA tested the

effects of drug doses on locomotor activity. Confidence intervals of

p,0.05 were reported as significant.

Results

On the 3 days of CER training prior to CER testing, NON-CS

responding was stable (F ,1) and suppression ratios were

consistently lower than 0.1 for mice trained to a 0.3 mA footshock.

The suppression ratios for mice receiving 0.1 mA footshock US

were significantly higher than mice exposed to 0.3 mA footshock

US following saline injection (0.1 mA = 0.6960.15;

0.3 mA = 0.0360.02; t14 = 5.691, p,0.001). In contrast to mice

that received a 0.3 mA footshock, mice trained with a 0.1 mA

footshock did not show a suppression of responding during the CS,

indicating that this suppression of behavior in 0.3 mA-trained

mice was a conditioned response to an aversive CS and not due to

a more generalized orienting response to the compound stimulus

CS used in these experiments. There was no effect of footshock

intensity on overall NON-CS or Pre-CS lever pressing (F’s ,1).

Figure S1 shows average lever presses per minute during the entire

30 minute sessions. Administration of nicotine resulted in a dose-

dependent increase in suppression ratio (F4,9 = 3.101, p,0.05) for

mice exposed to the 0.3 mA US. Post hoc t-tests revealed that low

doses of nicotine (0.01 and 0.032 mg/kg) significantly reversed

conditioned suppression of responding in comparison to when

animals received saline (t9 = 2.663 and 2.331, p’s ,0.05; Fig. 2A).

Despite consistent trends for elevated responding at doses of

nicotine that reversed conditioned suppression, raw scores for CS

lever pressing failed to reach significance following nicotine

injection (F4,9 = 0.867, p.0.05; Table 1). Unlike suppression

ratios, there was no effect of drug treatment on Pre-CS responding

(F4,9 = 1.771, p.0.05). There was an effect of nicotine treatment

observed for NON-CS responding, however (F4,9 = 9.832,

p,0.001). Post hoc tests showed that NON-CS lever pressing was

elevated in mice following 0.0032 mg/kg (t9 = 3.820, p,0.01),

0.032 mg/kg (t9 = 4.941, p,0.001) and 0.1 mg/kg (t9 = 2.483,

p,0.05) compared to treatment with saline (Table 2). It is possible

that nicotine was enhancing the reinforcing efficacy of the

saccharin stimulus as has been observed for a visual cue [40,41].

Further analysis comparing mice against their responding prior to

any injections indicated that this may have been due in part to

Figure 1. CER training and drug testing schedule. To introduce mice to the location of saccharin delivery, magazine training (Phase I) occurred
over days 1–3. CER acquisition of lever pressing maintained by 10 mMol saccharin solution took place during overnight sessions with increasingly
demanding schedules of reinforcement (Phase II; days 4–9) until mice reached criteria of 70 reinforcers and 100 s of correct magazine entries in a
session. This was followed by daily 30 minute sessions (Phase III) where mice lever pressing was maintained by saccharin under a variable schedule of
reinforcement. Mice moved onto the next Phase of training when they reached criteria of 40 lever presses and 10 reinforcers during a single 30
minute session (days 10–13). During CER training mice continued operant training but also received 2 explicit pairings of a light and tone conditioned
stimulus (CS) which co-terminated with a 0.1 or 0.3 mA footshock unconditioned stimulus (US) (Phase IV; days 14–43). Phase IV continued until all
mice showed a stable level of CS and NON-CS responding over 3 days. Drug testing (Phase V) consisted of lever pressing maintained by saccharin in
the presence of the CS but in the absence of the US. For these studies that used a within-subject, Latin square design, there were at least 2 CER
training days in between drug testing sessions to assure that mice returned to baseline prior to the next injection of drug.
doi:10.1371/journal.pone.0048665.g001
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anxiolytic effects of nicotine as well. Compared to days when they

had received no injection, there was a significant decrease in

NON-CS responding of mice following saline injection (t9 = 4.683,

p,0.001), suggesting that the stress of injection led to an overall

reduction in lever pressing activity (Table 2). Nicotine injection

appeared to reverse this effect; low doses of nicotine (0.01 and

0.032 mg/kg i.p.) that elevated suppression ratio responding

resulted in NON-CS lever pressing that did not differ from pre-

injection responding. A rewarding-like dose of nicotine (0.1 mg/kg

i.p.) [27,28,34] resulted in a similar elevation of responding

compared to saline injection, however, there were also significantly

fewer lever presses during the NON-CS compared to when no

injection was given, suggesting that this dose was not effective at

reversing suppression of overall responding that was stimulated by

the stress of injection.

In mice exposed to the 0.1 mA footshock US, administration of

nicotine did not significantly affect suppression ratios (F4,5 = 1.991,

p.0.05; Fig. 2C), CS responding (F4,5 = 0.103, p.0.05), Pre-CS

responding (F4,5 = 2.245, p.0.05; Table 1) or NON-CS respond-

ing (F4,5 = 1.46, p.0.05; Table 2).

A dose-dependent reversal of conditioned suppression was also

observed following treatment with the selective b2*nAChR

antagonist DHbE (F4,6 = 2.934, p,0.05). Compared to when they

received saline, mice showed a significant increase in suppression

ratios following injection of 3 mg/kg i.p. DHbE (t6 = 2.614,

p,0.05; Fig. 2B) suggesting that antagonism of the b2*nAChRs,

like low dose nicotine, reverses conditioned inhibition of behavior

in this task. Pre-treatment with DHbE resulted in a dose-

dependent increase in total lever pressing in the presence of the

CS (F4,6 = 3.338, p,0.05) reflecting a trend for elevated respond-

ing during the CS after administration of 3 mg/kg i.p. DHbE

compared to saline (t9 = 2.049, p = 0.086; Table 1). As observed

during the nicotine treatment regimen above, Pre-CS responding

was not significantly affected by DHbE exposure (F4,6 = 1.382,

p.0.05; Table 1), but total NON CS lever pressing was reduced in

mice following saline injection compared to the training session

that immediately preceded the drug testing phase for DHbE

(t6 = 3.113, p,0.05; Table 2). Unlike nicotine, DHbE did not

significantly affect responding in the absence of the CS (Table 2).

Similarly to nicotine, mice trained with 0.1 mA US footshock

showed no effects of i.p. DHbE on suppression ratios (F4,5 = 1.263,

p.0.05; Fig. 2D), CS lever pressing (F4,5 = 1.334, p.0.05), Pre-CS

responding (F4,5 = 2.274, p.0.05; Table 1) or NON-CS respond-

ing (F4,5 = 1.112, p.0.05; Table 2). As observed with 0.3 mA-

trained mice, NON-CS responding was lower in mice following

saline injection compared to responding during training sessions

immediately prior to DHbE drug testing (t5 = 3.451, p,0.05;

Table 2), suggesting that the stress of injection may have led to a

suppression of overall lever-pressing activity.

A separate group of mice were tested in a marble burying task,

an ethological measure of digging behavior that is thought to

reflect changes in rodent affect [38,42–50]. Doses of i.p. nicotine

Figure 2. Low dose nicotine and the b2*nAChR antagonist DHbE reverse conditioned suppression. In mice trained to a 0.3 mA
unconditioned stimulus footshock during CER training, A) administration of nicotine resulted in a dose-dependent reversal of conditioned
suppression as measured by increased suppression ratios (F4,9 = 3.101, p,0.05; n = 10). B) The b2*nAChR antagonist DHbE also resulted in a significant
increase in suppression ratios in these mice (F4,6 = 2.934, p,0.05; n = 7), suggesting that inhibition of b2*nAChRs supports anxiolytic-like behavior in
the CER assay. C, D) Neither nicotine (F4,5 = 1.991, p.0.05; n = 6) nor DHbE (F4,5 = 1.263, p.0.05; n = 6) resulted in significant changes in suppression
ratio responding in mice exposed to 0.1 mA US footshock during CER training. Data are presented as means 6 SEM. *p,0.05 compared to when
mice received saline control injections.
doi:10.1371/journal.pone.0048665.g002
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(0.01 and 0.032 mg/kg) and i.p. DHbE (3 mg/kg) that were

capable of increasing lever pressing maintained by saccharin

during presentation of an aversive CS also led to a significant

decrease of marble burying in an open, exposed environment.

Repeated measures ANOVA revealed a significant effect of

nicotine exposure on digging behavior as measured by marbles

buried (F2,13 = 4.022, p,0.05). Consistent with results from CER,

post hoc t-tests revealed that mice buried fewer marbles after 0.01

and 0.032 mg/kg i.p. nicotine than when they received saline

(t13 = 2.747, p,0.05 and t13 = 2.376, p,0.05, respectively; Fig. 3A).

DHbE-injected mice also buried significantly fewer marbles than

after they received saline vehicle in the marble burying task

(t14 = 1.781, p,0.05; Fig. 3B).

Antagonism of b2*nAChRs also affected the behavior of mice in

the elevated plus maze. ANOVA analysis revealed a significant

effect of DHbE treatment on latency to reach the terminus of the

open arms (F2,30 = 4.449, p,0.05). Post hoc tests revealed that mice

receiving 0.3 mg/kg i.p. DHbE required significantly less time to

explore the terminal ends of the open arms compared to mice

receiving saline (t17.341 = 2.769, p,0.05; Fig. 4A). Despite similar

trends for DHbE-associated increases in open arm entries and

total time spent in the open arms, ANOVA tests failed to return a

significant effect of treatment for these respective measures

(F2,30 = 2.258, p.0.05; F2,30 = 2.219, p.0.05; Fig. 4), but planned

comparisons revealed that mice receiving 0.3 mg/kg i.p. DHbE

had a significantly greater number of open arm entries than saline-

injected mice (t12.682 = 2.610 p,0.05; Fig. 4B) and spent signifi-

cantly more time in the open arms of the maze compared to saline

controls (t13.490 = 2.753, p,0.05; Fig. 4C). Although there was a

trend for mice receiving 3 mg/kg DHbE to spend more time in

the open arms (t10.992 = 2.034, p = 0.068), behavioral measures for

this dose of DHbE failed to reach significance for any behavioral

measure in the elevated plus maze.

To further determine if the observed behavioral effects of

nicotine and DHbE were due in part to non-specific changes in

locomotion, mice were tested in a locomotor activity beam-break

apparatus following administration of saline and doses of nicotine

(0.01 and 0.032 mg/kg) and DHbE (0.3 and 3 mg/kg) that

reversed conditioned suppression in the CER assay, that decreased

digging in the marble burying task, or that increased open arm

activity during the elevated plus maze test. In comparison to

saline-injected animals, there were no observable effects of i.p.

nicotine (F2,14 = 0.072, p.0.05) or DHbE (F2,13 = 1.451, p.0.05)

on locomotor activity (Fig. 5).

Discussion

In the present experiments, low dose nicotine and a selective

antagonist of b2*nAChRs decreased fear- and anxiety-like

behavior in three separate animal models of affect. There was a

significant reversal of conditioned suppression of lever pressing in

mice treated with 0.01 and 0.032 mg/kg i.p. nicotine but a

0.1 mg/kg i.p. dose of nicotine that has been shown to be

rewarding during conditioned place preference [27,28,34] had no

effect. Mice treated with these low doses of nicotine also buried

fewer marbles compared to when they were treated with saline in

an ethological marble burying task, and previous studies show that

similarly low doses of nicotine decrease anxiety-like behavior as

measured by increases in open arm activity in an elevated plus

maze [27,51]. The present findings expand on previous data to

show that inactivation of the high affinity b2*nAChRs has similar

effects of low dose nicotine on these affective tasks. DHbE dose

dependently increased responding for a saccharin reinforcer

during the presentation of an aversive CS, significantly decreased

marble burying in an open, exposed environment and significantly

increased exploration of the open arms of an elevated plus maze.

These divergent behavior-stimulating and behavior-inhibiting

Table 1. Lever pressing activity during the CS and Pre-CS
period.

0.1 mA 0.3 mA

Nicotine (mg/kg) Pre-CS CS Pre-CS CS

Pre-Drug 2.8361.17 1.5060.26 1.6060.40 0.3060.17

0 1.5860.97 1.5060.47 0.8060.40 0.1060.07

0.0032 1.0060.51 1.5060.47 2.0760.11 0.2160.12

0.01 2.8361.38 1.5860.52 1.9060.49 0.4560.16

0.032 4.0061.48 1.5860.97 3.8661.79 0.3660.14

0.1 1.2560.69 1.1760.54 2.2560.68 0.2060.20

DHbE (mg/kg) Pre-CS CS Pre-CS CS

Pre-Drug 2.7561.33 3.9261.48 1.8660.66 0.1460.09

0 1.5860.97 1.5060.47 1.0760.55 0.1460.09

0.1 3.5061.48 2.2560.68 1.2560.36 0.2560.14

0.3 0.7560.34 1.8360.38 1.9360.63 0.1460.09

1 2.8060.88 0.8060.21 2.3660.70 0.5060.29

3 1.7560.48 1.6760.69 2.8661.29 1.7160.79

Lever presses per minute are depicted for mice during presentation of the 60 s
conditioned stimulus (CS) and during the 60 s period prior to CS presentation
(Pre-CS). Pre-Drug levels of responding are depicted for the last day of training
prior to drug testing sessions (Pre-Drug) and during test sessions following each
of five i.p. doses of nicotine or DHbE. Data are represented as means 6 SEM.
doi:10.1371/journal.pone.0048665.t001

Table 2. Lever pressing activity in the absence of the CS.

0.1 mA 0.3 mA

Nicotine (mg/kg) NON-CS NON-CS

Pre Drug 2.6860.95 1.9260.28

0 1.8960.64 0.9460.22*

0.0032 1.3160.48 1.7860.30+

0.01 1.5860.57 1.4060.15

0.032 1.9060.67 2.0960.27+

0.1 1.1060.42 1.3060.18*+

DHbE (mg/kg) NON-CS NON-CS

Pre Drug 3.3360.98 2.8760.49

0 1.8960.64* 1.2160.24*

0.1 1.9860.69 2.3060.41

0.3 2.2160.87 1.8360.30

1 2.4360.72 2.1760.26

3 1.9960.50 2.4160.51

Lever presses per minute are depicted for mice in the absence of the
conditioned stimulus (NON-CS) on the day prior to drug testing sessions (Pre-
Drug) and during test sessions following each of five i.p. doses of nicotine or
DHbE. Data are represented as means 6 SEM; *Significantly different from Pre-
drug training (p,0.05); +Significantly different from test sessions following
saline injection (0 mg/kg; p,0.05).
doi:10.1371/journal.pone.0048665.t002
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measures indicate that these observations were not due to non-

selective effects of DHbE or nicotine on activity. Neither effective

doses of nicotine nor DHbE showed any change in beam break

activity during a locomotor task. Together these findings suggest

that low dose nicotine and DHbE attenuate negative affective and

anxiety-like behavior.

Together with previous findings, these studies identify a dual

role for b2*nAChRs in regulating nicotine reinforcement and

relieving negative affective behavior. Whereas nicotine reinforce-

ment and reward-like behavior require activation of b2*nAChRs

[21–27,29–32,52], the studies described herein suggest that

inactivation of b2*nAChRs decreases fear-like and anxiety-like

behavior as measured by increased suppression ratios during CER,

decreased digging behavior in a marble burying task, and

increased exploratory behavior in the open arms of an elevated

plus maze. Rats will self-administer A-85830, a selective agonist of

b2*nAChRs [52]. Administration of selective b2*nAChR antag-

onists blocks nicotine conditioned place preference and greatly

attenuates nicotine self-administration [21–25]. This is in contrast

to the current studies which show that systemic administration of

DHbE promotes lever pressing maintained by saccharin during

presentation of a stressful cue. The current studies also showed

that subthreshold doses for nicotine conditioned place preference,

but not a reward-like dose, were capable of increasing suppression

ratios during the CER operant task. The non-selective nAChR

antagonist mecamylamine has been shown to have anxiolytic

efficacy in the elevated plus maze, social interaction and marble

burying tasks [53,54,551,56]. The present findings expand on this

work to show that inhibition of b2*nAChRs is sufficient to

decrease fear-like behavior and to increase anxiolytic-like behavior

in Pavlovian/operant and ethological tasks.

Low dose nicotine had similar effects as DHbE to decrease

negative affective behavior. Although the mechanism of how

DHbE and nicotine act at nAChRs has not been clearly elucidated

in an awake, behaving animal, in vitro and ex vivo studies show that

nicotine promotes both activation and desensitization of nAChRs

[17–20,57–59]; hence nicotine-associated desensitization could

result in a behavioral phenotype that is similar to nAChR

antagonism. Micromolar concentrations of nicotine activate

b2*nAChRs, facilitating neurotransmitter release [17–20]. This

is followed by rapid desensitization of the b2*nAChRs [17–20]. In

vitro studies further show that nanomolar concentrations of

nicotine can result in preferential desensitization of b2*nAChRs

[17,57–59]. These studies observed a more robust reversal of

conditioned suppression with DHbE than for low doses of

nicotine. This is likely due to the mixed agonist and desensitizing

properties of nicotine. Unlike complete inactivation of the receptor

as would occur with antagonist binding, at nicotine equilibrium,

nAChRs are thought to be ‘‘smoldering,’’ i.e. capable of

desensitization and activation, depending strongly on nicotine

concentration [57,60]. Low levels of nicotine increase the

likelihood that b2*nAChR stoichiometry will favor the desensi-

tized state. Consistent with these observations, reductions in

marble burying are also observed following administration of

partial agonists of b2*nAChRs, including varenicline and

sazetidine-a [45,54,61,62]. The present data suggest that behav-

ioral effects of partial agonists in the marble burying and CER

tasks are likely due to inhibition rather than activation of the

b2*nAChRs.

It is not clear from these studies which nAChR subunits in

combination with b2 might require inactivation to promote the

anxiolytic-like effects of nicotine. DHbE has high affinity for

a6b2*nAChRs and a4b2*nAChRs [3,63] although a large part of

the sensitivity appears to be driven by the a4 subunit [63]. Recent

work using the elevated plus maze as a measure of anxiety

reported that a4 knockout mice fail to show nicotine-associated

anxiolysis behavior [27]. There was no genotypic effect of the a4

null mutation in the absence of drug, so it is not clear if activation

or inhibition of a4b2*nAChRs or perhaps some other ab*nAChR

is regulating open arm activity in this task [27,64,65]. Selective

deletion of the a4 subunit in ventral tegmental area (VTA)

dopamine (DA) neurons attenuated the effects of nicotine on open

arm entries in the elevated plus maze, suggesting a possible role for

the mesolimbic DA pathway in support of anxiolysis-like behavior

[27]. Given recent data to suggest that VTA GABA neurons

promote conditioned aversion and counter appetitive behavior via

inhibition of DA neuron signaling [66,67], it is possible that

blockade of a4b2*nAChR activity on GABA terminals could

promote anxiolysis-like behavior via disinhibition of DA neurons

[19,20,28]. It is not clear if a6b2*nAChRs, which are enriched in

catecholaminergic nuclei [15,68,69] (but see [70]) might contrib-

ute to anxiety-like behavior. Slice electrophysiology studies show

that a4a6b2*nAChRs on DA neurons in the posterior VTA are

highly sensitive to even nM concentrations of nicotine and are

resistant to desensitization [71] suggesting that their activity, rather

than their inhibition, may promote nicotine-associated anxiolysis

in response to low doses of nicotine. As further support that

desensitization of a4b2*nAChRs promotes anxiolysis-like behav-

ior, the a4b2*nAChRs, but not a6b2*nAChRs, are localized in

the basolateral amygdala where selective removal of ACh inputs

Figure 3. Nicotine and DHbE resulted in fewer marbles buried. A) The 0.01 and 0.032 mg/kg i.p. nicotine that promoted anxiolytic-like
behavior in the CER task also resulted in a significant reduction in digging behavior as measured by fewer marbles buried compared to when mice
were administered saline (n = 14). B) Similarly, mice treated with 3 mg/kg i.p. DHbE also buried less marbles compared to when they received saline
treatment (n = 15). Data are presented as means 6 SEM; *p,0.05 compared to when mice received saline control injections.
doi:10.1371/journal.pone.0048665.g003
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decreases anxiety-like behavior [7,15,68,69,72,73]. A lack of

compounds with selectivity for a6b2*nAChRs that cross the blood

brain barrier make it difficult to assess the stoichiometry of the

b2*nAChRs that support the systemic effects of nicotine; future

studies using selective peptide infusions in brain e.g. [21,22,24] will

help parse the subunit configurations in combination with b2 that

promote anxiolysis via inhibition of b2*nAChRs.

Behaviorally, these nicotine findings are consistent with previous

data. A preponderance of the evidence suggests that low doses of

nicotine promote anxiolysis-like behavior [27,74–76], moderate

doses of nicotine support reward-like behavior [27,28,34], and

high doses of nicotine increase anxiety-like behaviors

[74,75,77,78]. Similarly to low dose nicotine and DHbE,

anxiolytic drugs such as benzodiazepines increase lever pressing

during a presentation of an aversive CS compared to when saline

is administered [35–37,79–83], decrease digging in the marble

burying task [38,42–45] and increase open arm activity in an

elevated plus maze. Studies in humans show that trait anxiety

leads to elevated cued fear conditioning of aversive stimuli and

imaging studies show this behavioral tendency is positively

correlated with an exaggerated activation of the amygdala and

anterior cingulate cortex, brain areas shown to regulate rodent

behavior during fear conditioning tasks [84–89]. CER, marble

burying and the elevated plus maze have good predictive validity

for anxiolytic drug efficacy [35–38,42–47,79–83,90–94]. Together

with previous data, the present studies suggest that inactivation of

nAChRs may promote anxiolysis-like behavior and may have

mechanistic implications for why individuals smoke to relieve

anxiety.

These studies utilized CER, marble-burying and an elevated

plus maze task to show that nicotine and DHbE could both

stimulate and suppress behavior in a way that is consistent with

currently available anxiolytic drugs [38,43–47,90–94]. Marble

burying, however is also sensitive to antidepressant drugs and

antipsychotics [44,48–50] suggesting that digging behavior in

rodents may be driven by an underlying system that is common to

the effects of these diverse drug classes. Individuals diagnosed with

anxiety disorder, depression or schizophrenia all have a signifi-

cantly elevated risk for tobacco dependence [95,96]. In addition to

the high concordance with tobacco use, there is a high

comorbidity for diagnosis of anxiety with depression and

schizophrenia, suggesting that there is a common underlying

etiology for these disorders [97]. Some suggest that the ‘‘non-

purposeful’’ digging behavior in the marble burying task may

model obsessive compulsive anxiety disorder [48–50]. Drugs such

as clozapine, apiprizole and risperidone that are used to augment

the effects of mood stabilizers also reduce marble burying activity

[48,49]. b2*nAChRs are ubiquitously expressed in the brain

[15,68,69,98,99] where their activation on the neuron soma and

terminals promotes release of GABA, serotonin, dopamine,

norepinephrine and acetylcholine, neurotransmitters that regulate

mood and arousal and that are believed to contribute to the

etiology of anxiety, depression and schizophrenia [100]. The

b2*nAChRs have also been implicated in contributing to rodent

models of depression-like behavior with mecamylamine and

partial agonists of b2*nAChRs showing anti-depressant-like

efficacy [101–103]. Unlike our observations in the marble burying

task, however, administration of DHbE blocks the antidepressant-

like effects of the b2*nAChR partial agonists varenicline and

sazetidine in the forced swim task [104], showing a dichotomy

Figure 4. Antagonism of b2*nAChRs promoted anxiolysis-like
behavior in the elevated plus maze. A) Mice receiving 0.3 mg/kg
i.p. DHbE required less time to explore the end terminus of the open
arms of an elevated plus maze, B) made more entries into the open

arms of the maze and C) spent more time in the open arms than saline-
injected mice. Data are presented as means 6 SEM; *p,0.05,
#p = 0.067 compared to saline controls.
doi:10.1371/journal.pone.0048665.g004
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with the present results in the elevated plus maze which suggest

that antagonism of b2*nAChRs promotes anxiolysis-like behavior.

It is possible that our findings in the CER task reflect changes in

learning that are independent of fear and anxiety-like behavior.

While it is possible that drug injection could result in state-

dependent learning effects, we do not believe this was the case

given that animals showed dose-dependent effects of nicotine and

DHbE using a within-subject, Latin Square design. Place

conditioning and drug discrimination studies clearly demonstrate

that mice can physiologically detect the 0.1 mg/kg dose of nicotine

[27,28,34,105–108] yet this dose did not reverse conditioned

suppression as low doses did in these studies, suggesting that the

effects of nicotine and DHbE on suppression ratios during CER

were not due to a generalized decrement caused by state-

dependent learning. It is also possible that the injection itself

could have served as an occasion-setter to indicate that no shock

would occur during these test sessions. This was not the case.

Rather, saline injection led to a decrease in NON-CS responding

during these test sessions, suggesting that the stress of injection led

to a reduction in goal-oriented behavior as measured by lever

pressing for saccharin. Several doses of nicotine, including a

rewarding-like dose, reversed this suppression of NON-CS

responding. Whereas it is possible that this behavior was

stimulated by anxiolytic-like effects of nicotine, it is equally

plausible that nicotine exposure promoted stimulus enhancing

effects of the saccharin reinforcer as has been shown for an

unconditioned stimulus light and a conditioned stimulus associated

with an appetitive stimulus [40,41,109,110]. The present results

also showed an interesting contrast to findings using Pavlovian fear

conditioning without an operant component. Unlike our observa-

tions in the CER task, systemic administration of nicotine

enhances freezing in a footshock-paired context with no effect

on explicit cue conditioning [111,112]. These dichotomies may be

due in part to the use of a more mild footshock and extended

explicit cue CS training used during CER compared to traditional

Pavlovian fear conditioning procedures. A significant difference in

CS but not NON-CS lever pressing between mice trained to a

0.1 mA and 0.3 mA footshock suggests that the contextual fear did

not contribute to CER behavior in these studies. In addition,

systemic administration of DHbE alone does not affect either

context or explicit cue CS-freezing following fear conditioning

[113], drawing a further contrast between these procedures.

Together these findings suggest that basic Pavlovian fear

conditioning and CER are modeling different behaviors. These

data further suggest that CER, but not Pavlovian fear condition-

ing, is sensitive to inactivation of the high affinity b2*nAChRs.

Whereas the CER paradigm is a complex animal model that

involves fear learning and operant behavior, this procedure

benefits from subjects acting as their own controls both within

and between sessions. The fact that mice showed similar effects in

the marble-burying task and elevated plus maze, which do not

have a learning components to them, supports the hypothesis that

affective behavior was modified by nicotine and DHbE during

CER.

Studies in human smokers reveal that multiple factors contrib-

ute to tobacco use; as well as the pleasure received from smoking,

many report that they use tobacco to relieve anxiety or to relax

[114–120]. The first cigarette of the day results in an abrupt

increase in nicotine plasma concentrations that smokers associate

with the rewarding effects of the drug [121–123]. The nicotine

ingested from a single cigarette is sufficient to occupy 80% of

b2*nAChRs [124]. During subsequent smoking episodes, smokers

achieve smaller increases in nicotine that ought to preferentially

favor desensitization of nAChRs [121,122] if slice electrophysiol-

ogy, Xenopus oocyte, tissue culture and synaptosome studies are

predictive of how nAChRs function in vivo [17–20,57–59].

Nicotine reaches daily steady-state concentrations in the brains

of human smokers between 200–400 nM. ACh is a major

neuromodulator in brain that is thought to regulate anxiety-like

behavior [73,125]. As nicotine levels drop, populations of

b2*nAChRs in brain regions that regulate anxiety become

available for activation by ACh in response to stressful stimuli

such as cigarette/tobacco cues [126–129]. Hence, in addition to

smoking to activate their b2*nAChRs, tobacco users may also be

titrating ACh signals via desensitization of the b2*nAChRs,

particularly after the first cigarette of the day. Human imaging

studies suggest that b2*nAChRs may be critical for nicotine’s

ability to curb anxiety in smokers [130,131] but presently available

compounds that assess b2*nAChR occupancy in humans cannot

differentiate between receptors in the activated or desensitized

state.

To conclude, low dose nicotine and DHbE had similar effects

on affective behavior in the CER, marble burying and elevated

plus maze tasks. These studies support the hypothesis that nicotine

may reduce negative affect and anxiety via desensitization of the

high affinity b2*nAChRs. These data further suggest that

antagonism of b2*nAChRs may be an effective strategy for

promoting tobacco cessation or for relieving anxiety in non-

tobacco users.

Figure 5. Nicotine and DHbE did not affect locomotor activity. Doses of A) nicotine (n = 526) and B) DHbE (n = 425 per group) that promoted
anxiolytic-like behavior in the CER and marble burying tasks did not affect locomotor activity as measured by beam breaks (Fs = 0.072, 1.451,
ps.0.05). Data are presented as means 6 SEM.
doi:10.1371/journal.pone.0048665.g005
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Supporting Information

Figure S1 Operant responding during individual ses-
sions in absence of drug. Variability in Pre-CS responding

was observed in mice exposed to both 0.1 and 0.3 mA footshock

unconditioned stimulus (US) over within-subject delivery of both

nicotine and DHbE. The timing of the conditioned stimulus (CS)

may have contributed to this variability, as operant responding

fluctuated within individual sessions.
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