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Abstract

Low-energy dynamics of condensed matter from the high-energy

point of view: Studies in the effective field theory of matter

Rafael Krichevsky

In this work, we develop effective field theory (EFT) methods for the study of a wide

variety of condensed matter systems, including superfluids, ordinary fluids, solids, and super-

solids. As a first application, we focus on the dynamics of vortex lines in trapped superfluid

condensates, studying their precessional motion and working out the frequency of precession

from EFT principles. We consider the effects of trapping in two and three dimensions, as

well as implications of trapping for the dispersion relation of Kelvin waves along superfluid

vortex lines. We also apply our formalism to study the effects of gravitational fields on sound

waves in several different media, discovering that localized sound waves propagate with an

associated (negative) net mass, which in turn generates a tiny gravitational field. We con-

firm that this effect is a robust result that can be found from purely classical, non-relativistic

methods. We then present three Lorentz invariant, renormalizable, weakly coupled theories

that implement the symmetry-breaking pattern of a perturbative homogeneous and isotropic

solid, as potential UV-completions of the low-energy effective theory that we studied. We

demonstrate that a particular class of homogeneous, isotropic solids at long distances cor-

responds to states that are also homogeneous at short distances, unlike typical solids found

in nature. We find that each case leads to the same rather unorthodox effective theory of a

solid with luminal transverse excitations. Finally, we discuss applications of the methods we

have developed and the potential for interesting new directions of this research.
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Preface

Relativistic quantum field theory is the shared lingua franca of high-energy physicists.

It is phenomenal at describing what happens at short distance scales in collider experiments,

but of what use is it to someone who wants to understand underwater acoustics? Seismic

wave propagation? Vortices in superfluid helium? Dilute Bose–Einstein gases? Thermal

conductivity of neutron star matter? Plasma oscillations? Quartz crystals? A chunk of

rubber? Any of the ordinary long-wavelength phenomena or condensed matter systems that

we encounter on a daily basis? What on earth does the high-energy theorist have to say

about such ordinary low-energy things that move at non-relativistic speeds?

If you are tempted to retort “Not much,” then this thesis is designed to change your

mind. What follows is an exploration (and a celebration) of the power of effective field

theory (EFT) techniques to describe low-energy phenomena and condensed matter systems

that can be studied in simple laboratory settings. EFT is a highly flexible framework that

forms a bridge between the physics of quarks and the physics of black hole echoes, the

physics of relativistic strings and the physics of elastic waves. The impressive and almost

universal applicability of effective field theory is mitigated, though, by two important limi-

tations: (1.) Breakdown and lack of predictiveness beyond an in-built cutoff scale, and (2.)

Methodological agnosticism about theoretical parameters, which are meant to be fixed by ex-

perimental measurements. Still, if we humble our intellectual ambitions, turn away (at least

temporarily) from grand dreams of all-encompassing, all-predicting theories, and content

ourselves with effective descriptions that steadily improve our understanding of observable

phenomena, there is a great deal that EFT techniques can teach us.

In this work, we will use the language of quantum field theory to study collective excita-

tions in a variety of condensed matter systems, including superfluids, ordinary fluids, solids,

and supersolids. After constructing effective actions for each of these media from symmetry-

breaking considerations, we will focus our attention on two case studies. In the first, we will

apply field theoretic methods to understand the dynamics of vortex lines in trapped dilute
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superfluid condensates; next, we will use similar techniques to study the coupling of sound

waves in various media to gravitational fields. Finally, we will attempt to bypass some of

the limitations of EFT and formulate a UV completion of a homogeneous, isotropic, weakly

coupled solid, in order to shed light on the effective theories we considered in the beginning;

in the process, we will see that certain weakly coupled solids that appear homogeneous at

long distances need not be inhomogeneous at short distances.

A note on the content and structure of this thesis:

1. Section 1 is a general discussion of the EFT formalism and its application to condensed

matter based on an overview of existing literature.

2. Section 2 consists of a review of the literature on the EFTs of superfluids, superfluid

vortices, fluids, and solids, as well as a novel extension of this formalism to supersolids—

see Section 2.4.

3. Section 3 includes a study of the precessional motion of vortex lines in trapped super-

fluids based on the EFT formalism developed in Section 2. Part of this work has been

published previously by the author and collaborators in [1]. The non-trivial extension

of the primary result to three-dimensional trapping configurations and the study of

vortex line bending—see Section 3.5—as well as the consideration of Kelvin wave dis-

persion relations in Section 3.4 are original to this thesis and have not been published

before.

4. Section 4 is a second case study in which the EFTs of superfluids, fluids, and solids are

used to calculate a “gravitational mass” associated with sound wave packets in various

media. This relativistic field theory-based calculation has been published by the author

and collaborators in [2]. What has not been published previously is the derivation of

the main result in non-relativistic fluids with Galilei symmetry (Section 4.5); neither

have supporting calculations which demonstrate that the same result could be obtained

from classical fluid dynamics (Section 4.6) or elasticity theory (Section 4.7).
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5. Section 5 is an attempt to go beyond EFT and find a UV complete theory of a ho-

mogeneous state that corresponds to a homogeneous, isotropic solid in the IR. This

work has not appeared in the literature before and is entirely original work by the

author, Alberto Nicolis, and Angelo Esposito. It will be republished subsequently to

its appearance in this thesis.

6. Section 6 is a summary of the thesis with remarks about possible extensions and further

directions for research.

Note on Conventions

Throughout this thesis, we will work in metric signature (−,+,+,+). We will always set

h̄ = 1, but we will sometimes keep factors of c explicit in order to facilitate taking the

non-relativistic limit. It will be clear from context when we are doing so. We will use

boldface symbols x,y, . . . for vectors, but not for their components. Greek indices µ, ν, . . .

represent space-time indices of vectors and tensors; i, j, . . . represent purely spatial indices;

and I, J, . . . are the internal indices of quantum fields that form multiplets under various

internal symmetry groups. Summation over repeated indices is usually implied, unless stated

otherwise.
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1 Introduction: An Overview of

Effective Field Theory and

Applications to the Study of

Condensed Matter

1.1 The Power of Effective Field Theory

At a first glance, it may seem counter-intuitive to make use of the techniques of

high-energy particle physics to study condensed matter phenomena at low energies, but

as we will see in the subsequent sections, this proves to be a highly productive approach.

Many condensed matter systems are easily characterized by their underlying symmetries

and symmetry-breaking patterns, lending themselves to the formalism of effective field the-

ory (EFT) in a straightforward manner. Instead of modeling systems with a large number

of degrees of freedom using phenomenological models that must be justified post hoc, com-

putationally intensive simulations, or complicated microscopic descriptions, we appeal to

the simplicity and universality of the EFT approach in studying the dynamics of condensed

matter systems at low energies. The fundamental underlying idea is the independence of dy-

namics at low energies (or long distance scales) and high energies (or short distance scales).

A physical process that takes place at energy E, much less than some characteristic cutoff

energy scale Λ at which more degrees of freedom become relevant, can typically be de-

scribed in terms of an expansion in powers of E/Λ to some desired level of accuracy [3]. In

essence, the methodology allows us to quantify our ignorance of high-energy dynamics when

describing experimentally accessible physical systems and make generic predictions about

dynamics parametrically below the limiting scale [4]. Symmetry considerations lead one to

construct an effective Lagrangian by including all interaction operators consistent with the

symmetries governing the theory, and coupling constants are fixed after the fact, in principle

by conducting experimental measurements. Parameters of the full theory that are relevant
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at high energy do not affect the dynamics of the resulting theory at low energy, except in

perturbative corrections; the high-energy dynamics only impose symmetry constraints on

the low-energy effective theory [5]. The assumptions that must be made on the microscopic

properties of the system are minimal in this approach, and symmetry considerations alone

can be used to extract the details of the dynamics at low energy.

As an example to illustrate the relevant principles outside of the context of condensed

matter physics, let us consider the effective field theory approach to general relativity. The

theory can be constructed as the theory of a massless spin-two graviton field, with local invari-

ance under coordinate transformations, or diffeomorphisms. The gauge symmetry constrains

the type of interaction terms that may be present. A generic, diffeomorphism-invariant ef-

fective action can be written as

S = −
∫

d4x
√−g

[

c0 +
1

16πG
R + c1R

2 + c2RµνR
µν + · · ·

]

, (1)

where R is the Ricci scalar and Rµν is the Ricci curvature tensor. We know that the coefficient

c0 matches the cosmological constant, but in the effective field theory philosophy, it is left

undetermined, to be fixed by experiment, along with all the other coefficients of the higher-

order interaction terms in the action. Note that the additional term RµνρσR
µνρσ is not

independent of the two higher-derivative terms above, R2 and RµνR
µν , by the Gauss–Bonnet

relation. Although the theory is non-renormalizable, this is not a problem when considering

physical processes at low energy compared to the cutoff scale of the theory, the Planck mass,

which is related to the coefficient 1/16πG. When organized as a derivative expansion, it

is clear that the higher-order, higher-derivative terms do not affect the low-energy physics;

indeed, current experimental constraints on such higher-derivative interaction terms are very

weak [6–8], and the non-renormalizability of the theory guarantees that a tower of such

terms is generated from lower-order interactions. If we are interested only in low-energy

dynamics, however, the effective field theory approach provides a simple, methodical way
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to generate all interactions to some desired order in the derivative expansion; equations

of motion determining the dynamics, including quantum corrections, are then obtained by

varying the action in the standard way with respect to the spin-two field.

The above example is typical of the “bottom-up” or continuum approach to effective field

theory, which may be contrasted with the Wilsonian approach, characterized by integrating

out higher-momentum modes in some more complete theory in order to obtain an effective

theory usable at low energies [9]. The latter methodology is relevant, for example, when

extracting low-energy effective field theories from supergravity or effective string theories.

Beginning from a complicated high-energy description that is not conducive to concrete

calculations, it is convenient to work one’s way down to a lower-energy effective description

by integrating out all degrees of freedom but those relevant to the dynamics at the energy

scale that one is interested in, resulting in a tailor-made effective theory for a chosen level of

analysis. The reverse process is not nearly as straightforward a task; inferring a higher-energy

ultraviolet theory from a low-energy effective description is not something that can be done in

a unique manner, much like reversing the effects of coarse-graining in renormalization group

theory. It is often illuminating to study which properties of an ultraviolet theory persist as

higher-momentum degrees of freedom are integrated out. While both approaches are useful

in their respective contexts, and we will use both to study condensed matter systems in

this work, we will focus at first on the “bottom-up” approach, since the condensed matter

systems we wish to consider do not come with readily applicable UV theories or models—

and if they did, there would be no need to build simplifying low-energy models to discover

their dynamics. The framework lends itself particularly well to the study of condensed

matter phenomena because every medium must break some of the fundamental Poincaré

symmetries of nature, resulting in the appearance of low-energy excitations, depending on

the symmetry-breaking pattern, which describe the fluctuations of the medium about its

ground state. We will study this in more detail in subsequent sections.

There are three key theorems that underlie the EFT framework and make it a powerful
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conceptual approach in the study of condensed matter. The first is a by-now obvious general

theorem that validates the “bottom-up” approach to EFT: perturbation theory using the

most general Lagrangian containing invariant operators under a set of assumed symmetries

will produce all possible S-matrix elements that are consistent with unitarity, cluster de-

composition, and the same set of symmetries [10]. The second, which makes the “top-down”

approach possible [11], is the decoupling theorem due to Appelquist and Carrazone [12]; it

shows that when there is a large separation of scales between masses of different degrees

of freedom in a quantum field theory, at low energies the observable effects of the higher-

mass mode are either suppressed by inverse powers of the mass or can be absorbed into

renormalized couplings, masses, and fields obtained by integrating it out. The third result,

relevant to media that spontaneously break continuous symmetries, is the Goldstone theo-

rem [13–15], which guarantees the appearance of gapless scalar modes in the spectrum of

excitations when such symmetries are spontaneously broken. When the broken symmetry

generators are those of space-time symmetries, however, the correspondence between broken

symmetries and Goldstone modes is no longer one-to-one because some of the Goldstone

modes can be removed by the imposition of “inverse Higgs constraints” [16–18]. When the

broken generators do not commute with the generators of unbroken space-time translations,

some of the Goldstone modes may become gapped [19,20], in which case they become irrele-

vant for the dynamics at low energies. Moreover, some Goldstone particles may even become

kinematically unstable, as has been shown in superfluid helium, in which a single phonon

is allowed to decay into two phonons [20, 21]. In some cases, the inverse Higgs constraints

can be interpreted as removing redundancies in the parametrization of the Goldstone exci-

tations. Nonetheless, media that spontaneously break space-time and internal symmetries

have low-energy dynamics that are well described by a set of interacting gapless Goldstone

modes. Any general Lagrangian compatible with the symmetries of a given medium can be

fluctuated and expanded around the ground state to yield a low-energy effective action for

the Goldstone modes.
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Since Kadanoff, Wilson, and Fisher first introduced effective actions and associated

techniques to the study of critical phenomena [22–25], the general methodology of EFT has

been adopted throughout high- and low-energy physics with a remarkable track record of

success and flexibility, finding applications in the study of such diverse areas as: cosmological

large-scale structure [26]; dark energy [27]; general relativity and gravitational radiation [6,

28]; the dynamics of dwarf stars and neutron stars [29, 30]; the fractional quantum Hall

effect [31]; hydrodynamics [4, 21, 32–34]; inflationary physics [35, 36]; modified theories of

gravity [37,38]; plasma physics [39,40]; quark-gluon plasmas and heavy-ion collisions [9,41];

solids and supersolids [17]; Standard Model particle physics [42, 43] and beyond-Standard

Model physics [44]; superfluidity [32,45,46]; string phenomenology [47]; and even the simple

Schrödinger equation of quantum mechanics [48]. For the rest of this thesis, we will focus on

the application of such methods to the study of the dynamics of less exotic media, particularly

plain old superfluids, ordinary fluids, and solids.
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1.2 Condensed Matter from the Effective Field

Theory Point of View

1.2.1 General Discussion

It naturally seems strange to use relativistic field theoretic language and relativistic

symmetries to characterize the properties of condensed matter, since in practice, all states

of matter that we encounter are highly non-relativistic. The velocities of common types

of collective excitations (phonons, rotons, magnons, etc.) found in the types of condensed

matter systems encountered in experiments are usually highly non-relativistic, although there

are some exceptions. Also, the enthalpy density is typically much lower than the mass density

in condensed matter, and the ground state of any such system is obviously not invariant under

boosts. That is why theories of condensed matter are typically formulated without reference

to relativistic concepts like Lorentz invariance.

Still, it is important to remember that the symmetries of the Poincaré group—space-time

translations, spatial rotations, and Lorentz boosts—are, as far as we can tell, symmetries

of all the fundamental laws of physics. Since all condensed matter systems break Poincaré

symmetry, consistency with the fundamental laws requires that the symmetries are broken

spontaneously. In particular, every state of matter is a Lorentz-violating state, despite ad-

hering to Lorentz-invariant physical laws, that picks out a single inertial reference frame, the

frame in which the system is at rest. Certain types of matter may break other symmetries

of the Poincaré group as well, in addition to various internal symmetries that they might

possess. In fact, the spontaneous breaking of Poincaré symmetries can be understood as

the defining feature of any condensed matter state [16], and many collective excitations of

matter can be seen as consequences of Goldstone’s theorem. Spontaneously broken sym-

metry under boosts has highly constraining implications for the dynamics of the Goldstone

modes, and consequently the transport properties and other phenomena observed in con-

densed matter system. The program of studying condensed matter using relativistic field
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theory techniques has turned out to be a much more productive endeavor than one might

have initially expected1.

To be sure, EFTs tend to have serious in-built limitations, mostly connected to renormal-

izability issues and the breakdown of perturbation theory at strong coupling, but applying

EFT techniques to the low-energy physics of condensed matter presents a number of signif-

icant practical advantages. The first and most obvious is agnosticism about short-distance

physics, which is often not well understood or practically intractable for calculations in many-

body systems. Secondly, the theories of Goldstone modes in matter are often simple to state;

they are typically local actions of bosonic scalar fields with interactions highly constrained

by symmetry, or they are dual to simple scalar field theories. Finally, Lorentz invariance is

trivial to impose at the level of the action, and the full theoretical arsenal of high-energy

physics can be deployed at will to calculate scattering amplitudes from perturbation theory.

One might think that non-perturbative phenomena are out of reach of EFT techniques, but

that is not entirely true. As we will see, certain macroscopic, non-perturbative phenom-

ena such as vortex lines in superfluids can be treated in EFT formalism as well [49], as

long as the vortices themselves move sufficiently slowly. Simplifying assumptions must be

made to model the vortices as infinitely thin strings, but interactions between the strings

and the long-wavelength superfluid bulk modes can be arrived at by the standard EFT

methodology—including all operators that are invariant under the relevant symmetries and

organizing the theory as a derivative expansion at low energy.

1While we will consider effective theories of solids, fluids, superfluids, etc. that are fully relativis-
tic, it is important to note that one may also use Galilei invariance instead of Lorentz invariance to
build such theories. In that case, the theories will be non-relativistic from the outset. We generally
see no advantage in using an approximate symmetry of nature to formulate theories of matter,
when the exact symmetry will do just as well. It would not even buy us any additional simplicity
in calculations.
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1.2.2 Classification of Condensed Matter Systems by Spon-

taneous Symmetry Breaking

Nicolis et al. [16] systematically classified all possible condensed matter systems that are

homogeneous, static, and isotropic at large distances—whether they are realized in nature

or not—on the basis of their space-time symmetry-breaking patterns. We will briefly review

their approach to understand how broken symmetries determine dynamics in effective theo-

ries of condensed matter. Condensed matter systems can break the generators of Poincaré

symmetry in different combinations. From the field theoretic viewpoint, the combination

of spontaneously broken boosts and other symmetries can be regarded as a definition of

condensed matter. The full symmetry group of any system that is homogeneous, static,

and isotropic will include the Poincaré generators: P0 (time translations), Pi (spatial trans-

lations), Ji (rotations), and Ki (boosts). There may be additional internal symmetries

whose generators commute with the those of the space-time symmetries. The algebra of the

Poincaré generators is defined by the commutation relations

[Ji, Jj] = iǫijkJk , [Ji, Pj] = iǫijkPk , [Ji, Kj] = iǫijkKk

[Ki, P0] = −iPi , [Ki, Pj] = iδijP0 , [Ki, Kj] = −iǫijkJk ,
(2)

with all other commutators equal to zero. Although boosts are always broken in condensed

matter systems, we assume that there remain a set of unbroken generators P̄0, P̄i, and J̄i

that leave the ground state unchanged. These have the same commutation relations with

each other as in the Poincaré algebra, but they may be specific linear combinations of the

original symmetry generators (including internal symmetries). Their commutation relations

with the boost generators may be modified. The unbroken generator P̄0 is the Hamiltonian of

collective excitations in the system. As we mentioned previously, whenever the commutators

of some unbroken generator of translations P̄µ with a set of broken generators Qi contain

another set of broken generators Q′
i, it is possible to impose inverse Higgs constraints. These

constraints can be solved to express the Goldstone modes associated with the broken gen-
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erators Qi in terms of derivatives of the Goldstones associated with Q′
i [16]. The result is a

non-linear realization of the exact same symmetry-breaking pattern, but with fewer gapped

Goldstone modes.

The classification of condensed matter systems distinguishes between systems on the

basis of which unbroken generators P̄0, P̄i, J̄i contain combinations of internal symmetries,

denoted schematically by Q:

1. P̄0 = P0, P̄i = Pi, J̄i = Ji — In the simplest case, none of the unbroken generators

include internal symmetries. Nicolis et al. call this case the “type-I framid.” Since the

three boosts are broken, there are three Goldstone bosons, and this symmetry-breaking

pattern can be realized in a theory with a four-vector Aµ that takes a VEV of the form

〈Aµ〉 ∝ δ0µ. This is not a system that occurs in nature, as far as we know, and we will

not be concerned with it further.

2. P̄0 = P0+Q, P̄i = Pi, J̄i = Ji — Since P0 commutes with the other generators, so does

Q. In this situation, we have a system that spontaneously breaks an internal U(1) sym-

metry generated by Q, in addition to the three boosts. This is the symmetry-breaking

pattern of the “type-I superfluid,” per the terminology of Nicolis et al.. Although there

are four broken generators in this case, there are not four gapless Goldstones in such a

superfluid. From the commutation relation involving Ki and Pj in Eq. (2), we see that

[Ki, P̄j] = iδij
(

P̄0 −Q
)

, so we may impose three inverse Higgs constraints relating the

three Goldstones associated with boosts to the Goldstone of the spontaneously broken

U(1) [50]. This symmetry-breaking pattern can be realized with a complex scalar field

Φ that has a time-dependent VEV 〈Φ〉 ∝ eit and is symmetric under U(1) phase shifts.

Upon decomposing Φ = ρeiφ into a radial mode ρ and a phase φ, we see that a U(1)-

symmetric potential would give ρ a finite gap, so that it can be integrated out at low

energies. What remains is a theory of the gapless scalar φ that non-linearly realizes

the U(1) symmetry, and whose fluctuations about the ground state are the superfluid

phonons.
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3. P̄0 = P0, P̄i = Pi+Qi, J̄i = Ji — In this case, the commutation relations Eq. (2) imply

that [Ji, Qj] = iǫijkQk, so Qi cannot generate purely internal symmetries. Nicolis et

al. call this system the “type-I galileid.”

4. P̄0 = P0, P̄i = Pi, J̄i = Ji +Qi — The commutation relations Eq. (2) now imply that

[Qi, Qj] = iǫijkQk, so that Qi generates an internal SO(3) symmetry. As there are now

six broken generators and zero available inverse Higgs constraints, there are also six

Goldstone modes. This case is known as the “type-II framid” in Nicolis et al..

5. P̄0 = P0 +Q, P̄i = Pi +Qi, J̄i = Ji — The commutation relations Eq. (2) again imply

that [Ji, Qj] = iǫijkQk, so Qi cannot generate an internal symmetry. Accordingly, this

system was named the “type-II galileid.”

6. P̄0 = P0 + Q, P̄i = Pi, J̄i = Ji + Qi — In this case, the commutation relations show

that Q generates an internal U(1) symmetry, while Qi generates an internal SO(3)

symmetry. There are seven broken generators overall, and the boost Goldstones can

again be eliminated via the same inverse Higgs constraints as in the type-I superfluid.

There remain four gapless Goldstone modes. This scenario is called the “type-II super-

fluid,” and it is realized by the B phase of superfluid helium-3 in the non-relativistic

limit [51]. The broken generators Qi are associated with spin in the limit of negligible

spin-orbit coupling. A theory with an SO(3) triplet of complex four-vectors Aa
µ realizes

this symmetry-breaking pattern if
〈

AI
µ

〉

∝ eitδIµ.

7. P̄0 = P0, P̄i = Pi + Qi, J̄i = Ji + Q̃i — It is straightforward to show that both

Qi and Q̃i commute with the Poincaré generators, but not with each other. They

have the commutation relations [Qi, Qj] = 0, [Qi, Q̃j] = −iǫijkQk, and [Q̃i, Q̃j] =

iǫijkQ̃k, which is the algebra of ISO(3). We can identify Qi as the generator of internal

translations and Q̃i as the generator of internal rotations. The additional commutation

relation [P̄0, Ki] = i(Qi − P̄i) allows for the elimination of three boost Goldstones via

three inverse Higgs constraints; since we also have [P̄i, Q̃j] = iǫijkQk, we can eliminate
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three more Goldstones associated with internal rotations. There remain three gapless

Goldstone modes, which can be identified as the acoustic phonons of a solid that is

isotropic at large distances. The simplest realization of this symmetry breaking pattern

is with an ISO(3) triplet of scalar fields φI that break boosts and internal rotations

with a VEV
〈

φI
〉

∝ xI . The scalars φI can be interpreted as the co-moving coordinates

of volume elements in the solid. In principle, one could enlarge the minimal broken

symmetry group without increasing the number of Goldstone modes, since they would

be removed by additional inverse Higgs constraints. One could even promote ISO(3)

to the infinitely large group of volume preserving diffeomorphisms, under which the

scalars transform as φI → ξ(φI), det
(

∂ξI/∂φJ
)

= 1. As we will see, this situation

corresponds to a perfect fluid, since volume elements in a perfect fluid may be freely

moved around and deformed with no energy cost, as long as they are not compressed

in volume. From this point of view, a fluid is just a solid with infinitely enhanced

internal symmetry.

8. P̄0 = P0 + Q, P̄i = Pi + Qi, J̄i = Ji + Q̃i — The final possibility features inter-

nal generators as part of every unbroken combination of generators. It is simple to

show that these broken generators obey the commutation relations of the algebra of

ISO(3) × U(1). This situation is a hybrid of a solid and a type-I superfluid, and is

accordingly known as a supersolid. There are now 10 broken generators, including

boosts, and six inverse Higgs constraints (the same ones we had in the solid), so there

are four Goldstone modes remaining. The symmetry-breaking pattern can be realized

with an ISO(3) triplet φI , as in the case of the solid, and an additional light scalar

field ψ that transforms as a singlet under ISO(3) and non-linearly realizes U(1) as a

phase via shift symmetry, with VEVs
〈

φI
〉

∝ xI and 〈ψ〉 ∝ t. This is a theory involving

displacements of volume elements in a solid with an added superfluid-like order param-

eter. Incidentally, promoting the broken internal symmetry group from ISO(3)×U(1)
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to Diff′(3) × U(1) 2, by analogy with the solid, makes this the symmetry-breaking

pattern of a superfluid at finite temperature.

In each of these cases, the symmetry breaking properties of the system can guide us to

build the simplest possible theories that realize them. It is also possible to systematically

find the simplest relativistic theories that realize these symmetry patterns from the so-

called “coset construction” [50], which implements the inverse Higgs constraints directly

and eliminates Goldstone modes through algebraic equations. As an illustration of how

this formalism works, let us consider the symmetry-breaking pattern of a supersolid. The

procedure is straightforward, as outlined in [50], although it can be computationally rather

tedious. The first step is to consider the complete group of symmetries G and the unbroken

subgroup H and represent the space of cosets G/H by introducing a Goldstone field for each

broken generator. A general element of this space can be parametrized as

O(x) = eix
µP̄µeiη

i(x)Kieiπ
µ(x)Qµeiθ

i(x)Q̃i , (3)

where ηi are the Goldstones of broken boosts, π0 is the Goldstone of broken internal U(1),

πi are the Goldstones of broken internal translations, and θi are the Goldstones of broken

internal rotations. An effective action for the theory is constructed by computing the Maurer–

Cartan form O−1dO for the Lie group under consideration. In the basis of the generators,

the Maurer–Cartan form becomes

O−1dO = ieα
νdxα

(

P̄ν +Dνη
iKi +Dνπ

µQµ +Dνθ
iQ̃i

)

+ [terms involving unbroken generators] ,
(4)

where eαν are space-time tetrads and Dν are covariant derivatives. Each term in this expan-

sion transforms covariantly and can be used to construct an invariant effective Lagrangian.

2We use Diff′(3) to refer to the group of diffeomorphisms with unit Jacobian, of which ISO(3)
is a subgroup.
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At the same time, the commutation relations of the Poincaré algebra and ISO(3)×U(1) can

be used to obtain an explicit expression for the Maurer–Cartan form. After some calculation,

the result is

O−1∂µO = iΛµ
ν(η)P̄ν + i

[

δ0µ + ∂µπ
0 − Λµ

0(η)
]

Q0

+ i
[(

δiµ + ∂µπ
i
)

Ri
j(θ)− Λµ

j(η)
]

Qj

+ [terms involving Ki and Q̃i] ,

(5)

where Λµ
ν is a Lorentz transformation and Ri

j is an SO(3) rotation. Comparing Eq. (4) and

Eq. (5) allows us to find expressions for the covariant derivatives of πµ. Then, introducing

the notation φµ = xµ + πµ (so that 〈φi〉 ∝ xi spontaneous breaks rotations, while 〈φ0〉 ∝ t

spontaneously breaks U(1) with a time-dependent VEV), the result is

Dµπ
0 = −δ0µ + Λν

µ∂νφ
0 , (6)

Dµπ
i = −δiµ + Λν

µ∂νφ
jRj

i . (7)

Now, recall that we have the commutation relations
[

P̄0, Ki

]

= i
(

Qi − P̄i

)

and [P̄i, Q̃j] =

iǫijkQk when the symmetry-breaking pattern of a supersolid is realized. This means that

the commutators of broken boosts with unbroken time translations contain the broken inter-

nal translation generators, and the commutators of broken internal rotations with unbroken

spatial translations contain the broken internal translation generators as well. As a result,

we have the opportunity to impose six inverse Higgs constraints to express the Goldstones

of boosts and internal rotations in terms of the Goldstones of internal translations. This is

achieved by imposing six gauge fixing conditions that preserve all the symmetries and elim-

inate the redundant Goldstone fields. In this case, the appropriate gauge fixing conditions

are

D0π
i = 0 , Diπj −Djπi = 0 . (8)
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The first condition can be achieved by requiring βµ∂µφ
i = 0, where we expressed rapidity η

in terms of a boost velocity βµ = (1,β). This equation can be solved to yield

βµ =
Jµ

J0
, Jµ ∝ ǫµνρσǫijk∂νφ

i∂ρφ
j∂σφ

k . (9)

This eliminates the boost Goldstones η by implicitly expressing them in terms of πi. We

can still use D0π
0 as a building block for the effective Lagrangian, since it is not fixed by

either gauge condition. In terms of the solution for βµ that we found from the first gauge

condition, Eq. (6) gives

D0π
0 = −1 +

βν∂νφ
0

√

−βµβµ
= −1 +

Jν∂νφ
0

√

det (∂µφi∂µφj)
≡ −1 + y . (10)

We have thus found the first invariant quantity out of which we can build the effective

Lagrangian, and we can freely exchange D0π
0 for y.

We have not yet used the second gauge condition Diπj = Djπi. If we define Ni
j ≡

Λµ
i∂µφ

j, this gauge condition implies that Ni
kRk

j = Nj
kRk

i; in other words, NR is a

symmetric matrix. Therefore, we must have NTN = NTRTRN = (RN)2. Since (NTN)ij =

∂µφ
i∂µφj ≡ Bij, we find that NR = NBN−1, which implicitly specifies the angles θi—the

arguments of the rotation matrix R—in terms of the fields πi, thus eliminating the Goldstones

of the spontaneously broken internal rotations. The only remaining covariant derivatives that

we are left with are D(iπj) and Diπ
0. The symmetry of NR also implies that

1

2
(Diπj +Djπi) = −δij + (NR)ij = −δij +

(

NBN−1
)

ij
. (11)

Therefore we can use the combination Bij instead of the covariant derivative D(iπj) as a

building block of invariants to include in the effective Lagrangian of the theory. In addition,
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from Eq. (6), notice that we have

Diπ
0Diπ0 = ∂µφ

0∂µφ0 + y2 ≡ X + y2 . (12)

The quantityX is another invariant combination that can be used in the effective Lagrangian.

However, there are other index structures in the theory (namely Bij), with which Diπ
0 can

be contracted. Let us calculate the covariant derivative:

Diπ
0 =

(

N−1
)j

i ∂µφ
0∂µφj ≡

(

N−1
)j

iAj . (13)

We can also exchange this covariant derivative for Ai, in order to build further invariant

operators in the effective theory.

The most general low-energy effective Lagrangian compatible with the symmetries of a

supersolid must be a function of X, y, Ai, and Bjk, which form quantities that are invariant

under the unbroken symmetries whenever all the indices are contracted in order to preserve

rotational invariance. The symmetry-breaking pattern is realized by the VEVs 〈φµ〉 ∝ xµ.

The effective action of a superfluid can then be written schematically as

S =

∫

d4xF (X, y,Ai, Bjk) . (14)

A non-relativistic version of the same action was found by Son [52] to reproduce the Andreev–

Lifshitz equations describing the dynamics of a Bose condensate of point defects in a helium-4

crystal, which was conjectured to have supersolid properties [53].

This is an excellent illustration of the power of effective field theory techniques. General

symmetry-breaking considerations and Lie group theory allowed us to generate an effective

action describing the dynamics of excitations in a highly complex theoretical state of matter,

the supersolid. Moreover, the action is automatically Lorentz invariant, making the theory

fully relativistic. Each of the invariants can be expanded in small fluctuations around the
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VEVs of the φµ fields to arbitrary order, as long as we remain interested in energies at which

perturbation theory is valid, in order to generate an effective action for Goldstone modes.

The Goldstones represent the phonons of first sound and second sound. We can then, in

principle, calculate all possible S-matrix elements between states of collective excitations in

this theory.

We have now reviewed Nicolis et al.’s classification of condensed matter systems by

symmetry-breaking pattern and seen how symmetry considerations can be used to construct

effective actions that realize those patterns. We will not be concerned with exotic phases

like framids or galileids, but we will primarily focus instead on well-known phases such as

superfluids (type I), solids, and ordinary fluids. Once we know the symmetries of each system

and how they are broken by the ground state, it is easy to find invariant field combinations

out of which to build effective Lagrangians. Instead of relying on the rather cumbersome

formalism of the coset construction, we will use more intuitive symmetry arguments to

achieve the same goal of building effective actions for condensed matter systems. Expanding

in small fluctuation about VEVs that realize the symmetry-breaking patterns of the systems

we are interested in will yield effective theories of phonons in such systems. We are now

ready to study such effective theories in more detail.
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2 Superfluids, Fluids, Solids, and

Vortices in EFT

2.1 Superfluids

In this section, we will review methods that have been developed to formulate an

effective field theory of a superfluid. Although there is a rich variety of substances that

exhibit superfluid phenomenology in different ways, from our effective field theory point

of view, we will not distinguish between types of superfluids based on their microscopic

constituents. There is no need to differentiate between Bose liquids, such as superfluid

helium-4, and Fermi liquids, such as superfluid helium-3. For the most part, we will not even

consider the two-component model of the superfluid; instead we consider superfluids at such

low temperatures that the ordinary component can be neglected. What matter for us are the

most general properties of a superfluid, such as the spectrum of elementary excitations and

the symmetry-breaking processes that create them. As Landau [54] explained, the unique

properties of a superfluid—dissipationless flow and absence of shear viscosity—depend on

the properties of the excitation spectrum in a superfluid, which satisfies what has become

known as the Landau criterion. The general argument is as follows. Consider a U(1) charge-

carrying Bose–Einstein condensate flowing at some velocity v through a straight pipe. Its

kinetic energy is reduced if there is friction between the condensate and the wall of the pipe.

In the rest frame of the fluid, in which the pipe is moving at −v, energy loss corresponds to

the creation of quasiparticle excitations. If a single quasiparticle is produced with momentum

k and energy ε(k), a Galilean transformation back to the rest frame of the pipe shows that

the energy of the fluid is

E = E0 + k · v + ε(k) , (15)
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where E0 is the initial ground state energy of the condensate at rest. In order for the fluid

to lose energy via the spontaneous creation of collective excitations, k · v + ε(k) must be

negative. This can only occur if the velocity is greater than the Landau critical velocity,

defined as

vc ≡ min
k

ε(k)

|k| . (16)

For a general dispersion relation ε(k), this critical velocity may well be zero. However,

the distinguishing feature of a superfluid excitation spectrum is a non-zero Landau critical

velocity. Take, for example the measured spectrum of helium-II shown in Fig. 1. The

spectrum begins approximately linearly at low momenta, before exhibiting a kink and a local

minimum around 1.9 Å. Since the energy around the local minimum is non-zero, the Landau

critical velocity will also be non-zero. Therefore, the fluid will flow without dissipation below

this critical velocity. In the case of superfluid helium-4, the low-momentum, approximately

linear region of the spectrum of excitations describes phonons, while the local minimum

at higher momentum is the roton part of the spectrum. We will return to this helium

excitation spectrum later when considering the effects of gravity on quasiparticle excitations

in a superfluid.

We do not need to study the measured excitation spectrum of superfluids, however, to

develop an effective field theory of superfluidity. We simply make note of the fact that a

superfluid is a condensed matter system at finite density that carries a spontaneously broken

U(1) charge. We do not specify what the internal U(1) symmetry is, but for concreteness we

may think of U(1) phase symmetry associated with conservation of the number of helium-4

atoms in superfluid helium-4. Bose–Einstein condensation underlies the superfluid properties

of helium-4, and below a critical temperature, the ground state of a Bose–Einstein condensate

is characterized by a finite, macroscopic occupation number, so that the number density

operator acquires a non-zero vacuum expectation value (VEV). In other words, the U(1)
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Figure 1: The measured spectrum of excitations in liquid helium II, as reported in [55]. The three
curves correspond to phenomenological models considered by the authors of [55].
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symmetry associated with the particle number operator is spontaneously broken by the

ground state of a Bose–Einstein condensate. Thus, according to our general definition, a

condensate has the symmetry-breaking properties of a superfluid.
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2.1.1 Superfluidity as a Scalar Field Theory

Although there are different possible descriptions of a quantum field theory with this symmetry-

breaking property, we will begin with the simplest implementation involving a single real

scalar field φ, following Nicolis [45]. We will start from the postulate of spontaneous sym-

metry breaking, which entails the existence of a gapless excitation mode φ, by Goldstone’s

theorem. This Goldstone boson non-linearly realizes the U(1) symmetry, which acts on the

scalar field via constant shifts:

φ→ φ+ a , a = const . (17)

We furthermore assume that the dynamics of the system at low energy involve only this

single degree of freedom. The effective low-energy Lagrangian is constructed as the most

general function of U(1)-invariant structures involving φ, and simultaneously compatible

with the Poincaré invariance of space-time, organized as a derivative expansion to focus on

the low-energy dynamics. The simplest invariant operator that we must consider, at lowest

order in derivatives, is

X ≡ −c2∂µφ∂µφ , (18)

where we included an overall factor of −c2 for our future convenience in studying non-

relativistic superfluids. The Lagrangian can therefore be written

L = P (X) , (19)

and the function P (X) is left unspecified. It is a generic smooth function of the invariant

X. We can calculate the Noether current associated with the U(1) symmetry from the
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Lagrangian:

jµ =
∂P (X)

∂(∂µφ)
= −2PX(X)∂µφ , (20)

where PX represents the first derivative of P with respect to X. The µ = 0 component of

the current is, of course, the charge density associated with the U(1) symmetry, so in order

for the ground state to be at finite charge density, it must be the case that the VEV of φ

has a non-zero time derivative. It is sufficient to consider the case where the time derivative

of 〈φ〉 is constant to achieve non-zero constant charge density. In other words,

〈φ〉 = µt , (21)

where the constant of proportionality µ has the interpretation of chemical potential (in a

relativistic sense) [46]. It is equal to µ = µ0 + mc2, where µ0 is the usual non-relativistic

chemical potential, which is much less than mc2. The proper interpretation of m is, of course,

the mass of the microscopic constituents of the superfluid. In the ground state, the quantity

X is equal to the square of the local relativistic chemical potential µ.

As we will see, the notation P (X) was aptly chosen because the quantity P has can be

interpreted thermodynamically as the pressure of the system. In order to see this, we allow

the background geometry to fluctuate and vary the action,

S =

∫

d4x
√−g P

(

−c2gµν∂µφ∂νφ
)

, (22)

with respect to the inverse metric tensor gµν in order to calculate the (gravitational) energy–

momentum tensor on the background flat geometry.

Tµν = − 2√−g
δS

δgµν

∣

∣

∣

∣

gµν=ηµν

= P (X)ηµν + 2c2PX(X)∂µφ∂νφ .

(23)
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Then denoting the background values of X, P (X), and PX(X) (at X = µ2) by X, P , and

PX , respectively, we find that the value of the energy–momentum tensor evaluated on the

background is given by

〈T00〉 = −P + 2PXX , 〈T0i〉 = 0 , 〈Tij〉 = Pδij . (24)

Since the diagonal entries of the spatial part of the energy–momentum tensor of a fluid

are equal to the pressure in the fluid’s rest frame, we see that P (X) can indeed be given

a thermodynamic interpretation as the pressure in the superfluid. The 00 component of

the energy–momentum tensor is equal to the energy density ǫ. Therefore, we see that a

given equation of state of the superfluid determines the Lagrangian of the theory in our

formulation. In addition, if we identify the energy–momentum tensor in Eq. (23) with the

standard energy–momentum tensor of a perfect fluid in equilibrium,

Tµν = Pηµν + (ǫ+ P )
uµuν
c2

, (25)

where uµ is the bulk velocity field, we find that the velocity is equivalent to

uµ = −c2 ∂µφ√
X
. (26)

We used the fact that ǫ = −P +2PXX. The negative sign is chosen to match the convention

for potential flow. Since the velocity is the gradient of φ up to an overall normalization factor,

the flow obeys a relativistic generalization of the irrotationality condition, as expected for

a superfluid. Incidentally, conformal superfluids, for which T µ
µ = 0, are of interest in

holographic applications [56, 57]. From Eq. (23), we see that conformal superfluids are

constrained to have the pressure as a function of chemical potential given by

4P (X)− 2XPX(X) = 0 =⇒ P (X) ∝ X2 . (27)
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If we are interested in a theory in d + 1 dimensions, a conformal superfluid will then have

P (X) ∝ X(d+1)/2.

We now introduce small perturbations from the ground state. We perturb the scalar

field about the background:

φ = µ(t+ π) , (28)

where π(x, t) is treated as a small perturbation. Then the invariant X becomes

X = µ2
[

(1 + π̇)2 − c2(∇π)2
]

. (29)

It will be useful for us to compute the action expanded to cubic order in small fluctuations,

neglecting boundary terms from integration by parts. The resulting cubic action is

S3 =
µnc2

c2s

∫

dt d3x

[

1

2
π̇2 − c2s

2
(∇π)2 +

g

3
π̇3 − c2

2

(

1− c2s
c2

)

π̇ (∇π)2
]

(30)

The number density n, speed of sound cs, and non-linear coupling constant g are given by

combinations of derivatives of P , evaluated on the background φ = µt. Explicitly, these

quantities can be written as

n =
dP

d
√
X

=
dP

dµ
, (31)

c2s =
c2PX

PX + 2PXXX
=

c2dP/dµ

µ d2P/dµ2
, (32)

g =
c2

2c2s

(

1− c2s
c2

)

− µ

cs

dcs
dµ

. (33)

The quantity PXX is the second derivative of P with respect to X, evaluated on the back-

ground. It is straightforward to show that the combination µncs determines the strong

coupling cutoff scale of this theory of phonons [21, 58]. In particular, the cutoff momentum

scale k⋆ of this theory is given by (µncs/c
2)1/4, so that the overall cutoff energy scale Λ of
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the theory is

Λ = cs

(µncs
c2

)1/4

. (34)

In addition, we will later find it useful to expand the energy–momentum tensor compo-

nent T00 to quadratic order in small fluctuations:

T00 =
µnc2

c2s

[

π̇ +
c2

2c2s

(

1− 2µcs
c2

dcs
dµ

)

π̇2 − c2

2

(

1− 2c2s
c2

)

(∇π)2
]

. (35)

We will use this result in subsequent calculations.
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2.1.2 Dual Two-Form Field Description of Superfluidity

In certain contexts, it will be useful to work with a slightly more complicated dual description

of a superfluid that exchanges the scalar field for a two-form. This is particularly helpful

when considering the interaction between bulk superfluid modes and vortex lines or vortex

rings [49,58]. The dual formulation in terms of two-forms has also been used to study a Wess–

Zumino-type term in the effective field theory of a two-dimensional superfluid that cannot

be described by a local action in the scalar field formulation [59, 60]. Legendre transform

techniques allow us to easily switch between dual descriptions. Indeed, it has long been

established [61] that any theory of a scalar field with symmetry under constant shifts in

3 + 1 dimensions admits just such a dual description in terms of a two-form field Aµν . That

two-form is then invariant under corresponding local gauge transformations of the form

Aµν → Aµν + ∂[µξν] . (36)

In d+1 dimensions, a scalar field has an analogous dual description in terms of a d− 1-form

field Aµ1···µd−1
[49, 62]. To see this in the 3 + 1-dimensional case, let us consider an action

for a one-form field Uµ and a two-form field Aµν :

S =

∫

d4x [P (X)− F µUµ] ,

X ≡
√

−UµUµ , F µ ≡ 1

2
ǫµνρσ∂νAρσ .

(37)

The field F µ is gauge invariant, and it plays a role similar to that of the dual field strength

tensor in electrodynamics. Since the two form Aµν appears only once in this action, it is

essentially a Lagrange multiplier. Varying the action with respect to the two-form, we find

an equation of motion

∂µUν − ∂νUµ = 0 . (38)
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A simple solution to this equation of motion is Uµ = −c ∂µφ, where φ is a scalar and the

constant of proportionality −c was chosen for convenience. Substituting this back into the

action, we recover the same action that we found for the superfluid, up to an irrelevant

boundary term, upon identifying the function P in this action with the one we used to study

the superfluid. This action describes the same dynamics as that of the superfluid.

We may just as well decide to integrate out the one-form Uµ, rather than the two-form.

This can be accomplished by varying the action with respect to Uµ and solving its classical

equation of motion,

P ′(X)

X
Uµ + Fµ = 0 . (39)

Multiplying by F µ gives

P ′(X)2 + FµF
µ = 0 =⇒ P ′(X) =

√

−FµF µ ≡
√
Y . (40)

Substituting the classical solution of Uµ into the original action, we find

S =

∫

d4x [P (X)−XP ′(X)] ≡
∫

d4xG(Y ) . (41)

This new form of the action uses the two-form field Aµν to describe the same dynamics as

the action of the superfluid we considered previously. Recalling that we identified P ′(X)

with the number density n, we see that the invariant Y containing the two-form field has the

physical interpretation of n2. Notice that Eq. (39) provides a completely local relationship

between Fµ ∼ ∂Aµν and Uµ ∼ ∂φ, in other words, between derivatives of the two-form

field and derivatives of the scalar field. There is no such local relationship between the

fields themselves, however. The precise relation between φ and Aµν is highly non-local, as

is typically the case in dual field theoretic descriptions [49].

The superfluid action in dual two-form language still has gauge invariance under trans-
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formations of the type in Eq. (36). We may specify the gauge from the action by adding a

gauge-fixing term that we choose to write as

Sgf ∝ − 1

2ξ

∫

d4x
(

∂iAiµ
)2
, (42)

where ξ is an unspecified positive parameter. Since the gauge symmetry is Abelian, adding

such a term fixes the gauge in the path integral and there is no need to introduce ghost

fields to compute amplitudes in this theory. Whenever we will deal with the dual superfluid

description in the future, a gauge-fixing term in the action will be understood, but there is

no need to dwell on this detail further at the moment.

It is important to understand the symmetry-breaking pattern in this dual superfluid

language. In the scalar field formulation, we have a Lorentz-violating background configura-

tion with a time-dependent VEV 〈φ〉 = µt. To relate this to the dual description, let us first

calculate the energy–momentum tensor in this language. We find Tµν = pηµν+(ǫ+p)uµuν/c
2,

where now

ǫ = −G(Y ) , p = G(Y )− 2Y G′(Y ) , uµ = − cFµ√
Y
. (43)

Comparing the four-velocity to the one we found in the scalar theory, we can immediately

make the identification

Fµ√
Y

=
c∂µφ√
X

. (44)

On the background then, if n̄ =
〈√

Y
〉

is the equilibrium number density, we must have

〈F0〉 = n̄ = −1

2
ǫijk∂i 〈Ajk〉 , (45)

〈Fi〉 = 0 = −1

2
ǫijk∂t 〈Ajk〉+ ǫijk∂j 〈A0k〉 . (46)
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We can use gauge freedom to set 〈A0i〉 to zero, leaving the solution

〈Aij〉 = −1

3
n̄ǫijkx

k , 〈A0i〉 = 0 . (47)

The next step for us will be to introduce fluctuations about the background via two

three-vectors, A and B. We parametrize the fluctuations in such a way that both A and B

will have regular propagators in the non-relativistic limit:

A0i(x) =
n̄

c
Ai(x) , Aij(x) = n̄ǫijk

[

−1

3
xk +Bk(x)

]

. (48)

With this parametrization, the invariant quantity Y becomes

Y = n̄2

[

(1−∇ ·B)2 − 1

c2

(

Ḃ−∇×A
)2
]

. (49)

We can use this expression to expand the action (now without the gauge-fixing term) to

cubic order in the small fluctuation fields Ai and Bi. We find that the cubic action for these

fields can be written as3

Sbulk =
w̄

2c2

∫

dt d3x

[

(∇×A)2 + Ḃ2 − c2s (∇ ·B)2

+

(

1− c2s
c2

)

(∇ ·B)
(

Ḃ−∇×A
)2

− ḡc2s
3

(∇ ·B)3
]

,

(50)

which determines the dynamics of bulk modes in the superfluid. We defined the background

enthalpy density w̄ = ǫ + p, the velocity of sound cs =
√

dp/dρ, and the cubic coupling

3The bulk action reported in [1] is missing the final cubic term. It is irrelevant for the leading-
order behavior of vortices in a trapped superfluid condensate, but it turns out to be crucially
important when studying the non-linear interactions of superfluid phonons, as we will do in Sec-
tion A.
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constant ḡ of the (∇ ·B)3 term as

w̄ ≡ −2n̄2G′(n̄2) ,
c2s
c2

≡ 1 +
2n̄2G′′(n̄2)

G′(n̄2)
,

ḡ ≡ 1− c2s
c2

− 4n̄2

cs
c′s(n̄

2) .

(51)

Notice that we implicitly chose a gauge in which the A field is purely transverse and the

B field is longitudinal—see Horn et al. [49] for a more detailed explanation. Since B is a

field that propagates longitudinally at the velocity of sound cs, we can identify it with the

phonon field in the fluid. The transverse mode A is non-propagating and constrained by the

equations of motion, although it can still mediate long-range interactions in this theory. It

plays a role similar to that of the vector potential in electrodynamics, and for this reason,

it has been dubbed the “hydrophoton” field [63]. In terms of the phonon and hydrophoton

fields, the bulk velocity in the superfluid, ui = −cFi/n, becomes

u =
Ḃ−∇×A

1−∇ ·B
, (52)

to leading order. It will also be useful for us to write down their propagators for future

reference:

Gij
A(ω,k) =

ic2

w̄

δij − k̂ik̂j
k2

, Gij
B(ω,k) =

ic2

w̄

k̂ik̂j
ω2 − c2sk

2
. (53)

Although not written out in the above expressions, the iǫ prescription is implied. Note

that the propagators of both fields come with an extra factor of c2/w̄ because the fields in

the action Eq. (50) are not canonically normalized. It is straightforward to work out the

Feynman rules and calculate scattering amplitudes for processes involving phonons and non-

dynamical hydrophoton modes. We will do so later on when considering the interactions of

vortex lines with the superfluid bulk modes.
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2.2 Fluids

The hydrodynamics of fluids has long been studied and well understood at the level

of equations of motion derived from the conservation of energy and momentum, with phe-

nomenological modifications to account for dissipative and viscous effects. What ordinary

hydrodynamics fails to do is account for either thermal or quantum fluctuations, which are

ubiquitous and highly relevant when considering certain types of critical behavior, long-range

correlations around dynamical flows, non-equilibrium states, non-linear interactions of sound,

and corrections to classical behavior [33,64,65]. Effective field theory naturally lends itself as

a simple framework for incorporating the effects of fluctuations into ordinary hydrodynam-

ics, with the added bonus of accounting for relativistic effects from the outset. The program

of reformulating fluid dynamics from a relativistic action principle has a long and fruitful

history [66–69]. The modern effective field theory of a perfect, dissipationless fluid, giving

rise to the Euler equations in the non-relativistic limit, is now well known. It was developed

in Dubovsky et al. [4,70] and Endlich et al. [21]. Dissipative effects, however cannot arise di-

rectly from a local, Lorentz invariant action principle for fluctuation fields in a fluid. A more

recent program has seen numerous studies of the quantum origins of viscosity in a modi-

fied effective field theory framework, typically involving Schwinger–Keldysh closed-time path

formalism to account for non-equilibrium dynamics—see Grozdanov & Polonyi [71], Torri-

eri [72], and Crossley et al. [33]. Alternatively, one can explicitly neglect certain degrees of

freedom in the theory of the perfect fluid, essentially carrying out a coarse-graining proce-

dure, in order to introduce dissipative effects [73]. For our purposes, we need not consider

dissipation or viscous effects; perfect fluid theory will suffice.

Our primary goal in this section is to review the effective field theory of a perfect fluid,

following the notation of Dubovsky et al. [70] and development by Endlich et al. [21], in order

to lay out the theory in sufficient detail for subsequent use in calculations. We consider a fluid

with volume elements labeled by co-moving, or Lagrangian, coordinates φI . The Lagrangian

coordinates depend on time t and physical, or Eulerian, position coordinates x, occupied by
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the fluid element at that time. We thus have three scalar functions of spatial coordinates

and time,

φI = φI(x, t) , I = 1, 2, 3 . (54)

Although one could easily invert this and formulate a field theory of hydrodynamics in

terms of Eulerian coordinates, this approach turns out to be more useful when implementing

Poincaré invariance. We will formulate the theory relativistically, even though Galilei sym-

metry is more relevant in laboratory settings. However, there is no reason to approximate

from the beginning, as it does not lead to any helpful simplifications. We will treat the

coordinates φI as scalar fields under the space-time symmetries of the Poincaré group. We

choose to consider a system for which the static and homogeneous “ground state” at some

given pressure picks out a definite configuration such that the Lagrangian and Eulerian

coordinates are aligned:

〈

φI
〉

∝ xI . (55)

The system will have the symmetries of a fluid if we impose a number of internal (rather

than Poincaré) symmetries. In particular, the dynamics must be symmetric under constant

shifts and internal SO(3) rotations in order for the fluid to be homogeneous and isotropic.

The corresponding symmetry transformations are

φI → φI + aI , (56)

φI → OI
J φ

J , (57)

where aI is constant and OI
J is an SO(3) rotation matrix. There is one additional symmetry

we need to implement for this theory to describe a fluid, namely invariance under volume-

preserving diffeomorphisms. This symmetry has the effect of making the dynamics invariant
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under the rearrangement of fluid elements without compression or expansion of the elements.

While the fluid is resistant to compression or expansion, there are no transverse shear stresses

as in a solid. The symmetry under volume-preserving diffeomorphisms is implemented as

follows:

φI → ξI(φJ) , det
∂ξI

∂φJ
= 1 . (58)

Following the standard effective field theory logic, we construct the Lagrangian by build-

ing quantities from the scalar fields φI that are invariant under the symmetry transformations

of Eqs. (56) to (58), and we organize it as a long-wavelength derivative expansion with terms

with the fewest number of derivatives coming in at lowest order. Symmetry under shifts,

Eq. (56), requires that the fields φI always enter the Lagrangian with at least one derivative

∂µ. Poincaré symmetry requires that at lowest order, the effective Lagrangian must depend

only on the matrix BIJ , defined as

BIJ ≡ ∂µφ
I∂µφJ . (59)

Furthermore, symmetry under internal rotations, Eq. (57), requires that the Lagrangian

depend only on SO(3)-invariant terms involving BIJ . We can form three different mutually

independent SO(3) invariants—for example, trB, trB2, and trB3. We may exchange one

of those invariants for the determinant of BIJ , since

detBIJ =
1

6

[

(trB)3 − 3(trB)(trB2) + 2(trB3)
]

. (60)

After imposing symmetry under volume-preserving diffeomorphisms, Eq. (58), we are left

with only functions of the determinant. It will be convenient to work with the quantity

b ≡
√
detBIJ . We therefore conclude that the Lagrangian describing a perfect fluid can be
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written as a generic function of b, so that the action is

S = −w0

∫

dt d3x f(b) . (61)

We choose to pull out a constant w0 that has units of mass density. It will be conve-

nient to choose w0 to be proportional to 1/c2 times the background of the relativistic

enthalpy density, ǫ + p, where ǫ is the energy density and p is the pressure. To com-

pute the energy–momentum tensor of the fluid, we will need to rewrite the action as S =

−
∫

dt d3x
√−gf

(

√

det gµν∂µφI∂νφJ
)

and perturb the metric. The resulting (gravitational)

energy–momentum tensor has the form

Tµν = w0

[

−f(b)ηµν + bf ′(b)B−1
IJ ∂µφ

I∂νφ
J
]

. (62)

Comparing to the standard form of the energy–momentum tensor of a perfect fluid, i.e.

Tµν = ηµνp+ (ǫ+ p)uµuν/c
2, where uµ is the bulk velocity field, we make the identifications

ǫ = w0f(b) , (63)

p = w0 [−f(b) + bf ′(b)] , (64)

uµ =
c

6b
ǫµνρσǫIJK∂νφ

I∂ρφ
J∂σφ

K . (65)

We will choose the normalization in this theory such that w0 is equal to 1/c2 on the back-

ground times the ground state enthalpy density, scaled by the background value of 1/b, so

that df/db = c2 on the background. We will use this normalization condition implicitly in

subsequent calculations.

Phonons appear in the theory when we consider fluctuations around the ground state,

which breaks the overall symmetry group down to an unbroken combination of spatial and
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internal transformations. We will choose to write the VEV of the fields φI as

〈

φI
〉

= 3
√

b0 x
I , (66)

where b0 is a dimensionless quantity. Although b0 is dimensionless, it can be thought of as

an overall compression factor that stretches or compresses the fluid uniformly in response to

changes in external pressure. The cube root is chosen for the quantity b to correspond to b0

on the background. Fluctuating about the VEV, we have

φI = 3
√

b0
(

xI + πI
)

, (67)

where πI are small perturbing fields. We expand the action to cubic order in perturbations

to find

S3 = w0b0

∫

dt d3x

[

1

2
π̇2 − c2s

2
(∇ · π)2 +

1

2

(

1 +
c2s
c2

)

π̇2
∇ · π − π̇iπ̇j∂iπj

− g3 (∇ · π)3 +
c2s
2
(∇ · π) ∂iπj∂jπi

]

.

(68)

We defined

c2s ≡ b0f
′′(b0) , (69)

g3 ≡
1

3

[

c2s + b0csc
′
s(b0)

]

. (70)

This will be of use later. Notice that we stopped differentiating between upper-case (internal)

indices and lower-case (spatial) indices. That is because the ground state 〈φI〉 = 3
√

b0x
I

breaks the full symmetry under internal and spatial rotations down to a diagonal subgroup,

so that any equations of motion derived from the cubic action in Eq. (68) will be invariant

under combined rotations that are elements of the unbroken diagonal subgroup. There is

no need to distinguish between these two sets of indices any longer. For reference, we also
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expand the energy density to quadratic order:

T00 = w0b0c
2

[

∇ · π +
1

2c2
π̇2 +

1

2

(

1 +
c2s
c2

)

(∇ · π)2 − 1

2
∂iπj∂jπi

]

. (71)

This will be useful when we study the interaction of sound waves in fluids with gravity later

on.

Incidentally, now that we know the action of a fluid in the EFT framework, we can

return to thinking about superfluids, this time at finite temperature. At non-zero but small

temperatures T , liquid helium, for example, has an ordinary fluid helium-I component and

a superfluid helium-II component that coexist. The general Lagrangian of a superfluid at

finite temperature but low energy is a combined function of the two invariants b and X, as

well as one additional invariant that couples the two components and is compatible with the

symmetries in question,

y =
1

6b
ǫµνρσǫijk∂µψ∂νφ

i∂ρφ
j∂σφ

k , (72)

where ψ is the superfluid component phase and φI are the ordinary fluid co-moving coordi-

nates. This is the same invariant quantity we encountered when studying the symmetries

of a supersolid in Eq. (10). It represents the direct coupling of the superfluid component

to the velocity field of the ordinary fluid. We can therefore write the general action of a

finite-temperature superfluid, with both superfluid and ordinary fluid components, as

ST>0 =

∫

dt d3xF (X, b, y) . (73)

The fields ψ and φI can be expanded about their VEVs, 〈ψ〉 ∝ t and φI ∝ xI , in order

to obtain an effective action for phonons in this medium. In this expansion, one finds that

there is generally mixing between the gradient energy of phonons δφI and the kinetic energy

of the superfluid component δψ. Diagonalization is possible for generic equations of state,
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leading to two distinct, non-dispersive propagating solutions to the wave equation that are

combinations of δψ and the longitudinal component of δφI , as long as solutions can be found

for the secular equation for eigenfrequencies ωk [45],

det













b20Fbbk
2 − (b0Fb − y0Fy)ω

2
k −y0 (Fy − b0Fby − 2b0y0FbX) kωk

−y0 (Fy − b0Fby − 2b0y0FXb) kωk

y20 [(2FX + Fyy) + 4y0FXy + 4y20FXX ]ω
2
k

+2y20FXk
2













= 0 ,

(74)

where the subscripts X, b, y represent partial derivatives of the Lagrangian with respect to

those arguments.
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2.3 Solids

The low-energy effective field theory of a solid is a straightforward generalization of

the framework developed for a fluid in the previous section. From the effective field theory

viewpoint, a fluid is simply a solid with highly enhanced symmetry, as shown in, for example,

Nicolis et al. [16] and Endlich et al. [74]. The notation we will use is largely drawn from the

latter reference.

The starting point is, once again, a set of three scalar fields, φI (I = 1, 2, 3), associated

with the co-moving (Lagrangian) coordinates of volume elements in the solid. As before,

the ground state picks out a configuration in which Lagrangian and Eulerian coordinates

become aligned. We will once again use the normalization
〈

φI
〉

= 3
√

b0 x
I for the VEV of

the scalar fields, where, as before, b0 represents the degree of overall compression or dilation

of the solid. The internal symmetry of the scalars is ISO(3) as usual, but the additional

requirement of invariance under volume-preserving diffeomorphisms no longer applies in this

case. Solids generally do have shear stresses that resist the free rearrangement of volume

elements, unlike in a perfect fluid. The scalars must appear with at least one derivative due

to symmetry under constant shifts, φI → φI+aI . Poincaré invariance dictates that invariant

quantities must be built out of the combination BIJ = ∂µφ
I∂µφJ , as we are again organizing

the effective theory as a low-energy derivative expansion. The determinant of BIJ is not the

only invariant quantity under all relevant symmetries in this case. We can now have three

linearly independent SO(3)-invariant combinations of BIJ , if we are interested in a solid that

is isotropic at large distances. We will find it convenient to work with the following invariant

quantities:

b ≡
√
detB , Y ≡ trB2

(trB)2
, Z ≡ trB3

(trB)3
. (75)

Of these three invariants, only b contains the parameter b0 and is therefore sensitive to the

overall level of compression or dilation of the solid. Also, after introducing small fluctuations
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of φI about the VEV via φI = 3
√

b0
(

xI + πI
)

, expanding the three invariant quantities in

small fluctuations shows that only b begins at linear order in the fields πI ; the quantities Y

and Z both begin at quadratic order. These are the only invariants we must consider if we

are interested in a solid that is isotropic at large distances, but if we want to build a theory

of a solid with a discrete symmetry point group, a more careful analysis is needed, since the

invariants we use must be unchanged under the discrete symmetry transformations of the

point group. We will encounter an example of a theory of a solid with cubic symmetry later

in this work.

Our Lagrangian will now be a generic function of b, Y , and Z, which we choose to

normalize in the same way as the fluid, pulling out an overall constant w0 with units of mass

density. The general action of the solid is

S = −w0

∫

dt d3x f(b, Y, Z) . (76)

We will again choose w0 to be related to the enthalpy density of the ground state in such a

way that the first derivative of f with respect to b, denoted f ′ ≡ ∂f/∂b, is equal to c2 on

the background. Since the internal symmetry group of a perfect fluid is not just a subgroup

of SO(3), but the group of volume-preserving diffeomorphisms, we can obtain the effective

action of a fluid by simply restricting to functions f whose derivatives with respect to Y and

Z are equal to zero.

Let us calculate the (gravitational) energy–momentum tensor of a solid in the usual

way—by varying the metric4 and using Tµν = −2(−g)−1/2δS/δgµν . Then from the action in

4The action we are varying with respect to the metric is a generalization appropriate for a solid

42



Eq. (76), we find

Tµν = w0

[

− f(b, Y, Z)gµν + bf ′(b, Y, Z)B−1
IJ ∂µφ

I∂νφ
J

+
4

(trB)2
fY (b, Y, Z)B

IJ∂µφ
I∂νφ

J − 4

trB
Y fY (b, Y, Z)∂µφ

I∂νφ
I

+
6

(trB)3
fZ(b, Y, Z)B

IJBJK∂µφ
I∂νφ

K − 6

trB
ZfZ(b, Y, Z)∂µφ

I∂νφ
I

]

,

(77)

where fY ≡ ∂f/∂Y and fZ ≡ ∂f/∂Z. As in the case of the fluid, we have the ther-

modynamic interpretation ǫ = w0f(b, Y, Z), but the presence of shear stresses makes this

energy–momentum tensor not directly comparable to that of a fluid.

As before, we introduce small fluctuations πI , corresponding to longitudinal and trans-

verse phonons, about the ground state via φI = 3
√

b0(x
I + πI). For future reference, it will

be useful for us to expand the action of Eq. (76) to cubic order in small fluctuations. The

resulting action becomes

S3 = w0b0

∫

dt d3x

[

1

2
π̇2 − c2L

2
(∇ · π)2 − c2T

2
(∇× π)2 − g1π̇∇ · π − g2π̇iπ̇j∂iπj

− g3 (∇ · π)3 − g4(∂iπj)
2
∇ · π − g5 (∇× π)2 ∇ · π − g6∂iπj∂kπi∂kπj

− g7∂iπj∂kπi∂jπk

]

.

(78)

The longitudinal and transverse sound speeds (cL and cT , respectively) and the seven non-

linear (cubic) coupling constants are combinations of derivatives of the function f with

in a curved background. Explicitly,

S → −w0

∫

dt d3x
√−gf(b, Y, Z) ,

b =
√

det gµν∂µφI∂νφJ ,

Y =
gµνgρσ∂µφ

I∂νφ
J∂ρφ

J∂σφ
I

(gµν∂µφI∂νφI)2
,

Z =
gµνgρσgλτ∂µφ

I∂νφ
J∂ρφ

J∂σφ
K∂λφ

K∂τφ
I

(gµν∂µφI∂νφI)3
.
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respect to the invariants b, Y, Z, evaluated on the background. These are defined as

c2L = b0f
′′ +

16

27

fY + fZ
b0

, (79)

c2T =
4

9

fY + fZ
b0

, (80)

g1 = −1

2
− c2L

2c2
+
c2T
c2
, (81)

g2 = 1− c2T
c2
, (82)

g3 =
c2L − c2T

3
+

1

3
b0cLc

′
L − 10

9
b0cT c

′
T +

16

243

fZ
b0
, (83)

g4 = −c
2
L

2
+ 2b0cT c

′
T − 8

27

fZ
b0
, (84)

g5 =
c2L − c2T

2
− b0cT c

′
T +

4

27

fZ
b0
, (85)

g6 = c2T +
2

9

fZ
b0
, (86)

g7 =
2

27

fZ
b0
. (87)

In the above equations, the prime (′) symbol denotes differentiation with respect to b, and all

the derivatives are evaluated on the background. We also implicitly used the normalization

condition f ′ = c2 on the background in the above calculation. Note that the longitudinal

and transverse sound speeds are generally different. For ordinary solids (that have f ′′ > 0),

we will generally have

c2L >
4

3
c2T , (88)

which is consistent with results in, e.g., Landau et al. [75].

It will also be useful for us to calculate the component T00 of the energy–momentum

tensor and expand to quadratic order in small fluctuations. From the expression in Eq. (77),
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we find

T00 = w0b0

[

c2∇ · π +
1

2
π̇2 +

c2

2
(∇ · π)2 − c2

2
∂iπj∂jπi

+
1

2

(

b0f
′′ − 4

27

fY + fZ
b0

)

(∇ · π)2 +
2

9

fY + fZ
b0

(

(∂iπj)
2 + ∂iπj∂jπi

)

]

.

(89)

It is straightforward to show that the action in Eq. (78) and the stress–energy tensor com-

ponent in Eq. (89) reduce to Eq. (68) and Eq. (71), respectively, when we set fY and fZ to

zero, recovering the results we found from the effective field theory of a perfect fluid.
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2.4 Supersolids

The supersolid state of matter has been both puzzling to theorists and elusive to ex-

perimentalists. It is a somewhat paradoxical condensed matter system that exhibits both

crystalline order, like ordinary solids, and the dissipationless flow of material elements ob-

served in superfluids. While experiments with ultrapure helium-4 at temperatures far below

the lambda point have failed to demonstrate a supersolid transition [76], a series of recent

experiments involving dipolar Bose–Einstein condensates indicate that supersolid properties

can be supported, at least in transient states characterized by the coexistence of stripe-like

spatial modulation and phase coherence [77–79]. Still, the rather contentious question of

whether long-lived supersolid states are realized as a fundamental phase of matter is irrele-

vant from the effective field theory point of view. EFT supersolids are trivial to create, and

one need not use dipolar quantum gases; simply submerge a permeable lattice structure in

superfluid helium and zoom out to distances much greater than the lattice spacing, and you

have effectively created an approximate supersolid.

Let us review the relativistic action for supersolids we found in Eq. (14). There are four

scalar fields, the U(1) phase ψ (the superfluid component) and the ISO(3) multiplet φI (the

co-moving coordinates of material elements). In the ground state, these break the global

symmetries by taking VEVs

〈ψ〉 = y0t ,
〈

φI
〉

= 3
√

b0x
I . (90)

The Lagrangian is built out of invariant combinations of

X = −∂µψ∂µψ , (91)

y =
1

6b
ǫµνρσǫijk∂µψ∂νφ

i∂ρφ
j∂σφ

k , (92)

Ai = ∂µψ∂
µφi , (93)

Bij = ∂µφi∂
µφj . (94)
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As we will not be interested in studying supersolids in the non-relativistic limit, we are setting

all factors of c to 1 in this subsection. The quantity y is already manifestly rotationally

invariant, since all the spatial indices are contracted. Out of Bij, we can build the usual

three independent SO(3) invariants of the solid, b = detB, Y = (trB2)/(trB)2, and Z =

(trB3)/(trB)3. Using Ai, we can also form the invariant quantities

T ≡ AiA
i

y2 trB
, (95)

U ≡ AiAjBij

y4(trB)2
, (96)

V ≡ AiAjBikBjk

y4(trB)3
, (97)

W ≡ AiAjBikBklBlj

y4(trB)4
. (98)

It is simple to show that T is not independent of X, b, Y , Z, and y, so we need not include it

in the effective action. To leading order in the derivative expansion, there are no additional

invariant terms to consider. We write the action as

Seff =

∫

d4xF (X, b, Y, Z, y, U, V,W ) . (99)

A similar action was found by Celoria et al. [80], although they used a different parametriza-

tion. Naturally, this is a generalization of all the other media we have been studying. Setting

to zero all the derivatives of F with respect to Y, Z, U, V,W gives a finite-temperature su-

perfluid; setting to zero derivatives of F with respect to X, y, U, V,W gives a solid; and so

on.

Now let us fluctuate the fields about their VEVs by introducing Goldstone fields σ and

πi:

ψ = y0 (t+ σ) , φi = b
1/3
0 (xi + πi) . (100)
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We will only be interested in the effective action at quadratic order. After Taylor expanding

the action, we find an expression of the form

Seff ≃
∫

d4x

{

1

2

[

KN π̇
2 −GL (∇ · π)2 −GT (∇× π)2

]

+
1

2

[

KSσ̇
2 −GS (∇σ)2

]

+Mσ̇ (∇ · π)

}

,

(101)

where the coefficients are equal to

KN = y0Fy − b0Fb +
2

81
(9FU + 3FV + FW ) ,

GL = −b20Fbb −
16

27
(FY + FZ) ,

GT = −4

9
(FY + FZ) ,

KS = 2y20FX + 4y40FXX + y20Fyy + 4y30FXy ,

GS = 2y20FX − 2

81
(9FU + 3FV + FW ) ,

M = −y0Fy + 2y20b0FXb + y0b0Fby −
2

81
(9FU + 3FV + FW ) .

(102)

Following [45], in our terminology K, G, M , N , L, T , and S respectively stand for “ki-

netic energy,” “gradient energy,” “mixing,” “normal component,” “longitudinal polarization,”

“transverse polarization,” and “superfluid component.” This may seem like a very compli-

cated expression, but the qualitative nature of the dynamics is clear from the structure of

the action. There is a propagating transverse excitation mode of ordinary matter in the

supersolid, whose sound speed is c2T = GT/KN . This component is completely decoupled

from the superfluid component at the level of the quadratic action, although there will be

interactions between both components at higher order. The longitudinal phonon mode gets

mixed with the superfluid component, however. As in the case of the finite-temperature

superfluid, barring extraordinary cancellations due to a special equation of state, we expect

to be able to diagonalize the longitudinal phonon–superfluid phonon system. In that case,

there will again be two propagating non-dispersive modes whose eigenfrequencies ωk satisfy
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the following secular equation:

det







KNω
2
k −GLk

2 Mkωk

Mkωk KSω
2
k −GSk

2






= 0 . (103)

Like in a finite temperature superfluid, there is both first sound and second sound, cor-

responding to the eigenfrequencies found by this procedure, but there is also an additional

transverse mode in the supersolid that is not present in the superfluid. In principle, we could

continue the expansion to higher order and find the leading-order interactions, and we could

also compute components of the stress–energy tensor of a supersolid, but the expressions

will quickly balloon to extraordinary size due to the number of invariants involved. We will

set aside the supersolid at the moment and leave detailed study for the future.
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2.5 “Effective String Theory” of Vortex Lines in

a Superfluid

When liquid helium-4 is cooled below below the lambda point (roughly 2.17 K) and

carries a net angular momentum, vortex lines form spontaneously [81]. In finite-temperature

superfluids, these vortices form complicated mesh structures, tracking the background flows;

see Fig. 2 for a visualization of this phenomenon created by Bewley et al. [82]. The vortex

cores are usually around a couple ångströms in thickness in superfluid helium, and the

vortices carry circulation that is quantized in units of Γ =
∮

v·ds = 2πh̄/m, as first suggested

by Onsager [82, 83]. Feynman calculated that when superfluid helium-4 is rotated around

an axis with an angular velocity of Ω radians per second, the areal density of vortex lines in

the plane parallel to the rotation axis should be close to 2000Ω cm−2, a result now known as

“Feynman’s rule” [81, 84]. In zero-temperature superfluids, however, the quantized vortices

are less complicated structures, typically simple long string-like configurations, sometimes

bent or kinked, but not arranged in messy networks. Since Kelvin’s theorem [85] states

that the convective derivative of the circulation in a perfect fluid must vanish, a vortex line

cannot escape from any co-moving contour initially drawn to fully encircle it, no matter how

small the contour is [86]. Naïvely, this might imply that vortices remain stationary at all

times with respect to the background fluid flow. However, vortices have been observed to

precess around the centers of trapped Bose–Einstein condensates. Nilsen et al. [87] showed

that this naïve argument is erroneous, and the motion of vortex lines with respect to the

background flow is compatible with Kelvin’s theorem in the case of harmonically trapped,

rotating condensates, since small circular contours can become highly deformed over time

in the stationary frame of the lab. We will return to the study of vortex precession later.

First we must develop a framework for incorporating vortex lines—energetic, highly non-

perturbative phenomena—into the low-energy effective theory of superfluids, so that we can

study their dynamics.

We will now see how to study the motion of superfluid vortex lines within the effective
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Figure 2: Visualization of quantized vortex cores in superfluid helium-II, as reported in [82].

field theory language we developed in Section 2.1.2. We will use the dual two-form descrip-

tion, since it lends itself more readily to describing interactions with vortex lines. A vortex

line can be approximated as an infinitely thin, long string at length scales much larger than

the core radius. We can take inspiration from string theory and parametrize its space-time

position as Xµ(τ, σ), where τ and σ are two arbitrary world-sheet coordinates. The dynamics

of the vortex line will be invariant under reparametrizations of the world-sheet coordinates.

Following the philosophy of effective field theory, we add to the action arbitrary combinations

of vortex coordinates Xµ and two-form fields Aµν , localized on the world-sheet of the vortex

line, that are invariant under the relevant symmetries of the theory—namely, Poincaré sym-

metry, local gauge symmetry for the two-form field, and reparametrization invariance of the

world-sheet coordinates. Using the two-form language allows us to write Lorentz invariant

combinations directly at the level of the potential. We also organize the terms as a derivative

expansion and keep only those terms with the fewest number of derivatives acting on the

vortex line position, which is assumed to move slowly at low energy.

Following the formalism introduced by Horn et al. [49], we can immediately write down

a contribution to the action that is the analogue of the action of a relativistic string coupled
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to a Kalb–Ramond field. This term takes the form

SKR = λ

∫

dτ dσ Aµν∂τX
µ∂σX

ν , (104)

where λ is an associated coupling constant. Endlich and Nicolis [63] showed that this coupling

constant is related to the vortex circulation Γ =
∮

∂tX · ds by Γ = w̄λ/n̄c2. The Kalb–

Ramond-like combination is the only invariant term that is linear in the two-form field and

without derivatives acting on it, at lowest order in the derivative expansion. We can also

include Nambu–Goto-type terms in the action,

SNG =

∫

dτ dσ
√

− detGµν [X]∂αXµ∂βXν , (105)

where the indices α, β range over τ, σ. Unlike in the Nambu–Goto action of string theory,

we can form any number of tensor structures Gµν out of the bulk fields here, not just ηµν ,

since the superfluid spontaneously breaks Poincaré symmetry. In particularly, we can also

form a metric proportional to uµuν from uµ = −Fµ/
√
Y , the bulk 4-velocity. Defining two

tensors

gαβ = ηµν∂αX
µ∂βX

ν , hαβ = uµuν∂αX
µ∂βX

ν , (106)

we can borrow the formalism of bimetric gravity [88] to write the most general Lagrangian

with diffeomorphism invariance, to lowest order in derivative expansion, as a generic function

of gαβhαβ times the determinant of gαβ. Since we wish to include all possible interactions

with bulk modes, the function can also take the scalar Y as a direct argument. The result-

ing contribution to the action, which we will call the modified Nambu–Goto term, can be

expressed as

SNG′ = −
∫

dτ dσ
√−g T

(

gαβhαβ, Y
)

. (107)
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That is all. There are no other invariant terms that we can add to the action at lowest order

in the derivative expansion. To summarize, we now have all the ingredients to study the

dynamics of vortex lines in a superfluid. The full action including bulk modes and vortex

coordinates reads

S = Sbulk + SKR + SNG′ + Sgf

=

∫

dt d3xG(Y ) + λ

∫

dτ dσ Aµν∂τX
µ∂σX

ν

−
∫

dτ dσ
√−g T

(

gαβhαβ, Y
)

− 1

2ξ

∫

dt d3x
(

∂iAiµ
)2
.

(108)

It will also be helpful to work in a physical gauge X0 = τ = t and expand the action in

powers of the string velocity v = ∂tX, which we expect to be small compared to the sound

velocity cs in the superfluid. We can simultaneously expand in the bulk fluctuation fields A

and B. Then the Kalb–Ramond-like term becomes [49]

SKR → n̄λ

∫

dt dσ

[

ǫijk

(

−1

3
Xk +Bk

)

∂tX
i∂σX

j + Ai∂σX
i

]

. (109)

Defining the string tensions as

Tmn ≡ ambn(∂a)
m(∂b)

nT (a, b) , (110)

the expansion of the Nambu–Goto-like term action is given by

SNG′ →
∫

dt dσ |∂σX|
[

−T(00) + 2T(01)∇ ·B+ 2T(10)

(

Ḃ−∇×A
)

⊥
·
v⊥

c2

]

. (111)

The subscript ⊥ denotes coordinates that are locally perpendicular to the vortex line. Like

other coupling parameters in this theory, the tensions T(mn) are completely undetermined

and run with the energy scale. They are fixed by taking measurements at some reference

energy. The running of the couplings is easy to calculate by considering diagrams of the
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sort we will study in the next section (such as the second diagram of Fig. 7). As a result

of renormalization by divergent one-loop diagrams, one finds that the couplings T(00), T(01),

and T(10) scale logarithmically with energy: T (µ) ∝ w̄Γ2 log (µ/µ0) [49].

As a quick illustration of what this theory is capable of, let us choose a gauge where

σ = z and consider a vortex configuration parametrized in a straight line, X = (0, 0, σ).

Then add a small transverse perturbing field φ(t, z) along the vortex line around the static

configuration by writing

X(t, z) = [φx(t, z), φy(t, z), z] . (112)

This perturbing field represents transverse string excitations, and we assume that its wave-

length is much longer than the thickness of the vortex core. The relevant terms in the action

for describing the gradient energy and kinetic energy of these excitations are −T(00) |∂zX|

from the modified Nambu–Goto action and −1
3
n̄λǫijkX

k∂tX
i∂zX

j from the Kalb–Ramond

part, respectively. Together, these give an effective action for string excitations,

Seff =

∫

dt dz

[

−T(00)
√

1 + (∂zφ)
2 − n̄λ

2
ǫabφ

aφ̇b

]

, (113)

where the indices a, b range over the transverse coordinates x, y only.

The dispersion relations obeyed by these excitation modes are straightforward to find

by varying the effective action with respect to φa and considering the resulting equations of

motion to linear order. Using the fact that λ ≃ Γ/m in non-relativistic superfluids, we can

write the equations of motion as

0 = T(00)∂
2
zφ

a − n̄Γ

m
ǫabφ̇

b . (114)
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Looking for plane wave solutions of the form φa = φa
0e

i(kz−wt) immediately results in

ω(k) ∝ T(00)
Γ

k2 , (115)






φx
0

φy
0






∝







1

−i






. (116)

From the first condition, recalling the running of the coupling T(00) with momentum, we find

the dispersion relation

ω(k) ∝ Γk2 log(kℓ) , (117)

where ℓ−1 is a UV cutoff momentum scale comparable to the inverse healing length if the

vortex is moving in a Bose–Einstein condensate. This is the classic result for the dispersion

relation of Kelvin waves propagating along a vortex line [85]. The second condition tells

us that φ is circularly polarized. In other words, this is a corkscrew-like helical wave, and

its two components φ± ∼ φx ± iφy carry opposite charges under the global U(1) symmetry

φ± → φ±e
±iα, α = const, that becomes evident when rewriting the effective action in

Eq. (113) in terms of the complex fields φ+ and φ−:

Seff =

∫

dt dz
[

−T(00)
√

1 + ∂zφ+∂zφ− + in̄λφ̇+φ−

]

. (118)
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3 Case Study 1: Motion of Vortex Lines

in Trapped Superfluids

3.1 Overview of Vortex Precession

As a first detailed case study, we will consider the phenomenon of vortex precession in

a trapped superfluid. As explained in Section 2.5, a vortex line is type of linear topological

defect observed in superfluids and superconductors, around which circulation is quantized.

Although the velocity field is irrotational far from the vortex core, it nonetheless does carry

circulation. In a typical liquid helium superfluid, quantum vortices are a few ångströms in

radius [83], while in a trapped, dilute Bose gas the core radius is of the same order of as

the healing length, ξ = 1/
√
8πn0a, where n0 is the peak condensate density and a is the

scattering length. This length scale could be as large as thousands of ångströms in a dilute

Bose gas. Rokhsar [89] first predicted that trapped, dilute Bose gases at relatively strong

coupling could support off-center vortices, which would be unstable to perturbations and

spiral around the center of the trap. However, Rokhsar’s prediction that vortices would

quickly spiral out of the trap was not borne out in subsequent theoretical and experimental

studies. It turned out that under the appropriate conditions, persistent quantum vortices

can be sustained in a trapped, dilute Bose gas, and they can be observed to precess around

the center of the cloud in elliptical orbits. This is shown schematically in Fig. 3.

Standard theoretical studies of the motion of vortices in Bose–Einstein condensates rely

heavily on Gross–Pitaevskii theory, which treats the wave function of a zero-temperature

Bose gas in the Hartree, or mean field, formalism, meaning that it is assumed to be the

symmetrized product of single-particle wave functions. The typical interparticle separation

is assumed to be much greater than the scattering length a in the many-body system. An

effective pseudopotential Hamiltonian with pairwise interactions is introduced, an energy

functional is constructed, and variational analysis minimizing the energy E − µN leads to
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Figure 3: Schematic diagram of precessional motion of a vortex line (red dot) in a trapped elliptical
atomic cloud; taken from Esposito et al. [1].

the well-known Gross–Pitaevskii equation [83,90–92],

− h̄2

2m
∇2ψ (x) + [V (x)− µ]ψ (x) + g |ψ (x)|2 ψ (x) = 0 , (119)

where m is the mass of the atoms in the condensate, ψ (x) is the order parameter, or

macroscopic wave function of the condensate, normalized so that the square of its norm is

equal to the number density, V (x) is the external potential, µ is the chemical potential, and

g = 4πh̄2a/m is the effective coupling of pairwise interactions of the form g δ (xi − xj), which

accounts for the effects of high-momentum degrees of freedom that have been integrated out.

It is the non-linear third term that takes into account the mean field produced by other bosons

in the system. Effects of a rotating trap in the co-rotating frame are typically accounted

for by adding an interaction term proportional to x×∇ψ (x) to the energy functional and

using variational methods to obtain a modified Gross–Pitaevskii equation [93]. The effects

of trapping can be studied more easily in the Thomas–Fermi limit, when gradients in the

external trapping potential are small compared to the Fermi momentum. The dynamics of

a vortex line in this formalism are typically studied by introducing an Ansatz trial wave
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function characteristic of circular flow around a vortex. For example, Fetter and Kim [93]

used a trial wavefunction whose phase included a piece proportional to arctan
(

y−y0
x−x0

)

, where

(x0, y0) are the coordinates of the vortex line in the xy-plane.

Jackson et al. [94] attempted to calculate the precession frequency of a vortex line about

the center of a trapped condensate using Gross–Pitaevskii theory and an argument based

on the Magnus effect, in which a spinning body moving through a fluid is deflected due to

a pressure gradient perpendicular to the direction of the background flow. They calculated

the precession frequency of a persistent, singly quantized vortex line aligned with the z-axis

in a trapped condensate with a trapping potential given by

V (r) =
1

2
m

(

ωxx
2 + ωyy

2 + ωzz
2
)

. (120)

In the Thomas–Fermi limit, they found that near the center of the cloud, the precession

frequency ωp is given by

ωp =
h̄

µ
ωxωy

(

log
R⊥

ξ
− 5

4

)

, (121)

where µ is the chemical potential, ξ is the healing length, R⊥ = 2µ

m
√

ω2
x+ω2

y

is the length scale

of the size of the cloud in the plane perpendicular to the vortex line, and m is the mass

of the microscopic constituents of the atomic cloud. The logarithmic factor is particularly

important to note, since it appears in many formulas characterizing the dynamics of vortex

lines.

The result of Jackson et al. can be compared to the calculation of Svidzinsky and Fet-

ter [95], who used asymptotic expansions and a time-dependent variational analysis in the

Gross–Pitaevskii formalism to study vortex line precession in a non-axisymmetric trapped

Bose–Einstein condensate in the Thomas–Fermi approximation. Their result for the preces-
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sion frequency of a vortex line aligned with the z-axis and moving in the xy-plane was

ωp =
3h̄

4µ
ωxωy log

R⊥

ξ
, (122)

again valid at positions near the center of the elliptical cloud.

Fetter and Kim [93] returned to the problem using time-dependent Lagrangian varia-

tional analysis, but without resorting to asymptotic expansions, finding a similar result for

the precession of the vortex line near the center of an elliptical trap in the case when the

angular velocity of the external rotation is small compared to ω⊥ =
√

ω2
x + ω2

y . Then the

precession frequency is similar, but the numerical pre-factor is different:

ωp =
h̄

µ
ωxωy log

R⊥

ξ
. (123)

The above results are all quite similar, up to an overall order-one factor, as long as there is

a large separation of scales between the size of the atomic cloud and the condensate healing

length. Fetter and Kim’s result agrees with the calculations of Lundh and Ao [96] and

McGee and Holland [97] in the appropriate limits, except the logarithmic factor is shifted

by a position-dependent value of order one in the results of the latter two studies.

Experimentally, Matthews et al. [98] created and observed the first persistent vortices in

a trapped, two-component rubidium-87 Bose–Einstein condensate; they mapped the phase of

the condensate in order to confirm that the vortices possessed angular momentum. Anderson

et al. [99] were the first to observe the precessional behavior of vortex lines in a trapped

rubidium-87 Bose–Einstein condensate about the condensate axis. They prepared the system

from a two-component condensate with two quantum states, one forming the vortex, and

the other filling the core, which was steadily removed using resonant light pressure until the

vortex had minimal thickness. The filling material was allowed to expand until the vortex

could be imaged, and a successive time series of images of the atoms in the non-core state was

taken. Anderson et al. captured a beautiful series of images demonstrating vortex precession
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Figure 4: Times series of images demonstrating vortex precession in a trapped rubidium-87 Bose–
Einstein condensate; taken from Anderson et al. [99].

(see Fig. 4). The precession frequency was observed to vary slightly with core radius, with

larger-core vortices precessing at a somewhat lower rate.

While the experiment of Anderson et al. seemed to confirm the observation of vortex line

precession, the two-dimensional, cross-sectional view of the images left open the possibility

of alternate interpretations of the observed motion of the defects, which were not necessarily

linear in the third dimension. Ku et al. [100] performed another experiment in which a

solitonic vortex was formed in a strongly interacting superfluid Fermi gas of lithium-6 atoms

near a Feshbach resonance using phase imprinting. The motion of vortices was then observed

over a range of chemical potentials including the BEC–BCS crossover regime. In the limit of

tight molecular binding, the atomic gas can be understood as a Bose–Einstein condensate,

as most atoms participate in pairing, while in the BCS regime, the long-range Cooper pairs

overlap and fewer atoms near the Fermi surface are paired [101]. Tomographic imaging

revealed that the defect was in fact a solitonic vortex line and its precessional motion was

observed over time. An illustrative figure from Ku et al. clearly demonstrating the linear

nature of the solitary wave is shown in Fig. 5. Careful analysis of the position of the vortex

core in the transverse plane demonstrated that the vortex lines followed roughly elliptical

orbits about the center of the atomic cloud, with dimensions determined by the shape of the

trapping potential.

Ku et al. found that the period of precession as a function of normalized chemical

potential agreed fairly well with predictions from Gross–Pitaevskii theory for a molecular

Bose–Einstein condensate [93, 96]. The precision of the measurement, however, was not

sufficient to resolve the tensions between previous theoretical predictions—see Eqs. (121)

60



Figure 5: Vortex precession in a fermionic superfluid observed via tomographic imaging in horizontal
slices of a cigar-shaped cloud of Li-6 atoms; taken from Ku et al. [100].

to (123).

The purpose of this theoretical study, part of which has been published in Esposito et

al. [1], is to take an approach orthogonal to those of Jackson et al. [94], Svidzinsky and

Fetter [95], Lundh and Ao [96], Fetter and Kim [93], McGee and Holland [97], and others

who have studied this problem using the formalism of the Gross–Pitaevskii equation in the

Thomas–Fermi limit. Instead, we will examine the effective field theory of vortex lines in

trapped superfluids and derive the precessional motion of vortices in a more universal manner,

with minimal assumptions about the microscopic physics of the superfluid, the precise form
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of the energy functional, or the shape of the trapping potential. We will see that our result

is consistent with the theoretical calculations based on Gross–Pitaevskii theory, as well as

the data presented by Ku et al. [100]. In addition to deriving the result more efficiently and

from more general considerations and resolving the tension between previous calculations,

we will see that our treatment of trapping in this formalism has immediate implications for

the phenomenon of Kelvin wave propagation along vortex lines, which is affected by the

trapping potential. Overall, our analysis will demonstrate the power of the effective field

theory methodology to treat very concrete phenomenological problems in condensed matter

physics. Our approach relies on an action built from general symmetry considerations and a

low-energy derivative expansion, taking advantage of the weak coupling of low-energy/long-

distance superfluid degrees of freedom. An additional benefit of our framework is that

the analysis can be performed in fully relativistic language—it is, in fact, easier to perform

relativistically—and as a result, relativistic corrections in powers of 1/c are easily obtainable.

While they might not be relevant to regular cold Bose gas experiments, they may prove to

be of theoretical relevance to the study of superfluid vortices in more exotic relativistic or

astrophysical settings.
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3.2 The Trapping of Superfluid Condensates

Numerous experimental techniques have been developed to trap and manipulate ul-

tracold dilute atomic gases and realize Bose–Einstein condensation, facilitated by advances

in laser technology. The general approach involves slowing a beam of alkali atoms using

a Zeeman slower, to the point that they can be confined using some combination of opti-

cal and magnetic atomic trapping techniques, after which evaporative cooling removes the

most energetic atoms, leaving behind a condensate with a macroscopically occupied ground

state [83]. The first experimental realization of Bose–Einstein condensation was achieved by

Anderson et al. [102] using a dilute vapor of rubidium-87 atoms in a time orbiting potential

(TOP) trap. The trapping configuration in their experiment consisted of a large spherical

quadrupole field with a superimposed uniform transverse magnetic field, rotating at a high

frequency in the 7.5 kHz range, resulting in an effectively harmonic trapping potential. The

cold rubidium atoms were optically trapped, cooled, and loaded into the trap, after which

a modulating radiofrequency magnetic field was used to force higher-energy atoms into an

untrapped spin state. Numerous refinements have since been made in trapping and cooling

techniques to observe Bose–Einstein condensates and their behavior—see [103] for a histor-

ical overview. What matters for us are not the details of the experimental techniques, but

the geometry of the possible traps that can be formed and the symmetry breaking properties

of the trapping techniques. Typical traps are harmonic and oblate, although steeper effec-

tive trapping potentials can also be formed [83]. The Ioffe cylindrical trapping configuration

usually produces a roughly symmetric harmonic radial potential and a tightly confining trap-

ping potential in the transverse direction, resulting in a cigar-shaped cloud. Both optical

and magnetic trapping techniques can be used, which have slightly different implications for

the symmetries of the system from the field theoretic point of view, affecting which possible

bulk mode–trapping potential interactions we must consider in our field theoretic formalism.

For the purposes of this calculation, we will begin by assuming that the trapping occurs

in two dimensions, x and y, while the trapping in the z direction is sufficiently weak to
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be neglected over the distance scales that we are considering. The shape of the trap we

are interested in is elliptical and roughly planar. We make this assumption in order to work

with straight-line vortices, which are more conducive to simple analytic calculations. We will

see that this simplifying assumption is mild enough to allow us to observe the precessional

dynamics we are interested in studying; we will modify this assumption later and assess the

implications of adding weak trapping along the third dimension.

Let us now recall the effective field theory of superfluids in the dual two-form language

(see Section 2.1.2) and incorporate an external trapping potential into the formalism. The

full effective action for superfluid excitations and vortices is given by Eq. (108). To this we

add a trapping term that couples the invariant operator
√
Y (the density) to the superfluid

velocity field u and the Eulerian (spatial) position coordinate x in the most general manner

consistent with the symmetries of the system. In terms of the superfluid excitations, A

(hydrophoton field) and B (phonon field), the density
√
Y and velocity u are given by

Y = n̄2

[

(1−∇ ·B)− 1

c2

(

Ḃ−∇×A
)2
]

, (124)

u =
1

1−∇ ·B

(

Ḃ−∇×A
)

. (125)

The additional trapping term to be added to the action is simply the space-time integral

of a generic (sufficiently smooth) energy density functional E with the appropriate arguments

to lowest order in the derivative expansion:

Str = −
∫

dt d3x E
(√

Y ,u,x
)

. (126)

This action can now be expanded perturbatively in small fluctuations of the density and

the velocity field. Let us define the following partial derivatives of the energy functional E ,
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which we will use in the expansion of the trapping term in the action:

V (x) ≡ ∂E
∂
√
Y
, ρij (x) ≡

∂2E
∂ui∂uj

, (127)

where both partial derivatives are evaluated on the background—i.e.
√
Y = n̄ and u = 0.

Notice that E has dimensions of energy density and
√
Y has dimensions of number density,

so the function V has dimensions of energy; we will see that it will have the interpretation

of the external trapping potential. The tensor ρij has dimensions of mass density, since

ui has dimensions of velocity. We will not be concerned with odd-power derivatives of the

functional E with respect to the velocity, since we will assume that the trapping mechanism

does not break time reversal symmetry, thus allowing us to set terms in the expansion with

an odd power of the velocity to zero. Notice that this assumption does not hold in the case

of magnetic trapping of charged ions, for example, in which case the term in the expansion

of E that is first-order in the velocity will become relevant. Assuming this assumption holds,

however, we find several new interaction terms in the action due to the trapping action. To

lowest order in superfluid excitations and derivatives, these interaction terms due to trapping

are given by:

Str →
∫

dt d3x

{

n̄V (x)

[

∇ ·B+
1

2c2

(

Ḃ−∇×A
)2
]

− 1

2
ρij (x)

(

Ḃ−∇×A
)i (

Ḃ−∇×A
)j

}

.

(128)

This truncation of the expanded trapping functional is sufficient to compute lowest-order

results in perturbation theory for vortex precession.

To make contact with the usual Gross–Pitaevskii approach to the phenomenon of

trapped vortex precession, in which an explicit external trapping potential Vtr (x) is in-

troduced, notice that the standard approach involves only coupling between the trapping

potential and the density. Coupling to the velocity field is generally not considered. In

our framework, this would amount to considering the particular energy density functional
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E
(√

Y ,u,x
)

= Vtr (x)
√
Y , which is less general than our starting point. Nonetheless, notice

that the two approaches do coincide to lowest order in perturbation theory if we neglect the

velocity dependence of the energy density functional E , since the second line of Eq. (128)

would be absent.

Now, note that to leading order in V and ρij, which we assume to be small for now, the

terms in Eq. (128) provide a simple linear external source for the phonon field B. There is

no similar linear source for the hydrophoton field A. The source term is given by

JB(x) = −n̄∇V (x) . (129)

From standard Green’s function theory, we know that the vacuum expectation value for the

B field in the presence of an external source JB is found from

〈

Bi (x)
〉

= i

∫

d3k dω

(2π)4
Gij

B(k)J
j
B(k)e

ik·x , (130)

where Gij
B(k) is the momentum-space phonon propagator we saw in Eq. (53) and J i

B(k) is

the momentum-space source term—in our case, the four-dimensional Fourier transform of

Eq. (129). Substituting into Eq. (130), we find that the expectation value of the divergence

of the B field is directly proportional to the trapping energy V :

〈∇ ·B (x)〉 = n̄c2

w̄c2s
V (x) . (131)

The divergence of the phonon field acquires an expectation value proportional to the strength

of the trapping potential at every position in the cloud. Since there are no linear sources

for the field A, we find that the equilibrium value of the density in the presence of trapping

must be

n(x) =
√
Y = n̄

[

1− n̄c2

w̄c2s
V (x)

]

, (132)
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as long as the external trapping potential is weak, or inside the bulk of the atomic cloud,

where gradients of the trapping potential are small. In the non-relativistic limit, the back-

ground enthalpy density w̄ is approximately equal to mn̄c2, so the density becomes

n(x) → n̄

[

1− 1

mc2s
V (x)

]

(133)

when cs ≪ c. Note that at this order in perturbation theory, the geometry of the density

field matches that of the external trapping potential, in the sense that they have identi-

cal constant-value contour surfaces. This is because the divergence term entering into the

leading-order expansion of the density
√
Y and the gradient operator in the source term JB

effectively compensate for the non-local nature of the phonon propagator Gij
B, thus turning

the trapping interaction into a simple contact term.

It is illuminating to compare the result in Eq. (133) to the density in the presence

of trapping calculated from Gross–Pitaevskii theory in the Thomas–Fermi approximation.

Consider Eq. (119) in the limit of negligible kinetic energy:

[V (x)− µ]ψ (x) + g |ψ (x)|2 ψ (x) = 0 . (134)

Recalling that |ψ (x)|2 = n (x), this has the immediate solution

n (x) =
µ

g

[

1− 1

µ
V (x)

]

, (135)

as long as the order parameter is non-zero, and it is equal to zero at the boundary of

the cloud, which is determined by V (x) = µ. Eq. (135) expression matches the result in

Eq. (133) exactly. To lowest order in perturbation theory and in the non-relativistic limit,

the correspondence between our notation and the parameters of Gross–Pitaevskii theory is
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given by

n̄ = µ/g , c2s = µ/m . (136)

The equations for the density Eqs. (132) and (133) are only valid in regions where the

strength of the trapping potential is weak and V can be treated in a perturbative manner.

This will not be a valid assumption everywhere in the atomic cloud, certainly not near

the edge. However, since the position in the cloud that we are considering is arbitrary,

we can treat the expansion procedure as an expansion in small variations of the trapping

potential, or small gradients of V , rather than an expansion in V itself. We can therefore

rewrite Eqs. (132) and (133) as non-linear differential equations valid to all orders in V and

corresponding to a formal resummation of tree-level diagrams of the form shown in Fig. 6.

In the non-relativistic case, Eq. (133) can be rewritten in the differential form

c2s(n)
dn

n
= −dV

m
. (137)

This equation can be integrated to obtain the relation between the density n (x) and the

trapping potential V (x) valid to all orders, provided that one assumes a definite equation of

state of the superfluid, c2s(n). For example, in Gross–Pitaevskii theory we have c2s ∝ n, so we

recover the linearized solution Eq. (133). In the case of a more general power-law equation

of state of the form c2s(n) ∝ nγ, we will have n(x) ∝ [1− V (x) /µ]1/γ if V = µ at the edge

of the atomic cloud, which still exhibits the same level surfaces as the trapping potential.

If we consider a truncated virial-type equation of state, say c2s(n) = Bn + Cn2, then the

relationship has the form n(x) ∝
√

1 + 2Cµ
B2m

[1− V (x) /µ]− 1. More complicated equations

of state can lead to rather large non-linear, but still local, corrections to the relationship

between the density and the trapping potential in the bulk of the cloud.

Our setup is general enough to accommodate any trapping potential that is smooth and

has small gradients in the interior of the atomic cloud, regardless of the precise geometry
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Figure 6: Resummation of non-linear corrections to Eqs. (132) and (133) from tree-level diagrams.
In these diagrams, wavy blue lines represent phonon propagators and crossed circles represent the
trapping potential V (x), which sources the phonon field. Blue dots at vertices represent phonon
self-interactions and blue squares represent the density n (x).

of the trapping potential, and we need not assume anything a priori about the equation of

state. Typical trapping potentials are harmonic (i.e. quadratic in radial distance from the

center of the trap), although it is certainly possible to have trapping configurations that are

flatter near the center. For the time being, we will keep V (x) arbitrary until the end of the

calculation, when we will consider specific types of trapping. For convenience, let us restate

the relevant parts of the action for superfluid excitations and vortices, now including the

effects of trapping:

S =
w̄

c2

∫

dt d3x

{

1

2
(∇×A)2 +

1

2

[

Ḃ2 − c2s (∇ ·B)2
]

− ḡc2s
6

(∇ ·B)3

+
1

2

(

1− c2s
c2

)

∇ ·B
(

Ḃ−∇×A
)2

+ n̄V (x)

[

∇ ·B+
1

2c2

(

Ḃ−∇×A
)2
]

− 1

2
ρij (x)

(

Ḃ−∇×A
)i (

Ḃ−∇×A
)j

}

+

∫

dt dσ

{

− 1

3
n̄λǫijkX

k∂tX
i∂σX

j − T(00) |∂σX|+ n̄λAi∂σX
i

+ n̄λǫijkB
k∂tX

i∂σX
j + |∂σX|

[

2T(01)∇ ·B+ 2T(10)

(

Ḃ−∇×A
)

· v⊥

c

]

}

.

(138)

We will use this action for reference in subsequent sections of the calculation, when we

consider vortex precession in two dimensions. As mentioned previously, this action would

have to be slightly modified if the trap breaks time reversal symmetry, or if direct coupling

to the superfluid velocity field becomes important.
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3.3 Precession in Two Dimensions

3.3.1 Effective Potential for Vortex Lines

We will now study the precessional motion of a single vortex line in a superfluid with

strong two-dimensional trapping. For simplicity, we will consider the cylindrical case only,

in which trapping occurs along the (x, y) ≡ x⊥ directions. We will assume that trapping in

the z direction is sufficiently weak to treat the vortices as essentially straight lines perpen-

dicular to the xy-plane, with little or no variation along the z-direction. This is a purely

simplifying assumption that could be relaxed, but it is sufficient for the purposes of this

calculation. We choose to write the parametrization of the vortex line’s coordinates as

X(t, z) = (X(t), Y (t), z), and we will assume that the distance of the vortex from the center

of the cloud,
√

X(t)2 + Y (t)2, remains small compared to the typical transverse size of the

cloud, R⊥, throughout its motion. Near the center of the cloud, the trapping potential is

assumed to be sufficiently flat that higher-order gradients of the potential can be neglected.

Moreover, we will begin by working in the non-relativistic limit, which is relevant for most

experimental settings. Later, we will explain how to extend the analysis for the computa-

tion of relativistic corrections using our formalism. We will assume that the third line in

Eq. (138), which includes ρij (x), can be treated as a relativistic correction, meaning that it is

secretly suppressed by powers of c, since it characterizes the direct coupling of the superfluid

velocity to the trapping potential. Such interactions typically may arise from Doppler-like

mechanisms [104], which would be suppressed by inverse powers of c, as we assumed. In

other words, we are assuming that

ρij (x) =
1

c2
n̄Vij (x) , Vij ∼ V . (139)

Note again that this assumption must be lifted in the case of magnetic trapping mechanisms,

which would also entail that the third line of Eq. (138) must be replaced by a linear coupling

between the trap and the velocity field u. Taking the non-relativistic limit of the action in
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Figure 7: Feynman diagrams representing the leading-order contributions to the non-relativistic
interactions between the world-sheet of a vortex line (flat plane) and the trapping potential (crossed
circle). The interactions are mediated by both phonons (blue wavy line) and hydrophotons (red
dashed line).

Eq. (138), we find that only the cubic interaction term 1
2
∇ · B (∇×A)2 survives, as well

as source terms for the A and B fields arising from the trapping potential and the motion

of the vortex, which are given by

JA(x) = n̄λ δ2 (x⊥ −X(t)) ẑ , (140)

JB(x) =
[(

n̄λǫabẊ
b − 2T(01)∂a

)

δ2 (x⊥ −X(t))− n̄∂aV (x⊥)
]

x̂a
⊥ , (141)

where we are now allowing the indices a, b to run over the tranverse directions x, y only, with

summation over repeated indices implied.

In order to study the motion of the vortices without accounting in detail for the low-

energy excitations of the superfluid, the effective field theory methodology dictates that we

must integrate out the modes A and B from the action in Eq. (138), leaving only an effective

action for x, the coordinates of the vortex line. Following the methods of Horn et al. [49],

we proceed by replacing the fields A and B with the solutions to their classical equations of
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motion, resulting in contributions to the effective action for X from each of the form

S
(A)
eff [X] =

i

2

∫

d3k dω

(2π)4
J i
A(−k)Gij

A(k)J
j
A(k) , (142)

S
(B)
eff [X] =

i

2

∫

d3k dω

(2π)4
J i
B(−k)Gij

B(k)J
j
B(k) . (143)

Both contributions will include terms coupling the vortex position to the trapping potential,

arising from diagrams of the type shown in Fig. 7. We will neglect the term with the time

derivative in the source for the phonon field, Eq. (143), since there is already a single-

time-derivative kinetic term for the vortex line in the fourth line of Eq. (138), and any

additional corrections of order O(V ) can be neglected as a first approximation. Notice,

however, that there are no terms in the free string action—the first two terms of the fourth

line of Eq. (143)—that break translation invariance, so there are no position-dependent

terms in the potential for the vortex arising from the free action. Any O(V ) non-derivative

terms with position dependence that we find will, in fact, be the leading source of “forces”

experienced by the vortex line.

Now, let us drop the irrelevant parts of the source terms in Eqs. (140) and (141) and

Fourier transform them to momentum space:

JA(k) = (2π)n̄λδ (kz) ẑ

∫

dt eiωt−ik⊥·X(t) , (144)

JB(k) = −2πiδ (kz)k⊥

[

2T(01)

∫

dt eiωt−ik⊥·X(t) + 2πn̄δ(ω)V (k⊥)

]

, (145)

where k⊥ ≡ (kx, ky) and V (k⊥) =
∫

d2x⊥e
−ik⊥·x⊥V (x⊥). Substituting Eq. (145) and the

expression for the phonon propagator in Eq. (53) into the effective action Eq. (143), we find

that the effective action includes the following contribution in the low momentum limit:

S
(B)
eff [x] ⊃ 2n̄c2T(01)

w̄c2s

∫

dt dz V (X)

≃ 2T(01)
mc2s

∫

dt dz V (X) .

(146)
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In the second equality, we used the fact that w̄ ≃ n̄mc2 in a non-relativistic superfluid, as

noted previously. Once again, we see that the derivatives associated with the interaction

between the trapping potential and the phonon field and the interaction between the vortex

world-sheet and the phonon field precisely counteract the non-locality of the propagator,

leaving a purely local interaction between the trap and the vortex line. We would not

generally expect this to happen, since integrating out gapless modes typically leads to long-

range interactions in the resulting effective theory. The contribution that we calculated in

Eq. (146) corresponds to a simple Feynman diagram of the type displayed on the left side of

Fig. 7.

An additional contribution arises when accounting for the effects of cubic interaction

(∇ ·B) (∇×A)2 in the second line of Eq. (138). In the presence of a trapping poten-

tial, that interaction can be thought of as a modification to the hydrophoton propagator,

as shown in the diagram on the right side of Fig. 7. The zz component of the propaga-

tor gets a contribution of the form δG33
A (k) ∝

∫

d4x d4p d4q e−i(p+q)xV (x⊥)
q⊥·p⊥

(k−p)2(k+q)2
from

such an interaction. The resulting contribution to the vortex line effective action is found

from Eq. (142) and the expression for the hydrophoton source term, Eq. (144). After some

calculation, we find that

S
(A)
eff [x] ⊃ n̄3λ2c4

8π2w̄2c2s

(

1− c2s
c2

)∫

dt dz d2x⊥
V (x⊥ +X(t))

x2⊥
. (147)

Finally, omitting terms that do not depend on the position of the vortex line, we are

ready to write the full non-relativistic vortex line effective action to leading order in pertur-

bation theory. From the action in Eq. (138) and the contributions calculated in Eqs. (146)

and (147), and once again using the fact that w̄ ≃ n̄mc2 in the non-relativistic limit, the
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result is

S
(NR)
eff [X] =

∫

dt dz

[

n̄λ

3
ǫabX

aẊb +
2T(01)
mc2s

V (X)

+
n̄λ2

8π2m2c2s

∫

d2x⊥
V (x⊥ +X)

x2⊥

]

.

(148)

The second line of Eq. (148) involves a non-local term, in the sense that it depends on

positions in the atomic cloud far from the position of the vortex line itself. It thus represents

a long-range interaction between the vortex line and the trapping potential. Nonetheless, the

problem of determining the motion of the vortex has been reduced to one of point-particle

mechanics in two dimensions, given the action in Eq. (148), and the equations of motions

can be obtained directly through standard variational analysis.

Let us now vary the effective vortex line action with respect to vortex position Xa. The

resulting equations of motion can be written as

2n̄λ

3
ǫabẊ

b − ∂aVeff (X) = 0 , (149)

where we have defined an effective potential

Veff (X) ≡ −2T(01)
mc2s

V (X)− n̄λ2

8π2m2c2s

∫

d2x⊥
V (x⊥ +X)

x2⊥
. (150)

The meaning of this expression becomes more clear when we restrict to vortex line positions

near the center of the atomic cloud—i.e. small values of (X, Y ). We can expand V (X) and

V (x⊥ +X) in Eq. (150) to quadratic order in Xa, in which case we find

Veff (X) ≃ −1

2
XaXb

[

2T(01)
mc2s

∂a∂bV (x = 0) +
n̄λ2

8π2m2c2s

∫

d2x⊥
∂a∂bV (x⊥)

x2⊥

]

. (151)

We assume here that linear terms do not contribute. We may take the vanishing of linear

terms in the effective potential to define what we mean precisely by the “center” of the
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atomic cloud. We must now consider two qualitatively different possibilities to determine

the motion of the vortex line: (a.) when ∂a∂bV (x = 0) 6= 0 (harmonic trapping) and (b.)

when ∂a∂bV (x = 0) = 0 (non-harmonic trapping).
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3.3.2 Harmonic Trapping

Consider the case of approximately harmonic trapping, when V (x⊥) is quadratic near

the center of the atomic cloud, so that ∂a∂bV (x = 0) is non-vanishing. In this case, the

first term in the effective potential for vortex lines, Eq. (151), is non-zero. Also, the integral

in the second term of the effective potential has a logarithmic divergence arising from the

position x⊥ = 0. Taking a to be an arbitrary ultraviolet cutoff length scale, we find that the

value of the divergent integral can be written as

∫

d2x⊥
∂a∂bV (x⊥)

x2⊥
= −2π∂a∂bV (x = 0) log a+ · · · , (152)

where the dots represent additional terms that are finite in the limit a→ 0. This statement

is not physically meaningful, however, since a is a quantity with dimensions of length. As is

typically the case when dealing with ultraviolet logarithmic divergences, the UV length scale

must appear in a ratio with a corresponding infrared cutoff length scale. In our case, the

only such length scale in the problem is R⊥, the typical tranverse size of the atomic cloud.

Beyond this large length scale, our perturbative analysis certainly becomes pathological, so

it would not be reasonable to extrapolate integrals such as the one above to radial positions

larger than R⊥. Therefore, we find that the integral can be written as

∫

d2x⊥
∂a∂bV (x⊥)

x2⊥
= 2π∂a∂bV (x = 0) log

R⊥

a
, (153)

and the second term in Eq. (151) can thus be considered a renormalization of the first term.

According to the standard logic of renormalization group theory, we can take the cou-

pling constant T(01) to run with momentum scale q and reparametrize the effective potential

in terms of the running coupling evaluated at some typical momentum q of order 1/R⊥. By
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this logic, we rewrite Eq. (151) as

Veff (X) ≃ − 1

mc2s
T(01) (1/R⊥) ∂a∂bV (x = 0)XaXb , (154)

where we now have

T(01)(q) = − n̄λ2

8πm
log(qℓ) . (155)

The quantity ℓ is understood to be a microscopic physical length scale. We would expect

its value to be of the order of the healing length in the case of a Bose condensate, but the

precise value is left to be fixed from experiment, according to the standard renormalization

group reasoning. It is interesting to note that the running of the tension that must be

introduced to renormalize the first term in our effective potential is identical to the running

found using other methods by Horn et al. [49] in the non-relativistic limit (see Eq. (6.23) in

the reference).

We will expand the potential near the center of the atomic cloud as a harmonic function

of position, similar to the potential considered in Eq. (120), up to quadratic order:

V (x⊥) =
1

2
m

(

ω2
xx

2 + ω2
yy

2
)

+O
(

x4⊥
)

. (156)

In this approximation, the equations of motion, Eq. (149), become

Ẋ(t)− ωy

ωx

ωpY (t) = 0 , Ẏ (t) +
ωx

ωy

ωpX(t) = 0 , (157)

where we defined

ωp ≡
3Γ

8πc2s
ωxωy log

R⊥

ℓ
. (158)

Here, we used the fact that the circulation Γ is approximately equal to λ/m in the non-
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relativistic limit. The solutions to these equations of motion are simple elliptical orbits with

angular frequency ωp:

X(t) = X0 cos(ωpt) +
ωy

ωx

Y0 sin(ωpt) ,

Y (t) = Y0 cos(ωpt)−
ωx

ωy

X0 sin(ωpt) .

(159)

The orbits have the same aspect ratio and orientation as the harmonic trapping potential.

Since the quantum of circulation is also equal to 2πh̄/m, our result for a singly quantized

vortex is formally equivalent to that of Svidzinsky and Fetter [95] (see Eq. (122)), up to

ambiguity in the definition of the large logarithmic factor. We emphasize that we never

relied on any sort of Hartree or mean field approximation, unlike the analysis of vortex

precession in the formalism Gross–Pitaevskii theory.

We must be careful about the somewhat ambiguous meaning of the large logarithmic

factor in Eq. (158), however, since it includes an undetermined short length scale, which is

to be fixed by experiment. The result can be made more predictive, though, by considering

the combination of frequencies

χ ≡ ωp

ωxωy

. (160)

We can eliminate the free parameter ℓ by considering differences between this quantity χ in

setups with different trapping potentials, and therefore different cloud sizes R⊥. We would

expect the difference between values of χ for different trapping potentials to be equal to

χ1 − χ2 =
3Γ

8πc2s
log

R⊥,1

R⊥,2

. (161)

Notice that this result is, in fact, completely predictive and all free parameters have been

eliminated. This equation can be used to make direct contact with experimental measure-

ments without any ambiguity.
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3.3.3 Flatter Trapping Potentials

Let us now return to the second possibility for the trapping potential, that of non-

harmonic trapping. In this case, we have the vanishing of second derivatives of the trapping

potential near the center, so that ∂a∂bV (x = 0) = 0. Then the first term in the effective

potential for vortex lines, Eq. (151), is equal to zero. The second term involving the integral

is now completely convergent, and is therefore easier to treat than in the case of harmonic

trapping. Let us parametrize the trapping potential in a more general manner:

V (x⊥) = mc2sf (x⊥/R⊥) , (162)

where f is a generic dimensionless function with vanishing second derivatives near the origin

and order-one coefficients. We choose the overall pre-factor mc2s to match the factor found

in Eq. (133). In this case, the integral in Eq. (151) becomes

∫

d2x⊥
∂a∂bV (x⊥)

x2⊥
=
mc2s
R2

⊥
fab , (163)

where the tensor fab is constant and symmetric with generically order-one entries. We may

choose to align our x and y axes with the eigenvectors of the tensor fab, in which case we

find that the equations of motion in Eq. (149) become

Ẋ(t)−
√

fyy
fxx

ωpY (t) = 0 , Ẏ (t) +

√

fxx
fyy

ωpX(t) = 0 . (164)

The solutions are once again elliptical trajectories of the form

X(t) = X0 cos(ωpt) +

√

fyy
fxx

Y0 sin(ωpt) ,

Y (t) = Y0 cos(ωpt)−
√

fxx
fyy

sin(ωpt) .

(165)
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The aspect ratio of the elliptical orbits is now equal to
√

fyy/fxx and the angular frequency

is given by

ωp =
3Γ

16π2R2
⊥

√

fxxfyy . (166)

The logarithmic correction does not survive, as in the case of harmonic trapping. Our

results indicate that if ωx ∼ ωy ∼ ω, the precession frequency scales as Γω2

c2s
logω when the

trapping is harmonic, since R⊥ ∼ cs/ω, but when the trapping is anharmonic, the precession

frequency scales only as Γω2/c2s, because the tensor fab has order-one numerical entries in

general. This is consistent with the theoretical results found by Kevrekidis et al. [105] from

standard Gross–Pitaevskii theory in the case of a non-parabolic external potential. Their

analysis of general trapping potentials of the form V (r) ∝ rp when p > 2 indicates that the

precession frequency exhibits the same ωp ∝ 1/R2
⊥ scaling without any logarithmic factors

of the sort seen in harmonic trapping, when p = 2, and they corroborated this observation

with numerical analysis.

It is important to note that the precise value of the precession frequency in Eq. (166)

depends on both the specific functional form of f (x⊥) that defines the shape of the trapping

potential and on how we decide to cut off the integral in Eq. (163), which determines the

entries in the tensor fab. For a radially symmetric cloud, we would certainly expect the

tensor fab to be proportional to δab, but in more general scenarios the implementation of the

cutoff can lead to different tensor structures. Since our perturbative analysis becomes invalid

when gradients of the trapping potential become large near the edge of the atomic cloud, we

cannot definitively say which cutoff procedure for computing the integral in Eq. (163) would

be the most physical in all situations. At the moment, we leave the tensor fab undetermined

for general, non-radially symmetric, non-harmonic trapping potentials. We hope to return

to this detail in the future, perhaps appealing to the type of renormalization group ideas

that led to Eq. (137) in order to determine a precise physical scheme for implementing a
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cutoff and making the integral in Eq. (163) finite in the infrared.
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3.3.4 Addendum: Note on Relativistic Corrections

It is not difficult to calculate further relativistic corrections to the above result by

reinstating relevant terms that we neglected from the full action in Eq. (138). Of these, the

leading-order contribution (assuming the motion of the vortex is still slow) will come from

the interaction

S ⊃ n̄

2c2

∫

dt d3xUij (x⊥) (∇×A)i (∇×A)j , (167)

where we defined the combination

Uij (x⊥) ≡ V (x⊥) δij − Vij (x⊥) . (168)

This has the effect of modifying the original source term for A, Eq. (144), leading to a

hydrophoton-mediated interaction between the vortex world-sheet and the trapping potential

of the form shown in Fig. 8 below.

Figure 8: Feynman diagram representing the leading-order relativistic interaction between the trap-
ping potential and the vortex line. The crossed circle represents the trapping potential, now given
by the modified expression Eq. (168). The red dashed lines are hydrophoton propagators.

This additional interaction term modifies our expression for the vortex line effective

action, Eq. (148). When we account for relativistic corrections and integrate out the bulk
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modes, we are left with the following effective action for vortex lines:

S
(R)
eff ⊃ − n̄

3λ2c2

2w̄2

∫

dt d3x ǫabǫcdUac (x⊥ +X)

∫

d2p⊥d
2q⊥

(2pi)4
e−i(p⊥+q⊥)·x⊥

pb⊥q
d
⊥

p2⊥q
2
⊥

=
n̄3λ2c2

8π2w̄2

∫

dt dz

∫

d2x⊥ ǫ
abǫcdUac (x⊥ +X)

xb⊥x
d
⊥

x4⊥
.

(169)

Now, including the phonon-mediated interaction of the vortex line with the trapping poten-

tial, as well as the contribution arising from the Kalb–Ramond vortex line action, we find

that the full relativistic effective action for vortex lines is given by

S
(R)
eff [X] =

∫

dt dz

[

n̄λ

3
ǫabX

aẊb +
2T(01)n̄c

2

w̄c2s
V (X) +

n̄3λ2c4

8π2w̄c2s

∫

d2x⊥
V (x⊥ +X)

x2⊥

− n̄3λ2c2

8π2w̄2

∫

d2x⊥ ǫ
abǫcdVac (x⊥ +X)

xb⊥x
d
⊥

x4⊥

]

.

(170)

In principle, given any trapping configuration, equations of motion for vortex lines with

relativistic corrections can be calculated by varying this effective action with respect to X.

Notice that when there is no coupling between the trapping potential and the bulk velocity

of the superfluid—that is, when Vab = 0—the relativistic and non-relativistic results are

completely equivalent. This is because the leading-order relativistic correction we calculated

in Eq. (147) exactly cancels the new piece from the diagram in Fig. 8.
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3.4 An Aside on Kelvin Waves

In Section 2.5, we briefly encountered the phenomenon of Kelvin waves, excitations of vortex

lines in superfluids that take the form of helical traveling waves and have a distinctive

dispersion relation in the long wavelength limit characterized by

∂ (ω/k2)

∂ (log k)
= − Γ

4π
, (171)

where Γ is the quantized circulation around the vortex line [92]. See, for example, [49, 63]

for more detail on the treatment of Kelvin waves in effective field theory. The question

of what happens to the Kelvin wave dispersion relation in the case of trapped, rotating

Bose–Einstein condensates has been studied theoretically and numerically using the Gross–

Pitaevskii equation and Bogolyubov–de Gennes mean field theory, with most methods relying

on matched asymptotic expansions [106–108]. It has not been treated before using effective

field theory, to the best of our knowledge. We will briefly consider this question here, since

all the necessary ingredients are already in place.

All that we must do to study the propagation of Kelvin waves in the presence of trapping

is add the effective vortex potential in Eq. (150) to the kinetic terms for vortex lines in the

original vortex effective action. Using the approximate expression Eq. (151), valid near the

center of the cloud, we find

Seff[X] =

∫

dt dz

[

−T(00) |∂zX| − n̄λ

3
ǫijkX

k∂tX
i∂zX

j +
1

2
MabX

aXb

]

, (172)

where we defined the symmetric matrix

Mab ≡











2T(01)

mc2s
∂a∂bV (x = 0) (harmonic trapping)

n̄λ2

8π2m2c2s

∫

d2x⊥
∂a∂bV (x⊥)

x2
⊥

(non-harmonic trapping)
. (173)

To lowest order near the center of the cloud, the trapping potential produces an extra
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quadratic term in the effective action, which takes the form above in the case of trapping

that is predominantly along two dimensions.

For reference, let us first note the expressions for the renormalized tensions T(00) and

T(01), including the running with momentum scale k, which are derived in [49]:

T(00)(k) = − n̄λ2

4πm
log (kℓ) , (174)

T(01)(k) = − n̄λ2

8πm

(

1− c2s
c2

)

log (kℓ) , (175)

where ℓ is again a UV cutoff length scale, expected to be of the order of the healing length

in the condensate. In the simplest case, we can consider a straight-line vortex located right

in the center of the atomic cloud, X = (0, 0, z) and introduce a tranverse perturbing kelvon

field φ(t, z) = (φx, φy, 0). Following the same procedure as in Section 2.5, our effective action

for vortex line excitations becomes

Seff →
∫

dt dz

[

−T(00)
√

1 + (∂zφ)
2 − n̄λ

2
ǫabφ

aφ̇b +
1

2
Mabφ

aφb

]

. (176)

Expanding the action to quadratic order, this leads to equations of motion that are a straight-

forward generalization of Eq. (114). Looking for plane wave solutions φ = φ0e
i(kz−ωt) is

tantamount to solving the eigenvalue problem







−iMxy T(00)k
2 −Myy

T(00)k
2 −Mxx iMxy













φx
0

iφy
0






= n̄λω







φx
0

iφy
0






, (177)

which in general has eigenfrequencies

ω2 =
1

n̄2λ2
[

T 2
(00)k

4 − (Mxx +Myy)T(00)k
2 +MxxMyy −M2

xy

]

. (178)

When this quantity is real, we will again have two circularly polarized helical traveling

waves propagating along the vortex line, but the dispersion relation will in general be rather
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different from the usual one in Eq. (171).

Let us first consider the case of harmonic trapping, with a trapping potential of the

form V (x) = 1
2
m

(

ω2
xx

2 + ω2
yy

2
)

. When the momentum k is much greater than the inverse

transverse length scale of the cloud, R−1
⊥ , the appropriate IR momentum scale at which to

evaluate the tension T(01) is k, since we can safely assume that the long-wavelength kelvon

modes do not probe regions of the atomic cloud beyond k−1; otherwise, the IR cutoff scale is

again R−1
⊥ . So putting everything together now, from Eqs. (173) to (175) and (178) and the

relation mΓ ≃ λ, we find the following modified dispersion relation in the non-relativistic

limit:

ω(k) ≃ ± Γ

4π

√

(

k2 − ω2
x

c2s

)(

k2 −
ω2
y

c2s

)











log(kℓ) , k ≫ R−1
⊥

log (R⊥/ℓ) , otherwise
. (179)

Of course, the standard result is recovered when ωx = ωy = 0 (in which case we also have

R−1
⊥ → 0). Notice, however, that the low-momentum region of this dispersion relation has

completely qualitatively different behavior when weak harmonic trapping occurs and R−1
⊥ is

very small, since ω ∼ Γωxωy

c2s
log(kℓ) for low momenta. In such a scenario, it takes arbitrarily

high energy to sustain a kelvon mode with arbitrarily low momentum k. There is also an

instability at momenta between ωx/cs and ωy/cs, since the modes begin to probe regions of

stronger potential and the solutions we found blow up exponentially. In a general harmonic

trapping configuration, for momenta below R−1
⊥ , the energy of kelvon modes approaches a

constant non-zero value of Γωxωy

4πc2s
log (R⊥/ℓ) at vanishing momentum k → 0, which does not

occur in the absence of trapping.

Next let us think about what happens in flatter trapping potentials, in particular where

∂a∂bV (x = 0) = 0. In that case, we must again assess the integral in Eq. (163), but now

at the IR cutoff scale k−1 when the momentum is much greater than the inverse transverse
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Figure 9: Qualitative features of the dispersion relations of Kelvin wave modes with and without
two-dimensional trapping.

length scale of the atomic cloud. The resulting dispersion relation is now

ω(k) ≃ ± Γ

4π
k2











√

[log(kℓ)]2 + fxx+fyy
2π

log(kℓ) +
fxxfyy−f2

xy

4π2 , k ≫ R−1
⊥

√

[log (R⊥/ℓ)]
2 − fxx+fyy

2πR2
⊥
k2

log (R⊥/ℓ) +
fxxfyy−f2

xy

4π2R4
⊥
k4

, otherwise
. (180)

In the case of weak non-harmonic trapping with very small R−1
⊥ , the energy of the kelvon

modes now becomes arbitrarily small for small momenta k, which does not occur when there

is weak harmonic trapping. There is again an instability, this time when log(kℓ) is between

fxx/2π and fyy/2π in the diagonal case. If the entries of fab are of order one, this situation

corresponds to high momenta at which the effective theory breaks down. In a general non-

harmonic trapping configuration, the energy of kelvon modes again approaches a constant

value of Γ
8π2R2

⊥

√

fxxfyy − f 2
xy for vanishing momentum k → ∞. This is generically non-zero,

unless the trapping is axisymmetric and the matrix fab has no non-zero off-diagonal en-

tries. For non-axisymmetric non-harmonic traps, the low-momentum limit of the dispersion

relation differs from the untrapped case.

As we have seen, when there is two-dimensional trapping, there are important modifi-

cations to the dispersion relation of Kelvin waves propagating along vortex lines near the

center of a condensate. A sketch of the qualitative features of each case is shown in Fig. 9.

It is worth mentioning that when the vortex line begins off-center and precesses around the
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center of the atomic cloud, the exact same Kelvin modes can be sustained, with the same

dispersion relations, but superimposed on the precessing solutions we found in Section 3.3.

Solitonic solutions do not arise from this linearized analysis, but we could also look for

non-linear solutions to equations of motion at higher order in φ.

Let us now use the action Eq. (176) to study the equations of motion at non-linear

order. In order to do so, it will be helpful to perform a field redefinition

φ± =
1√
2
(φx ± iφy) , (181)

assuming that φx and φy are real scalar fields. Then the action becomes

Seff =

∫

dt dz

[

−T(00)
√

1 + ∂zφ+∂zφ− + in̄λφ̇+φ− +
1

2
Mrsφrφs

]

, (182)

where now r, s range over the signs +,−. In this parametrization, we have

M++ = M−− =
1

2
(Mxx −Myy − 2iMxy) , (183)

M+− = M−+ =
1

2
(Mxx +Myy) . (184)

This leads to two non-linear equations of motion

0 = T(00)∂z

[

∂zφ±
√

1 + 2∂zφ+∂zφ−

]

± in̄λφ̇± +M∓rφr . (185)

We will be interested in solutions that can be parametrized as traveling helical waves of the

form φ± = 1√
2
ρe±i(kz−ωt). The parameter ρ, assumed to be real, represents the radius of

the helical waveform here. The first thing to notice is that whenever M++ = M−− 6= 0,

there are no solutions of this form. This occurs when the off-diagonal matrix components

in the original parametrization, Mxy, are non-zero; that, in turn, occurs only in the case of

non-harmonic, non-axisymmetric trapping, when ∂a∂bV (x) cannot be diagonalized. Simple
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helical traveling waves cannot be sustained in such an asymmetric trapping configuration.

Let us assume that we are dealing with usual trapping potentials, which are elliptical, so

that these components M++ and M−− are zero. Substituting the ansatz into the equations

of motion then leads to the expression

ω(k) = ±T(00)(k)
w̄Γ

k2
√

1 + ρ2k2
∓











T(01)(k)

w̄Γ

ω2
x+ω2

y

c2s
(harmonic trapping)

Γk2

16π2 (fxx + fyy) (non-harmonic trapping)
. (186)

Consider first what happens in the absence of trapping. The original dispersion relation

for kelvon modes, ω ∼ k2 log k, is recovered in the low-momentum/small-radius limit ρk ≪

1. In the opposite limit, when ρk ≫ 1, a new regime emerges with ω ∼ k log k; this

becomes approximately non-dispersive for low momentum and large radius ρ. For such

large-amplitude Kelvin wave modes, which one may contemplate in the absence of trapping,

the energy scales as

ω(k) ≃ ± Γ

4πρ
k log(kℓ) . (187)

This situation corresponds to the “self-pipe” analyzed by Horn et al. [49], in which the large-

amplitude Kelvin wave acts as a solenoid with a nearly uniform velocity field aligned in the

z direction inside the radius ρ and very little flow outside. The solenoid configuration itself

travels with group velocity v(k) ∼ Γ
ρ
log k.

In the case of harmonic trapping in the limit ρk ≪ 1, the original dispersion relation

from linear analysis is only matched when the trap is perfectly circular, with ωx = ωy.

Otherwise, we find ω ∼
(

c2sk
2 − ω2

x − ω2
y

)

log k. This exhibits the usual enhanced logarithmic

scaling at low momenta characteristic of harmonic trapping. There is no longer an unstable

region for momenta between ωx/cs and ωy/cs in which propagating Kelvin waves are not

supported. The opposite limit in which ρk ≫ 1 is not particularly sensible to consider

in a trapped superfluid, since that would correspond to Kelvin wave solutions with radius
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comparable to or greater than the size of the atomic cloud. The intermediate regime with

non-negligible ρk . 1 features a reduced group velocity for Kelvin waves compared to the

case with negligible ρk ≪ 1.

Finally, when the trapping is non-harmonic, in the limit ρk ≪ 1 we recover the same

dispersion relation when the trapping potential is perfectly symmetrical and fxx = fyy. If the

trapping potential is oblate, however, we find ω ∼ k2 [4π log(kℓ) + fxx + fyy]. Again, there

is no unstable regime for momenta at which the solution grows exponentially. Intermediate

radii and momenta with ρk . 1 again exhibit a reduced group velocity compared to the one

found from the linearized analysis.
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3.5 Three-dimensional Trapping and the Bending

of Vortex Lines

We can attempt to extend this analysis by considering the effects of trapping in a

third dimension, which is present in realistic experimental setups. For concreteness, we are

imagining vortex lines that are more-or-less vertical (aligned with the z coordinate), but

not necessarily straight. They may become slightly bent or curved due to the change in the

trapping potential in the vertical direction. This means we must add mild z-dependence to

the vortex line coordinates, since z-translation symmetry is no longer present. Our vortex

line coordinates will now be parametrized as

X = [X(t, z), Y (t, z), z] . (188)

The trapping potential V (x) also has explicit dependence on the coordinate z, in addition to

the transverse coordinates. The effective action for vortex lines will be identical to the one

we considered for Kelvin waves, Eq. (172), when we gave X and Y a slight z-dependence,

but not the trapping potential. This effective action can now be written as

Seff [X] =

∫

dt dz

[

− n̄λ
2
ǫabX

aẊb − T(00)

√

1 + (∂zXa)2 − Veff[X(t, z)]

]

. (189)

However, the expression for the effective potential must now be modified to account for

three-dimensional trapping. The result we found in Eq. (150) is no longer valid.

To see what changes in the effective potential, we must go back to the expressions

in Eqs. (140) and (141), the source terms for the phonon and hydrophoton fields due to

interactions with the vortex line. These must be appropriately generalized for the case of

three-dimensional trapping and vortex lines positions with z-dependence. As a result, we
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must now use the expressions

J i
A (x, t) = n̄λ δ2 (x⊥ −X⊥(t, z))

[

δiz + δia∂zẊ
a(t, z)

]

. (190)

J i
B (x, t) = n̄λǫabδ

2 (x⊥ −X⊥(t, z))
[

Ẋb(t, z)δia + Ẋa(t, z)∂zX
b(t, z)δiz

]

− 2T(01)∂i

[

δ2 (x⊥ −X⊥(t, z))

√

1 + (∂zXa(t, z))2
]

− n̄∂iV (x) .

(191)

Although these are quite complicated expressions, to leading order very little changes. Fol-

lowing the same procedure as before, calculating contributions to the effective action from

the diagrams in Fig. 7, we find that the resulting effective potential for vortex lines now has

the form

Veff (X) = −2T(01)
mc2s

V (X)

√

1 + (∂zXa)2 − n̄λ2

8π2m2c2s

∫

d2x⊥
V (xa⊥ +Xa, z)

x2⊥
. (192)

We will again work with the assumption that the coordinates Xa are small, so that the

vortex line does not stray far from the center of the cloud. This effective potential can then

be expanded to quadratic order inXa, and we can vary the action of Eq. (189) in order to find

equations of motion for the vortex line coordinates. In addition, we consider approximately

harmonic trapping along the z direction, focusing on the region where z is small near the

center of the atomic cloud.

Assuming that the trapping along the z direction can be expressed in the form5 1
2
mω2

zz
2,

5In principle, we do not want our vortex lines to probe regions of divergent potential z → ∞.
If we wanted to be more careful about this, we could take the trapping along z to be an inverted
Gaussian with small amplitude, which is roughly parabolic near the center of the trap, and solve
the equations of motion approximately for regions of small z. Then the result is identical to what
we find here.
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the equations of motion in this case are

0 = n̄λǫabẊ
b +

2T(01)
mc2s

∂a∂bV (x⊥ = 0, z)Xb

− T(00)∂
2
zX

a − ω2
zT(01)
c2s

∂z
[

z2∂zX
a
]

.

(193)

In this expression, T(00) and T(01) are understood to be the renormalized couplings in Eqs. (174)

and (175). If we set all derivatives of Xa with respect to the z coordinate to zero, we see

that the first line of this equation of motion is precisely the part that gave us precessional

motion previously. As we will see, the second line will lead to solutions that allow the vortex

lines to become kinked along the z direction. This set of two coupled differential equations

can be solved using separation of variables. Let us choose the ansatz







X(t, z)

Y (t, z)






=







X̃(t)

Ỹ (t)






f(z) . (194)

If we substitute this into the equations of motion, we immediately see that X̃(t) and Ỹ (t)

are the same precessing solutions with elliptical trajectories we found in Eq. (159) (but with

a slightly different precession frequency), as long as the function f(z) satisfies the differential

equation

0 =
d2f

dz2
+
ω2
zT(01)
c2sT(00)

d

dz

(

z2
df

dz

)

. (195)

Although straight-line vortices still solve the equations of motion, we now have additional

solutions for which f(z) is simply the arctangent function. If we let f± be the limiting values

we choose for the solution f(z) as z → ±Rz (where Rz is the spatial extent of the atomic

cloud along the z axis), using Eqs. (174) and (175) we find that in the non-relativistic limit

f(z) =
f+ − f−

π
arctan

(

ωz

2cs
z

)

+
f+ + f−

2
. (196)
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The solutions that we have found describe vortex lines precessing along elliptical orbits, but

the vertical profile of the vortex lines is modulated by a function of the form in Eq. (196).

The vortex lines can become kinked due to the trapping in the vertical direction. It is

interesting to note that in this case, because of the form of the Kalb–Ramond term in the

action, the precession frequency differs from the one we found previously in Eq. (158) by a

factor of two thirds. For these solutions, we now have

ω(3d)
p =

Γ

4πc2s
ωxωy log

R⊥

ℓ
. (197)

When the trapping is not harmonic, the situation is quite similar and bending will also

occur, but we will not show it explicitly here, since the equations of motion will depend on

the specific functional form of the trapping potential along the z-direction. It is interesting

to note that the bending of vortex lines is observed experimentally—even in Fig. 5, for

example. The simple arctangent profiles we found here demonstrate that the bending of

vortex lines can be treated in our formalism. We could extend this analysis to look for non-

linear solutions to the equations of motion, in which case we might discover other types of

bent profiles (and possibly solitonic solutions). Ideally, we would also like to account for the

effects of rapid rotation of the trap at the level of the effective action, which would certainly

introduce more complicated bending of vortex lines, but we will leave this for future study.
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3.6 Comparison to Experimental Results

We will now compare our theoretical results to the measurements of vortex precession

conducted by Ku et al. [100]. The relevant equations are Eqs. (158) and (197), which we

restate here for convenience:

ωp =
Γ

c2s
ωxωy log

R⊥

ℓ
×











3/8π (purely two-dimensional trapping)

1/4π (with trapping in the z-direction)
. (198)

We are including the case of two-dimensional trapping (which we will call Model 1) because

that was the result we initially published in [1], and it matches the precession frequency

calculated by Svidzinsky and Fetter [95]. We would like to see how it will compare to data,

although the experiment involved trapping in the z-direction. We expect that the modified

expression relevant to three-dimensional trapping (which we call Model 2) will fare better

when compared to experimental data. Recalling that the quantized circulation is given by

Γ ∼ 2πh̄/m (and integer multiples thereof) and the chemical potential is µ ∼ mc2s in the

non-relativistic limit, for symmetric traps with ω⊥ ∼ ωx ≃ ωy we have

ω⊥

ωp

≃ µ/(h̄ω⊥)

log[ζµ/(h̄ω⊥)]
×











4/3 (Model 1)

2 (Model 2)
. (199)

In this form, we have a definite prediction for the functional form of the normalized precession

frequency ω⊥/ωp as a function of the normalized chemical potential µ/(h̄ω⊥), with a single

free parameter ζ, which is to be determined by fitting to experimental data. In this form,

our result is directly comparable to Fig. 3 in Ku et al. [100], where they report their

measurements of vortex precession in trapped superfluid 6Li over the BCS–BEC crossover

region. Our fitted models are compared to their data in Fig. 10. The first thing to note

is that the theoretical model proposed by Jackson et al. [94] (see Eq. (121)) does very

poorly at fitting the data into the BCS region. In the case of Model 1, which is identical
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to the results of Svidzinsky and Fetter [95], representing exactly two-dimensional trapping,

the maximum likelihood estimator yields a value for the fit parameter ζ of 0.637 ± 0.045

(standard error), with a χ2/d.o.f. value of 1.6. The fit is passable, but it is systematically

high at low values of the chemical potential in the BCS region. For Model 2, representing

our new result for precession with approximately harmonic trapping along the z-direction

as well, the fit parameter ζ is 2.85 ± 0.33 (standard error), with a χ2/d.o.f. value of 1.2.

Model 2 fares much better at following the measurements at low chemical potential, although

the overall fit is still not stellar. We cannot expect the model to work perfectly in this

comparison because the measurements were taken over a range of energies that includes the

complicated physics of the BCS–BEC phase transition, and we have also not accounted for

possible finite temperature effects. Nonetheless, the comparison to data is illuminating, as

it indicates that our second model is fairly successful even for this data set. More directly

comparable future measurements, especially measurements that are taken with differently

shaped trapping potentials, may shed more light on the success of our model and theoretical

approach.
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Figure 10: Experimental measurements of vortex precession frequency at different values of the
normalized chemical potential, as reported in Ku et al. [100]. The measurement was carried out in
trapped superfluid 6Li over the BCS–BEC crossover region. The blue points correspond to frequency
ωz/2π = 5 Hz; the red points are measured at ωz/2π = 10 Hz; and the teal points correspond to
ωz/2π = 23 Hz. Model 1, fitted to this data set, is shown as the beige trend line; it is identical to
the model proposed by Svidzinsky and Fetter [95]. Model 2 is shown as the pink line. The green line
is the best fit of the theoretical model proposed by Jackson et al. [94], based on Gross–Pitaevskii
theory (see Eq. (121)).
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3.7 Conclusion and Further Questions

In this analysis, we derived an effective action for vortex lines in trapped superflu-

ids, Eq. (148), that is valid for any trapping potential that is confining in two dimensions.

We have also worked out a relativistic generalization in Eq. (170). The result is an action

principle that can be applied to study the dynamics of vortex lines in general trapping config-

urations. Here, we used it to find the precessional frequency of vortex lines in both harmonic

and anharmonic trapping potentials. In the harmonic case, the frequency of precession

around the center of the trap is logarithmically enhanced, scaling as ωp ∼ Γ log(R⊥/ℓ). This

result matches previous calculations from the Gross–Pitaevskii model, and it fares well when

compared to experimental measurements reported in [100], particularly when the leading-

order effects of trapping in the third dimension are accounted for. Even in traps where the

potential is arbitrarily flat near the center, precession occurs in circular or elliptical orbits,

but now with a frequency that scales as ωp ∼ Γ/R2
⊥. This is consistent with well-known

behavior of vortex lines in flatter traps [109,110]. Our result implies that this scaling of the

precessional frequency will still be observed in a uniformly trapped, quasi-two-dimensional

“superfluid in a box,” of the type realized in [111–113], for example. Experiments show that

vortex lines get mildly bent by the trap [100,114,115], and our EFT framework demonstrated

that kinked profiles of vortex lines can be found already at linear order when mild trapping in

the z-direction is introduced. We also took the opportunity to study the dispersion of Kelvin

waves propagating along vortex lines in trapped condensates. We found that the presence of

a trapping potential modifies the well-known ω ∼ k2 log k dispersion law in different ways,

depending on whether the trapping potential is harmonic or flatter-than-harmonic near the

center of the atomic cloud.

Overall, our low-energy effective theory of vortex lines in trapped superfluids presents

a robust and flexible alternative to analysis based on Gross–Pitaevskii theory, with rich

possibilities for comparisons to experimental realizations and extensions to the study of

other types of dynamics, besides precessional motion. Possible next steps include extending
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the theory to account for general trapping configurations in three dimensions, incorporating

the effects of rotation, and looking for curved vortex line profiles at non-linear order. Finite-

temperature effects are also interesting to consider. Since we expect the string coupling T(01)

to be positive, the effective vortex line potential we found in Eq. (150) is actually a negative

quantity. This could lead to instabilities involving phonon interactions. We would expect a

finite-temperature thermal bath of phonons to produce an effective friction for vortex line

motion, gradually driving vortices to regions of lower effective potential. We would thus

expect a precessing vortex line to slowly spiral outward away from the center of the atomic

cloud, where the trapping potential is stronger. This is an effect considered in [96], and it

would be interesting to see it come out of our effective field theory formulation. Other possible

applications of the theory we have developed here include: studying the Brownian motion

of vortex lines of the sort observed in [116]; expanding our theory to higher order in vortex

line velocity in order to calculate anharmonicity in the oscillatory behavior of vortex lines

(see [117]); calculating vortex–vortex interactions, scattering phenomena, and the excitation

spectrum of a vortex lattice in a rotating superfluid (see [118,119]); and carefully analyzing

relativistic effects in our effective theory, which is in principle fully relativistic, and their

relevance to the dynamics of neutron star interiors, which are expected to be dominated by

superfluid components containing vortex lines pinned to impurities in the crust [120–126].

In particular, the possibility of using our language to describe the pinning and unpinning of

superfluid vortices from a non-superfluid matter component is particularly intriguing, as it

is one of the proposed mechanisms to explain glitching phenomena observed in millisecond

pulsars [127, 128]. Vibrational instabilities of pinned vortex lines have also been proposed

as mechanisms of generating starquakes and “wobble” phenomena in neutron stars [129].

Treating this in our formalism would involve generalizing it to finite-temperature superfluids

with an ordinary fluid component and abandoning the simple straight-line parametrization

of vortex lines, but it may well be feasible. We leave such intriguing possibilities for future

studies.
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4 Case Study 2: The Gravitational Mass

of Sound Waves in Superfluids, Fluids,

and Solids

4.1 Introduction: Do Sound Waves Carry Mass?

In this section, part of which follows our recent paper [2], we will apply effective field

theory techniques to the study of perturbations in a wide variety of media. Our overarching

goal will be to answer a single answer: Do sound waves carry mass? This may seem like a

strange question to ask, since the conventional answer, at least according to common lore, is

usually no. For instance, physics students learn from the popular undergraduate textbook

University Physics [130] that such waves “transport energy, but not matter.” Sound waves

certainly carry energy and momentum, but the net mass transferred by sound waves is

generally believed to vanish. This is a claim that is certainly true in the linear regime, but

we would like to explore it further by studying sound waves within the formalism of the

effective field theory of condensed matter systems. In particular, we would like to see if

there is a gravitational mass associated with sound waves that appears at non-linear order.

Nicolis and Penco [131] first found results suggesting that sound carries non-zero net

mass using an effective point-particle theory for phonons in a superfluid at zero temperature.

They found that phonons, treated in a point-particle-like approximation, have an effective

coupling to gravitational fields, which is determined by both the energy of the phonon and the

equation of state of the superfluid. For ordinary equations of state, when the speed of sound

in the superfluid increases with increasing mass density, this coupling to the gravitational

field is equivalent to a negative effective gravitational mass, meaning that phonon trajectories

tend to bend in the direction opposite to the gravitational field. On the Earth’s surface,

nearly horizontal phonon trajectories tend to bend upward with a radius of curvature of the

order of c2s/g, where cs is the sound speed and g is the gravitational acceleration. Other
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excitations such as rotons were found to couple to gravitational fields somewhat differently

in this effective point-particle theory, with positive or negative effective gravitational mass

depending on their momentum.

In the case of phonon trajectories bending under the influence of a gravitational field,

the effect Nicolis and Penco studied is, of course, completely equivalent to the refraction of

sound waves due to pressure gradients, and it can be formulated in the same way as Snell’s

law. Since the pressure in a superfluid gains a dependence on depth in the presence of an

external gravitational field, the speed of sound depends on depth as well, causing phonon

trajectories to become curved in the geometric acoustics limit. Nonetheless, refraction is

not the end of the story. An important point that was not fully appreciated by Nicolis

and Penco is that since the effect is produced from a direct coupling between phonons and

gravity in the effective Lagrangian, the same interaction must in turn lead to changes in

the field equation for gravity. Thus, the phonon itself has an associated very small (and

negative) gravitational mass, which sources very small changes in the gravitational field, and

this gravitational source travels along with the phonon. It is also important to emphasize

that this is a true gravitational mass and not a mere artifact of relativistic mass–energy

equivalence; as we will see, this effect survives in the non-relativistic limit c → ∞. We will

also see that since this analysis applies equally well to classical waves, the generation of a

(negative) gravitational mass associated with phonons is not a quantum effect.

Hints of the effect that we are studying have appeared before. We will find that the

effective gravitational mass depends on a particular logarithmic derivative of the speed of

sound with respect to the mean density that has been seen in other contexts in the study of

fluid and superfluid excitations; it appeared relatively recently in a paper by Watanabe et

al. [2013] about gapped Goldstone boson-like excitations (which they somewhat imprecisely

term “massive Nambu–Golstone bosons”) in relativistic systems at finite density, and as early

as 1925 in Brillouin’s classic study of long-range momentum transport by acoustic and elastic

waves, or as he termed it, “tensions de radiation.” Non-linear effects giving rise to non-zero
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total momentum associated with acoustic wave packets are also well-known, with authors

such as Landau and Lifshitz [86] commenting that such effects imply a small transfer of

matter, although there is no indication that these effects have been interpreted as a source

of gravitational mass. We will build upon such precedents in this section and study the effect

in detail.

After reviewing the effective point-particle theory developed by Nicolis and Penco [131],

we will confirm their result explicitly by calculating the gravitational mass carried by a sound

wave packet in a zero-temperature superfluid from effective field theory methods. This will

involve extending the standard linear analysis of wave packets to non-linear order, as the

non-zero net mass is a non-linear effect from the point of view of wave mechanics; this mass

would be inferred to be zero at linear order. We will also extend this analysis to other

condensed matter systems, including sound waves in ordinary fluids and both longitudinal

and transverse waves in solids. In each case, we will find that in the non-relativistic limit,

the gravitational mass associated with a sound wave packet traveling through a medium can

be written as

M = − d log cs
d log ρm

E

c2s
, (200)

where cs is the speed of sound, ρm is the background mass density in the medium, and

E is the energy of the wave packet. A slightly generalized form of this equation holds for

media with both longitudinal and transverse excitations. Thus, the gravitational mass is

determined by the energy of the wave packet and the equation of state of the medium. Since

the derivative d log cs/d log ρm is positive for typical equations of state, this mass turns out to

be a negative quantity. The logarithmic derivative is understood to be a standard adiabatic

one, and it is identical to the logarithmic derivative seen by Brillouin [132] in the study of

general radiative stresses in fluids.

Initially, we will work in fully relativistic language and take the non-relativistic limit
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later, in order to distinguish between relativistic and non-relativistic contributions to the

equations of motion of phonons. In addition to confirming the result in Eq. (200) using low-

energy effective field theory techniques involving Poincaré symmetry, we will also confirm

this result for superfluids starting from Galilei symmetry alone, which corresponds to taking

the non-relativistic limit from the outset. Furthermore, we will see that it is possible to

derive analogous formulas indicating a net transfer of mass from ordinary classical hydrody-

namics and the non-linear theory of elasticity in continuum mechanics, confirming that the

phenomenon we are considering is not a relativistic or quantum effect in its origin, and it

could have easily been discovered by the careful study of non-linear effects centuries ago.

Before proceeding, we must make a note of clarification about precisely what we mean

by mass, orM , in Eq. (200). There is no problem with talking about mass in an unambiguous

manner when we consider excitations that propagate through a Poincaré-invariant vacuum;

in that case, the invariant mass is well-defined, and it determines the energy gap of the

excitation. However, we are considering media that explicitly break invariance under Lorentz

boosts. In such cases, boost symmetry no longer constrains the energy spectrum E(p) of

the excitation under consideration, so that there is no longer a clearly defined notion of an

“invariant mass.” However, a non-relativistic medium, in which its mass density is much

greater than its energy density divided by c2, certainly still has a definite total mass as a

conserved quantity. In a non-relativistic medium, then, the mass M is understood to be

the fraction of the total mass of the system that travels along with the excitation as it

propagates through the medium, rather than the invariant mass that the excitation would

have in a Poincaré-invariant vacuum. This, too, is a well-defined quantity. Note that it is

still consistent with the symmetries of the system for gapless excitations—Goldstone modes,

for which E(p) → 0 as p→ 0—to carry non-zero net mass.
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4.2 A Coarse-Grained Perspective: Effective Point-

Particle Theory of Localized Collective Exci-

tations

Figure 11: Schematic representation of the spectrum of excitations in superfluid helium-4, as first
outlined by Landau. The low-momentum linear regime corresponds to the phonon spectrum, while
rotons are around the local minimum p ∼ p⋆. The roton energy gap is indicated by ∆, corresponding
to E(p⋆). Adapted from [133], reprinted from Landau [54].

Here, we will review the effective point-particle theory of excitations in a superfluid

developed by Nicolis and Penco [131]. A typical energy spectrum of elementary excitations

in superfluid helium-4 is shown in Fig. 11. There are two qualitatively different regions of the

curve, corresponding to two different quasiparticles. Phonons appear in the low-momentum,

linear regime of the dispersion curve, where

Ephonon(p) ≃ csp , (201)

while excitations near the local minimum around p ≈ p⋆, where

Eroton(p) ≃ ∆+
1

2m⋆

(p− p⋆)
2 , (202)
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are termed rotons. Elementary excitations, near the local maximum of the curve in Fig. 11

are sometimes called maxons. The equation of state, temperature, and chemical potential

determine the precise values of cs, ∆, and m⋆. Dimensionally, if m is the mass of helium-4

and a is the typical distance between atoms, of the same order as the Bohr radius, then

we can say that cs ∼ (ma)−1, p⋆ ∼ a−1, ∆ ∼ (ma2)−1, and m⋆ ∼ m. For our purposes,

however, we will not be concerned with the roton or maxon regions of the spectrum of

collective excitations, although they exhibit rich physics. For us, the phonons are of primary

importance.

Following the approach of Nicolis and Penco [131], we are interested in developing a

point-particle description for elementary excitations in the phonon regime of the dispersion

curve. We will consider point particles to be highly localized wave packets of phonons that

propagate with definite momenta, although the description is necessarily approximate. Our

medium is characterized by a spontaneously broken internal U(1) symmetry, as well as broken

symmetry under boosts. Spacetime translations and rotations are preserved as symmetries.

If we label particle states with three-momentum p, the little group of p is simply the group of

spatial rotations around p. We need not add a helicity label to one-particle states, though,

since phonons—quanta of longitudinal pressure waves—have zero helicity. In the phonon

region of the dispersion curve, we can characterize all single-particle states by momentum

p, with no need for additional quantum numbers or degrees of freedom.

We take the Hamiltonian describing the dynamics of elementary excitations to simply

have the form of the excitation spectrum shown in Fig. 11:

H(p) = H (|p|) = E (|p|) . (203)

We assume that the point-particle limit corresponds to a highly localized wave packet cen-
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tered at position x. The velocity is given by Hamilton’s equations.

ẋ =
∂H

∂p
, (204)

and the associated Lagrangian is found by performing a Legendre transformation in the

standard manner.

L = p · ẋ−H (|p|) ≡ f(|ẋ|) . (205)

Note that this Lagrangian is symmetric under spatial translations and rotations, but not

Galilean boosts, which is to be expected, since the superfluid medium breaks symmetry

under boosts as well.

In the phonon region of the dispersion curve, we have

H(|p|) ≃ cs|p| , (206)

so that

ẋ ≃ csp̂ (207)

by Hamilton’s equation, where p̂ is the unit vector in the direction of the momentum p, and

the action becomes

S =

∫

dt f(|ẋ|) ≃
∫

dt p(ẋ · p̂− cs) . (208)

Imposing the condition that ẋ is parallel to p̂ from Eq. (207), Hamilton’s equation, we find

that

S ≃
∫

dt p (|ẋ|−cs) . (209)
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The next step is to introduce long-wavelength bulk perturbations by allowing the La-

grangian to depend on invariant quantities built from the bulk degrees of freedom. We can

easily implement this by allowing the Lagrangian to depend on the invariant quantity
√
X,

which we introduced in Eq. (18). In addition the velocity ẋ will only appear in the combina-

tion ẋ−u, where u is the superfluid bulk velocity field introduced in Eq. (26), as dictated by

Galilei invariance. Recall that the invariant
√
X is equal to µ = µ0+mc

2 on the background,

where µ is the “relativistic” chemical potential, µ0 is the standard non-relativistic chemical

potential, and m is the mass of the microscopic constituents of the superfluid. Note that

µ0 ≪ mc2 generally. To leading order, the velocity field is given by

u = −µc2 ∇π√
X

= −c2∇π . (210)

After introducing bulk perturbations into the point-particle action, we find

S[x, p, π] ≃
∫

dt p
[

|ẋ− u|−cs
(√

X
)]

. (211)

The precise functional form of the speed of sound as a function of the invariant
√
X is

determined by the equation of state.

The next step is to introduce a weak gravitational field into the metric via a Newtonian

potential Φ in the non-relativistic limit c→ ∞.

gµν = ηµν + δgµν , δg00 = −2Φ

c2
, δgµi = δgiµ = 0 . (212)

Then the invariant X becomes

X → µ2

[(

1− 2Φ

c2

)

(1 + π̇)2 − c2 (∇π)2
]

, (213)
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and to quadratic order, we find

√
X ≈ (µ0 +mc2)

[

1− Φ

c2
+ π̇ − c2

2
(∇π)2

]

−−−→
c→∞

mc2
[

1 +
µ0 −mΦ

mc2
+ π̇ − c2

2
(∇π)2

]

.

(214)

To leading order, the only effect of introducing the Newtonian potential Φ is to shift the

non-relativistic chemical potential by µ0 → µ0−mΦ. This is very similar to what we found in

Eqs. (135) and (136) when introducing a trapping potential into the effective field theory of a

superfluid condensate. To leading order, the trapping potential merely shifted the chemical

potential (or the number density) in a linear manner, much like in Eq. (214). We can, in

fact, interpret the gravitational potential as a sort of weak external trapping potential.

Returning now to the point-particle action and neglecting the bulk perturbation modes

π, we see that introducing a gravitational field has the effect of shifting the sound speed in

a position-dependent manner:

cs (µ0) → cs (µ0 −mΦ) . (215)

To leading order, the action in Eq. (211) now becomes

S →
∫

dt p [|ẋ|−cs (µ0 −mΦ(x))] . (216)

Varying the action with respect to momentum p simply constrains the point particle to move

at the speed of sound, which is now modulated by the gravitational potential. Varying the

action with respect to position x gives the following equation of motion:

dp

dt
= p

dcs
d(µ0/m)

∇Φ , (217)

where, as before, we have p = pẋ/|ẋ|. Now, comparing the equation of motion in Eq. (217)
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to the standard force equation for a point particle in an ordinary Newtonian gravitational

field, dp/dt = −M∇Φ, where M is the particle’s gravitational mass, we see that the effective

net gravitational mass of a phonon with total momentum p is equal to

M = −p dcs
d(µ0/m)

. (218)

Note that this quantity is negative for ordinary equations of state. We can also use thermo-

dynamic relations to rewrite this in another form. Recall that from Eqs. (31) and (32) and

µ = mc2 + µ0, we have

ρ ≡ mn = m
dP

dµ
=

dP

d(µ0/m)
, c2s =

c2

µ

dP/dµ

d2P/dµ2
≈ dP/d(µ0/m)

d2P/d(µ0/m)2
. (219)

Therefore, we find that

dcs
d(µ0/m)

=
1

cs

d log cs
d log ρ

, (220)

and using the fact that E = csp in the phonon region of the dispersion curve, the net

gravitational mass becomes

M = −d log cs
d log ρ

E

c2s
. (221)

This is precisely the formula anticipated in Eq. (200).

We can extend this analysis to fluids in a straightforward manner. Recall that the

bulk dynamics of a fluid are described by a Lagrangian that is a function of the invariant

b =
√
detBIJ—see Eq. (59). Using the expression [21]

b = (det ∂φ)

√

1− v2

c2
, v = −(∂φT )−1 · φ̇ , (222)

where (∂φ)IJ ≡ ∂IφJ , and perturbing the metric by δg00 = −2Φ/c2, it is simple to verify that
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the gravitational potential Φ does not enter the invariant b directly in the non-relativistic

c→ ∞ limit. The gravitational potential only enters the metric determinant in the measure

of the action integral. If we write an action for a fluid in a gravitational field, we find

S = −w0

∫

dt d3x

√

1 +
2Φ

c2
f(b) . (223)

Expanding in small fluctuations π to quadratic order and integrating by parts, we get

Sfluid → w0b0

∫

dt d3x

[

π · ∇Φ +
1

2
π̇2 − c2s

2
(∇ · π)2

]

, (224)

where we used φ = b
1/3
0 (x+ π), c2s = b0f

′′(b0), and the normalization condition f ′(b0) = c2.

The gravitational potential provides an external source for phonons of the form

J = w0b0∇Φ , (225)

which in turn shifts the VEV of ∇ · π to give

〈∇ · π〉 = −Φ

c2s
, (226)

as can easily be deduced by convoluting the source term in Eq. (225) with the phonon prop-

agator, Gij(ω,k) ∼ k̂ik̂j/(ω
2 − c2sk

2). Then, since b = b0 (1 +∇ · π + · · ·), we immediately

see that the background value of the invariant b is shifted by −b0Φ/c2s in the presence of a

gravitational field.

Finally, we can write an effective point-particle action for a sound wave packet in an

ordinary fluid in the presence of a gravitational potential in a manner analogous to Eq. (216).

To leading order, the result is

S ≃
∫

dt p
[

|ẋ|−cs
(

b0 − b0Φ/c
2
s(b0)

)]

. (227)
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Varying the action with respect to the position of the point particle, x, we immediately read

off the equation of motion

dp

dt
=
b0
c2s

dcs
db
p∇Φ . (228)

As a result, the effective gravitational mass of a phonon in a fluid, computed in the point-

particle approximation, is

M = −b0
c2s

dcs
db
p . (229)

Note that in the non-relativistic limit, the density is proportional to the level of hydrostatic

compression, so that ρ ∝ b. For phonons in this fluid, we also have E = csp, so that we

again obtain the result

M = −d log cs
d log ρ

E

c2s
, (230)

as expected.

For both longitudinal phonons and transverse excitations in a solid, the above analysis

carries through almost without modification, since the gravitational potential does not enter

into the additional invariants Y and Z in the non-relativistic c → ∞ limit. The only

difference is that only longitudinal bulk modes take on a shifted VEV in the presence of a

gravitational field. In the case of a solid, we have the following relation instead of Eq. (226),

to leading order:

〈∇ · πL〉 = − Φ

c2L
. (231)

As a result, depending on whether we are considering a longitudinal or transverse point
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particle excitation propagating through the solid, the point-particle action is

S ≃
∫

dt p
[

|ẋ|−cX
(

b0 − b0Φ/c
2
L(b0)

)]

, (232)

where X = L for a longitudinal mode and X = T for a transverse mode. As a result the

effective gravitational mass of a phonon in a solid is

MX = −d log cX
d log ρ

EX

c2L
, (233)

where EX is the energy carried by a wave packet of either longitudinal or transverse exci-

tations. We will see that this is the appropriate generalization of Eq. (200) when we verify

it more rigorously, without resorting to point-particle-like representations. The mass associ-

ated with each type of excitation is different, but the general structure of the expression is

unchanged—the gravitational mass is negative, and it scales with the energy of the sound

wave packet over the square of the longitudinal sound velocity. The constant of proportion-

ality depends on the functional form of the velocity of longitudinal or transverse excitations

as a function of the density, but it is generically a positive number of order one.
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4.3 Superfluids at Zero Temperature

As we saw in Section 2.1, we can describe the dynamics of low-energy phonons in a

superfluid at zero temperature using an effective field theory with a single scalar field φ.

That scalar must take a VEV with a non-zero time derivative, which we wrote as 〈φ〉 = µt.

Expanding the superfluid action to cubic order about the VEV, we found Eq. (30), an

action for superfluid phonons π, corresponding to small fluctuations of the scalar about the

time-dependent background. The action we found in Eq. (30) then allows us to compute

the classical equation of motion for π, given by ∂µ [P
′(−c2∂νφ∂νφ)∂µφ] = 0, to non-linear

(quadratic) order in small fluctuations:

π̈ − c2s∇2π = c2
(

1− c2s
c2

)

π̇∇2π +
∂

∂t

[

c2
(

1− c2s
c2

)

(∇π)2 − gπ̇2

]

, (234)

where

c2s = c2
dP/dµ

µd2P/dµ2
, g =

c2

2c2s

(

1− c2s
c2

)

− µ

cs

dcs
dµ

. (235)

We can solve Eq. (234) to non-linear order by writing the phonon field as an expansion,

π = π(1)+π(2)+ · · ·, where π(1)(x, t) is a localized wave packet solution to the linearized wave

equation, π̈(1) − c2s∇2π(1) = 0. The quadratic correction π(2) is then sourced by π(1) in turn.

We can find the leading non-linear correction π(2) by solving the wave equation for π(2) in

Eq. (234) with π(1) sourcing the quadratic terms on the right-hand side.

π̈(2) − c2s∇2π(2) = ∂t

[

c2
(

1− c2s
c2

)

(

∇π(1)
)2 − gπ̇2

(1) +
c2

2c2s

(

1− c2s
c2

)

π̇2
(1)

]

. (236)

In order to determine the net mass associated with a phonon wave packet in a superfluid,

we will also calculate the contribution to the energy–momentum tensor component T00 from

solutions of the classical equations of motion, Eqs. (234) and (236). The energy–momentum

tensor we are considering is the gravitational energy–momentum; we use gravity as a probe
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to calculate the mass associated with sound waves because gravity couples only to mass in

the non-relativistic limit. We already expanded T00 to quadratic order in small fluctuations

in Section 2.1, resulting in Eq. (35). Recall that the expression is

T00 =
µnc2

c2s

[

π̇ +
c2

2c2s

(

1− 2µcs
c2

dcs
dµ

)

π̇2 − c2

2

(

1− 2c2s
c2

)

(∇π)2
]

. (237)

Since we are dealing with a localized phonon wave packet, our approach will involve inte-

grating T00 over a volume containing the wave packet and averaging T00 over some time

interval T that is much longer than the typical oscillation time, over which the linearized

solution π(1) averages to zero; explicitly, T ≫ 1/ω. After taking the non-relativistic limit,

the leading contribution to 1
c2

∫

d3xT00 that survives when c→ ∞ can be interpreted as the

net gravitational mass associated with the phonon wave packet.

In principle, both the linearized wave packet solution π(1) and the leading non-linear

correction π(2) can contribute to the linear term in T00 proportional to π̇. However, time av-

eraging will make the contribution from π(1) vanish, since the term involves a time derivative

and we are integrating over many oscillation times, over which the linear solution averages

to zero. The contribution from the non-linear correction π(2) will also vanish after time av-

eraging, since the time derivative eliminates constant terms in the quadratic source on the

right-hand side of Eq. (236), leaving only oscillatory terms whose time derivatives also give

zero after the time averaging procedure. Thus, the linear term in T00 does not contribute to

the effective gravitational mass of the phonon wave packet.

Now, the quadratic terms in T00 are important, but only the linearized wave packet

solution π(1) can contribute via the quadratic terms at this order in perturbation theory.

Let us represent the combination of spatial integration and time averaging by the notation
〈∫

. . .
〉

. We get

〈∫T00
〉

=
µnc4

2c2s

[

1

c2s

(

1− 2µcs
c2

dcs
dµ

)

〈∫ π̇2
(1)

〉

−
(

1− 2c2s
c2

)

〈∫ (∇π(1))
2
〉

]

. (238)
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We can immediately relate the time-averaged, spatially integrated quantities
〈

∫

π̇2
(1)

〉

and
〈∫

(∇π(1))
2
〉

for the linearized wave packet to the total energy of the wave packet. The

total energy can be found in turn by time-averaging the value of the contribution of the

linearized wave packet to the free Hamiltonian of the superfluid. Because the ground state

spontaneously breaks the U(1) symmetry associated with particle number, the Hamiltonian

of the ground state in a superfluid at zero temperature is equal to

H =

∫

d3x
(

T 00 − µJ0
)

, (239)

where Jµ = 2P ′(X)∂µφ is the Noether current associated with the broken U(1) symmetry.

To quadratic order, the Hamiltonian is given by

H =
µnc2

2c2s

∫

d3x
[

π̇2 + c2s (∇π)2
]

. (240)

After time averaging and using the virial theorem, we obtain expressions for the total energy

of the wave packet, E.

E =
µnc2

c2s

〈∫ π̇2
(1)

〉

= µnc2
〈∫ (∇π(1))

2
〉

. (241)

Now combining the results of Eqs. (238) and (241), we find

〈∫T00
〉

=

(

1− µ

cs

dcs
dµ

)

E . (242)

At zero temperature, we also have the thermodynamic relations µn = ǫ+ P and dP = ndµ,

so we may rewrite this result as

〈∫T00
〉

=

(

1− ǫ+ P

cs

dcs
dP

)

E . (243)

This expression is fully relativistic. In the non-relativistic limit, ǫ+P is approximately equal
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to mnc2 = ρmc
2, where ρm is the equilibrium mass density. Using dP/dρm = c2s and taking

the c → ∞ limit, we find that the net gravitational mass associated with the phonon wave

packet is

M =
1

c2
〈∫T00

〉

≃ −ρm
cs

dcs
dP

E = − d log cs
d log ρm

E

c2s
. (244)

This is precisely the result obtained by Nicolis and Penco [131] from their effective point-

particle theory. We have now confirmed this result explicitly from effective field theory

methods, without resorting to any point-particle-like approximations.

In Section A, we show how the same result can be derived from the dual description

of a superfluid in terms of a two-form field, and in Section B, we confirm the result for a

single-phonon state in quantum field theory.
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4.4 Fluids and Solids

In this section, we will show that an analogous result holds in both fluids and solids using

a similar effective field theory approach. We will consider a solid first and then specialize to

the case of a fluid, since a fluid is simply a very symmetric solid from the effective field theory

point of view—see our discussion of solids in Section 2.3. Recovering the effective theory of

a fluid from that of a solid is simply a matter of neglecting derivatives of the Lagrangian

density with respect to all invariant quantities except for the determinant of the matrix BIJ ,

which is compatible with symmetry under volume-preserving diffeomorphisms.

Recall that in the effective field theory of a solid, the Lagrangian is built out of three

scalar fields φI associated with the co-moving (or Lagrangian) coordinates labeling volume

elements in the solid. These scalars take VEVs that are aligned with the physical spatial

(or Eulerian) coordinates, 〈φI〉 ∝ xI . The Lagrangian is a generic function of three linearly

independent SO(3) invariants built out of BIJ = ∂µφ
I∂µφJ , which we choose to be b =

√
detB, Y = (trB2)/(trB)2, and Z = (trB3)/(trB)3. Phonons πI are introduced to the

theory by considering small fluctuations about the VEV, φI = 3
√

b0(x
I + πI). Expanding

to cubic order in these small fluctuations leads to the cubic action for phonons in a solid,

Eq. (78), with associated longitudinal and transverse sound speeds and non-linear coupling

constants defined in Eqs. (79) to (87). We can take the variation of the action in Eq. (78)

with respect to the fluctuation fields πI in order to obtain the following non-linear equations

of motion:

π̈i − c2L∂i∇ · π − c2T
(

∇2πi − ∂i∇ · π
)

= ∂jAij + ∂tBi , (245)
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where the tensor Aij is given by

Aij = g1δijπ̇
2 + g2π̇iπ̇j + 3g3δij (∇ · π)2 + g4δij(∂kπl)

2 + 2g4∂jπi∇ · π

+ g5δij (∇× π)2 + 2g5∂jπi∇ · π − 2g5∂iπj∇ · π + g6∂iπk∂jπk

+ g6∂kπi∂kπj + 3g7∂iπk∂kπj ,

(246)

and the vector Bi is similarly formed from quadratic combinations of field πi, although the

explicit form of Bi is not relevant for the rest of this calculation. Here, Bi appears only as

a full time derivative in the equations of motion, which we will average over a time interval

much longer that the period of oscillation of solutions to the linear wave equation. Since Bi

is quadratic in the oscillatory fields, the time average of ∂tBi will vanish in this procedure

and we can drop it.

We will now proceed to computing the effective gravitational mass associated with a

localized wave packet of longitudinal or transverse phonons in a solid. It will be related to

the energy–momentum tensor component T00, which we found to quadratic order in small

fluctuations in Eq. (89). For convenience, we choose to take the non-relativistic limit right

away. This is useful because apart from ∂f/∂b, the derivatives of f(b, Y, Z) with respect to

its arguments are all of the same order as c2L or c2T , and combinations of these derivatives

appear in the definitions of the non-linear couplings g1, g2, . . . , g7, as well as the prefactors of

the surviving quadratic terms in Eq. (89) after spatially integrating T00. The only relevant

O(c2) term that we must consider in the non-relativstic limit is

T00 ≃ c2w0b0∇ · π . (247)

Clearly, if there is an O(c0) contribution from the wave packet to ∇·π after integrating over

a volume containing the wave packet and averaging in time, we will find a non-zero total

gravitational mass. With our formulation of this effective theory, the linear term contributes

to the mass density, but quadratic and higher-order terms contribute only to the energy
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density and not the mass density. Using the notation 〈
∫

. . . 〉 to denote time-averaging and

spatial integration once again, we will find the gravitational mass from

M = w0b0
〈∫∇ · π

〉

. (248)

At first glance, one may be tempted to say that the gravitational mass must be zero,

since the spatial integration of a divergence produces a boundary term, which seems like

it vanishes for integrals over large volumes. This is true only for wave packet solutions to

the linearized equations of motion, however, since those can be taken to be highly localized.

The non-linear corrections from the quadratic equations of motion, Eq. (245), can lead to

non-zero contributions to M at this order in perturbation theory. Accordingly, we separate

the fluctuation field into π = π(1) + π(2) + · · ·, where π(1) solves the equations of motion at

linear order, and π(2) is sourced in turn by π(1). Substituting a linear wave packet π(1) into

the right-hand side of Eq. (245) can in principle give rise to a non-linear correction π(2) that

scales as 1/|x|2 at large distances, so that a finite contribution to M in Eq. (248) is indeed

possible.

In order to calculate this contribution, we will take the divergence of the equation of

motion Eq. (245) and solve for the divergence of the non-linear correction Ψ ≡ ∇ · π(2),

which solves a wave equation sourced by the linearized solution π(1),

(

∂2t − c2L∇2
)

Ψ = ∂i∂jAij + ∂t∇ ·B , (249)

where Aij and B are understood to be functions of the linear wave packet solution π(1) only

at this order in perturbation theory. We then take the time average of this equation over

an interval much longer than 1/ω, over which the full time derivative terms average to zero.
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We are thus left with

∇2〈Ψ〉 = − 1

c2L
〈∂i∂jAij〉 . (250)

This is a simple Poisson’s equation. It can be solved in a straightforward way by Green’s

function methods. After integrating over a volume in space containing the wave packet, we

obtain the expression

〈∫Ψ〉

=
1

4πc2L

∫

d3x d3y

〈

∂
(y)
i ∂

(y)
j Aij(y)

〉

|x− y| . (251)

Further integration by parts6 leads immediately to the result

〈∫∇ · π
〉

≃ − 1

3c2L

〈∫Aii

〉

. (252)

This allows us to proceed with calculating the gravitational mass in Eq. (248). All that

remains is the computation of
〈∫

Aii

〉

. The full form of Aij is written out in Eq. (246), and

it must be understood as a function of the linear wave packet solution π(1). For convenience,

we split this linear solution into longitudinal (L) and transverse (T) components—π(1) =

πL + πT , where ∇ × πL = 0 and ∇ · πT = 0. The total energies of the longitudinal and

transverse components of the linearized wave packet solution are given by their respective

6In this integration by parts, we must also use the following distributional identity:

∂i∂j
1

|x| =
1

|x|3 (3x̂ix̂j − δij)−
4π

3
δijδ

3(x) .

The first term on the right-hand side must be interpreted as a 3-dimensional type of principal part,
in the sense of removing an infinitesimally small ball centered at the origin. It integrates to zero if
the integral is taken over any spherical volume about the origin.
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contributions to the Hamiltonian. In this case, the resulting expressions are

EL =
w0b0
2

∫

d3x
[

π̇2
L + c2L (∇ · πL)

2] , (253)

ET =
w0b0
2

∫

d3x
[

π̇2
T + c2T (∇× πT )

2] , (254)

respectively. Time averaging and using the virial theorem gives

EL = w0b0
〈∫ π̇2

L

〉

= w0b0c
2
L

〈∫ (∇ · πL)
〉

, (255)

ET = w0b0
〈∫ π̇2

T

〉

= w0b0c
2
T

〈∫ (∇× πT )
〉

. (256)

Finally, combining Eqs. (246), (248), (252), (255) and (256), as well as the definitions of

the non-linear coupling constants in Eqs. (81) to (87), we find that a number of apparently

miraculous algebraic cancellations lead to the surprisingly simple result

M ≃ −w0b
2
0

c2L

[

cLc
′
L

〈∫ (∇ · π)2
〉

+ cT c
′
T

〈∫ (∇× π)2
〉]

= − b0
c2L

[

c′L
cL
EL +

c′T
cT
ET

]

. (257)

Note that longitudinal and transverse phonons propagate at different sound speeds

generally—see Eq. (88). Therefore, if we consider a localized wave packet of phonons made

up of both longitudinal and transverse components, it will separate over time into two dif-

ferent unmixed localized wave packets. These will have different masses in general. Recall

that c′L = ∂cL/∂b and c′T = ∂cT/∂b, and in the non-relativistic limit, the overall mass density

ρm in the solid is directly proportional to b, the level of compression or dilation. When we

exchange the derivatives with respect to b for derivatives with respect to ρm, these must be

taken in the absence of shear stresses, corresponding to hydrostatic compression. We then

find that the mass of a wave packet consisting of phonons of either component—longitudinal
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(L) or transverse (T)—is equal to

MX = −d log cX
d log ρm

E

c2L
, (258)

where X = L, T . As expected, this result is identical to the one we found in Eq. (233) using

the effective point-particle theory of a highly localized phonon wave packet in a solid.

The extension of this result to a sound wave packet in a perfect fluid is immediate.

Following our prescription, we set the derivatives fY and fZ to zero in the action for phonons,

Eq. (78), when varying it to find the equations of motion. There are no longer transverse

modes and the transverse sound speed cT is zero. Following the same steps as above leads

to a single mass for (longitudinal) phonons,

M = − d log cs
d log ρm

E

c2s
, (259)

where cs is the speed of sound in the fluid. This, too, is precisely the same result we found

for phonons in a fluid using the effective point-particle theory—see Eq. (230). We have thus

verified both results using more rigorous effective field theory methods, without relying on

a point-particle-like approximate representation for the sound wave packet.
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4.5 Fluids with Galilei Symmetry

Low-energy physicists who study condensed matter phenomena and fluid dynamics

typically do not work with relativistic systems. From that point of view, deriving the results

that we have been considering from a fully relativistic starting point may seem gratuitous,

and it is nice to demonstrate that similar results can be deduced from a completely non-

relativistic starting point. This would demonstrate once again that the “gravitational mass”

of sound waves that we are calculating is not in any way a consequence of relativistic mass–

energy equivalence. In this section we will show that the sound wave packets carry a net mass

in a non-relativistic fluid without dissipation. In order to do so, we will develop an effective

theory of a dissipationless fluid that lives in a spacetime whose fundamental symmetries are

not the Poincaré, but translations, spatial rotations, and Galilei boosts, rather than Lorentz

boosts. Granted, this does not describe the exact symmetries of any real-world system, but

it is an approximation that is relevant for low-energy physics.

To begin, we will largely follow the notation and setup of Schakel [134], reviewing how to

construct invariant combinations of fields under Galilean transformations. There is a single

degree of freedom that we will use to construct the theory, namely the velocity potential

φ(x, t), which is related to the bulk velocity field by u = ∇φ. Under a Galilei boost with

small velocity v, we find the following transformation properties for φ:

x → x− vt , (260)

∂t → ∂t + v · ∇ , (261)

∇φ(x, t) → ∇φ(x, t)− v , (262)

φ(x, t) → φ(x, t)− v · x+ f(t) . (263)

The function f(t) can be determined by taking inspiration from Bernoulli’s principle in

standard hydrodynamics in the absence of a gravitation field, φ̇+ 1
2
u2+h = 0, where h is the

enthalpy per unit mass; indeed, in a perfect, dissipationless fluid with mass conservation, the
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quantity φ̇ can be interpreted as −µ/m where µ is the (non-relativistic) chemical potential.

The enthalpy per mass h should remain invariant under a Galilean transformation. Using

the above Galilei transformations and requiring that h remains invariant, we find that

df

dt
=

1

2
v2 =⇒ f(t) =

1

2
v2t , (264)

where v is the velocity of the Galilei boost7.

The only Galilei-invariant combination that we must consider at lowest order in the

derivative expansion is therefore proportional to φ̇ + 1
2
(∇φ)2. We will choose to work with

the invariant quantity

X ≡ −φ̇− 1

2
(∇φ)2 . (265)

The Lagrangian is a generic function of this invariant quantity. We write the action as

S =

∫

dt d3xF (X) . (266)

Since dimensional analysis shows that F has dimensions of energy density and X has dimen-

sions of chemical potential per unit mass, F ′(X) must have units of mass density. We will

define F ′ ≡ ρm on the background value of X = 0, and we will see that ρm is the background

mass density. Let us expand the action to cubic order in derivatives of φ, as usual. The

resulting action is

S3 =
ρm
2c2s

∫

dt d3x

[

φ̇2 − c2s(∇φ)2 + φ̇(∇φ)2 − 1− 2csc
′
s

3c2s
φ̇3

]

, (267)

7There is, of course, no need to include an integration constant, since φ is a velocity potential.
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where the sound speed is

c2s =
F ′

F ′′ , (268)

and the prime (′) symbol represents differentiation with respect to X. We will also note that

the non-linear equation of motion of φ is

(

∂2t − c2s∇2
)

φ = −1

2
∂t

[

(∇φ)2 − 1− 2csc
′
s

c2s
φ̇2

]

−∇ ·

(

φ̇∇φ
)

. (269)

Next, recall that thermodynamically, µ = ∂H/∂n, where H is the Hamiltonian and n

is the number density of microscopic constituents of the fluid. Since we have the thermody-

namic interpretation µ/m = −φ̇ and mass density ρ is equal to mn, it is clear that φ and

ρ are canonically conjugate variables. We can therefore calculate the mass density from the

Lagrangian by simple differentiation:

ρ = −∂F [X(∂φ)]

∂φ̇
. (270)

Expanding to quadratic order in φ, we find

δρ ≡ ρ− ρm = −ρm
c2s

[

φ̇+
1

2
(∇φ)2 − 1− 2csc

′
s

2c2s
φ̇2

]

. (271)

Now, we consider a localized wave packet solution φ and find its contribution to the

density perturbation δρ. Time averaging over an interval much longer than the oscillation

time 1/ω and integrating over volume will give the net mass that travels along with the

wave packet φ—i.e. M =
〈∫

δρ
〉

. We can solve the equation of motion Eq. (269) to non-

linear order by separating φ into a linearized wave equation solution φ(1) and a non-linear

correction φ(2), sourced by φ(1) itself. As in the case of the relativistic superfluid, we find

that
〈

∫

φ̇(1)

〉

=
〈

∫

φ̇(2)

〉

= 0 as a result of time averaging. We can relate the quadratic part
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of 〈
∫

δρ〉 to the energy E of the wave packet via the Hamiltonian,

H =
ρm
2c2s

∫

d3x
[

φ̇2 + c2s(∇φ)2
]

. (272)

Using the virial theorem, we see that

E =
ρm
c2s

〈

∫ φ̇2
〉

= ρm
〈∫ (∇φ)2

〉

. (273)

Combining Eqs. (271) and (273) gives the net mass that travels along with the wave packet,

M = −c
′
s

cs
E . (274)

Since X can be identified with h, the enthalpy density, and to leading order, δh = c2sδρ/ρm,

we can exchange the derivative with respect to X for a logarithmic (adiabatic) derivative

with respect to mass density. This yields

M ≃ − d log cs
d log ρm

E

c2s
, (275)

as expected. This is the same result we discovered in the effective point-particle theory and

using relativistic field theoretic methods.
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4.6 The Mass of Sound Waves in Classical Fluid

Dynamics

We will now show that a similar result can be derived by performing an analogous non-

linear analysis of density perturbations in the framework of classical fluid dynamics. The

interpretation of the mass displaced by a sound wave as gravitational mass is not immediately

obvious from the classical framework, but we will see that the result is quantitatively identical

to the one derived using field theoretic methods. The fact that the same expression can be

derived directly from classical fluid dynamics confirms that the gravitational mass we are

calculating is not a quantum phenomenon or relativistic effect.

There is a long history of studying non-linear effects of this sort within fluid dynamics,

and many similar calculations have been carried out. The calculation of a net momentum

carried by sound waves at non-linear order is a standard result derived by Landau and

Lifshitz [86]. A completely analogous procedure is used when calculating the radiation

pressure of mechanical waves at non-linear order—see, for example, [135]. In our language,

that would correspond to calculating
〈∫

Tii
〉

, rather than
〈∫

T00
〉

. Nevertheless, to our

knowledge, the exact quantity that we are considering—the negative gravitational mass

associated with a sound wave packet—has not been worked out in the context of classical

fluid dynamics.

Our starting point will be the ordinary Euler equations of classical fluid dynamics,

which govern adiabatic, inviscid flow. Equally, we could start from the Navier–Stokes equa-

tions and assume zero viscosity and thermal conductivity. In our case, we will consider the

incompressible Euler equations in Lagrangian form, rather than Eulerian form:

ρ̇+∇ · (ρv) = 0 , (276)

v̇ + (v · ∇)v = −∇p

ρ
. (277)

In the equations above, ρ is the mass density, v represents the velocity field, and p is the pres-
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sure. Our approach will be to consider a steady background in hydrostatic equilibrium and

a small density perturbation δρ, which takes the form of a localized wave packet. We orga-

nize the density perturbations as a second-order perturbative expansion, with corresponding

perturbations in the velocity field and the pressure.

ρ = ρ0 + δρ(1) + δρ(2) + · · · , (278)

v = v(1) + v(2) + · · · , (279)

p = p0 + δp(1) + δp(2) + · · · , (280)

where ρ̇0 = 0 and ṗ0 = 0. Although the full non-linear relationship between ρ and p is

determined by the equation of state, we can use the thermodynamic identity dp/dρ = c2s(ρ)

in order to relate ρ and p perturbatively, order by order.

δp(1) = c2sδρ(1) , (281)

δp(2) = c2sδρ(2) + csc
′
s

(

δρ(1)
)2
, (282)

where c′s ≡ dcs/dρ. Both cs and c′s are implicitly evaluated on the background in the above

equations.

Now, we substitute Eqs. (278) to (282) into Eqs. (276) and (277). To first order, the

result is

ρ0∇ · v(1) = −δρ̇(1) , (283)

ρ0v̇(1) = −c2s∇δρ(1) . (284)

Of course, differentiating Eq. (283) with respect to time and substituting Eq. (284) gives the

ordinary wave equation,

δρ̈(1) = c2s∇2δρ(1) . (285)
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We take δρ(1) to be a localized wave packet solution to the linear equations of motion. Taking

the curl of Eq. (284) gives ∇×v = const, and we can take that constant value to be zero. In

other words, the fluid flow is irrotational to first order in our perturbative expansion. Taking

the time derivative of Eq. (284), substituting Eq. (283), and introducing a velocity potential

via v(1) = ∇φ(1), we find a second wave equation for the first-order velocity potential

φ̈(1) = c2s∇2φ(1) . (286)

We will also take φ(1) to be a localized wave packet solution of this linear equation, with

v(1) defined accordingly as its gradient. The nonlinear corrections δρ(2) and v(2) are sourced

in turn by the linear solutions δρ(1) and v(1) in the Euler equations. After some algebraic

manipulation we find a sourced wave equation for the non-linear correction to the density

perturbation:

δρ̈(2) − c2s∇2δρ(2) = ρ0∇ ·
[(

v(1) · ∇
)

v(1)

]

− c2s
ρ0

(

1− 2ρ0c
′
s

cs

)

∇ ·
(

δρ(1)∇δρ(1)
)

− ∂t

(

v(1) · ∇δρ(1) −
1

ρ0
δρ(1)δρ̇(1)

)

.

(287)

In order to find the net mass that travels with the sound wave packet, we will perform

the usual set of operations: solve the non-linear equations of motion, average in time over an

interval much larger than the typical oscillation time 1/ω, and integrate δρ = δρ(1)+δρ(2) over

a volume containing the wave packet. The resulting quantity will have the interpretation

of the net mass that travels with the sound wave. As a first step, we will time-average

Eq. (287), which has the effect of removing total time derivative terms, since they produce

combinations of oscillatory terms that average to zero. Reintroducing the velocity potential,

we find that the time-averaged equation of motion can be written as

∇2
〈

δρ(2)
〉

= −
〈

∇2F
〉

, (288)
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where we introduced the function

F (x, t) =
ρ0
2c2s

[

∇φ(1) (x, t)
]2 − 1

2ρ0

(

1− 2ρ0c
′
s

cs

)

[

δρ(1) (x, t)
]2
. (289)

We can easily solve the time-averaged equation of motion Eq. (288) using Green’s function

methods. Integrating the solution over a volume containing the wave packet, we obtain the

expression

〈∫ δρ(2)
〉

=
1

2ρ0

(

1− 2ρ0c
′
s

cs

)

〈

∫ (

δρ(1)
)2
〉

− ρ0
2c2s

〈

∫ (

∇φ(1)

)2
〉

. (290)

We know that the Lagrangian for a fluid with barotropic, inviscid, irrotational flow is given

by L =
∫

d3x
[

1
2
ρ (∇φ)2 − e(ρ)

]

, where the internal energy density e is related to the density

by e′′(ρ) = c2s(ρ)/ρ. Notice, then that in Eq. (290), all the terms on the right-hand side other

than − c′s
cs

〈

∫ (

δρ(1)
)2
〉

are precisely the Lagrangian of density perturbations in such a fluid,

averaged over time and divided by c2s, to leading order in the perturbative expansion. Those

terms must therefore average to zero over time. We are left with

〈∫ δρ(2)
〉

= −c
′
s

cs

〈

∫ (

δρ(1)
)2
〉

. (291)

Using the virial theorem, we can show that the total energy (or time-averaged Hamiltonian)

associated with density perturbations in such a fluid must be equal to

E = ρ0

〈

∫ (

∇φ(1)

)2
〉

=
c2s
ρ0

〈

∫ (

δρ(1)
)2
〉

(292)

to leading order, where φ(1) and δρ(1) are wave packet solutions of the wave equation. Thus,

combining Eqs. (291) and (292), we find that the net mass M associated with a sound wave
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packet in a fluid is given by

M = −ρ0c
′
s

c3s
E = −d log cs

d log ρ

E

c2s
. (293)

This is the same now-familiar result for the net gravitational mass associated with a sound

wave packet in the fluid that we have derived using several different methods. It is a useful

cross-check which confirms that the effect we are studying has nothing to do with relativity;

in fact, this effect has been hidden in plain sight in classical fluid dynamics for centuries,

since the time of Euler.
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4.7 The Mass of Sound Waves in Classical Elas-

ticity Theory

Just as we derived the result for the net mass that travels with sound waves in a fluid

from classical fluid dynamics, we can verify the result we obtained in isotropic solids using

the classical theory of elasticity in continuum mechanics, which also proves to be a useful

cross-check. We will slightly adapt the notation and exposition in Marder [136] and Landau

et al. [75] to review the basic setup of the non-linear theory of elasticity in isotropic solids.

We begin by considering a solid in which material points are located in some reference

state with coordinates x. Elastic deformation causes the material points to be displaced to

a set of new positions with coordinates s(x). The main degrees of freedom in this theory are

the displacements u, defined as

u(x) = s(x)− x . (294)

The change in square distance between a material point originally located at x and its nearest

neighbor originally at x+ dx induced by the elastic deformation is given by

1

2

[

|s(x+ dx)− s(x)|2 − dx2
]

=
1

2
(gij − δij)dxidxj

≡ eijdxidxj ,

(295)

where the extra factor of 1/2 is included by convention. eij is generally known as the non-

linear strain (or Lagrangian stress) tensor, and the metric gij is defined as

gij ≡
∂s

∂xi
·
∂s

∂xj
. (296)
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In terms of the displacements u, this metric can also be written as

gij = δij + ∂iuj + ∂jui + ∂iuk∂juk

≡ δij + 2eij ,

(297)

where the partial derivatives ∂i are taken with respect to material point positions xi. In the

theory of linear elasticity, the quadratic term in eij is neglected, allowing for a simplified

analysis of the dynamics of elastic waves in the solid. However, the non-linear part will be

important for us here.

The behavior of elastic waves in solids can be studied by minimizing a free energy

functional F . If we were interested in linear elasticity only, we would write a free energy

functional that is quadratic in the strain tensor. We would not include any terms linear

in the strain, so that the ground state will correspond to the undistorted solid, for which

eij = 0. Therefore, in linear elasticity, we write the free energy functional as

F =
1

2

∫

d3x eijKijklekl =
1

2

∫

d3x eijσij , (298)

where σij ≡ Kijklekl is the stress tensor and Kijkl is the elastic modulus tensor of rank 4 [75].

Since the strain is symmetric under interchange of indices, the tensor Kijkl can generally

be assumed to be symmetric under i ↔ j, k ↔ l, and ij ↔ kl permutations. Any further

constraints on the form of Kijkl are imposed by the symmetry point group of the solid. We

will be particularly interested in the case of an isotropic solid, and the tensor Kijkl for an

isotropic solid can be written in the form

Kijkl = λδijδkl + µ (δikδjl + δilδjk) , (299)

which keeps the elastic energy invariant under SO(3) rotations. The parameters λ and µ are

known as the Lamé constants of the solid.
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When working to non-linear (cubic) order with the full Lagrangian stress tensor, there

are additional cubic terms in the Lagrangian stress that can be added to the free energy

functional. The conventional approach—see, for example, Landau et al. [75]—is to add to

the elastic energy functional8 three independent cubic scalar combinations in the strain,

usually (tr e)3, (tr e)(tr e2), and tr e3, in addition to the quadratic scalars tr e2 and (tr e)2,

since those scalar combinations are invariant under rotations. However, a functional involving

both quadratic and cubic invariants in the strain is no longer going to have eij = 0 as its

ground state in general. If our theory is to describe elastic waves as perturbations around

the lowest-energy configuration of a general isotropic solid, we must introduce a new ground

state ui ∝ xi, eij ∝ δij around which to introduce small fluctuations9. Instead of doing this,

we can eschew the standard elasticity formalism involving the strain tensor and take the

completely equivalent approach of building quadratic and cubic invariants directly from the

metric tensor gij, in which case the ground state is unchanged—gij ∝ δij. Furthermore, we

can take inspiration from our approach to studying a solid in the relativistic effective field

theory treatment of Section 2.3. As before, we introduce an overall scaling parameter b0 and

write

s(x) = 3
√

b0 [x+ u(x)] . (300)

Assuming the solid is isotropic, we build three linearly independent SO(3) rotational

8It is no longer accurate to call it free energy in this case, since anharmonic effects give rise to
adiabatic motion.

9Note that Landau et al. [75] build the elastic energy functional from quadratic and cubic in-
variants of the non-linear strain tensor eij = ∂iuj + ∂jui + ∂iuk∂juk when analyzing anharmonic
vibrations, without giving u a non-zero VEV. The resulting theory does not describe the ground
state of the most general solid, and it does not fully reproduce the dynamics of elastic waves at
non-linear order.
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invariants from the metric gij = ∂isk∂jsk, which we choose to be

b =
√

det g , Y =
tr g2

(tr g)2
, Z =

tr g3

(tr g)3
. (301)

The elastic energy density will then be a function of these three invariants, which can be

Taylor expanded to reproduce contributions to the elastic energy from all possible invariant

combinations of the strain to arbitrary order in perturbation theory. We choose to write the

most general elastic energy of an isotropic solid as

F = ρ0

∫

d3x f(b, Y, Z) . (302)

We pulled out an overall factor of ρ0, the equilibrium mass density in the solid. Expanding

to cubic order in small displacements u, the elastic energy becomes

F → ρ0b0

∫

d3x

[

c2L − c2T
2

(∇ · u)2 +
c2T
2
(∂iuj)

2 + g3(∇ · u)3 + g4(∇ · u)(∂iuj)
2

+ g5(∇ · u)(∇× u)2 + g6∂iuj∂iuk∂juk + g7∂iuj∂juk∂kui

]

,

(303)

where the constants c2L, c
2
T , g3, g4, g5, g6, g7 have precisely the same form as in the relativistic

theory—see Eqs. (79), (80) and (83) to (87).

Let us now introduce time dependence into the theory. While displacements are occur-

ring, material points move with velocities ṡ ≡ ∂ts(x, t) ∝ ∂tu(x, t). There is an associated

kinetic energy density at each material point given by ρ0ṡ
2/2, where ρ0 is the mean mass

density of the solid at equilibrium. We can use this to define a total kinetic energy and a

Lagrangian associated with elastic deformations:

L ≡ T − F , (304)

T = ρ0b0

∫

d3x
1

2
u̇2 (305)

135



is the total kinetic energy. The b0 factor is included since we want the Lagrangian to scale

uniformly with dilations or compressions of the reference state of the solid, as an extensive

quantity. We can use Eq. (303) and vary the cubic Lagrangian with respect to the small

displacements u to find non-linear (quadratic) equations of motion for displacements. The

result is

ρ0üi −
(

c2L − c2T
)

∂i (∇ · u)− c2T∇2ui = ∂jAij , (306)

where Aij has exactly the same form as Eq. (246) if we identify u with π, but with the

couplings g1 and g2 set to zero. As before, this equation can be solved non-linearly by

defining a perturbative expansion u = u(1) + u(2) + · · ·, where u(1) solves the linearized

equations of motion, and u(2) is sourced by u(1). The linear equations of motion show that

cL and cT are indeed the longitudinal and transverse sound velocities, respectively.

In order to find the mass that travels with a localized elastic wave packet in this solid,

we must simply calculate M ≃ ρ0b0〈
∫

∇ · u〉, since at leading order ∇ · u ∼ eii encodes

the density of displaced material points due to the presence of compressional elastic waves.

Mass M must include a factor of b0 because it scales linearly with volume, as does b0. Again,

we use 〈
∫

. . . 〉 to denote the combination of time averaging and spatial integration over a

volume containing the wave packet. At linear order, the quantity 〈
∫

∇ · u〉 is zero, since a

plane wave packet can be made arbitrarily localized. However, the non-linear correction will

contribute a non-zero quantity to this net mass. Following the same procedure as before, we

solve the time-averaged non-linear equation of motion Eq. (306) for 〈∇·u(2)〉 using Green’s

function methods in order to calculate the mass M . The exact same cancellations occur as

in Section 2.3, and the result is the same:

M = − b0
c2L

[

c′L
cL
EL +

c′T
cT
ET

]

, (307)

where EL and ET are now the contributions of longitudinal and transverse elastic waves,
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respectively, to the Hamiltonian H = T +F , averaged over time. Noting that b is proportional

to eii, which is proportional in turn to the change in the mass density induced by the elastic

wave packet in the solid, we find that the net mass that travels with longitudinal (L) and

transverse (T) waves is once again given by

MX = −d log cX
d log ρm

EX

c2L
, (308)

for X = L, T . Thus we see that this net mass associated with elastic waves is a completely

classical effect, contained within the ancient theory of elasticity in continuum mechanics; it

could have been calculated by Cauchy, had he known to look for it.
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4.8 Discussion and Implications

In this section, we have repeatedly shown that sound waves carry a net mass in a variety

of media: superfluids, ordinary fluids, and solids. The mass associated with a localized sound

wave packet truly is a gravitational one, in the sense that it is not only affected by gravity,

but it also sources gravity in turn. This mass happens to be negative, as a fraction of the

total mass of the system, meaning that sound gets refracted in direction opposite to the

gravitational field; we showed that phonons float, though typically very slowly. This effect

is tied to the non-linear interactions of phonons in condensed matter systems, and it would

have been invisible from a purely linear wave analysis. The net gravitational mass associated

with sound waves is still a very small quantity, but it has a direct scaling with the energy

carried by the sound wave, with a coefficient of proportionality that is completely determined

by the equation of state of the medium. Let us pause to consider the implications.

A direct consequence of equations of motion such as Eq. (217) for localized phonon

wave packets is that in a stratified medium, where the speed of sound depends on a single

spatial coordinate z in a gravitational field, an analogue of Snell’s law holds for sound waves:

c−1
s (z) sin θ = const, where θ is the angle of the phonon’s net momentum with respect

to the z axis. Instead of traveling along straight trajectories, nearly horizontal localized

phonon trajectories gradually curve upward in a downward gravitational field, with radius

of curvature comparable to R ∼ c2s/g. In seawater, for example, this curvature radius is

of order R ∼ 102 km, which implies that they are refracted by one degree every couple of

seconds, while in superfluid helium, nearly horizontal phonons are refracted by 10 degrees

in a comparable period of time. The refraction of phonons in stratified media implies that

uniform sound radiation will spread in a very, very slightly not-quite-spherical manner—

Huygens’ principle for sound waves would have to be ever-so-slightly modified. Technically,

this would lead to systematic corrections that could be accounted for in technologies such

as sonar [137], but these are negligible effects over distances much smaller than the radius

of curvature of phonon trajectories.
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It may seem as though the effect we are considering is so small that is undetectable

in ordinary experimental conditions. Consider, for instance, a phonon in superfluid helium-

II that is highly energetic, say, with momentum of order k ∼ 1 keV ∼ 0.5 Å
−1

, which is

starting to get close to the “maxon” region of the excitation spectrum (see Fig. 1). Assuming

d log cs/d log ρ is of order 1, the mass associated with the phonon is of the same order as

a single helium atom, or 1 GeV. A lower-momentum phonon would displace a mass that

is a fraction of the mass of a helium atom. Note that this does not contradict the fact

that particle number is strictly integral in a superfluid condensate, since a generic single

phonon state in the condensate corresponds to a many-body wave-function solution to the

Schrödinger equation that is delocalized over much of the system.

Is this rather subtle effect potentially detectable in realistic experimental setups, then?

Since the mass of a sound wave scales as E/c2s, we can either consider media with low sound

speeds or highly energetic phenomena for the most optimistic experimental realizations. Very

slow sound speeds have been observed in ultracold atomic gases and Bose–Einstein conden-

sates. Let us take as an example a dilute rubidium or cesium Bose–Einstein condensate.

An expression for the sound velocity at peak density in such a condensate was first given

by Bogolyubov [138]. It is typically of order cs ∼
√

4πh̄2n0as/m2, where n0 is the peak

number density, as is the scattering length in the medium, and m is the mass of atoms in

the condensate. With a peak density of order 1019 m−3, a scattering length around 10 Å,

and mass of order 10−25 kg, this gives a sound speed on the order of cs ∼ 1 mm/s. Indeed,

such velocities of sound have been measured experimentally in dilute sodium Bose–Einstein

condensates [139]. For an energetic phonon with maximum momentum k ∼ 1/as in such a

medium, the displaced mass can be as high as M ∼ 104 GeV/c2, and for an atomic cloud

with roughly 50 thousand cesium atoms, this amounts to between 0.1% and 1% of the total

mass of the condensate [140]. Although the displaced mass is a small fraction of the total, it

is certainly not negligibly small. Ultracold Bose–Einstein gases offer an interesting potential

avenue for studying this effect experimentally, especially because trapping configurations can
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be tuned to simulate strong gravitational fields.

At the other extreme, we can consider highly energetic events involving macroscopic

sound waves that propagate over large distances; seismic waves from earthquakes are an ideal

candidate. Consider an extremely powerful earthquake with Gutenberg–Richter magnitude

around 9. Such an earthquake is expected to radiate about 1018 J in seismic energy. Using a

typical p-wave velocity of around 5000 km/s [141], this corresponds to a net displaced mass of

approximately 1011 kg, or a change in gravitational acceleration of the order of δg ∼ 10 fGal.

With current technology, mobile atomic gravimeters can be used to measure changes in

gravitational acceleration up to the 10 pGal level [142–144], so an improvement in sensitivity

of around three orders of magnitude would be required to make such a measurement10. Still,

given the rate of improvement of atomic clock technology, such measurements may become

possible in the not-too-distant future.

Besides concrete measurements that can be done on Earth, we can consider the theo-

retical implications of this result for the dynamics of neutron stars, which are believed to

have superfluid matter in their interiors [126, 145–147]. The behavior of phonons in strong

gravitational fields has implications for phonon-mediated transport properties in neutron

stars. The sound speed is expected to be relativistic in such settings [125, 148], but this is

not a problem since our formalism is fully relativistic and we need not approximate beyond

Eq. (243). Slightly generalized results hold for media with relativistic sound velocities.

Another conclusion that can be drawn from our result, which is beautiful to consider

but almost certainly undetectable, is that since sound waves generate gravitationl fields,

they gravitate with each other. Two wave packets propagating in parallel through a medium

will both have negative gravitational mass, and since like charges attract in gravity, their

trajectories will slowly begin to converge over time.

10Of course, we hope that the opportunity to make such measurements in the aftermath of a
magnitude 9 earthquake will never arise!
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5 Beyond EFT: UV Completion of a

Perturbative Solid

5.1 Overview

So far, we have been exploring the power of effective field theories to model the low-

energy dynamics of condensed matter systems. It is clearly a powerful framework, with

the potential to describe observable macroscopic phenomena, such as vortex precession in

trapped superfluids, as well as subtle non-linear effects like the net gravitational mass of

phononic excitations. However, the formalism of effective field theory has built-in limitations

from the outset. The theories we have been considering are valid when describing low-energy

phenomena or the interaction of long-wavelength excitations with external sources, repre-

senting non-perturbative phenomena such as vortices. Such effective theories have associated

cutoff length scales that limit the regime of validity of perturbation theory, obscuring the

short-distance physics of condensed matter systems. One way to move beyond this obvious

limitation would be to study a UV-complete (renormalizable) theory with a non-trivial fixed

point that reduces to the effective theory at low energies after integrating out certain heavier

degrees of freedom. Although this is not a uniquely defined task, symmetry considerations

can help guide us when trying to formulate a UV completion of an effective field theory. If

done successfully for the effective theory of a solid, which is necessarily homogeneous in our

formulation, it would allow us to ask a simple yet intriguing question: Must all solids that

appear to be homogeneous at long distances eventually break homogeneity at short distances,

as seems to be the case in nature for all the real-world solids with which we are familiar?

Or, stated conversely, can one formulate a state in relativistic quantum field theory that ap-

pears to be a homogeneous solid at long distances, yet is still perfectly homogeneous at short

distances? How would such solids behave, and what peculiar properties must such solids

have, if any? All such questions can be answered by finding UV completions of a low-energy

effective theory of a perturbative solid. Moreover, such UV completions would allow us to
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study more technical questions about the dynamics of the system at shorter wavelengths, the

renormalization of the theory and its running couplings, how symmetry-breaking processes

at low energies might be connected to the symmetries of the UV-complete theory, and what

possible candidates for holographic dual theories of solids we may consider. It could lead to

the discovery of additional constraints on the couplings in the low-energy theory, from the

requirement of properties such as subluminality, positivity, and stability in the UV theory.

A common approach to finding UV completions for general effective theories is to embed

them into linear sigma models by introducing additional heavy “radial modes” and restoring

the broken internal symmetries. This is achieved by adding modes with masses around the

strong-coupling scale in the low-energy effective theory. If G is a broken symmetry group, H

is an unbroken subgroup, g ∈ G, h ∈ H, and π are a set of associated Goldstone modes, then

the radial modes ρ transform linearly under g as ρ → h (π, g)ρ, thus restoring the broken

symmetry and realizing a UV completion of the dynamics of the Goldstones. A major

obstacle in UV completing low-energy effective theories of condensed matter, however, is the

spontaneous breaking of space-time symmetries, especially space-time translations. Indeed,

Endlich et al. [149] demonstrated that this process of embedding effective theories into linear

sigma models generally fails when the spontaneously broken symmetries are not internal, but

space-time symmetries. Since all condensed matter systems spontaneously break some of the

Poincaré symmetries, we must look for other options to UV-complete their effective theories

and study symmetry breaking at high energies.

One popular avenue for exploring the properties of condensed matter at strong coupling

and transcending the limitations of the low-energy effective theories involves holography.

Holographic AdS dual models have been studied for systems realizing the properties of su-

perconductors/superfluids [56], fluids and solids [57, 150–152], and even supersolids [153].

Finding candidate theories of condensed matter systems that have holographic duals can

be somewhat more of an art than a science, however, since it is not always straightforward

to find well-defined, renormalizable theories that realize the appropriate symmetry-breaking
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patterns. Holographic methods are very effective for getting an idea about what happens to

condensed matter systems at quantum criticality, when standard field theoretic approaches

fail. These methods are also computationally tractable, lending themselves to the calculation

of transport properties in various media at strong coupling and finite temperature. One of

the primary difficulties in constructing a holographic dual theory that realizes the symmetry-

breaking pattern of a solid arises from the non-compactness of the subgroup of translations in

the Poincaré group. Since the holographic dictionary demands that global boundary theory

symmetries become gauge symmetries in the bulk, finding a gauged companion for global

translation symmetry is not an easy task. For this reason, in [150], Esposito et al. resorted

to building a theory of a conformal solid on a sphere, working out a holographic dual descrip-

tion, and then taking a flat-space limit. We will take inspiration from this approach here.

Rather than relying on holographic methods, however, we will explore somewhat different

questions and issues surrounding how to find a UV completion for the effective theory of

solids. We will explore a class of renormalizable, Lorentz-invariant interacting quantum field

theories, including that of a solid on a sphere, and implement symmetry-breaking patterns

paralleling those of an isotropic solid. We will see to what extent each of these theories is

an appropriate description of a solid, with the hope that one of them might provide a viable

renormalizable theory that can be used as a dual theory in the holographic framework. In

each case, we will integrate out gapped modes in order to obtain a low-energy effective theory

of gapless Goldstones, which should resemble, at least in part, the one we studied previously

in Section 2.3.

As we have seen in Section 2.3, an isotropic solid can be treated in effective field theory

as a continuous, homogeneous medium at large distances. Its properties and dynamics can

be modeled by considering the motion of volume elements, represented by three scalar fields

φI(x, t). In the case of a fluid (which is just a highly symmetric solid from the effective field

theory point of view), the coordinates φI can be thought of as the co-moving Lagrangian

coordinates. These coordinates can be chosen so that in the ground state of the solid, they
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become aligned with the physical coordinates, 〈φI〉 = αxI , where the constant α encodes

the degree of uniform compression or dilation of the solid. It is clear that this ground state

configuration breaks symmetry under both spatial translations and rotations, though. In

this section, we will consider a solid that is both homogeneous and isotropic, so we require

that that the theory possesses an internal ISO(3) symmetry [16, 74, 150] under which the

scalars φI transform as

φI → OI
J φ

J + aI , (309)

where aI is a constant vector and OI
J is an SO(3) rotation matrix. An isotropic solid, then,

can be defined as a system that spontaneously breaks internal translations and rotations,

as well as boosts, down to a diagonal subgroup. The overall symmetry breaking pattern

is ISO(3, 1) × ISO(3) → ISO(3). This diagonal subgroup enforces the homogeneity and

isotropy of the resulting state.

In the effective field theory of solids, we postulated a Lagrangian density that is a

generic function of three linearly independent Poincaré and internal ISO(3) invariants con-

structed from the scalar fields φI , which are the lowest-order invariants in the derivative

expansion. We introduced fluctuations about the VEV and expanded the action to obtain

a perturbative theory of phonons in the solid. In this section, we want to go beyond this

approach. We will try several different methods to formulate a UV-complete theory that

realizes the same symmetry-breaking pattern as the perturbative homogeneous solid. We

will then integrate out heavy degrees of freedom in order to obtain a low-energy theory of

weakly coupled phonons in a solid. In spite of the disparate starting points, we will find

that in every case, after integrating out heavy modes, the resulting low-energy theories are

the same; this common “theoretical fixed point” associated with isotropic solids has a highly

peculiar structure, enjoying an enhanced SO(3)×SO(3) symmetry, in which space-time co-

ordinates and internal indices may be rotated independently. The velocity of propagation of
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transverse excitations in this theory is always luminal, while longitudinal phonons propagate

at a subluminal velocity as long as the original UV theory is stable. These turn out to be

common features of effective theories of isotropic solids that are homogeneous at both long

and short distances. The theory that emerges must describe a rather extraordinary solid!

Note on conventions: Unlike in the prior sections, we will not be interested in studying

the non-relativistic limit of these theories. Accordingly, we set c = h̄ = 1. We continue

to work in metric signature (−,+,+,+). We will also use X to represent the combination

of fields trBIJ = tr
(

∂µφ
I∂µφJ

)

, rather than the combination in the effective theory of a

superfluid.
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5.2 Isotropic Limit of a Cubic Solid

It is not immediately obvious how to formulate a theory of an isotropic solid with

renormalizable interactions. Instead, let us begin by writing a theory of a system that has

the symmetries of an anisotropic, cubic solid. Approximate isotropy can then be recovered

by restricting to a particular set of coupling constants in the theory for which the anisotropies

become negligible. We will build the Lagrangian from a set of three complex scalar fields

ΦI(x), with I = 1, 2, 3. The Lagrangian will have internal U(1)×U(1)×U(1) symmetry and

ΦI ↔ ΦJ permutation symmetry. The most general Lorentz invariant and renormalizable

action that is compatible with the above symmetries is [154]

S = −
∫

d4x
∑

I

[

∣

∣∂ΦI
∣

∣

2 −m2
∣

∣ΦI
∣

∣

2
+
λ1
2

∣

∣ΦI
∣

∣

4
]

−
∫

d4x
λ2
2

∑

I 6=J

∣

∣ΦI
∣

∣

2 ∣
∣ΦJ

∣

∣

2
,

(310)

where the parameters m2, λ1, and λ2 are arbitrary constants for now. The sign of the mass

term was chosen for later convenience, so that the potential would have a Mexican hat-like

form for positive m2.

Next, we implement symmetry breaking by looking for complex scalar field configura-

tions that break the internal U(1)3 symmetry by a non-trivial VEV. In order to do so, we

redefine the complex scalar fields ΦI in terms of six real scalars, ρI and φI :

ΦI(x) = ρI(x)e
iφI(x) . (311)

This field decomposition separates the complex scalars into heavy radial modes ρI and light

phases φI , which undergo constant shifts under the internal U(1)3 transformations of ΦI .

The permutation symmetry has the same effect of permuting φI ↔ φJ . These phases φI are

nothing other than the nondimensionalized co-moving coordinates of volume elements in a

solid, and their symmetry properties indicate that the solid has cubic symmetry. In terms
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of these new real scalar fields, the action of Eq. (310) becomes

S = −
∫

d4x
∑

I

[

(∂ρI)
2 −m2ρ2I + ρ2I

(

∂φI
)2
]

−
∫

d4x

[

λ1
2

∑

I

ρ4I +
λ2
2

∑

I 6=J

ρ2Iρ
2
J

]

.

(312)

Our next goal is to integrate out the heavy radial modes ρI , leaving only a low-energy

effective theory for the light fields φI , representing co-moving coordinates in the solid. In

order to integrate out the heavy fields, it will be convenient to introduce the following

notation:

ρ2 ≡













ρ21

ρ22

ρ23













, b ≡













B11 −m2

B22 −m2

B33 −m2













,

Λ ≡













λ1 λ2 λ2

λ2 λ1 λ2

λ2 λ2 λ1













.

(313)

As in Sections 2.2 and 2.3, we have BIJ = ∂µφ
I∂µφJ . Since the radial fields are heavy and

we are going to integrate them out, we can neglect derivatives of ρI , leaving the action in

the simple form

S ≃ −
∫

d4x

(

ρ2 · b+
1

2
ρ2 ·Λ · ρ2

)

. (314)

Varying this action with respect to ρ2 gives the equation of motion for the heavy radial

mode,

ρ2 ≃ −Λ−1
· b . (315)
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Substituting this classical solution for the radial mode back into the action, we find the

following effective action for the light scalar fields φI :

Seff =
1

2

∫

d4x b ·Λ−1
· b . (316)

Inverting the matrix Λ and introducing the notation X ≡ trBIJ , we can rewrite this effective

action as

Seff = −
∫

d4x

[

m2 (ξ − 2ξ′)X +
1

2
ξ′X2 + (ξ + ξ′) τ IJKLBIJBKL

]

, (317)

where the parameters ξ and ξ′ are defined as

ξ ≡ λ1 + λ2
(λ1 − λ2)(λ1 + 2λ2)

, ξ′ ≡ λ2
(λ1 − λ2)(λ1 + 2λ2)

(318)

and the tensor τ IJKL is given by

τ IJKL ≡
3

∑

M=1

δIMδ
J
Mδ

K
Mδ

L
M . (319)

The effective action Eq. (317) describes a theory of a solid, but it is clearly not isotropic.

Anisotropies are produced by the third term proportional to τ IJKL, which is a consequence

of cubic symmetry. While the term preserves the original permutation symmetry and shift

symmetry of the φI fields, it is not invariant under arbitrary rotations. Since we are interested

in generating an effective theory of a solid that is isotropic at long distances, we must tune

the coupling parameters λ1 and λ2 so that the final term is negligibly small. We cannot

make ξ+ ξ′ strictly equal to zero, since that corresponds to precisely those couplings λ1 and

λ2 which make the matrix Λ singular (i.e. the original theory becomes strongly coupled).
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However, we can study the regime in which

λ1 + 2λ2 ≪ λ1 − λ2 , (320)

since this ordering between the couplings would entail that

ξ + ξ′ =
1

λ1 − λ2
≪ − 1

3(λ1 + 2λ2)
≃ ξ′

∼ 1

λ1 + 2λ2
= ξ − 2ξ′ ,

(321)

and the anisotropic term involving τ IJKL is subleading compared to the first two terms in

the effective action Eq. (317). We are then left with the effective action

Seff = − m2

λ1 + 2λ2

∫

d4x

[

X − 1

6m2
X2 +O

(

λ1 + 2λ2
λ1 − λ2

)]

. (322)

This action is completely isotropic to leading order if we expand in powers of the parameter

(λ1 + 2λ2)/(λ1 − λ2), which is small in the regime we are considering. If we canonically

normalize the fields by performing the rescaling φI →
√

λ1+2λ2

2m2 φI , we find that the effective

action becomes

Seff = −
∫

d4x

[

1

2
X − λ

4m4
X2

]

, (323)

to leading order, where we defined λ ≡ (λ1 + 2λ2)/6. This action has a peculiar structure

with enhanced symmetry in both the kinetic term and the quartic term. In particular, we

see that the action in this limit is still invariant under internal rotations φI → OI
Jφ

J , where

OI
J is an SO(3) matrix, as well as spatial rotations. We will see that this action reappears

in unexpected contexts throughout the following sections. Note that under this rescaling,

we have the VEV 〈φI〉 = α′xI , where α′ =
√

m2

3λ
α.

Let us now consider the behaviors of phonons in this low-energy effective theory. Phonons
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are introduced in the usual manner, by fluctuating the φI scalar fields about the ground state

configuration. Letting φI = α′ (xI + πI
)

as before, and recalling that X = −φ̇2 + (∂iφj)
2,

we obtain the phonon action

S =
α2(m2 − α2)

3λ

∫

d4x

[

1

2
π̇2 +

1− c2L
2

(∇ · π)2 − 1

2
(∂iπj)

2

− 1− c2L
2

(∇ · π) π̇2 +
1− c2L

2
(∇ · π) (∂iπj)

2

]

.

(324)

From the first line of Eq. (324) we can immediately see that the longitudinal (L) and trans-

verse (T) velocities of sound are

c2L = 1− 2α2

3(m2 − α2)
, c2T = 1 . (325)

Indeed, this is a theory of a highly peculiar isotropic solid in which the transverse excitations

propagate luminally, while the longitudinal phonons always propagate at a different velocity,

since we always have α2 > 0. The inequality of Eq. (88) is not satisfied by the velocities of

sound in this case. Moreover, requiring stability and subluminality of the longitudinal modes

produces additional constraints on the parameters of the theory; in particular, we have the

conditions

3

5
m2 > α2 > 0 , λ1 + 2λ2 > 0 . (326)

As we will show below, these conditions are consistent with those that are found by requiring

the stability of the UV theory. The luminal speed of transverse excitations is a direct

consequence of the fact that the effective action in Eq. (323) depends only on the trace of

BIJ . In order for the transverse sound speed to be subluminal, the effective action must

include other linearly independent SO(3) invariants, such as trB2 and trB3. Integrating

out heavy modes from the theory that we started with in Eq. (310) does not produce any

additional terms of that sort in the effective action after we take the isotropic limit.
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Let us briefly turn back to the UV theory that we started with and consider what its

stability implies for the allowed regions of the parameter space {λ1, λ2,m2, α2}. Substitut-

ing the (non-rescaled) VEV 〈φI〉 = αxI into the equation of motion for the radial modes,

Eq. (315), we find that on the background,

〈

ρ2I
〉

=
m2 − α2

λ1 + 2λ2
(327)

for all I = 1, 2, 3. The internal consistency of our analysis and stability of the UV theory then

requires that this VEV be strictly positive. The requirement of positivity can be achieved

in three different ways:

1. m2 > α2 > 0 and λ1 + 2λ2 > 0: In this situation, the α2 → 0 limit (in which the solid

background is not present) is stable against perturbations. Since we have m2 > 0,

spontaneous symmetry breaking occurs in the UV theory regardless of the value of α2.

Increasing the value of α2, which is positive by definition, reduces the value of the VEV

of the radial modes, thus driving the fields closer to the center of the Mexican hat-like

radial potential.

2. α2 > m2 > 0 and λ1 + 2λ2 < 0: In this case, taking the limit α2 → 0 also results

in m2 → 0. The vacuum in this limit is not perturbatively stable. This case is not a

viable one for achieving positivity and stability in the UV theory.

3. m2 < 0 and λ1 + 2λ2 < 0: Although the vacuum in the α2 → 0 limit is perturbatively

stable, the opposite sign of the mass term implies that spontaneous symmetry breaking

does not take place;
〈

φI
〉

= αxI is no longer an actual VEV, as the potential in this

case is unbounded from below.

We can also study the stability of the ground state in the UV theory against small

perturbations by considering the mass matrix of the heavy radial modes. A negative eigen-

value in the mass matrix would produce an instability of the low-energy effective theory that
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results from integrating out the radial modes. The mass matrix is readily calculated from

the Lagrangian:

M
(ρ)
IJ = −1

2

∂2L
∂ρI∂ρJ

= 2〈ρ2I〉ΛIJ . (328)

(No summation is implied over repeated indices in the above expression.) Since we have

already established that the VEV of ρ2I must be strictly positive, the mass matrix of the radial

modes will have all positive eigenvalues as long as the matrix Λ, defined in Eq. (313), also

has all positive eigenvalues. The eigenvalues of Λ are precisely λ1 − λ2 (doubly degenerate)

and λ1 + 2λ2. Therefore, we see that requiring positive eigenvalues of the mass matrix

of radial modes eliminates all possibilities except the first one for achieving positivity of

the VEV 〈ρ2I〉—the case where m2 > α2 > 0 and λ1 + 2λ2 > 0. Since in the isotropic limit,

λ1+2λ2 ≪ λ1−λ2, there is no trouble with the other eigenvalue. The condition m2 > α2 > 0

is less stringent than the tachyon-free condition, Eq. (325), in the low-energy effective theory

of phonons; stability of the UV theory guarantees subluminality of longitudinal modes in the

low-energy theory.

One question that arises from this analysis is whether the regime in which the theory

is approximately isotropic corresponds to a natural choice of couplings, in the sense that

fine-tuning in the UV theory is not required to achieve the inequality λ1 + 2λ2 ≪ λ1 − λ2.

In a subsequent section—see Section 5.5—we will consider this question in more detail. It

turns out that the choice of couplings that leads to approximate isotropy in the low-energy

effective theory is not entirely natural, but there are subtleties arising from a highly unusual

renormalization group (RG) flow in the UV theory of the cubic solid. We will return to this

matter.
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5.3 Flat Limit of a Spherical Solid

In this section, we will consider a different possible UV theory of a solid. Inspired by

the setup of Esposito et al. [150], we will study a theory of a homogeneous and isotropic

solid living on a three-dimensional hypersurface of a 3-sphere with radius r. By focusing

in on a small patch of the surface that is much smaller in extent than the radius r of the

3-sphere (formally, taking the limit of large radius r), we hope to obtain an effective theory

of an isotropic solid in flat three-dimensional space. We will now build the UV theory from

an SO(4) multiplet of complex scalar fields ΦI that live in this space. The action must be

invariant under SO(4) spatial rotations, since the isometry group of the 3-sphere is SO(4),

as well as internal rotations of the ΦI fields, which are in the fundamental representation of

the internal SO(4) symmetry group. In this case, the overall symmetry-breaking pattern of a

solid on a hypersurface of the 3-sphere is SO(4)×SO(4) → SO(4). Throughout this section,

we will use upper-case Latin indices I, J, . . . to represent indices ranging over 1, 2, 3, 4, while

lower-case indices i, j, . . . range over 1, 2, 3.

We choose to describe the curved space we are considering using the round metric on

the 3-sphere,

ds2 = −dt2 + r2
[

dθ21 + sin2 θ1
(

dθ22 + sin2 θ2dθ
2
3

)]

, (329)

where θ1 and θ2 range over [0, π) and θ3 ranges over [0, 2π). Our starting point will be the

most general action of a renormalizable theory with Lorentz invariance and internal SO(4)

symmetry:

S = −
∫

dt d3θ
√−g

[

1

2
|∂Φ|2 − m2

2
|Φ|2 + λ

4
|Φ|4

]

. (330)

Derivatives ∂i are taken with respect to the angular coordinates θi for i = 1, 2, 3. Again, we

have chosen the sign of the mass term for convenience in implementing symmetry breaking.
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With this choice, if m2 and λ are positive, the ground state of the complex scalar fields

spontaneously breaks internal and spatial rotational symmetry down to a diagonal subgroup

by picking out a particular direction; if m2 is negative, SO(4) × SO(4) symmetry is not

broken spontaneously.

When spontaneous symmetry breaking occurs, the VEV of the scalar fields Φ(θ, t)

becomes aligned with some direction r̂(θ). We choose to express this VEV as

〈Φ(θ, t)〉 = ρ̄r̂(θ) = ρ̄R(θ) · x̂4 , (331)

where R(θ) is an SO(4) rotation matrix. If we represent the generators of SO(4) by T IJ
KL =

δIKδ
J
L − δIKδ

J
L, then we can write any general SO(4) rotation as

R(θ) = exp
[(

θ3 −
π

2

)

T34
]

exp
[(

θ2 −
π

2

)

T24
]

exp
[(

θ1 −
π

2

)

T14
]

. (332)

Substituting the VEV in Eq. (331) into the equations of motion for Φ gives

ρ̄2 =
m2 − 3/r2

λ
. (333)

Note that this expression is always positive if m2 and λ are also positive in the large radius

limit (r ≫ 1/m), which we ultimately wish to implement. Although ρ̄2 becomes negative

when r <
√
3/m, we are not interested in this regime. As before, we can decompose the

fields Φ into a heavy radial mode ρ and three light angular modes φi by writing

Φ(θ, t) = R [Θ(θ, t)] · ρ(θ, t) , (334)

where we defined

ρ(θ, t) ≡ ρ(θ, t)x̂4 , Θi(θ, t) ≡
π

2
− φi(θ, t) . (335)
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In the ground state, we have 〈ρ〉 = ρ̄ and 〈φi〉 = π
2
− θi. In order to integrate out the heavy

mode, it is useful to introduce a “covariant derivative” (Dµ)IJ = ∂µδIJ+(R−1 · ∂µR)IJ . With

this notation, we can rewrite the action of Eq. (330) in the form

S = −
∫

dt d3θ
√−g

[

1

2
|D(Θ) · ρ|2 − m2

2
ρ2 +

λ

4
ρ4
]

= −
∫

dt d3θ
√−g

{

1

2
(∂ρ)2 +

1

2
ρ2

[

∂R−1(Θ) · ∂R(Θ)
]

44
− m2

2
ρ2 +

λ

4
ρ4
}

.

(336)

Now, our goal is to integrate out the heavy radial degree of freedom ρ and take the large

radius limit to obtain a low-energy effective theory of a flat isotropic solid. At low energies,

we can neglect the kinetic energy of the radial mode and vary the action of Eq. (336) with

respect to ρ2 to find the approximate classical solution to the equation of motion of the radial

mode. This procedure yields

ρ2 ≃ m2 − [∂R−1(Θ) · ∂R(Θ)]44
λ

. (337)

To a first approximation at low energy, the effective action for angular modes φ that results

from substituting this classical solution back into Eq. (336) is

Seff ≃ −
∫

dt d3θ
√−g

{

m2

2λ

(

∂R−1
· ∂R

)

44
− 1

4λ

[(

∂R−1
· ∂R

)

44

]2
}

, (338)

where the rotation matrices R are understood to be functions of Θ(φ).

We have not done anything yet to restrict to a small approximately flat patch of the

three-dimensional hypersurface, which formally corresponds to taking the large radius limit.

We therefore focus on a small region of the hypersurface much smaller than r in diameter11.

We also change coordinates via θi = π
2
− xi

r
, where xi are coordinates in the three-dimensional

11One need not worry about contributions of boundary terms to the action when changing the
limits of integration, since any boundary terms will be sub-leading in the large radius limit. If the
diameter of the flat patch is of order x̄, any contributions from boundary terms will be of order
O(x̄2/r2).
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tangent space at the center of the small patch. We perform an expansion in powers of xi

r

when |x|≪ r, which amounts to taking the large radius limit. The induced metric in the

patch becomes Minkowski to leading order, gµν = ηµν + O(x2/r2), allowing us to map the

approximately flat patch directly onto the flat tangent space. We are not actually taking the

r → ∞ limit, however, since the free parameter r−1 plays a role analogous to the parameter

α in the theory of the cubic solid; it must be finite and positive, and its value is related to

the precise boundary conditions we use in this procedure. Expanding the rotation matrices

in this limit gives R(Θ) = 1 − φi(x, t)T
i4 +O(x2/r2), so we find

[

∂R−1(Θ) · ∂R(Θ)
]

44
→ X +O(x2/r2) , (339)

where X = ηµν∂µφ · ∂νφ. Let us now canonically normalize the fields φi by performing the

rescaling φ →
√

λ
m2φ. This has the effect of transforming the effective action in Eq. (338)

into a much more familiar form,

Seff ≃ −
∫

d4x

[

1

2
X − λ

4m4
X2

]

, (340)

where we kept only the leading-order contribution in the large radius limit. This is precisely

the same effective action that we found in Eq. (323) for the isotropic limit of the cubic solid;

the resulting effective theory is identical.

We can expand in small fluctuations about the ground state in the usual way to find

the effective action for phonons in this theory, φi = (xi + πi)/r
′, where r′ =

√

λ
m2 r. Upon

identifying r−1 ∼ α, the resulting phonon action will be identical to Eq. (324), up to an

overall normalization constant. The dynamics of phonons are unchanged; in this case, we

also have luminal propagation of transverse modes and subluminal longitudinal modes. The

values of the velocities of sound are again given by Eq. (325), and much of the stability

analysis carries through with little modification. In this case, we have m2 > 3/r2 > 0 and

λ > 0 as stability criteria of the UV theory. This also ensures that the longitudinal sound
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speed

c2L = 1− 2

3(m2r2 − 1)
(341)

remains subluminal in the low-energy effective theory of phonons. In fact, we now have

the added condition that c2L > 2/3, which means that the longitudinal excitations are quite

relativistic.
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5.4 Wigner–Inönü Group Contraction of an SO(4)

Theory

We will now present a third method of obtaining a UV theory that exhibits the same

symmetry-breaking pattern as a solid using a procedure known as Wigner–Inönü group

contraction [155], which allows one to start from the Lie algebra of the SO(4) group and

take the limit of a certain parameter in order to change the structure constants and obtain

the algebra of the ISO(3) group. Let us briefly review how this works. We first separate

the generators TIJ of SO(4) into those that transform as tensors and those that transform

as vectors under the subgroup SO(3). We will again use upper-case indices for 1, 2, 3, 4 and

lower-case indices for 1, 2, 3. The complete commutation relations of the so(4) algebra can

be written as

[

Tij ,Tkl
]

= δikTjl + δjlTik − δilTjk − δjkTil , (342)
[

Tij ,Tk4
]

= δikTj4 − δjkTi4 , (343)
[

Ti4,Tj4
]

= Tij . (344)

The idea of Wigner–Inönü group contraction in this case is that if we rescale the generator

Ti4 = ζPi and formally take the limit ζ → ∞, then the so(4) algebra becomes isomorphic to

the iso(3) algebra upon identifying Pi as the generators of shifts and Tij as the generators

of SO(3) rotations.

The UV theory that we will now consider lives in flat (Minkowski) space-time with 3+1

dimensions from the outset, and the SO(4) symmetry will be only an internal symmetry. We

take ΦI to be a set of scalar fields in the fundamental representation of SO(4). We start with

the same action as in the case of the solid on the sphere, except the background space-time
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is now flat:

S = −
∫

d4x

[

1

2
|∂Φ|2 − m2

2
|Φ|2 + λ

4
|Φ|4

]

. (345)

This is the most general renormalizable action for the SO(4) multiplet Φ that is invariant

under internal SO(4) rotations. Under the action of an SO(4) transformation with rescaled

generators and transformation parameters θIJ , the multiplet ΦI transforms as

Φi → Φi + θjiΦj − 1

ζ
θi4Φ4 , (346)

Φ4 → Φ4 +
1

ζ
θi4Φi . (347)

We can decompose the fields ΦI into a single heavy mode ρ and three light modes φi by

taking Φi(x) = ρ(x)φi(x) and Φ4(x) = ζρ(x), where neither ρ nor φi depends implicitly on

the large parameter ζ. From Eq. (346), we see that like the co-moving coordinates of a solid,

the fields φi transform as vectors under ISO(3), with the transformation parameters θji and

θi4 associated with spatial rotations and constant shifts, respectively. If we formally take

the limit ζ → ∞, then the field ρ becomes an ISO(3) scalar, provided that it does not scale

with ζ in any way; clearly it is invariant under the modified SO(4) transformation up to

order O(1/ζ2).

Returning now to the original action Eq. (345), we proceed by breaking the internal

SO(4) symmetry with a large VEV, 〈Φ〉 = ζρ̄x̂4. Substituting this VEV back into the

equations of motion derived from Eq. (345) gives ρ̄ =
√

m2/(λζ2) as the value of the heavy

mode in the ground state of the solid. Since we want the VEV of the heavy mode ρ to be

of order O(ζ0), so that it scales independently of the large group contraction parameter, we

must rescale the Lagrangian parameters m2 and λ in such a manner that the combination

m2/λ is of order O(ζ2). In order to integrate out the heavy mode, it will be convenient to
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rewrite the fields ΦI as follows:

Φ(x) = ζO(x) · ρ(x) , (348)

O(x) ≡ exp

[

−1

ζ
φi(x)T

i4

]

, (349)

where we again defined the vector ρ(x) ≡ ρ(x)x̂4. Just as we did in the case of the solid on

the sphere, we can define a covariant derivative (Dµ)ij ≡ ∂µδij +
(

O
−1

· ∂µO
)

ij
and use it

to rewrite the action as

S = −ζ2
∫

d4x

[

1

2
|D(φ) · ρ|2 − m2

2
ρ2 +

λζ2

4
ρ4
]

= −ζ2
∫

d4x

[

1

2
(∂ρ)2 +

1

2
ρ2

(

∂O−1
· ∂O

)

44
− m2

2
ρ2 +

λζ2

4
ρ4
]

.

(350)

After neglecting the kinetic term of the heavy mode at low energy and integrating it out, we

find the effective action for φ,

Seff ≃ −
∫

d4x

{

m2

2λ

(

∂O−1
· ∂O

)

44
− 1

4λ

[(

∂O−1
· ∂O

)

44

]2
}

. (351)

Finally, we let ζ ≫ 1 and expand in inverse powers of ζ, in order to recover an ISO(3)

symmetry in the effective action. In the large ζ limit, to leading order we have

(

∂O−1
· ∂O

)

44
≃ 1

ζ2
X , (352)

where X = ∂µφ ·∂µφ as usual. The next correction is of order O(1/ζ3) and can be neglected.

Before simply substituting Eq. (352) back into the effective action Eq. (351), however, we

must remember that the parameters m2 and λ are not independent of ζ, so it is necessary to

consider the large ζ limit more carefully. We can remove dependence on ζ by rescaling the

parameters: m2 = m̃2ζa and λ = λ̃ζb. The rescaled mass m̃ and coupling λ̃ do not depend

on ζ, while a and b are exponents that must be determined. We already established that
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m2/λ ∼ ζ2, so a − b = 2. The first term in the effective action Eq. (351) therefore starts

at order O(ζ0), while the second term goes as O
(

ζ−b−4
)

. The only choice that keeps the

second term finite and of the same order as the kinetic energy is b = −4 and a = −2. Any

other choice leads to a trivial effective theory. After rescaling the fields φi →
√

λ̃/m̃2φi so

that they are canonically normalized, the effective action takes on the familiar form

Seff = −
∫

d4x

[

1

2
X − λ̃

4m̃4
X2

]

+O(1/ζ2) , (353)

matching the low-energy theories found in Eqs. (323) and (340) up to renaming of the

parameters λ and m. Introducing fluctuations about the VEV via φi = α(xi + πi) leads to

the same low-energy effective theory of phonons in the solid as we found in Eq. (324), and

the sound velocities are the unchanged. The longitudinal modes are subluminal as long as

m̃2 > α2 > 0 and λ̃ > 0, conditions that are guaranteed by the stability of the UV theory

from which we began our analysis.
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5.5 Puzzles of the Cubic Solid: Naturalness and

Renormalization

In this section, we revisit the theory of the cubic solid that we analyzed in Section 5.2.

Our goal here will be to study the isotropic regime and understand whether the isotropic

limit

λ1 + 2λ2 ≪ λ1 − λ2 (354)

is natural, i.e. the extent to which it may require fine-tuning of parameters in the UV

theory. From the point of view of the low-energy effective field theory of phonons in the

isotropic limit, there are no terms that spoil isotropy, nor any mechanism for generating

further anisotropic terms. However, the running of coupling constants in the UV theory may

well spoil the limit in Eq. (354), rendering it unstable and adding anisotropic terms to the

effective theory that would have to be removed via a fine-tuning of coupling parameters. If

the isotropic limit does turn out to be stable, how does it emerge from the UV theory? We

will now consider such questions.

The most straightforward way to approach this issue is to simply compute the beta

functions of the coupling constants in the UV theory. This is done in Section C. If we define

λ ≡ λ1 + 2λ2
6

, β ≡ dλ

d log µ
,

λ′ ≡ λ1 − λ2 , β′ ≡ dλ′

d log µ
,

(355)

where µ is a running energy scale, then the leading-order beta functions associated with

these couplings are found to be

β =
63λ2 + 6λλ′ + λ′2

36π2
, (356)

β′ =
3λ′(4λ+ λ′)

8π2
. (357)
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Figure 12: Ratio between the couplings λ and λ′, calculated numerically from Eqs. (386) and (387)
with initial values λ(0) = 10−12, λ′(0) = 10−5, corresponding to approximately isotropic initial
conditions at low energy. Λ is a reference energy scale at which the isotropic limit is a very good
approximation—e.g. some scale at which the low-energy effective theory of phonons in the isotropic
solid breaks down. Evidently, the running spoils isotropy in the far UV, so fine-tuning is needed,
although the deviation from the isotropic limit Eq. (354) is mild over a very large range of energies.

Evidently, the short answer is that the limit λ≪ λ′ is unnatural and requires fine-tuning in

the UV. At this order there are no non-trivial fixed points12. The beta functions show that

the running of λ and λ′ will eventually spoil the isotropy condition Eq. (354) at high-enough

energies, and this is easily verified numerically—see Fig. 12. Nonetheless, the fact that the

isotropic limit is spoiled very mildly over a large range of energies suggests that there may

be more to this story.

Recall the action that we found after separating the fields into heavy radial modes and

light phases, Eq. (312). It can be written in the form

S = −
∫

d4x

[

∑

I

(∂ρI)
2 +

∑

I

bIρ
2
I +

1

2

∑

I,J

ΛIJρ
2
Iρ

2
J

]

. (358)

12At two-loop order, however (see Section C), there are three non-trivial fixed points—explicitly,
with {λ, λ′} ≃ {4.39, 26.3}, {11.5, 0}, and {−9.69, 90.6}—but there are none with λ = 0 or 0 < λ ≪
λ′, corresponding to the isotropic regime.
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It will be convenient for us to perform the following field redefinitions involving the heavy

radial modes:

ξ1 =
√
λ(ρ1 + ρ2 + ρ3) , ξ2 =

1√
λ
(−ρ1 + ρ2) , ξ3 =

1√
λ
(−ρ1 + ρ3) . (359)

With these field redefinitions, we get the following expression for the action:

S = −1

3

∫

d4x

[

1

λ
(∂ξ1)

2 − 1

λ
ξ21(m

2 − trB/3) +
1

3λ
ξ41 − 2ξ1ξ2(trB/3− B22)

− 2ξ1ξ3(trB/3− B33) +
4(λ′ + 3λ)

9
ξ21

(

ξ22 + ξ23 − ξ2ξ3
)

+ 2λ(∂ξ2)
2

+ 2λ(∂ξ3)
2 − 2λ∂ξ2 · ∂ξ3 − λξ22(2m

2 − trB/3− B22)

− λξ23(2m
2 − trB/3− B33) + 2λξ2ξ3(m

2 − 2 trB/3 + B11)

+
2λλ′

9
ξ1(2ξ

3
2 + 2ξ33 − ξ22ξ3 − ξ2ξ

2
3) +

λ2(λ′ + 12λ)

9
(ξ42 − ξ43)

]

≡ λ−1S−1 + λ0S0 + · · · ,

(360)

where the matrix BIJ is defined in the usual way in terms of the light fields φI . In this action,

all the fields are generically of order O(λ0) with this particular normalization. Although it

is a somewhat clunky expression, there are several important points to take note of here.

First of all, the leading-order piece S−1 that scales as λ−1 in the small λ limit is completely

isotropic. The first anisotropic terms involving B22 and B33 start at O(λ0). There are three

massive modes associated with ξ1, ξ2, and ξ3, but their masses are not all of the same order

in small λ. This can be seen by studying the equations of motion for the heavy fields ξ1, ξ2,

and ξ3 produced by varying this action. If we neglect the kinetic terms at low energy, the

equations of motion can be solved order-by-order in powers of the parameter λ. Although

there are numerous possible solutions to these equations of motion, we make use of the fact

that λ > 0 to ensure stability and ρI > 0 by definition. This greatly constrains the solution
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space, leading to the unique non-trivial background solutions

ξ̄1 =

√

3m2 − trB

2
, (361)

ξ̄2 =
3

λ′

√

1

2(3m2 − trB)

(

B11 − B22
)

, (362)

ξ̄3 =
3

λ′

√

1

2(3m2 − trB)

(

B33 − B11
)

, (363)

Introducing fluctuations about these background solutions via ξi = ξ̄i + σi, we obtain an

action for fluctuations of the radial modes of the form

S[σ] ⊃ −1

3

∫

d4x

{

1

λ
(∂σ1)

2 +
2(3m2 − trB)

3λ
σ2
1 +

2

3

(

5X − 7B22 − 8B33
)

σ1σ2

− 2

3

(

7 trB − 8B22 − 13B33
)

σ1σ3 + 2λ
[

(∂σ2)
2 + (∂σ3)

2 − ∂σ2 · ∂σ3
]

+
2λ′(3m2 − trB)

9

(

σ2
2 + σ2

3 − σ2σ3
)

+O(1/λ) [σ1 interactions]

+O(λ0) [interactions involving σ1, σ2, σ3]
}

[1 +O(λ)]

(364)

There is kinetic mixing between the modes σ2 and σ3, and mass mixing occurs between all

the modes. However, it is apparent that there is a hierarchy between the eigenvalues of the

mass matrix. To leading order in small λ, we have

m2
1 ∼ m2 , m2

23 ∼
λ′

λ
m2 ∼ λ′

λ
m2

1 . (365)

In other words, as long as we are in the isotropic regime λ ≪ λ′, the modes σ2 and σ3 are

much heavier than σ1. Also, since their kinetic terms appear only in S1, we can neglect

their kinetic energy at scales µ ≪
√

λ′/λ m and the fields become non-dynamical. They

can be integrated out to yield an effective action for σ1 and the light fields φi. The resulting

effective action is dominated by the isotropic part S−1, so as long as we stay far below the

energy scale m23, isotropy is preserved, even at scales comparable to σ1, where one of the
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radial modes participates in the dynamics. This explains why isotropy is barely spoiled by

the running of the coupling constants over an exponentially large range of energies beyond

the cutoff of the low-energy phonon theory. There is a quasi-isotropic regime involving one of

the three radial modes, σ1, and fine-tuning to achieve isotropy is only required above much

higher energy scales corresponding to the eigenvalues of the mass matrix of the two other

modes, σ2 and σ3.

As we have seen, this theory exhibits a highly unusual renormalization group flow. Fine-

tuning is required in the far UV to enter an approximately isotropic regime. However, two

of the three heavy radial modes can be integrated out, so that from the point of view of the

“near-UV” theory involving only the lightest of the three radial modes, the isotropic regime

λ ≪ λ′ becomes “natural.” Further renormalization group flow towards the IR does not

produce sizable corrections that spoil the isotropic configuration.

166



5.6 Conclusion and Further Questions

In this section, we studied a number of different renormalizable, Lorentz invariant

theories that allow for the spontaneously breaking of spatial rotations and translations, in

order to assess whether they can serve as viable UV completions of the effective theory of

phonons in a homogeneous, isotropic solid, and in order to find whether such a solid that

appears homogeneous at long distances can be described by a state in relativistic quantum

field theory that is also homogeneous at short distances, unlike typical solids with which we

are familiar in nature. We discovered that such theories can in fact be formulated, but they

are quite peculiar solids. In the process, we also managed to shed light on various possible

methods to implement the spontaneous symmetry breaking of non-compact translations in

a consistent manner. We studied the low-energy limit of three particular theories of homo-

geneous, isotropic solids and discovered that they all converge on a sort of “theoretical fixed

point,” a common effective action for phonons with an enhanced symmetry, involving only

the invariant structure X = trBIJ and its square. The other invariants we considered in

Section 2.3, namely Y ∝ trB2 and Z ∝ trB3, are absent. As a result, the excitations in

the isotropic solid that this theory describes are highly unusual—in particular, the trans-

verse excitations exhibit luminal propagation. Stability of the UV theories always ensures

subluminal propagation of the longitudinal phonons.

We also studied how isotropy and homogeneity of the low-energy theory of solids might

be spoiled by radiative corrections and the running of couplings from the renormalization of

the UV theory. We saw that the isotropic low-energy limit of the cubic solid is not, in fact,

stable against anisotropic corrections appearing at high energies, and the theory appears to

be unnaturally fine-tuned. Nonetheless, approximate isotropy is preserved over a vast range

of energies beyond the cutoff scale of the low-energy effective theory thanks to a hierarchical

ordering between the mass matrix eigenvalues of heavy radial modes in the UV theory. Fine-

tuning is still required in the far UV, but once isotropy is implemented after integrating out

the heaviest of the radial modes, it is preserved by renormalization group flow all the way
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down to the IR limit.

It would be interesting to investigate why the common effective theory that we found

arises from the simple UV completions that we have considered, and how these UV theories

might be deformed in order to produce the operators Y and Z in the low energy limit. In the

absence of these invariants, it is impossible to move away from the limit in which transverse

excitations propagate at the speed of light. It is unclear what modifications we can make

to the UV theories to this end, but we leave this question for future study. We also hope to

use these methods and the insights gained from this study to understand how to arrive at

UV-completions of other effective theories of condensed matter and how to construct their

holographic duals.
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6 Summary and Outlook

In this work, we have demonstrated the power of techniques of high-energy physics in

answering concrete questions about low-energy phenomena in condensed matter. Effective

field theory provides a unified and beautiful approach to studying physical systems on the

basis of their symmetries and symmetry-breaking patterns, exploiting the independence of

long-wavelength phenomena from short-wavelength degrees of freedom. This allows for sim-

ple and efficient calculation of perturbative dynamics in any condensed matter system. The

approach is flexible by construction, leaving most parameters of the effective theory to be

fixed by measurements, so that it is easy to make contact with experimental research.

We reviewed the effective theories of a variety of condensed matter systems in consider-

able detail, including superfluids, ordinary fluids, solids, and supersolids. We also integrated

vortex lines into the formalism of the effective field theory of superfluids. As a first direct ap-

plication, we used this theoretical framework to study a very concrete experimental question:

at what frequency do vortex lines in trapped ultracold atomic gases tend to precess around

the center of an atomic cloud? We used our formalism to work out the precession frequency

at different chemical potentials and demonstrated that it matches prior theoretical results

from the Gross–Pitaevskii model, as well as experimental measurements of the precession

frequency in fermionic superfluid condensates. We found that the precession frequency is

logarithmically enhanced when the trapping potential is harmonic, recovering the well-known

scaling ωp ∼ Γ log(R⊥/ℓ), where ωp is the precession frequency, Γ is the quantized circula-

tion, R⊥ is the transverse size of the atomic cloud, and ℓ is an ultraviolet cutoff length scale

comparable to the healing length in the condensate. We extended previous calculations by

accounting for the effects of trapping in three dimensions, demonstrating improved agree-

ment with experimental data. As we saw, trapping along the third dimension also allows

for kinked configurations of vortex lines. Moreover, we found that our calculations were di-

rectly applicable to the behavior of propagating Kelvin waves along vortex lines in trapped

condensates, a phenomenon that has not been studied previously using effective field theory.
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It turns out that the phonon-mediated interaction between vortex lines and the trapping

potential leads to significant modifications in the dispersion relation of Kelvin waves, with

distinct dispersive behavior appearing in the case of harmonic and non-harmonic trapping.

As a second case study, we considered a much broader set of questions concerning how

gravitational fields affect sound waves in a wide variety of condensed matter systems. By

studying non-linear dynamics of phonons, we were able to show that in superfluids, ordinary

fluids, and solids, localized sound wave packets have an associated net gravitational mass

that travels with them, so that sound waves are both affected by gravity and sources for

gravity. In each case, the mass associated with sound waves, calculated as a fraction of the

total mass of the medium, is negative, meaning that phonons float in a medium stratified

under gravity; this has the same effect as acoustic refraction in a medium with a density

gradient. The added insight that the associated mass is a gravitational source, and that it is

transported by sound waves, is completely novel, however, and rather surprising. The mass

of a sound wave packet scales as energy over the velocity of sound squared, and the constant

of proportionality is completely determined by the equation of state. We confirmed this effect

in several different media, using both field theoretic methods and classical methods, such

as Eulerian fluid dynamics and non-linear elasticity theory; clearly, the effect we discovered

is not an artifact of mass–energy equivalence in our relativistic EFT framework, nor is it

a quantum effect. This is a robust result, and it has potential experimental implications

for experiments involving ultracold atomic or molecular condensates, in which the velocity

of sound is very low. The effect is also potentially detectable from highly energetic seismic

events, and if the relativistic effects were studied in more detail, it could lead to improved

understanding of phonon-mediated transport properties in relativistic media under strong

gravitational fields, such as nuclear superfluid in neutron stars.

Finally, we turned to the issue of ultraviolet completion of low-energy effective theories of

condensed matter and studied how the effective theory of a homogeneous and isotropic solid

can be derived from a renormalizable theory that realizes the symmetry-breaking pattern of
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a homogeneous solid. We discovered that it is indeed possible to find states that appear to

be homogeneous solids at long distances, yet are also homogeneous at short distances, unlike

the solids with inhomogeneous microscopic structure commonly found in nature. Due to

the distinct challenges associated with the spontaneous breaking of space-time translations,

we were forced to consider indirect procedures leading from UV theories to an isotropic

flat solid. These included: a specific isotropic limit of a theory of a cubic solid; the flat-

space (or large-radius) limit of a hyperspherical solid; and an SO(4) theory that realizes

the symmetry-breaking pattern of a solid via Wigner–Inönü group contraction. In each

situation, we found a common low-energy effective theory which describes an isotropic solid,

but not the standard one found by traditional methods. The limiting low-energy theory is

one that has enhanced symmetry and transverse phonons that propagate at the velocity of

light. We studied the stability of this effective theory against anisotropic corrections from the

renormalization of the cubic solid UV theory, finding that fine-tuning is needed in the far UV,

but after integrating out only some of the heavier radial modes, isotropy is preserved by RG

flow toward the IR. Questions remain about how this unusual low-energy theory arises, and

whether more normal isotropic solids can be realized by some deformations of the UV theories

we considered. Nonetheless, we discovered that particular solids that appear homogeneous

at long distances can in fact be described by the low-energy limit of a homogeneous state at

short distances, and the methods we investigated may prove to be fruitful in further studies

of UV completions of effective theories and how the holographic duals of condensed matter

systems may be constructed.

Overall, this thesis is just a starting point that opens up many possibilities in the

study of condensed matter using EFT methodology. There are numerous possible questions

about the dynamics and properties of superfluid condensates, vortices, sound waves, and

weakly coupled condensed matter systems that we have not addressed. Most importantly, the

flexibility of EFT implies that the same methods we developed in this thesis can be adapted

to study physical systems in completely different settings, from inflationary cosmology to
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quark matter. What we have been developing, in our modest way, are some building blocks

of a unified framework for understanding physics at all energy scales, both high and low.
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Appendices

A Mass of Superfluid Sound Waves in the Dual

Two-Form Theory

In this appendix, we demonstrate how to find the mass associated with superfluid

phonons from the dual theory of a superfluid as a two-form field—see Section 2.1.2. The

action expanded to cubic order in bulk fluctuations is given by Eq. (50). From the thermody-

namic identifications in Eq. (43), we note that the 00 component of the energy–momentum

tensor is simply equal to T00 = −G(Y ). This can be expanded to quadratic order in the fluc-

tuation fields A and B. The leading order piece in the non-relativistic limit is T00 = −w̄∇·B.

Additional contributions are suppressed by factors of c2s/c
2. We can also use the cubic action

to find equations of motion for the bulk fields. The hydrophoton equation of motion is a

simple constraint equation, which can be solved to yield

∇×A =

(

1− c2s
c2

)

(∇ ·B) Ḃ+O
(

B3
)

. (366)

Since ∇ × A starts at quadratic order in phonons B, we can neglect it in any expression

containing
(

Ḃ−∇×A
)2

. Next, let us consider the equation of motion for the phonon

field calculated to quadratic order,

B̈i − c2s∂i∇ ·B = ∂iF + ∂tGi , (367)

where

F =
ḡc2s
2

(∇ ·B)2 − 1

2

(

1− c2s
c2

)

Ḃ2 , (368)

and the precise expression of Gi is unimportant for our purposes. It is a quadratic combina-

tion of fields whose time derivative will vanish once we average the equations of motion over
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a long period of time.

We now follow the usual procedure of time averaging the equations of motion and

integrating over a volume containing a localized phonon wave packet in order to find the

leading-order contribution of the wave packet to the associated mass M =
〈∫

T00
〉

/c2, in

the limit c → ∞. We will also express time-averaged, integrated quadratic combinations of

fields in terms of the energy of the phonon wave packet, which in this case is

E =
w̄

c2

〈

∫ Ḃ2
〉

=
w̄c2s
c2

〈∫ (∇ ·B)2
〉

. (369)

Applying this procedure to Eq. (367), we find

〈∫∇ ·B
〉

= − 1

c2s

〈∫F〉 = c2

2w̄c2s

(

1− c2s
c2

− ḡ

)

E . (370)

Using the expression for the cubic coupling ḡ in Eq. (51) and substituting into T00, we

immediately find that the mass of the wave packet is

M = −2n̄2

c3s

dcs
d(n̄2)

E = − d log cs
d log ρm

E

c2s
, (371)

where we used n̄ ∝ ρm. This is the same result we found in Section 4.3 using the scalar

field theory to which the two-form theory is dual. This is a useful consistency check to go

through.
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B Mass of a Single Phonon Quantum State

We can also approach the problem of finding the mass associated with phononic excita-

tions in a superfluid using second quantization formalism. The idea is simple: We quantize

the phonon field π, promote T00 to an operator as well, and compute its expectation value

for a single-phonon quantum state. We define phonon annihilation and creation operators

ak and a†k that have a commutator with the usual normalization,

[

ak, a
†
k′

]

= (2π)32ωkδ
3 (k− k′) . (372)

ωk is the energy of a phonon with momentum k, determined by the dispersion relation. From

the Hamiltonian of the effective theory, which we wrote in Eq. (240), we see that π must

have the following expression in terms of these operators

π (x, t) =
cs

c
√
µn

∫

d3k

(2π)32ωk

[

ake
ik·x−iωkt + a†ke

−ik·x+iωkt
]

. (373)

This expression for the field π can then be substituted into Eq. (35) for T00 to quadratic

order in π. It is obvious that the expectation value of π for a single phonon state |k〉 = a†k |0〉

vanishes, so 〈k′| π̇ |k〉 is equal to zero. The operators π̇2 and (∇π)2 have non-zero expectation

values, however. These can be calculated from Eqs. (372) and (373) and integrated over

volume to find

∫

d3x 〈k′| π̇2 |k〉 = ωkc
2
s

µnc2
〈k′|k〉 , (374)

∫

d3x 〈k′| (∇π)2 |k〉 = ωk

µnc2
〈k′|k〉 . (375)
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Using these expectation values with Eq. (35) to calculate the expectation value of T00 between

single phonon states, we once again find the expression

∫

d3x 〈k′|T00 (x, t) |k〉 =
(

1− µ

cs

dcs
dµ

)

ωk 〈k′|k〉

≡Mkc
2 〈k′|k〉 .

(376)

This is completely analogous to Eq. (242), and it leads to the same result in the non-

relativistic limit:

Mk = − d log cs
d log ρm

ωk

c2s
. (377)

This quantity can be interpreted as the mass associated with a single phonon quantum state

of momentum k, as long as cs ≪ c and k is in the phonon region of the excitation spectrum

of the superfluid.
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C Running of Couplings in the Theory of the

Cubic Solid

This appendix will explain how we arrived at the expressions for the beta functions in

Eqs. (356) and (357) when studying the renormalization of the theory of the cubic solid. A

similar (though somewhat less involved) calculation was carried out in Kleinert & Schulte-

Frohlinde [156], and we will follow a similar plan and notation. It is convenient to Eu-

clideanize the action of Eq. (310) and rewrite the complex scalars Φ in terms of pairs of

real scalars φ: Φ1 = (φ1 + iφ2) /
√
2, Φ2 = (φ3 + iφ4) /

√
2, Φ3 = (φ5 + iφ6) /

√
2. Then form-

ing a multiplet φ = {φ1, φ2, . . . , φ6}, the Euclidean action of the UV theory in d = 4 − ǫ

dimensions, including counterterms, can be written as

SE = −
∫

ddxE

[

1 + δφ
2

∑

i

(∇φi)
2 +

1 + δM
2

M2φ2

+
1 + δ1

8
λ1µ̃

ǫ
(

φ2
1 + · · ·+ φ2

6 + 2φ2
1φ

2
2 + 2φ2

3φ
2
4 + 2φ2

5φ
2
6

)

+
1 + δ2

4
λ2µ̃

ǫ
[(

φ2
1 + φ2

2

) (

φ2
3 + · · ·+ φ2

6

)

+
(

φ2
3 + φ2

4

) (

φ2
5 + φ2

6

)]

]

.

(378)

The Feynman rules of this theory can be expressed succinctly as

i j
k

∼ δij (k
2 +M2)

−1

i

j

k

l

∼ −λijkl =
∑3

n=1 λ̂nτ
(n)
ijklµ̃

ǫ

i j ∼ −δijδMM2

i j
k

∼ −δijδφk2

i

j

k

l

∼ ∑3
n=1 λ̂nδ̂nτ

(n)
ijklµ̃

ǫ

177



We defined λ̂1 = λ̂2/2 ≡ 3λ1, λ̂3 ≡ 6λ2, δ̂1 = δ̂2 ≡ δ1, and δ̂3 ≡ δ2, as well as the tensors

τ
(1)
ijkl = δ1i δ

1
j δ

1
kδ

1
l + δ2i δ

2
j δ

2
kδ

2
l + · · ·+ δ6i δ

6
j δ

6
kδ

6
l ,

τ
(2)
ijkl =

1

6

(

δ1i δ
1
j δ

2
kδ

2
l + δ1i δ

2
j δ

1
kδ

2
l + 4 permutations

)

+ (1 → 3, 2 → 4) + (1 → 5, 2 → 6) ,

τ
(3)
ijkl =

1

6

(

δ1i δ
1
j δ

3
kδ

3
l + δ1i δ

3
j δ

1
kδ

3
l + 4 permutations

)

+ (3 → 4) + (3 → 5)

+ (3 → 6) + (1 → 2, 3 → 4) + (1 → 2, 3 → 5) + (1 → 2, 3 → 6)

+ (1 → 6) + (1 → 6) + (1 → 5, 3 → 4) + (1 → 6, 3 → 4) .

(379)

The two-loop beta functions of the couplings λ1 and λ2 can be determined from the coun-

terterms δ1 and δ2 in the standard manner (and we work to two-loop order to find possible

non-trivial fixed points that are not apparent at one-loop order). We choose to use dimen-

sional regularization and modified minimal subtraction (MS). Finding the counterterms to

quadratic order in the couplings involves computing the following diagrams:

We will spare the reader the tedious details of the calculation, and simply state the

resulting counterterms at two-loop order.

δM =
λ1 + λ2
4π2ǫ

− 13λ21 + 8λ1λ2 + 13λ22
128π4ǫ

+
7λ21 + 8λ1λ2 + 7λ22

64π4ǫ2
, (380)

δφ = −λ
2
1 + λ22
256π4ǫ

, (381)

λ1δ1 =
5λ21 + 2λ22

8π2ǫ
− 8λ31 + 3λ1λ

2
2 + 2λ32

64π4ǫ
+

25λ31 + 18λ1λ
2
2 + 6λ32

64π4ǫ2
, (382)

δ2 =
4λ1 + 3λ2

8π2ǫ
− 3λ21 + 6λ1λ2 + 4λ22

64π4ǫ
+

18λ21 + 18λ1λ2 + 13λ22
64π4ǫ2

. (383)
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It is then straightforward to calculate the two-loop beta functions β1 and β2 associated with

the couplings λ1 and λ2, respectively, from these counterterms. The result is

β1 =
5λ21 + 2λ22

8π2
− 15λ31 + 5λ1λ

2
2 + 4λ32

64π4
, (384)

β2 =
4λ1λ2 + 3λ22

8π2
− 5λ21λ2 + 12λ1λ

2
2 + 7λ32

64π4
. (385)

Taking an appropriate linear combination of these beta functions to find the running of

λ = (λ1 + 2λ2)/6 and λ′ = λ1 − λ2 yields the expressions

β =
63λ2 + 6λλ′ + λ′2

36π2
− 2592λ3 + 396λ2λ′ + 147λλ′2 + 20λ′3

1728π4
, (386)

β′ =
3λ′(4λ+ λ′)

8π2
− λ′(1008λ2 + 384λλ′ + 43λ′2)

576π4
. (387)
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