PUBLISHED FOR SISSA BY 4} SPRINGER

RECEIVED: September 20, 2017
REVISED: January 17, 2018
ACCEPTED: February 22, 2018
PUBLISHED: March 6, 2018

Low-energy effective field theory below the
electroweak scale: operators and matching

Elizabeth E. Jenkins, Aneesh V. Manohar and Peter Stoffer

Department of Physics, University of California at San Diego,
9500 Gilman Drive, La Jolla, CA 92093-0519, U.S.A.

E-mail: ejenkins@ucsd.edu, amanohar@ucsd.edu, pstoffer@ucsd.edu

ABSTRACT: The gauge-invariant operators up to dimension six in the low-energy effective
field theory below the electroweak scale are classified. There are 70 Hermitian dimension-
five and 3631 Hermitian dimension-six operators that conserve baryon and lepton number,
as well as AB = £AL = +1, AL = +2, and AL = £4 operators. The matching onto
these operators from the Standard Model Effective Field Theory (SMEFT) up to order
1/A? is computed at tree level. SMEFT imposes constraints on the coefficients of the
low-energy effective theory, which can be checked experimentally to determine whether
the electroweak gauge symmetry is broken by a single fundamental scalar doublet as in
SMEFT. Our results, when combined with the one-loop anomalous dimensions of the low-
energy theory and the one-loop anomalous dimensions of SMEFT, allow one to compute
the low-energy implications of new physics to leading-log accuracy, and combine them
consistently with high-energy LHC constraints.

KEYwORDS: Effective Field Theories, Renormalization Group

ARX1v EPRINT: 1709.04486

OPEN AcCCESs, (© The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP03(2018)016


mailto:ejenkins@ucsd.edu
mailto:amanohar@ucsd.edu
mailto:pstoffer@ucsd.edu
https://arxiv.org/abs/1709.04486
https://doi.org/10.1007/JHEP03(2018)016

Contents

1 Introduction 1
2 SMEFT 5
2.1 SMEFT in the broken phase 6
2.2 Flavor indices 8
2.3 Gauge-boson masses and couplings 9
3 Power counting in LEFT 12
4 Integrating out weak-scale particles in SMEFT 14
5 LEFT operators 17
5.1 Dimension-three operators 19
5.2 Dimension-five operators 19
5.3 Dimension-six operators 19
6 Flavor physics and B anomalies 22
6.1 u decay and G 22
6.2 b— ¢rv decays 23
6.3 b— s{T¢~ decays 24
7 Conclusions 27
A SMEFT operator basis 28
B LEFT operator basis 31
C Matching conditions 33

1 Introduction

Experimental results to date are overwhelmingly consistent with the predictions of the
Standard Model (SM) with electroweak gauge symmetry spontaneously broken by a fun-
damental scalar doublet, and a Higgs boson with a mass ~ 125 GeV. The absence of new
particles at energies up to ~ 1TeV allows one to parametrize the effects of new physics at
LHC energies by higher-dimension gauge-invariant local operators built out of SM fields.
The resulting effective field theory (EFT) is known as the Standard Model Effective Field
Theory (SMEFT). The SMEFT Lagrangian contains the usual SM Lagrangian at dimen-
sion four, plus a complete set of independent higher-dimension operators.



At dimension five, SMEFT contains a single lepton-number-violating AL = 2 oper-
ator and its Hermitian conjugate AL = —2 operator, each in a single irreducible flavor
representation. For three generations of fermions, the irreducible flavor representation has
6 components. The dimension-five operators give rise to dimension-three Majorana mass
terms for the left-handed neutrinos in the spontaneously broken theory. Neutrino oscilla-
tion experiments require these neutrino masses to be very small, so the suppression scale
of the dimension-five operators is necessarily very large. Because the dimension-five op-
erators violate lepton number, the lepton-number violation scale Ay that suppresses the
dimension-five operators can be naturally much larger than the scale A that suppresses
AB = AL = 0 operators.

The dimension-six operators of SMEFT are classified in refs. [1, 2]. For three gen-
erations of fermions, there are 2499 independent dimension-six operators (151 irreducible
flavor representations) that do not violate baryon number and lepton number [3]. These
dimension-six operators, which are suppressed by a factor 1/A?, give the dominant effects
of new physics in SMEFT if A < Ay. Current LHC experiments are sensitive to A in the
1 — 1000 TeV range, depending on the operator considered.

In addition to the 2499 dimension-six operators (for three generations of fermions),
there are 273 dimension-six AB = AL = 1 operators (7 irreducible flavor representations),
and their Hermitian conjugates [1, 2, 4-7]. These operators are important because they
are the leading operators that permit proton decay in SMEFT. Again, it is natural for
both the scales of baryon-number violation and lepton-number violation, Ay and Ay, to
be much larger than A, so these operators can be very suppressed in comparison to the
dominant 2499 dimension-six operators that do not violate baryon and lepton number.
SMEFT operators at dimension seven and eight also have been studied recently, and the
number of operators in SMEFT at each mass dimension has been determined [8-12]. A
comprehensive review on SMEFT can be found in ref. [13].

Most of the flavor constraints on the renormalizable SM arise from measurements of
low-energy flavor-changing processes. These low-energy decays can be computed using
an EFT derived from the SM obtained by integrating out the massive electroweak gauge
bosons (W*, Z), the Higgs boson h, and the chiral top quark fermion fields (¢7,tr). The
resulting low-energy effective field theory of the SM, which is essentially the Fermi theory
of weak interactions, contains four-fermion operators at dimension six that give the leading
contributions to flavor-changing charged-current weak decays such as yu — ev,v, or b —
ceve. This low-energy EFT (LEFT) has been extensively applied to flavor physics such
as B and K decays and mixing, and it provides some of the most accurate tests of the
SM and constraints on new physics beyond the SM (for reviews, see [14, 15]). The effects
of new physics can be studied by introducing local-operator coefficients with values that
differ from those obtained by matching to the SM.

The gauge group of LEFT is QCD x QED, and the fermions are the usual quarks and
leptons, except that there is no top quark in the theory. In this paper, we construct all
the gauge-invariant operators in LEFT up to dimension six. To our knowledge, a complete
classification of these LEFT operators has never been given in the literature. There are
AL = 42 dimension-three Majorana-neutrino mass terms and AL = +2 dimension-five



neutrino dipole operators. Furthermore, there are 70 AB = AL = 0 dimension-five quark
and lepton dipole operators (10 irreducible flavor representations). At dimension six, we
find 3631 AB = AL = 0 operators (191 irreducible flavor representations), of which 1933
are C'P-even and 1698 are C'P-odd. In addition, there are many dimension-six operators
that violate lepton number and baryon number. We give the matching onto these operators
at tree level from the SMEFT up to terms of order v?/A% Such a matching has been
presented in [16] for the subset of operators relevant for B-physics. We present here the
entire matching equations including flavor-conserving operators.

The EFT framework allows one to search for beyond-the-standard-model (BSM)
physics in a model-independent way: instead of testing the predictions of specific new
physics models at the LHC or in low-energy experiments and ruling out one model after
the other, the EFT approach allows one to obtain experimental constraints on the coeffi-
cients of the higher-dimensional operators, or, in the presence of a signal deviating from
the SM prediction, to determine non-zero values of (linear combinations of) the operator
coefficients. If one is interested in a specific model, one can match the model on the EFT
and decide directly if the model is compatible with all experimental constraints.

As is well known, the operator coefficients in the EFT depend on the renormalization
scale. In order to avoid the presence of large logarithms, one has to take into account the
running and mixing of the operator coefficients from the high scale of BSM physics down to
the scale of high-energy collider experiments, and further down to the scale of low-energy
precision experiments. The leading effect is obtained from the divergent part of a one-loop
calculation. The complete one-loop anomalous-dimension matrix of the dimension-six op-
erators in the SMEFT is computed in refs. [3, 7, 17-19]. Some results for parts of the
anomalous-dimension matrix, with flavor neglected, also can be found in refs. [20, 21]. The
structure of the renormalization-group mixing is non-trivial and has important implica-
tions for the flavor structure of SMEFT. The SMEFT renormalization-group equations
(RGE) allow one to compute the running and mixing between the BSM scale down to the
electroweak scale.

When going to energies below the electroweak scale, the running and mixing should
be calculated in LEFT. In a subsequent publication [22], we give the complete one-loop
anomalous dimension matrix for LEFT up to terms of dimension six. It is well known that
especially the QCD contribution to running and mixing below the electroweak scale is an
important effect, see e.g. the review [15]. Hence, parts of the RGE relevant for particular
processes have been well studied in the literature and are known to higher order [15, 16, 23—
32]. In the case of b — s, the three-loop matching and four-loop anomalous dimensions are
known [33-35], which is the highest order to which computations have been done. However,
the systematic study of the entire RGE that we present in [22] is new. In particular, the
RGE include non-linear terms quadratic in the dipole coefficients, as well as modifications
to the RGE for the QCD and QED gauge couplings and fermion mass matrices due to
higher-dimension operators in LEFT.

Combined with previous results on the SMEFT [3, 7, 17-19], the calculation given here
and in [22] allows one to compute low-energy consequences of BSM physics in a model-
independent way at leading-log order, i.e. tree-level matching plus one-loop running. It also



allows one to combine high-energy constraints from the LHC with low-energy constraints
e.g. from hadronic decays in a unified framework. The results can be used in two different
ways. If one assumes that BSM physics respects the electroweak symmetry breaking mech-
anism of the SM, then one can start with SMEFT operators at a high scale, run down to
Mz, match onto LEFT, and then run the LEFT operators down to the low-energy scale
of the experimental observables, such as u = my; for B decays. If one instead relaxes the
assumption about electroweak symmetry breaking, then one can introduce LEFT opera-
tors with arbitrary coefficients at Mz, and run down to low energies. Clearly, starting
from the SMEFT imposes constraints on the LEFT coefficients that need not be satisfied
in other BSM scenarios, such as Higgs Effective Field Theory (HEFT) [36, 37]. Experi-
mental checks of these constraints test whether electroweak symmetry in the SM is broken
by the Higgs mechanism with a fundamental scalar doublet. The dimension-five dipole
operators are particularly interesting, because in the SM their coefficients are of order
awmg/(4mv?) ~ Gpmgow /(47), where my is a light quark mass, and hence effectively the
same size as one-loop dimension-six coefficients, whereas in SMEFT, they can be of order
v/A? due to matching from the dimension-six dipole operators ¥>X H, such as Qg . In
contrast, dimension-five dipole operators in HEFT can be of order 1/A [38]. Hence, in this
scenario effects that are quadratic in dimension-five LEFT coefficients are parametrically of
the same order as effects linear in dimension-six LEFT coefficients. Our results presented
here and in [22] include these contributions.

The organization of this paper is as follows. In section 2, we briefly review SMEFT,
focusing on the operators up to dimension six. The complete operator basis of SMEFT up
to dimension six is listed in tables 4, 5, and 6 of appendix A. We then consider sponta-
neously broken SMEFT at the electroweak symmetry-breaking scale v and briefly review
salient results of prior work relating the parameters of SMEFT to the usual parameters of
the spontaneously broken SM. In addition, we discuss modifications of the charged and
neutral fermion currents in the spontaneously broken SMEFT. The construction of the
matching conditions of LEFT in the spontaneously broken SMEFT depends crucially on
these modified weak charged and neutral currents.

Section 3 discusses the power counting of LEFT. The expansion of the spontaneously
broken SMEFT is in powers of v/A, where v ~ 246 GeV is the vacuum expectation value
of the Higgs scalar doublet, which spontaneously breaks the electroweak gauge symmetry
down to SU(3) x U(1)q, and A is the scale of new physics. LEFT has a double expansion —
in addition to the usual p/v expansion of the low-energy weak interactions, it inherits the
v/A expansion of spontaneously broken SMEFT. Here p < Myy, 7z is a typical low-energy
scale such as my or m,. We explain how to power-count terms in LEFT in the presence of
two expansion parameters. Section 4 derives the power-counting rule for matching SMEFT
onto LEFT at tree level.

In section 5, we classify all the SU(3) x U(1)q invariant operators of LEFT up to
dimension six. A complete operator basis of LEFT up to dimension six is constructed and
presented in tables 7 and 8 of appendix B. We determine the tree-level matching conditions
in SMEFT for all of the LEFT operators, tabulated in appendix C. The usual computation
of these matching conditions in the renormalizable SM is generalized to include all possible



new-physics effects in SMEFT up to dimension-six operators. Since the SMEFT has far
fewer dimension-six operators than the LEFT, there are many relations among LEFT
coefficients. Predictions of this type have been given recently for B decays in ref. [39]. The
full set of predictions is obtained in this work.

Section 6 presents a number of applications of LEFT to well-known flavor-
nonconserving processes, illustrating the advantages of using the LEFT operator basis
for the analysis of low-energy flavor observables. Conclusions are given in section 7.

2 SMEFT

Basic results on the SMEFT in the broken phase, which are needed to compute the match-
ing to the low-energy theory below the electroweak scale, are summarized in this section.
Throughout this paper, we use the notation of ref. [3].

The SM Lagrangian is
1 1 1 i
Lsv = — ZGZ?VGAW - ZW;{VWIW - ZBWBW + (D, H")(D'H) + Z Viy
1/1=(1,U,dyl,e

1 .\2 _ . .
—A (HTH — 21)2) — {H“d Yigi+ H"uY, q+ H'e Y. l; + h.c}

2
1

0395 A ~ 0293 | —~ 0
X 393 G,’?VGAW—F 292 WJVWIMV+ 19

B, B" . 2.1
3272 3272 3272 M (2.1)

The gauge covariant derivative is D, = 0, + ig3T AG;‘L‘ + igot! Wi +1i91Y B,,, where TA
are the SU(3) generators, ¢! = 71/2 are the SU(2) generators, and Y = y is the U(1)
hypercharge generator. SU(2) indices i, j, k and I, J, K are in the fundamental and adjoint
representations, respectively, and SU(3) indices A, B, C' are in the adjoint representation.
SU(3) indices in the fundamental representation are denoted by the Greek letters «, 3, 7.
H is defined by

I:’i = EinTj, (22)

where the SU(2)-invariant tensor €;; is defined by €12 = 1 and €; = —ej;, 4,57 = 1,2.
Fermion fields g and [ are left-handed fields, and u, d, and e are right-handed fields. Note
that theta terms have been added to the SM Lagrangian in eq. (2.1) for completeness:
they are needed for a splitting of the gauge terms into holomorphic and anti-holomorphic
pieces [40]. The fermion fields have weak-eigenstate indices r = 1,...,ng, where n, = 3,
and the Yukawa couplings are ng X ny, matrices.

The SMEFT Lagrangian is the SM Lagrangian (2.1) plus higher-dimension operators.
In this paper, we consider operators in SMEFT up to dimension six. The number and
quantum numbers of SMEFT operators at dimension five and six are given in table 1. An
explicit list of the operators in the notation of ref. [2] is presented in tables 4, 5, and 6 of

appendix A. The coefficients of the SMEFT Lagrangian will be denoted by C j , etc. in
prst



d quantum numbers ng =1 ng =3

5 (AL =2)+h.c. 1+1 646

6 AB=AL=0 76 =53, +23_ | 2499 = 1350, + 1149_
6 | (AB=AL=1)+h.c. 444 2734273

Table 1. Number and quantum numbers of operators in SMEFT at dimensions five and six. The
first column gives the operator dimension d, and the second column gives the AB and AL quantum
numbers. The third and fourth columns list the number of Hermitian operators in SMEFT for
ng = 1 and ngy = 3 generations of fermions, split according to their sign under C'P.

the notation of refs. [3, 18, 19], where p, 7, s,t are weak-eigenstate indices,! and powers of
1/A are included in the coefficients C.
The dimension-five Lagrangian of SMEFT is given by the AL = 42 operators of table 4

L) = 5 I M T Clyy ) H Hy + hec. (2:3)

where i, j, k,1 are SU(2) indices, r, s are weak-eigenstate indices, and C' = i7?7° is the

charge-conjugation matrix. The coefficients C'5 are symmetric in the weak-eigenstate in-
pr

dices and of order 1/A. For ny = 3 generations, Cs has ng(ng +1)/2 = 6 complex entries.

The anomalous dimension for the dimension-five operator was computed in refs. [41, 42].
On converting to the notation and normalization of refs. [3, 18, 19], it is given by

. 3
G5 = — 5 [Cs0lYe) + (VY75 | + 40 C5 - 363 s
(2.4)
4T <3YJYU +3Yv, + YgYe) s,
where Cs and Yy, ¥ = e, u, d, are matrices in flavor space, and we use the notation
C= 167@30 (2.5)
= 4:.C .

The dimension-six Lagrangian divides into operators that conserve baryon number and
lepton number, listed in table 5, and the operators with AB = AL = +1 listed in table 6.
It is worth repeating that the scale A of new physics does not have to be the same for the
lepton- and baryon-number preserving and violating sectors in the SMEFT.

2.1 SMEFT in the broken phase

Electroweak symmetry breaking in SMEFT is modified by the presence of dimension-six
operators. The scalar field can be written in unitary gauge as

1 0
= V2 ( [1+ crxin] b+ vT) ’ (26)

'Regrettably, there are not enough letters in the alphabet. Thus, ¢ is a weak-eigenstate index, which

can sometimes take the value t = 3 or ¢, i.e. the top quark. A similar problem occurs for s. Sorry.



where

1 3Cyv?
CHkin = (CHEI - 4CHD) v?, up = (1 + SI; > v, (2.7)

in the notation of ref. [3]. The rescaling of h in eq. (2.6) is necessary so that h has a
conventionally normalized kinetic energy term (see ref. [3]), and the vacuum expectation
value (VEV) vr in SMEFT is not the same as v in the Lagrangian eq. (2.1) due to the
dimension-six contributions to the Higgs interactions,

£ = oy (HTH>3 +Cuoy (HVH) O (H'H) + Cup (H D1 (HID,H) - (28)

which contribute to the scalar potential and kinetic energy terms.
The fermion mass matrices in the SMEFT are modified by dimension-six operators [3].
The u-quark, d-quark, and e-charged lepton mass matrices are

— (Yl 1 «
L=—[My]. Vptrs +he., [My] =—= <[Y¢]rs — 1}2CwH> . Y=u,de. (29)
\/§ 2 ST
The Yukawa coupling matrices of the h boson to the fermions £L = —h w) ¢+ ... also are
modified from those of the SM due to the same dimension-six operators [3]. The Yukawa
couplings in the spontaneously broken SMEFT are

112

V2

Y = u,d,e, where Y, are the Yukawa couplings in the dimension-four SM Lagrangian,
and cgxin and vr are defined in eq. (2.7). An important feature of SMEFT is that the
dimension-six operators Qyp generically lead to h boson Yukawa couplings that are no

i 3

Vol = 7 Yyl [T+ crin] — 2\7@1120221{ = — [My],, [1+ cuyin] — —=Chn, (2.10)

1
vr

longer simply proportional to the fermion Dirac masses.
The left-handed neutrinos also acquire a Majorana mass matrix upon spontaneous
symmetry breakdown from the dimension-five Lagrangian £)

E =75 [MV]TS (I/%;”CVLS) + h'C- ) [My] == _C5 U%. (211)

2 s TSs

The Higgs boson couples to the neutrinos via £ =h [Vs],, (vL.Cvrs) + h.c., where

[Vsl,.s = vr [C5],.4 [1 + ckin (2.12)

is proportional to the Majorana-neutrino mass matrix when keeping only operators up to
dimension six in SMEFT. It is important to note, however, that dimension-seven operators
contribute a correction to the above equation at relative order v2, which generically results
in a Majorana-neutrino Yukawa coupling )5 that is not proportional to the Majorana-
neutrino mass matrix.



2.2 Flavor indices

The spontaneously broken SMEFT Lagrangian is written in terms of fields g, I, u,, d,
and e,, where r = 1,...,ny = 3 is a generation (weak-eigenstate) index. In this weak-
eigenstate basis, the fermion mass matrices are not diagonal. Transformation from the
weak-eigenstate basis to the mass-eigenstate basis for the fermions in the SM results in
quark and lepton mixing matrices appearing in the weak charged currents. Similar effects
occur in SMEFT, so care must be taken in switching from the fermion weak eigenstates to
the mass eigenstates.

One can make flavor transformations on the SMEFT fields that put the charged fermion
mass matrices in the form

M. — diag(me, my, ms), Mg — diag(mg, ms,mb)VT, M, — diag(my, me,my), (2.13)

where V' is a unitary mixing matrix, which is the CKM matrix in the SM (but not in
SMEFT, see section 2.3). We will assume that these flavor transformations have been
performed. Then, the weak-eigenstate index is the same as the mass-eigenstate index
for the charged leptons, left- and right-handed u-type quarks, and right-handed d-type
quarks.? For left-handed d-type quarks, one gets the usual relation between weak and
mass eigenstates,

dryr = Veadr +Vessp + Ve b = Vg drg (2.14)

where the left-hand side is a weak eigenstate, and the right-hand side is a linear combination
of mass eigenstates. It should be clear from the context whether we are referring to weak
or mass eigenstates, so we will not distinguish between them by using different symbols d’
and d.

When we go from SMEFT to the low-energy theory, the ¢ quark is integrated out.
This procedure can be done by letting the weak-eigenstate index (which is the same as the
mass-eigenstate index for u-type quarks) run over r = 1,...,n, = 2. For d-type quarks,
r=1,...,ng = 3, and one converts between weak- and mass-eigenstate indices for left-
handed d-type quarks using eq. (2.14). For charged leptons, r = 1,...,n. = 3, and the
weak-eigenstate index is the same as the mass-eigenstate index, whereas for neutrinos,
r=1,...,n, = 3 is always a weak-eigenstate index in this paper. Treating n. and n, as
independent variables allows our results to be used even if there are light sterile neutrinos
or right-handed neutrinos, which have the same quantum numbers as SM neutrinos under
SU(3) x U(1)g. Furthermore, by using this notation, we do not have to worry about the
mixing matrix V when we compute the low-energy EFT Lagrangian. The diagonalization
of the u- and d-quark mass matrices can be done in the low-energy theory, at which point
the matrix V' enters via eq. (2.14). However, a word of warning is needed. The CKM
matrix V' that diagonalizes the mass matrices in eq. (2.13) is not the same as the mixing
matrix K, defined in section 2.3, that enters the W boson coupling to the weak charged

2Note that the Majorana-neutrino mass matrix M, has not been diagonalized. Throughout this work, we
consider only neutrino weak eigenstates, so neutrinos vz, are always weak eigenstates with indices r =1, 2,3
corresponding to r = e, u, 7, and the Majorana-neutrino mass matrix is not diagonal.



quark current in SMEFT because of dimension-six operator contributions. This point is
explained in detail in the next subsection.

In LEFT, we can use either weak-eigenstate indices or mass-eigenstate indices for the
quarks and leptons. With our convention, the two agree for all fermions except left-handed
d-type quarks. A simple example is useful to illustrate how to convert from weak-eigenstate
to mass-eigenstate indices in LEFT. Consider the SMEFT term

L = Cieaqg Wer)(dsqse) , (2.15)

prst

where p,r, s, t are weak-eigenstate indices, summed over the values 1,2,3. In LEFT, this
operator breaks up into

L= Cledt% [(DLpeRr)(JRsuLt) + (éLpeRr)(JdeLt)} ) (2'16)
prs

where p, r, s,t are still weak-eigenstate indices. Switching to mass-eigenstate indices for the
left-handed d quarks yields

L= Cledq(DLpeRr)(JRsuLt) + Cledq‘/tz(éLpeR'r)(d_deL:E) s (2-17)
prst prst

where p,r,s,t are weak-eigenstate indices, but x is a mass-eigenstate index. Weak-
eigenstate and mass-eigenstate indices are the same for e g, v, ur g, and dg, so we
can use eq. (2.17) with p=1,2,3 =e,u, 757 =1,2,3 =, u,7; and s = 1,2,3 = d, s,b for
both terms. For the sum on ¢, however, the sum for the first term is over t = 1,2 = u,c,
whereas the sum for the second term is over t = 1,2,3 and « = d,s,b, since all three
left-handed d-type quarks remain in the low-energy theory. Since we will often wish to
focus on specific mass-eigenstate operators, we also use the notation

Cledq(€Lpr)(5RbL) (2.18)
epsb

for the p =1, r =2, s = 2, x = b component of the second term in eq. (2.17), where

3

Cledq = Z Cledq Vrb- (2.19)
epusb —1 122r

Notice that care is required only for left-handed d-quark indices given our conventions.

2.3 Gauge-boson masses and couplings

The gauge bosons of the spontaneously broken SMEFT need to be redefined so that the
gauge kinetic terms have canonical normalization. Non-canonical normalization arises be-
cause dimension-six class-4 Higgs-gauge-boson operators X2H?, such as HTH W!{VWI‘“’,
contribute to the gauge kinetic terms in the spontaneously broken theory. In addition,
the neutral gauge-boson mass matrix needs to be diagonalized to obtain the gauge-boson
mass eigenstates of the spontaneously broken SMEFT. The gauge-field redefinitions that
are needed to rewrite the SMEFT Lagrangian in terms of properly normalized gauge-
boson mass eigenstates have been given in detail before. We summarize the required
equations here.



The gauge-field and -coupling redefinitions needed to yield gauge kinetic energy and
mass terms that are properly normalized and diagonal are [3, 43]

G =Gl (14 Cpev?), Wl=WL(1+Chuwv?), B,=B,(1+Cupv}), (2:20)

93 =093 (1L+Cucvy), Go=92(1+Cuwo}), G =91 (1+Cupvy), (221)
and
ZH c— <5 —5+ <\ (WE
= 2 2 5 =C 2. 2.22
<Aﬂ> <§+§6 é+§§> <Bﬂ)’ €= THWBT (2.22)

The neutral gauge-boson mass eigenstates Z# and A* in the above equation depend on
the weak mixing angle 8 through

- T )
cosf=c=——L2 [1_691<gg gé)],
VIt + 33 2 92 \ i + 95
= o2 2
sinf=5= 91 |14 2 (02791 (2.23)
—9 —9 2 2 2
V9193 91 \91 + 95

The massive gauge bosons of the spontaneously broken SMEFT are the W*# and Z#
with masses

1_
M)%v = Zggng
1. 5 1 €_ _
MZ = 1 (g% + g%) v3 <1 + 2CHDU%> + 59192“%- (2.24)

In the above equations, Gf, W;{ ,and B, and g3, g2, and g; are the gauge fields and coupling
constants in the unbroken SMEFT, and g;j‘, W/{, and B, and g3, g9, and g; are the gauge
fields and coupling constants in the spontaneously broken SMEFT. Note that products of
gauge couplings and gauge fields ggG;‘ = §3gf, gng = §2Wl{, and g1 B, = §1B, are
unchanged by the above redefinitions.

With these redefinitions, the gauge-covariant derivative in the spontaneously broken
SMEFT is given in terms of the gauge-boson mass eigenstates by
92
V2

where Q = T35 + Y, and the effective couplings € and g, are given by

D=8, +igsGi T +i 22 WITY + W, T7] +ig, (I3 — 5°Q] 2, +ieQA,, (2.25)

~ 1 _
€=07, sinfd — 3 c0s 0 Gy v4 Crrw B,

- — 2, =2
_ e 91"+ 3927 o
= — — 1+ — == v5.C . 2.26
2™ sinfcos0 29199 TVHWE ( )

In contrast to the SM, the couplings of the massive gauge bosons Wff and Z, to
fermions are not completely determined in SMEFT by the gauge-covariant derivative in
the fermion kinetic energy terms. There is an additional contribution to fermion couplings

,10,



arising from the dimension-six 92 H2D operators, such as Q m = (H D LH) (L"), listed
in table 5, which are the product of Higgs currents times fermion currents. The Higgs
currents evaluated in unitary gauge using eq. (2.6) (with ¢ kin = 0 to leading order) are

= q
(H'i'D  H) = %ZM(UT +h)?,
g
—gwﬁ(w +h)2 I=1

= qg
(H'iDIH) = _%WEL(UT +h)2, =2

~Zz,or + b, 1=3,

\

(H'D,H) = —;\g} Wi (or + h)2. (2.27)

Using eq. (2.27), the additional contribution of the > H2D operators to the couplings of
the massive weak gauge bosons can be easily evaluated.

The fermion couplings to the massive gauge bosons W;—L and Z,, in the spontaneously
broken SMEFT take the usual form

,c_——{w+gw+hc} 972.5% (2.28)
with the modified weak charged and neutral currents

]{/L\) = [I/Vl]prva’YueLr + [Wq]prﬂLp'YMdLr + [WR]prﬂRp'YMdRm
jg = [ZVL]prng'YMVLr + [ZeL]préLp'YﬂeLr + [ZeR]préRp'YueRr (2.29)
+ [Z“L]PTULPVMULT + [ZUR]PTHRPVMURT + [ZdL]PTELpPVMdLr + [ZdR]PraRp’YNdRra

where
(Wilpr = | 0pr + 07 Hl] {6,” + U%CS’;] o [Whelpr = {%v%CHud] 7
pr pr
/1N 1, 4
(Zu,]pr = 5pr (2> SUr C() 3 TCJ('JI)]

1 (1 1 [ N 1
[ZEL]W = 5PT ( 5 ) CHZ) 2 %CJ(LII) [ZeR]PT = 5177’ (+S2) - 2U%Clge:| s
pr L T
1 2 1 1 3 [ 2 . 1
[ZUL]pT = 5;01” <2 - g )2 % QU%C;:} ) [ZuR]pr = _6}07" <352> QUZQFCI;‘;I;L:| )
L 1 n_ 1,6 i 1o\ L,
Z, r = 6'r = 2) C( QC , Z = (Sr +-5% | —=v3C .
[ dL]p y4 ( 2 3 2 T Hq 2 T Hq [ dR] I V4 3 2 T Igﬁl

Here, [Wilpr, [Welpr, and [Wg],, are the couplings of Wlf to (Trpy*err), (@rpy*drr),
and (Trpy*dgy), respectively, and [Zy],, are the couplings of Z, to (Epyl‘wr) for ¢ =
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VL, €eL,€Rr,ur, uR,dr, and dr. Note that the couplings eq. (2.30) are written in the weak-
eigenstate basis, so the SM contribution is proportional to Kronecker-delta symbols. The
dimension-six 2 H2D operators in spontaneously broken SMEFT give the 1/A? contribu-
tions proportional to coefficients C' in eq. (2.30). Interestingly, in spontaneously broken
SMEFT, W,f couples to the right-handed charged current (@r,y*dg,) with coupling [Wg] or
due to the dimension-six operator Qg [44].

The couplings eq. (2.30) are in the weak-eigenstate basis, where the mass matrices
have the form eq. (2.13). Performing a flavor rotation on the left-handed d quarks by
V diagonalizes the quark mass matrices. V is a unitary matrix. The W* couplings in
eq. (2.30) are not unitary, however, because of the dimension-six operator contributions [45].
The effective quark-mixing matrix in the left-handed quark sector is given by

Kpo = Vo + 03Ci) Vi, (2.31)
ps
which satisfies
4
il — 2 | ~(3) (3)x v
[KK ]pr Spr + V2 [Cgﬂ + CIZI;I ] +0 <A4> (2.32)
and
4
[KTK} = 8y + 03 [v;pcﬁgny + Vjscﬁg*xg,y} +0 (L) . (2.33)
Yy ps sp

Flavor physics experiments at low energies measure coefficients of the dimension-six flavor-
changing terms in the Lagrangian, and thus determine matrix elements of K, which is the
effective quark-mixing matrix in the low-energy theory. The two matrices V and K are
equal in the SM, but differ in SMEFT due to the presence of dimension-six operators in
the weak charged currents. V is unitary, but K is not. In SMEFT, flavor-changing neutral
currents also can be present at order 1/A? due to dimension-six operators.

Non-unitarity of the effective lepton-mixing matrix was studied previously in the con-
text of neutrino physics in refs. [46-48], which considered the operator

_ —
0= Crs(lmH]T)Z a (lsk:HE)EijEkﬁ . (234)
Using the equations of motion converts eq. (2.34) to the SMEFT operator
1 1
0 = SCrQi) — Crs 3 Qi (2.35)
rSs TS

which shows that unitarity violation of the effective mixing matrix in the lepton sector also
is given by the 12 H2D operators in spontaneously broken SMEFT.

3 Power counting in LEFT

The SM below the electroweak scale can be described by an EFT with an expansion in
powers of the inverse electroweak scale 1/v. The expansion parameter is usually written
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as Gr = 1/(v/2v?). The dimensionless small parameter that controls the EFT expansion
is p/v or m/v, where p and m are the momenta and masses of particles in the EFT. For
example, in meson weak decays, such as K and B decays, the low-energy scales are of order
my and my. The low-energy theory only contains particles with masses m < v. The gauge
bosons remaining in the low-energy theory, the gluons and the photon, are all massless,
and there are no massless or massive scalar particles remaining since all components of
the single fundamental Higgs scalar doublet are integrated out. The massive particles in
the low-energy theory consist of all SM fermions with the exception of the ¢t quark. In the
SM, fermions get their mass due to electroweak symmetry breaking, and so have a mass
m ~ yv proportional to v times a Yukawa coupling. By assumption, there is a low-energy
EFT below v with dynamical fermions. This assumption means that the light fermions
have a mass m < v, so their Yukawa couplings are of order y ~ m/v < 1, and are
parametrically suppressed by the power-counting parameter of the low-energy EFT.

The presence of a low-energy mass in LEFT means that renormalization produces
running of the Wilson coefficients of lower-dimensional operators proportional to the coef-
ficients of higher-dimensional ones. For example, a dimension-four term in the Lagrangian
can have an anomalous dimension proportional to m? times a dimension-six term, m?*
times a dimension-eight term, etc.®> The dimension-six contribution to a dimension-four
term is of order m?/v2, and is the same order in power counting as a direct dimension-six
contribution to a scattering amplitude, which is order m?/v? or p?/v2.

In the low-energy theory starting with SMEFT, we have an additional expansion in
powers of 1/A. This additional expansion can be easily included in the power counting by
writing 1/A = 1/v x (v/A), i.e. LEFT uses the low-energy power counting in powers of 1/v
with additional suppression factors in powers of v/A. There are no particles with masses of
order A in SMEFT, so one cannot get positive powers of A. A term in LEFT of dimension
d has the power counting

(D;—4
- G
if it arises from a graph with insertions of SMEFT operators of dimension D;.

In addition to the double expansion in powers of m /v and v/A, the low-energy EFT has
a loop expansion in powers of (a, as)/(4) since it is weakly coupled. In applications such
as low-energy weak interactions, the heaviest mass in the problem is the b-quark mass, so
m/v ~ 1/50. We do not know the scale A of the SMEFT expansion. Current experimental
data indicate that it is above a few TeV, so that v/A < 1/5. However, it is possible that A
is much higher than a few TeV, of the order of the seesaw scale or the GUT scale, in which
case v/A could be as small as 107!2. We already know that A ;, for the dimension-five
AL = 2 operator Q5 and Ay for the dimension-six baryon-number violating operators is
this large.

In this paper, we compute the tree-level SMEFT contributions to LEFT operators up to
dimension-six. These are the leading BSM contributions to the low-energy amplitudes, and
experimental constraints on them provide information about BSM physics. The one-loop

3 Analogous effects in spontaneously broken SMEFT were computed in ref. [3].
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corrections to these amplitudes in the SMEFT is beyond the scope of this paper. Higher
order matching corrections have been computed in the SM (for a review, see ref. [15]).

We stress that LEFT is the correct low-energy theory even in the case where the high-
energy EFT is not given by SMEFT but by HEFT [36, 37|, which relaxes the assumption
that the Higgs particle is part of a fundamental electroweak doublet. In this case, the
dimension-five LEFT operators come with a suppression factor of 1/A rather than v/A? as
in the case of SMEFT. Therefore, when systematically considering effects up to dimension
six in the LEFT power counting one also has to include effects quadratic in the dimension-
five LEFT coefficients. In [22], we present the complete one-loop RGE up to dimension six
in the LEFT power counting.

4 Integrating out weak-scale particles in SMEFT

In this section, we derive the power counting rules for integrating out a heavy particle in an
EFT. We start with a high-energy EFT, which in this paper is the SMEFT, with a power
counting scale A that suppresses higher-dimension operators. The high-energy theory also
contains heavy particles with a mass M of order v < A, and we want to construct the
low-energy EFT below v in which these heavy particles are integrated out. In the SMEFT,
the heavy particles are the W and Z gauge bosons, the ¢ quark, and the Higgs boson h.
The light particles are those with masses m parametrically smaller than v, namely the
quarks u, d, s, c,b, charged leptons e, u, 7, the left-handed neutrinos v, v, v;, the photon,
and the gluons.

The power-counting rule in the high-energy EFT is that an arbitrary graph with ver-
tices of operator dimension D; produces an operator with dimension

D-4=>) (D;—4). (4.1)

i

Eq. (4.1) is a well-known result, which follows simply from counting powers of A. Oper-
ators of dimension D; have coefficients of order 1/A”:=* in the EFT Lagrangian. Graphs
in the theory cannot generate positive powers of A since all particles have masses para-
metrically smaller than A, and loop integrals do not generate powers of A in dimensional
regularization. Comparing powers of A gives eq. (4.1).

Now, consider the subset of EFT graphs in which all external particles are light particles
with masses and momenta much smaller than v. These graphs include graphs with internal
heavy particles depending on heavy masses M ~ v. By expanding the internal heavy
propagators in 1/M ~ 1/v, one obtains that an operator of dimension D in the low-energy
EFT has a coefficient of order

11

E*b, a+b:D—4, GZO (42)
v

by dimensional analysis. Note that a is non-negative because it is not possible to generate

positive powers of A as discussed above. For tree graphs, b > 0, but it is possible to
obtain b < 0 via heavy mass insertions in loop graphs. For example, a loop graph with two
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insertions of

5 Pt) (B, P (4.3)
gives a contribution to (by*Prb)(by,Prb) with a coefficient of order M7 /A%, ie. a = 4,
b = —2. Thus, in loop graphs, powers of M in the numerator can cancel powers of v in
the denominator. In the SM, M /v is a gauge coupling, a Yukawa coupling, or V' A, so M /v
corrections are comparable to radiative corrections. This result is well-known from the
matching calculation for the weak interactions in the SM.

In this paper, we compute tree-level matching when particles of mass M ~ v are
integrated out. FEach internal heavy fermion line starts at order 1/M plus terms with
additional factors of p/M, and each internal heavy boson line starts at order 1/M? plus
terms with additional factors of p?/M?. Additional factors of 1/M in the denominator
are compensated by the dimensions of external fields, i.e. a tree graph with heavy internal
particle lines generates operators with dimension

D—4=Y (D;—4) + Ip + 21, (44)
i
where I is the number of internal heavy fermion lines and Ig is the number of internal

heavy boson lines. Another way to derive eq. (4.4) is to count dimensions. A graph (tree
or loop) with vertices of dimension D; gives an operator with dimension

D= "D;-3Ir - 2Ig, (4.5)

1

since each internal heavy line removes two heavy fields, and fermions fields have dimension
3/2 and boson fields have dimension 1. For a tree diagram with only heavy internal lines,
one also has the relations

V_I=1  I=1Ip+Ip, (4.6)

where V' is the number of vertices and I is the number of internal lines. Eq. (4.6), when
combined with eq. (4.5), gives back eq. (4.4) for tree graphs with only internal heavy lines.
For tree graphs, we also have the relations

2Ip = > Fi 2Ip =Y B (4.7)

where F; and B; are the number of heavy fermion and boson fields at each vertex, since
there are no external heavy fields in the low-energy EFT, and each internal heavy line
removes two fields. Eq. (4.7) combined with eq. (4.4) gives

1 1

D—4:Z<Di+2F¢+BZ-—4>:Zwi, wiEDi+§FZ-+BZ-—4. (4.8)
K] K2

w; can take on integral or half-integral values. There must be an even number of half-

integral values of w; since ZZ F; is even.
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Operators

YtA,

Zw AR hap? ViZ, t2A,

ot YtZ,  PtAu

R® hZ,ZF hALAM Z,,ZM W2 2Z, ¢ Z,, t?A,

NI T

Table 2. Table of operators in SMEFT containing at least one heavy field with weights w < 2.
Operators are denoted by their field content, where Z, and Z,, are the heavy Z (or W) field
and field-strength tensor, respectively; A,, and A, are the light photon (or gluon) field and field-
strength tensor, respectively; ¢ is a light fermion; ¢ is the heavy top quark and h is the heavy
Higgs boson.

We construct the EFT below v up to dimension six, so we need », w; < 2. Further-
more, since we only compute tree-level matching, every operator vertex must have at least
one heavy field, and each graph must have at least two such vertices. Operators with no
heavy fields match directly to the low-energy theory, i.e. the operator survives in the low-
energy theory. The SMEFT vertices with at least one heavy field and w < 2 are given in
table 2. The notation is schematic: v represents a light fermion, ¢ is the heavy top quark,
h is the heavy Higgs boson, A, is a light gauge boson and A,,, is its field-strength tensor,
and Z, is a heavy gauge boson and Z,,, is its field-strength tensor. For SMEFT, the light
gauge bosons are photons and gluons, and the heavy ones are the W and Z. The smallest
weight in table 2 is w = 1/2 for the tA, vertex. This interaction is a 1) — ¢ interaction
due to a photon or gluon, and is not present since QED and QCD gauge couplings are
flavor diagonal. The remaining vertices all have w > 1. Since a tree graph has V' > 2, and
from table 2, we see that all vertices have w > 1, we only need to consider graphs with two
insertions of the w = 1 vertices

Zuw AP hp? W27, 12A,, (4.9)

The tzAu vertex is the interaction of the ¢t quark with light gauge bosons. It is not
possible to draw a tree-graph without external ¢ quarks using this interaction and other
w = 1 vertices in eq. (4.9), so this interaction can be dropped.

Z AM s kinetic mixing [49] between a heavy and light gauge boson. Such vertices
are produced by operators such as

Qup = H'H By, B" (4.10)

in the SMEFT when H is replaced by its VEV, and it has a coefficient of order v?/A2.
Terms of this type are included in rediagonalization of the gauge-boson kinetic energy
terms [3], as discussed in section 2.3.

The hyy? interactions are the Yukawa couplings of light fermions to the Higgs boson,
and the 1/12ZM interactions are the couplings of light fermions to the heavy gauge bosons W
and Z. They contribute to the matching via tree graphs with single h, W, or Z exchange.

The fermion mass matrices and Yukawa couplings in the SMEFT are given in egs. (2.9)
and (2.10) for Dirac fermions and in egs. (2.11) and (2.12) for Majorana neutrinos, respec-
tively. Higgs exchange gives four-fermion operators with a coefficient of order Y?/m3.
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From eq. (2.10), we see that Y2 has terms of order (m/v)?, mv/A?%, and v*/A*, where m
is a light-fermion mass. Thus, Higgs exchange contributions, which are 1/v? times this,
are parametrically of the same order as dimension-eight terms, which we have neglected,
and can be dropped. The fact that ) is first order in power counting is a special feature
of the SM. If there are additional scalars at the electroweak scale, as in two-Higgs-doublet
models, then their Yukawa couplings are in general not related to fermion masses, and tree
graphs with the exchange of these scalars must be included in the matching.

The only tree graphs which we need to include are tree-level W and Z exchange, which
give dimension-six operators. This result should be familiar from the Fermi theory of weak
interactions. In SMEFT, we need to include W and Z vertices including 1/A? corrections,
since these lead to dimension-six interactions with coefficients of order 1/v%xv2/A%? = 1/A2,

which are included in our results. The gauge-boson propagator in unitary gauge is

kak,\ 1
_ (gw -l ) Tl (4.11)

where M is the gauge-boson mass. The k*k" /M? part of the propagator gives terms of order

(m/M)?, which are the same order as Higgs exchange contributions, and can be neglected.
This result is not an accident, since the two terms are related by gauge invariance. The
propagator denominator can be expanded in powers of k2/M?, and to dimension six, we
only need the first term.

In summary, the only contributions we need to keep are those from tree exchange of
a single W or Z boson including 1/A? corrections to the vertices, where the gauge boson
propagator can be taken to be g, /M 2. These contributions are included in the tables
of appendix C using the gauge couplings in eq. (2.30). The matching coefficients depend
on the product of two gauge couplings, and so have terms of order 1/M?2, (1/M?)(v?/A?)
and (1/M?)(v*/A*), with M ~ v. The last term, from the product of two dimension-six
corrections to the gauge coupling should formally be dropped as it is of higher order in the
power counting.

5 LEFT operators

The EFT below the electroweak scale consists of QCD and QED, with n,, = 2 u-type quarks,

ng = 3 d-type quarks, n, = 3 charged leptons and n, = 3 left-handed neutrino flavors. The

operators in LEFT are built out of fermion fields uy,, ug, drs, dgr, €Ly, €rr, and vy,., where

7 is a weak-eigenstate index,? the gauge-covariant derivative D, = 8,, + igTAGﬁ1 +ieQA,,

and gauge field strengths: the photon field-strength F},, and the gluon field-strengths ny.
The QCD and QED Lagrangian is

2

1 v LA A 9 A FAw e =
Lqcp+QED = —ZFWF“ — GG a +9QCD327T2GW,G a +9QED7327T2FMVFH
+ Y iy — | Y pMylestors + e, (5.1)
Y=u,d,e,vy, P=u,d,e

4Since the weak-cigenstate index is equal to the mass-eigenstate index for all fermions except the left-
handed d quarks, converting to mass-eigenstate indices only involves conversion of dr, to Vyzdr., as dis-
cussed in section 2.2.
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d quantum numbers ng =1 ng =3

3 (AL =2)+h.c. 1+1 6+6

5 AB=AL=0 5+5 35+ 35

5 (AL =2)+h.c. 1+1 3+3

6 AB=AL=0 80 =574 +23_ | 3631 = 19331 4 1698_
6 (AL =2)+h.c. 14 +14 600 + 600

6 (AL =4)+ h.c. 1+1 6+6

6| (AB=AL=1)+h.c. 949 288 + 288

6 | (AB=—-AL=1)+h.c. T+7 228 + 228

Table 3. Number and quantum numbers of operators in LEFT of dimensions three, five, and six.
The first column gives the operator dimension d, and the second column gives the AB and AL
quantum numbers. The third and fourth columns list the number of Hermitian operators in LEFT
for ng = 1 and ny = 3 generations of fermions, split according to their sign under C'P.

which contains QCD gauge interactions of n, = 2 u-type quarks and ng = 3 d-type quarks
and QED gauge interactions of the u quarks, d quarks, and n. = 3 charged leptons at
dimension four, and Dirac-fermion mass terms for u, d, and e at dimension three. The
n, = 3 left-handed neutrinos are gauge singlets with no mass term. Theta terms for QCD
and QED are included as well.

The LEFT Lagrangian is the QCD and QED Lagrangian (5.1) plus additional SU(3) x
U(1)q gauge-invariant operators at dimension three and higher dimension d > 4, beginning
at d = 5. The number and quantum numbers of operators in LEFT at each dimension
can be obtained by counting invariants [10, 50-53]. In this paper, we consider operators
in LEFT up to dimension six. Table 3 gives the number and quantum numbers of LEFT
operators at dimension three, five, and six for ny = 1 and ny = 3 generations. A complete
and independent LEFT operator basis up to dimension six is constructed and presented in
tables 7 and 8 of appendix B. Table 7 contains the baryon- and lepton-number-conserving
operators of dimension five and six, as well as the dimension-three and dimension-five
AL = =£2 operators that correspond to Majorana-neutrino mass and dipole operators,
respectively. Table 8 contains the dimension-six operators that violate lepton number
and/or baryon number. LEFT operators are denoted by O and LEFT operator coefficients
are denoted by L to distinguish them from the SMEFT operators Q and coefficients C', since
some operators, such as the SMEFT operator Q¢ and the LEFT operator O look identical.
Appendix C contains more detailed tables, tables 9-21, listing the LEFT operators in each
operator sector, their number for arbitrary numbers of fermion flavors n,, ne, n,, and ng
and for the values n, = 3, n. = 3, ny, = 2, and ng = 3 of the SM, and the tree-level
matching conditions from SMEFT including operators up to dimension six. For example,
the tree-level matching for the operator Og in table 12 is simply Lgs = Cg. Appendix C
also contains table 22, which divides the LEFT operators of tables 9-21 into C' P-even and
C'P-odd operators. The leading LEFT operators of table 3 are described below according
to operator dimension.
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5.1 Dimension-three operators

The AL = 2 4 h.c. Majorana-neutrino mass operators given in table 9 arise at dimension
three. The Majorana-neutrino mass matrix M, is symmetric in weak-eigenstate indices,
and the Majorana-neutrino mass term in the LEFT Lagrangian is

1 1
£ = —5 MOy b = =2 [My]rs(vi, Crs) + hic, (5.2)
with [M,],s = —C's v% if the mass arises from the dimension-five AL = 2 operator in

rs
SMEFT. Consequently, M, is of order ’UQ/AL. There are six AL = 2 operators for n, = 3,
plus their conjugates. Note that the O, coefficient is L, = —%Ml,.

5.2 Dimension-five operators

All of the dimension-five LEFT operators are dipole operators.

The AL = 2 + h.c. Majorana-neutrino dipole operators are given in table 10. These
operators are antisymmetric in the neutrino weak-eigenstate indices, so there are three
AL = 2 operators plus their Hermitian conjugates. The tree-level matching to L, from
SMEFT up to dimension-six contributions vanishes. The first non-vanishing contribution
in spontaneously broken SMEFT arises at dimension seven, L, ~ v?/(AyA?).

The AB = AL = 0 dipole operators (LR)X are given in table 11. The flavor-changing
operators in this table lead to interesting processes such as u — ey and b — s, as well as
magnetic and electric dipole moments. There are 35 (LR)X operators, plus 35 Hermitian
conjugate (RL)X operators. Tree-level matching in spontaneously broken SMEFT gen-
erates these dimension-five dipole operators at order v/A from the dimension-six class-6
dipole operators 2 X H.

Kobach has shown [11] that in the SMEFT, there are no odd-dimensional SU(3) x
SU(2) x U(1) gauge-invariant operators that preserve both baryon and lepton number.
LEFT has dimension-five dipole operators which preserve baryon number and lepton num-
ber, since the gauge group is now SU(3) x U(1)q.

5.3 Dimension-six operators

The dimension-six LEFT operators divide into the baryon- and lepton-number-conserving
operators given in table 7, and AL = +4, AL =42, AB=AL =41, and AB=-AL =
41 operators given in table 8.

Since there are numerous ¥* operators, it is convenient to further divide the ¢* opera-
tors into subclasses, according to chirality L and R of the fermion bilinears, as was done in
SMEFT [2], and according to scalar, vector, and tensor Dirac structure S, V', and T'. Fierz
identities can be used to convert operators between the different subclasses, so the choice of
independent LEFT operators is not unique. We have constructed the LEFT operator basis
from fermion bilinears in the form (/I'y) or (¢ T'x) that contain either two lepton or two
quark fields, avoiding leptoquark bilinears. In addition, we have eliminated tensor Dirac
matrices I' = g#” as far as possible from the operator basis. It is a non-trivial exercise to
make sure there is no double counting of operators due to the Fierz identities.
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1. AB = AL = 0 operators: these operators preserve baryon and lepton number,

and they are the only dimension-six operators that could be present at the TeV

scale. The operators divide into X? and 1)* operators. There are two triple-gluon

X3 operators and 78 four-fermion 1* operators, neglecting flavor.

(a)

(b)

X3: there are two pure gauge operators in table 12 constructed from three gluon
field strengths. These two operators also exist in SMEFT, and the tree-level
matching between SMEFT and LEFT is Lg = Cg and Lz = Cp.

(LL)(LL): the only fermion bilinears of the form (LT'L) are left-handed vector
currents (Ly“L). (LL)(LL) operators are the product of two left-handed cur-
rents. Integrating out the W and Z bosons in the SM to get the Fermi theory of
weak interactions produces these operators. Four-fermion dimension-six opera-
tors in unbroken SMEFT also give a tree-level contribution. Table 13 lists the
independent operators in the LEFT operator basis. The operators are divided
into purely leptonic, semileptonic, and non-leptonic operators.

(RR)(RR): these operators are products of two right-handed vector currents.
They are produced by Z exchange in the SM. Four-fermion dimension-six oper-
ators in unbroken SMEFT give a tree-level contribution. There also is a contri-
bution from W exchange in spontaneously broken SMEFT since W couples to
the right-handed charged current (Zgrpy*dg,) due to the dimension-six operator
Qpua- Table 14 lists the independent operators in the LEFT operator basis.
The operators are divided into purely leptonic, semileptonic, and non-leptonic
operators.

(LL)(RR): these operators are products of a left-handed vector current and a
right-handed vector current. Table 15 lists the independent operators in the
LEFT operator basis. The operators are divided into purely leptonic, semilep-
tonic, and non-leptonic operators. Most operators are produced in the SM from
Z exchange. Four-fermion dimension-six operators in unbroken SMEFT give a
tree-level contribution in most cases. In addition, W exchange in spontaneously
broken SMEFT produces a number of operators due to the coupling of W to
right-handed charged quark currents. The operator OZ;&ﬁR and its Hermitian

conjugate are not produced in SMEFT at this level.

(LR)(RL) + h.c.: the fermion bilinear (LR) can be either a scalar (LR) or a
tensor (Lo*R). Only products of scalar fermion bilinears exist in the LEFT
operator basis due to the identity (Lo*” R)(Ro,,, L) = 0. This identity contracts
a self-dual tensor with an anti-self-dual one. (Lo*¥R) transforms as (0, 1) under
the Lorentz group, and (Ro*”L) as (1,0). It is not possible to combine the
two tensor bilinears into a Lorentz singlet (0,0), which is why the (apparently)
Lorentz singlet combination (Lo*” R)(Ro, L) vanishes. Table 16 lists the three
semileptonic scalar operators of the LEFT operator basis in this category. Two
of the operators receive a tree-level matching from dimension-six operators in
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unbroken SMEFT, whereas the operator Of&RL is not produced in SMEFT at
tree level.

(f) (LR)(LR) + h.c.: in this case, both scalar and tensor operators are possible.
Table 17 lists the independent operators in the LEFT operator basis. The oper-
ators are divided into purely leptonic, semileptonic, and non-leptonic operators.
Some of the operators are present in unbroken SMEFT, but seven operators in
this category have no SMEFT matching at tree level.

2. AL = =44 operators: these operators are the square of the Majorana-neutrino mass
term. Table 18 lists the single AL = 4 LEFT operator. The operator transforms

as the H} representation under the neutrino-flavor symmetry group. This operator
receives a tree-level contribution in spontaneously broken SMEFT from Higgs and
gauge-boson exchange that is not included in the table, since we are dropping such
terms, as discussed in section 4. These operators lead e.g. to neutrinoless quadruple
B decay [54, 55].

3. AL = 42 operators: table 19 lists LEFT operators in this category. Some of
the operators are produced in spontaneously broken SMEFT from Higgs exchange
with one Higgs Yukawa coupling in the SM and one Higgs coupling to the AL = 42
Majorana-neutrino bilinear, as well as from gauge-boson exchange. The operators
OSLE OV-RL  oVER 10,4 to [ decay with an emitted neutrino rather than an an-

vedu * “vedu vedu
tineutrino.

4. AB = AL = +1 operators: table 20 lists the LEFT operators in this category.
Many of the operators receive a tree-level matching from the AB = AL = #+1
operators in SMEFT. A number of the operators are not produced in SMEFT at tree
level.

5. AB = —AL = &1 operators: table 21 lists LEFT operators in this category.
Operators with these quantum numbers do not exist in SMEFT.

The tables give the tree-level matching coefficients up to order 1/A? in SMEFT.
SMEFT gives non-trivial correlations between the coefficients, as can be seen, for ex-
ample, by looking at table 17. Consequently, one can test whether BSM physics arises
via SMEFT, i.e. whether it respects the SM electroweak gauge symmetry breaking
SU(3) x SU(2) x U(1) — SU(3) x U(1)g, by seeing whether the SMEFT correlations
are satisfied. As an example, in the case of (LR)(LR) operators, SMEFT predictions are

S,RR S,RR T,RR

L% =0, L3RR — o, LR = o,

ed ed
prst prst prst
1 1

Lo =0, L =0, L% =0,
prst prst prst
S8,RR __ S,RR S,RR __ T,RR T,RR __

L dd - O’ L™ + Ll/edu - 0’ Liew™ + Luedu - 0’
prst prst prst prst prst
S1,RR S1,RR __ S8,RR S8,RR __

L ud + Luddu - O’ L ud + Luddu - 0’ (53)
prst stpr prst stpr
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so low-energy constraints on these operators provide important information on whether
electroweak symmetry breaking results from the VEV of a single fundamental scalar doublet
as assumed in SMEFT. Many additional examples are provided by operators with vanishing
matching coefficients in SMEFT in the tables.

6 Flavor physics and B anomalies

In this section, we study the implications of the RGE for several low-energy flavor-changing
weak decays. We start with p decay, which is used to extract the value of G, and then
discuss lepton non-universality in B decays, which has received a lot of attention due
to recent results from LHCb. In the following discussion, we assume that deviations in
LEFT coefficients from their SM values are small, i.e. they are suppressed by 1/A2, where
A is the scale of new physics, and then we restrict to the special case where the LEFT
operators arise from matching to the SMEFT, which imposes the restriction that the new
physics is invariant under SU(3) x SU(2) x U(1) gauge symmetry. We work to order 1/A2
since we have neglected operators with dimension greater than six. We do not perform
a detailed fit to the experimental results. The aim of this section is to discuss which
LEFT coefficients contribute to the decay amplitudes, and their RGE evolution including
mixing with other operators. We use results for the RGE of LEFT operators from a
subsequent paper [22]. Another important and interesting example not discussed here is
flavor-changing p — e transitions. This application has been studied in detail, including
the LEFT renormalization considered here, in recent publications [26-28]. An analysis of
B anomalies within an EFT based on flavor symmetries has been presented in [56].

6.1 p decay and Gg

The value of the VEV in the SM is obtained from the measurement of Gg in u decay,
p~ — e + Ve +v,. The terms in the LEFT Lagrangian which contribute to p decay are

L =LY (o, vie) @rvunr) + LVEE (0p,0"vie) (€rvubr) (6.1)

where the coefficients are evaluated at the scale of the muon mass 1 = m,, and we have

used LX = L%, to simplify the notation. The muon decay rate computed from eq. (6.1)
peept

has contributions proportional to ! and an interference contribution pro-
portional to Re (LV’LLLV’LR*). The SM only has left-handed charged currents, and the
right-handed current coefficient LY"*® is of order v2/A?, so the ‘LV’LR‘Q contribution to
the decay rate is of order v*/A* and can be dropped. The interference term is helicity

LMLLE7LLMLRF

suppressed, of order m,/m, x v? /A2, since the electrons have opposite chirality in the two
operators. While m,/m,, is the ratio of two low-energy scales, numerically m./m,, ~ 1/200,
and the interference term can also be dropped. Thus, the o decay rate is obtained from
the left-handed current operator. Comparing with the usual Fermi theory gives

A9Fr _ tvin _ ;VLL
—_—— = L ’ = L ’ . 62
V2 e 02
The coefficients and are evolved down to u = m, using the RGE given in
ref. [22]. The only contributions to the RGEs of LY"*! and LY"E% are from penguin and

LV,LL VLR
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box graphs, and they vanish for the off-diagonal terms needed, so the coefficients at 1 = m,,
are the same as those at u = Myz. Thus, eq. (6.2) with the r.h.s. evaluated at p = My is
fixed by Gr.

Tree-level matching of the LEFT Lagrangian to the SMEFT gives

2
[V =2 40y +Cy —20%) —20%), V= c o, (6.3)
v peep eppe L ee peep

at u = Myz. Combining with eq. (6.2), Gr in SMEFT [3] is

AGr _ 2 (3) (3)
—==—5-Cy —Cy +20C; +2Cy, (6.4)
ﬂ ’U% peeft eppe 'LPLIIUI, Igé

evaluated at © = My, and is fixed by the experimentally measured p decay. The 7 — v {vy,
¢ = e, u rate depends on the linear combination in eq. (6.4) with the subscripts p — 7 and
e — ¢, which we denote by Gz(7 — ¢). Precision tests on lepton universality in 7 decay (for
a review, see ref. [57]) give

Gr(T = 1)
Gr(T —e)

Gr(r =€)

gr

There is a small (but not significant) deviation from unity in Gr(7 — u)/Gr(7 — €). The

= 1.0018 +0.0014, = 1.00011 £ 0.0015. (6.5)

precision of 0.001 in the ratios eq. (6.5) means that they are sensitive to new physics scales
of order 7TeV.

6.2 b — crv decays

There are possible deviations from the SM in B semileptonic decay ratios [58—60]

I'(B — Dttv,) I'(B — D*t"v,)
Rp = , Rp- = - ,
T(B — Di*uy) T(B — D*(*uy)

where £ = e, u. The semileptonic B decay rates are roughly equal to their SM values, so

(6.6)

we will assume that the LEFT coefficients have only small deviations from SM values, and
the deviations arise from interference with the SM amplitude. The terms in the LEFT
Lagrangian that contribute to semileptonic b — ¢ decays are

L =LY (opaters) (bryucr) + LY R (p,4"er,) (bryucr) + L RE (vrer, ) (rer)

+ Lf’RR (lereRT)(l_)LCR) + Lz’RR (PLTUMVERT)(Z_)LO'M,,CR) , (6.7)
where we have used LY = Ll)fedu to simplify the notation, and switched to the quark

rrbe
mass-eigenstate basis, as discussed in section 2.2.

In the SMEFT at 4 = Mz, one obtains the coefficients

LKLL:—UT 52V ) —avg o) —2vi o)
rr

lq Hq >
T rric ci
V,.LR __ * vk S,RL __ y,*
L = = Vi Chya s L7 = Vi Credq »
ct rric
S,RR __ 1+ ~(1) T,RR __ 1+ ~(3)
I e LIRR = vz o) (6.8)
rric rric

In the SM at tree level, only L,Y LL s non-zero, so the other coefficients are assumed to be
of order 1/A2.
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The dominant contribution to the semileptonic b decay rate is from ‘LVLL‘ , since

that is the only coefficient that exists in the SM. The only other contributions up to order
v2 / A? are the interference terms of LY’LL with the other terms. The interference of Ly’LL
with S and T operators is of order (mg/my)(v?/A?) because they are helicity suppressed,

and can be dropped.
Normalizing to Gr in eq. (6.4), we see that the two terms that contribute to the
semileptonic b decay amplitudes in SMEFT are

497 1 Doy o) - Yicw @+
LV — =2y [1+v ( Cu +-C,y —C®_c® ¢ “’C ’b(J \
\/i b g 2 p‘elé'u’ 2 e/ﬁLe II;IIJI« I‘éé ETZ ‘/j) ’I"I”ZC ‘/c cz
4G5 1
LYER — 7,‘/ 2C Frud - (6.9)
r \/‘ 6114

Note that in SMEFT to order v?/A2, LYEE does not depend on lepton flavor, and cannot
be responsible for the Rp p+ anomaly.

The B — D decay amplitude is proportional to the vector-current matrix element with

LVLE | LT\(,LR)

coefficient (L, /2, whereas the B — D* decay amplitude depends on the vector

current, as well as the axial current with coefficient (—Ly"* + LY"*#)/2. The vector and
axial current do not interfere in the total rate. The RGE for LVLL Ly LR

ref. [22],

are given in

LVLL 4€2LVLL LVLR 2€2LVLR (610)

Thus, in LEFT, Ly ’LL, L,Y LR are multiplicatively renormalized by QED corrections, and do
not depend on other LEFT coefficients. The renormalization is small, increasing LY and
LYF by about 2% and 1% respectively between My and my. The ratio of the coefficients
for T and £ =e, u is

LYEL g p VLR ® _ o0 _ Va0 Va6
T =140 <CHI —Cpy — 20y + 20 ) (6.11)
L;/,LL + LX’LR T i Va e Vo e

and the RGE factor cancels in the ratio.

The Rp p~ anomalies are usually assumed to arise from deviations in the 7 decay rate
from the SM values, with ¢ = e, u rates close to their SM values. In the SMEFT, a simple
way to do this is to have SMEFT coefficients for £ = e, u be small, and

V*
ci - et >o. (6.12)
TT cb  TTIC

6.3 b — s¢T¢~ decays

LHCb has also measured anomalies in B — K*(*¢~ and B — K{*{¢~ decays [61, 62],
(B — Kutu~)
I'(B — Kete™)

CT(B = Kt 0.66 © 551 (stat) £ 0.03 (syst) for 0.045 < ¢® < 1.1 GeV?,

R * =
K F(B—)K*e*e )

Ry = = 0.74575:999 (stat) +0.036 (syst)

0.69 © 541 (stat) £ 0.05 (syst) for 1.1 < ¢ < 6.0 GeV?.
(6.13)
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Most explanations of these anomalies have focused on new physics contributions to the
electromagnetic and semileptonic operators in the b — s weak Hamiltonian [39]. The
relevant terms in the LEFT Lagrangian are

L =c751,0" bR ij + C,7 srotby, FMV + CX’LL (l_L’y'u’lL)(gL’yubL)

+ CXRR (IrY"1R) (SrYubR) + ¢ 1 (ZRW“ZR)(SL%bL) +¢, " (1"11) (SRYubR)

—I—Cg’ (ZLZR)(ERbL) —|—CQSRL (lRlL)(SLbR) +C€ (ZLZR)(ELbR)
/T, RRx*

1S, RRx* - R _ _
+c,” (ZRZL)(SRbL) —|—C€ (lLO"uVlR)(SLO'w,bR) +c’ (ZRUIWZL)(SRO'“VZ)L),
(6.14)
where, to simplify the notation, we use
/ X V.LL _ ;V,LL V,RR _ ;V,RR
C7:Ld»y, C7:Ld’y? C@ —Le C@ _Led y
sb bs llsb llsb
VLR V,LR V.LR _ ;V,LR S,RL _ ;S,RL 1S,RL __ 1 S,RL*
e =Ly ¢ =Ly =L e =Ly
sbll llsb llsb llbs
SRR S,RR IS,RR _ 1 S,RRx T,RR _ ;T,RR J/T.RR T,RR*
¢ =L, ¢ =L, ¢ =L, ¢ =L"".  (6.15)
llsb libs llsb llbs

In addition to the operators shown explicitly in eq. (6.14), there are also four-quark opera-
tors O1 —Og and the b — s chromomagnetic operator Og that mix with the above operators
under RGE, and are included in the usual analysis of B decay.

Our operator basis for LEFT is in terms of fields with definite chiral properties. Tradi-
tionally, in weak decays, a basis of operators with definite parity has been used (i.e. scalar,
pseudoscalar, etc.). The conversion to the basis used in ref. [39] is

MC7 = cr, MCr =y,
AyCly = VLL+ IKVLR’ AyClyp = — VLL+ /ZVLR’
AeCl) = VLR_,r_ XRR’ NoCly = — VLR+ ;/RR’
)\205 _ cS RR | C;S RL AoCp — ZSRR IKS,RL’
AyCip = CZTRR+ Z‘RR7 AoClps = — /TRR+ KTRR7 (6.16)
where
_ _4g}- emy — _8g]'— 62 (6 17)
V2 16727 /2 1672 '
Matching at tree-level from the SMEFT at y = My gives
1 5
cr = E <_CdVg/3W + C(gl?cw> ur, Cp RRE =0,
c Cohwsw + Cigc )v SBE — o
C7 = aw w dBCw | vT, ledg >
f ( bs ¢ ﬁbg
VLR gz ’UT 2 ( (1) (3 )) SRL
= Clye Cy, tC , = Cledq »
i 2MZ Hq © T Ha “ lish
— 2.9
v 1
eyt =) o) 22T (2 +32q6> (C“) + C}f) LSRR
llsb llsb 2MZ sb sb
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— 2.9
V,RR 97207 T.RR
¢, =C CHa, c =0,
¢ e 2M2 s i ¢
VLR gz°vp (1 /T,RR

=Cl — — 43 Cha , c, " =0. 6.18
ol =0 - (5 %) O : (015

Assuming that all BSM physics is via the SMEFT, i.e. it respects the SM electroweak

symmetry-breaking mechanism, eq. (6.18) leads to the relations cf’RR = ch RR /S’RR =
c/gT’RR = 0, which are equivalent to the relations found in ref. [39],
Cs+Cp=0, C{g-C}:ZO, Cr=0, Crs =0. (6.19)

To obtain Ry g+ # 1 requires a violation of e — p universality in b — s¢7¢~ decays.
The operators 01 — Og and Og do not involve leptons, but can generate the operators
involving leptons in eq. (6.14) via RGE. This contribution is the same for all lepton flavors
since the operators and anomalous dimensions are flavor blind. Similarly, the contributions
of the photon penguin operators ¢7 and ¢, cancel in R g+, since the photon coupling to
leptons is flavor blind. Flavor-dependent gauge couplings due to Higgs operators, such as
those in eq. (2.30) for the W and Z, do not exist for the photon.

The other operators in eq. (6.14) can depend on lepton flavor and contribute to Rx g —
1 by an amount proportional to the difference of the operators for 4 and e. The RGE
for the leptonic operators c;/ L , etc. is rather involved and contains mixing via four-quark
operators through penguin dlagrams, as well as non-linear terms involving squares of dipole
coefficients [22]. However, these cancel in the RGE for the differences between p and e,
which reduce to the simple form

VLL _ 4€QCV,LL VRR _ 462 VRR

A A CA
0
XLR 42VLR’ c.i,RL:_(3 ¢? + 8¢ ) SRL7
i — 2062 _8g%2  —32¢2 R —64€2Ly Le‘y — Ley
(TR - ’ 2 9 20,2 8,2 | | I.RR T b (6.20)
CA —3€ e 39 CA 0

X _ X
i

Using X - for computlng lepton universality violation is valid as long as the RG correction

where ¢X A =c , and the primed coefficients have the same RGE as the unprimed ones.

is treated in perturbation theory. A more accurate analysis requires the full RGE for Cu
and ¢X separately [22], which are considerably more complicated.

The LEFT RGE is non-linear, and dimension-six operator coefficients have terms that
depend on the square of dimension-five dipole coefficients. The non-linear dipole term in
eq. (6.20) depends on the e and p dipole operators, which are strongly constrained by the

electric and magnetic moments of the electron and muon [63-67],

ReLey| <3.85x 107 GeV™!,  |ImLey| < 6.7 x 10716 GeV~! (90% C.L.),
ReLey| <4.5x 10719 GeV !, ImLey| < 1.5x107% GeV™! (95% C.L.), (6.21)
op p

and so the non-linear terms are negligible. In eq. (6.21), we have used the experimental

uncertainty on muon g — 2 as the limit on Re Ley. The current discrepancy between
e

experiment and the SM prediction [68] corresponds to Re Ley &~ (20 £ 6) x 10710 GeV 1.
ppL
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The Lagrangian coefficients at p = my, are related to those at y = Mz by

[ R ] 099 0 0 0 0 0 |[ck]

et 0099 0 0 0 0 |]|cxP®

IR |0 01000 0 0 ex™” (6.22)
CSRL 0 0 0 138 0 0 ||cMEE | |
Shn 0 0 0 0 138007|]|cSRR

e Lo 0 0 o0 oooroso] x|

The electromagnetic correction is 7% from the 32¢? term in eq. (6.20).

The inclusive b — s/~ decay rate is quadratic in the coefficients appearing in
eq. (6.14). The dipole and vector operators produce leptons of the same chirality, whereas
the scalar and tensor operators produce leptons of opposite chirality. The interference
terms between the two are helicity suppressed by my/my, and can be neglected. Since the
scalar and tensor operators have no SM contribution, they only contribute quadratically
(i.e. at order v*/A%) to the rate, and can be neglected.

The most likely way to obtain the R i+ ratios eq. (6.13) is through lepton univer-
sality violation in the coefficients V"L, ¢V-BE VLR JViLE B 4 K decays depend on the
hadronic matrix elements of (5y#b) and (So#*b), whereas B — K* decays depend on these,
as well as the matrix elements of (3y#y5b). Note that (30vsb) = —(i/2)e"* P (50,sb),
and is not an independent operator. The general matrix elements can be obtained from
the results of ref. [69]. A global fit to B-decay experiments [39] indicates that the sim-
plest explanation for Ry~ is due to a deviation in the direction §Cy = —d§C1g from the

V,LL
A

SM values for the Wilson coefficients, i.e. ¢ =% 0 is the source of the discrepancy in

Rg~, with 6Cy + 0C19 ~ 1. Furthermore, ref. [39] also concludes that explaining R
in eq. (6.13) requires non-zero CX’LR, cX’RR. The lepton universality-violating coefficients
needed in ref. [39] to explain the Rk g+ anomalies only have small electromagnetic running
as given in eq. (6.22), so the results of ref. [39] at u = my can be taken to be unchanged

at u= M.

7 Conclusions

In this paper, we have classified all the operators up to dimension six that can appear in an
SU(3) x U(1)q invariant low-energy effective field theory Lagrangian below the electroweak
scale to order G ~ 1/v?, and we have constructed a complete operator basis for this low-
energy EFT up to dimension six. The LEFT Lagrangian contains 70 Hermitian operators
of dimension five, and 3631 Hermitian operators of dimension six that do not violate baryon
or lepton number, as well as baryon- and lepton-number-violating operators. At dimension
three, LEFT contains AL = +2 Majorana-neutrino mass operators, and at dimension five,
it contains AL = 2 Majorana-neutrino dipole operators. At dimension six, there are
numerous additional LEFT operators: there are AL = +4, AL = 42, AB = AL = +1
and AB = —AL = +1 operator sectors.
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The tree-level matching to the LEFT operator basis at the electroweak scale has been
computed from SMEFT up to dimension six operators in this paper. The complete one-
loop RGE of the LEFT Lagrangian is computed in a companion paper [22]. While parts
of the RGE for flavor-violating processes are known to higher order [15], our calculation
gives the complete renormalization of the entire set of LEFT operators up to dimension
six, including non-linear terms and including corrections to the RGE of the QCD and QED
gauge couplings and fermion masses due to higher-dimension operators in LEFT. The RGE
results presented in [22] show that some contributions to four-fermion operator coefficients
that are quadratic in dimension-five coefficients come with large numerical prefactors of 96
or 192. These terms contribute e.g. to processes that change flavor by two units, such as
K-K mixing or 7~ — pte~e”. Phenomenological implications of these terms will be the
subject of further study.

The results obtained here together with the one-loop RGE in LEFT [22], combined with
previous results on SMEFT [3, 7, 17-19], allow one to compute the low-energy Lagrangian
starting from the SMEFT at a scale A far above the electroweak scale to leading-log order,
i.e. using tree-level matching and one-loop running. The low-energy Lagrangian then can be
used to compute experimental observables without large logarithms, e.g. by using u = my
to compute B decays, etc.

Determining LEFT parameters from low-energy experimental data provides a model-
independent way to constrain BSM physics via low-energy observables. Observables mea-
sured above the electroweak scale can be used to constrain the parameters of SMEFT. By
comparing these determinations of LEFT and SMEFT parameters with the matching rela-
tions between the two theories, one can test whether the SMEFT is a good description of
physics below the TeV scale. SMEFT assumes that electroweak gauge symmetry is broken
by a single fundamental Higgs doublet that acquires a vacuum expectation value. Con-
sistency of the SMEFT and LEFT parameters thus tests whether the electroweak gauge
symmetry breaking mechanism of the SM and SMEFT is correct.
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A SMEFT operator basis

This appendix lists the SMEFT operators up to dimension six. The operators were listed
in ref. [2]. They are reproduced here since we make extensive use of them in this paper.

AL=2 (LL)HH + h.c.
Qs

eife“(l;‘;Clkr)Hng

Table 4. Dimension-five AL = 2 operator 5 in SMEFT. There is also the Hermitian conjugate
AL = —2 operator Q;, as indicated by —+ h.c. in the table heading. Subscripts p and r are
weak-eigenstate indices.
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1:Xx8 2: HS 3: H*D? 5:¢2H3 + h.c.
Qa fABCG;‘VGE”GE“ Qr | (HTH)3 Qun (H'H)O(HTH) Qe | (HTH)(lpe, H)
Qz | IECGi GGy Qup | (H'D,H)" (H'D,H) | | Quir | (H'H)(gyu, H)
Qw | EWhwlrw Qan | (H'H)(qpd, H)
QW EIJKWJUWJpWJ(u
4: X2H? 6:v9Y2XH + h.c. 7:9?H?D
Que | HYHGA,GAw Quw | (ot e)r HWY, Q') (H'i'D H)@00,)
Que | HYHGA,GAw Qs | (o' e,)HB,, Q¥ (HY DLH) (1,101,
Quw | HtHWI, Wi Que | (@o"™ T4, H G, Qe (H *i%}uH )(epter)
Qui | HHWLWI || Quy | (@omu)r HW], Q4 (H'iD 1) (@)
Qus | H'HBLB" | | Qus | (g0™u)HB,, QW | @ DL @ )
Qup | H'HB,B"™ Quc | (GoTAd,)H G, Qe (HTiﬁ“H)( o)
Quwp | Hir'H W,f,,B“” Qaw | (Gpo*vd,)T'H W,{V Qra (HU(B#H)( dpyy*d,)
Qg | HITTHW], B Qi | (Go™d,)H By, Qrua + hc. | i(H'D,H)(,y"d,)
8:(LL)(LL) 8: (RR)(RR) 8: (LL)(RR)
Qu (1) Tsyule) Qee (epy*er) (Esypet) Qe (b1 ) (Esvuer)
W @) @) Quu | (@) () Qu | G (@)
Q5 | @7 e @) | | Qua | (A dy)(diyudy) Qu | (") (deyudy)
Q| ') @) Qeu | (eer)(@memun) Que | (@a)(Eper)
QY | ') @' a) | | Qe | (@nte)(diyudy) W (@) (@)
QW | (@ un) (dayuds) W | @ T4 (T4 )
QY | @ Thw)(deyu Ty || QY | (@ ar) ([deyud)
QY | (@' T4 (e TAdy)
8: (LR)(RL) + h.c. 8:(LR)(LR) + h.c.
Quedq | (Bher)(dsary) Q| (@une(didy)
szi)qd (‘#TAUT)EJk( STdy)
Qo | Been(atu)
QD | Bowenen(@to )

Table 5. The 76 dimension-six operators that conserve baryon and lepton number in SMEFT. The
operators are divided into eight classes according to their field content. The class-8 ¢?* four-fermion
operators are further divided into subclasses according to their chiral properties. Operators with
+ h.c. have Hermitian conjugates, as does the ¥2H?2D operator Qgyq. The subscripts p,r,s,t are
weak-eigenstate indices.
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AB = AL =1+ h.c.
Qduql Eaﬁ'y Eij (dgpcuﬁr) (qﬂjf;s Cljt)
Qqque Pl (qzipCQﬁ'jT) (u?y; Cet)
Qqqql Eaﬁveiﬂejk(qgiquﬁjT)(qgksClgt)

Qduue Eaﬁv(dgpcuﬁ’r)(u?yﬂs Cet)

Table 6. Dimension-six AB = AL = 1 operators in SMEFT. There are also Hermitian conjugate
AB = AL = —1 operators, as indicated by + h.c. in the table heading. Subscripts p, r, s and ¢ are

weak-eigenstate indices.
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B LEFT operator basis

This appendix lists the LEFT operators up to dimension six. Weak-eigenstate indices of the

operators are not shown — e.g. OY:F with the weak-eigenstate indices included is O‘{geLtL.
prs
vv + h.c. (vv)X + h.c. (LR)X + h.c. X3
O, (W], Cri)|  |Ouy| (W], Co™ v ) P | | Ocr | ELpo"™ eny Fuy Oc|fABCGr Gl Gr
Ouy| rpo™ ugy Foy Oé fABCéSUGEPGZJM
Ouy | dppo™dpy Fy
Ouc |Urpo™ T up, Gﬁ‘,,
Ouct|dipo TAdp, G,
(LL)(LL) (LL)(RR) (LR)(LR) + h.c.
OnFF (TLpY*ver) (PLsYuvLe) ONER (Lpy*ver) (ERsVueRt) o5 (Erperr)(€Lsert)
OLrF (erpy*err)(€Lsyuert) 0L (Erpr*err)(Ersuert) o5 (erperr)(trsupe)
OVEE (LpY*ver)(ELsyuert) OVER (PLpY*ver) (URs YU RE) OLFR |(epot e p, ) (Unsopumuns)
OVEE (Trpy"vir) (Ursyptire) OXC}LR (TLp Y v ) (dRsVudRe) Oi‘lRR (erperr)(drsdre)
OXQLL (VLo vir) (drsypdre) outR (eLpy"err)(URsVuUR:) OQRR (eLpo*ery)(dLsouwdry)
oLt (erpy*ers)(Ursyuurs) orLE (eLpy*ers) (drsyudre) Ofﬁf (Vpere)(dLsurt)
OZJLL (erpy*err)(drsyudrt) e (arpy"urr)(ERsVueRs) Ofgf}f (VLpo ey ) (dLsoutine)
Q‘fgﬁf (Trpy*ery)(drsyuure) + hec. O,ZLR (drpy*drr)(ERsYucRe) OabiR (@rpurr)(Ursurt)
OVEE (@rpy*ury)(ULsyuurt) (9,‘,/;55 (TLp ey (drsyuure) + hec. OISR (@rp T up,) (GrsT up)
Ot‘i/r}LL (drpy*drr) (drsyudre) ontR (@rpy*ury)(URsYpuURE) Oié’RR (trpure)(drsdre)
OZ;’LL (@rpy*ure)(drsyudre) OYVSLE (@ T, (URs v, T upt) OZSRR (@rpT Ry ) (dLsTAdpy)
OVELL| (G  TAur, ) (dpsyu TAdre) | |OY R (Urpy"ure)(drsYudre) OSPERL (drpdre)(drsdre)
OX;’LR (@ T4ur,)(drsy, T dpe) O;?,f'm (drpTdR,)(dpsTAdRy)
(RR)(RR) oyLrR (drpy"die) (URsutre) OSVFR (appdpe) (drsune)
o (ErpY"err)(ERsTpueRt) OL&LR (AL TAd L) (@Rsy T uRe) Oi:d],jl? (arpTAdRy) (dpsTupy)
OV.RR (ErpY*err) (TRsVutRe) O:;’LR (dl‘p')’udlfr)(JHs"/p,th)
oy (Erprten)(drsyudnr) O™ (A TAdy) (dreyu T dRe) (ZR)(RL) + h.c.
ol (@rpY*upy) (GRsYuURE) O‘u/,,gldf Bl (apyy*dre) (drsyuure) + hc. O5RE (erperr)(tipsure)
O™ | Ay dre) (drsudin) Ouiu | (W17 T dir) (AT umr) + .|| O5™ | (enpen) (dnodie)
OVIRR| (apyyup, ) (drsYudre) Ofgﬁf (VLperr)(dRrsuLe)
OXdS)RR (ﬁRp'Y”TA“Rr)((ZRSVMTAth)

Table 7. The operators for LEFT of dimension three, five, and six that conserve baryon and lepton
number, and the dimension-three and dimension-five AL = 42 operators. The dimension-three
AL = 2 operator O, is the Majorana-neutrino mass operator, while the dimension-five AL = 2
operator O, is the Majorana-neutrino dipole operator. There are 5 additional dimension-five
dipole operators (LR)X. The 80 dimension-six operators consist of 2 pure gauge operators X°
and 78 four-fermion operators 1*, which are further divided by their chiral structure. The 1)*
operator superscripts V', S, T refer to products of vector, scalar, and tensor fermion bilinears, and
the additional two labels L or R refer to the chiral projectors in the bilinears. Operators with +h.c.
have Hermitian conjugates. The subscripts p,r, s,t are weak-eigenstate indices.
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AL =4+h.c.

OE;’LL (yngVL'r) (VESCVLt)

AL =2+h.c. AB=AL=1+h.c. AB=—-AL=1+h.c.

OféLL (VLPCVL’)( s€Lt) OidzL €apy (UF TCdB )(dZZCVLt) OgdZL eaﬁv(d%ZCdgr)( Radzt)
0w | (W], Cotvry) Ersowers) | | Ot ea@y(d%pCuL Pt Cep)| | 0% leapy (ugT Cd} ) (o dh,)
Os | (WE,Cvwr)ersers) O eap(ugt Cuf, )(d}éCeRf) OSER | e (AT Cd2 ) (7))
onHr (vi,Cvrr)(URsurt) OdSuZR €apy(dF [Z )(uRSC’em) O,‘;’ng €apy (d$ dgr)( érsdhy)
O |, Comvin) nsowune)| |05 | cas (ufE Cu NdfECer) | O | cas (@ TCdR»( Ealy)

sl Cop) (nsum) O RL €a5.y((]RpCuRr)(uL9Celt) OSIR .o (T Ol ) (700
04" (VEPCULT)( sdre) Of&SL €apy (df Um)(dzb Cvyy) Ogng eagv(daRpCd?h)( )
OLM (W] Com v ) (drsopwdrs)| | OF" Eaﬁv(d‘ﬁgodgr)(uLsCth)
OS’LR (VLpCVL?“)(d_ sdRt) ijjR eaﬁw(d%pC“Rr)(“Rng’m)
Onir | WE,Cer)(drsusy)
Ofeﬁf (i, CUW@Lr)( SO ULt)
Ol | WE,Cerr)(drsure)
Oy i, Cy"ere)(dLsyuuLe)
Ot (W Cyery) (drsyuunt)

Table 8. The LEFT dimension-six four-fermion operators that violate baryon and/or lepton num-
ber. All operators have Hermitian conjugates. The operator superscripts V', .S, T refer to products
of vector, scalar, and tensor fermion bilinears, and the additional two labels L or R refer to the
chiral projectors in the bilinears. The subscripts p, r, s,t are weak-eigenstate indices.
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C Matching conditions

This appendix gives the number of operators of each Lorentz type, broken up into leptonic,
semileptonic, and nonleptonic categories, and the tree-level matching conditions in SMEFT
up to dimension six. Table 22 gives the number of C P-even and C P-odd operators.

AL =2 vv + h.c.

Number SM | Matching

0, %n,,(nu +1)| 6 %05 V3
pr

Table 9. Dimension-three AL = 2 Majorana neutrino mass operators in LEFT. There are also
Hermitian conjugate AL = —2 operators O], as indicated in the table heading. The second column
is the number of operators for an arbitrary number of neutrino flavors n,, and the third column is
the number in the SM LEFT with n, = 3. The last column is the tree-level matching coefficient
in SMEFT.

AL =2 (vv)X + h.c.

Number SM | Matching

Oy %nu(n,, -1 3 0

Table 10. Dimension-five AL = 2 Majorana neutrino dipole operators in LEFT. There are also
Hermitian conjugate AL = —2 operators OI,Y, as indicated in the table heading. The second column
is the number of operators for an arbitrary number of neutrino flavors n,, and the third column
is number in the SM LEFT with n,, = 3. The last column is the tree-level matching coefficient in

SMEFT, which vanishes.

(LR)X + h.c.
‘ Number ‘ SM ‘ Matching
Leptonic
0 n? 9 | &(— Cavs+ Cope)
Nonleptonic
01” ﬂi 4 % (Cup{ﬁ@ + Cq;)]}g(_‘) ur
Od,y nz 9 % ( — C(i;;WE + C(;EE) o
Oua 'n,i 4 % C?)(r, v
Ouc ni 9 %C%?UT
Total | 2n2 +2n2 | 26

Table 11. Dimension-five (LR)X dipole operators in LEFT. There are also Hermitian conjugate
dipole operators (RL)X, as indicated in the table heading. The operators are divided into the
leptonic and nonleptonic operators. The second column is the number of operators for an arbitrary
number of charged lepton flavors n., u-type quark flavors n,, and d-type quark flavors ng, and the
third column is the number in the SM LEFT with n, = 3, n, = 2 and ng = 3. The last column is
the tree-level matching coefficient in SMEFT. 5 and ¢ are defined in eq. (2.23).
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X3
Number | SM | Matching

Oa 1 1 Ca
(’)é 1 1 C@
Total 2 2

Table 12. Dimension-six triple-gauge-boson operators in LEFT. The tree-level matching coefficient
of each operator is equal to the coefficient of the corresponding operator in SMEFT.

(LL)(LL)
Number ‘ SM ‘ Matching
Leptonic
V.LL (7 9z’
ou; il H 0|86 O iy e (B = iy e (2L
V,LL 5.2 -
ol; b+ f a0 | O = iy e i e el
., .
oyt nzn;, 8L | Cu +Cu ~ s (Wil Wil — 32 (2] [ Zer)s
Total n2n2 + in?(n. + 1)
+ nZ(n, +1)2 153
Semileptonic
V,LL 1 3 9.
oL 36 Cly + 05~ Tz (2 2l
prst prst
V,LL ; 1 3 G2
o nZn3 81 g =0 ~ %2, 20y
prst prst
V,LL 1 3 9,2
Ok nin} 36 Yy =0 — ¥ (Zes)y [Zu)
prst prst
V.LL 1 3) 5,2
oY, n2n? 81 cl) +cf) - W (Zes)yr (2a,).
prst prst
O,‘iﬁf +h.c. 2 X NeNyNyng 2 x 54 20(133 — 2?5[% (Wi, (Wl
prst
Total (n2 +n2)(n2 + n2)
+ 2nenynyng 342
Nonleptonic
V,LL 1 3 G2
o bnd(nd +1) 10 Clia +C% = 3 (Zuslye 2l
prs prs
V,LL 1 3 9.2
oy, In2(n2+1) 45 C%, + C;TL - ¥ Za,, (24
V1,LL 1 3 3 3
O i % | Cup+Cyp —Clo = Ci?ﬁ, RO+
_ 9 =2
iy Vo WL 3 = 3 )y )
oYsLL n2n? 36 40?3 + 40<3> M2 (Wal, (Wl
ptsr
Total 2n2n? + $n(n? +1)
+ In3(n2 + 1) 127

Table 13. Dimension-six four-fermion operators: two left-handed currents in LEFT. The (LL)(LL)
operators are divided into leptonic, semileptonic, and nonleptonic operators. The semileptonic
operator Ol/éslf Xesf f are both present. All other operators are

Hermitian. The second column is the number of operators for an arbitrary number of neutrino

and its Hermitian conjugate O
flavors n,,, charged lepton flavors n., u-type quark flavors n,,, and d-type quark flavors ng4, and the

third column is the number in the SM LEFT with n, = 3, n. = 3, n, = 2, and ng = 3. The last
column is the tree-level matching coefficient in SMEFT.
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(RR)(RR)
‘ Number ‘ SM Matching
Leptonic
V,RR 922 942
O | dndme+17 | 36 | Coee — T (Zenl,y 1Zens — Sz Zenl i Zenl,,
Semileptonic
V,RR —
[0)8) nZn?2 36 Cp%t — % [ZeR]m, (Zugla
V,RR 922
Oed ngn?i 81 Cpi‘(it — % [ZeR]pT [ZdRJst
Total n2(nZ +n?) 117
Nonleptonic
V,RR 942
Oui 3 (ni +1) 10 Cuu, = 557 Zunlye [Zurle
V,RR G52
Oa sna(ng +1) 45 Cpﬁt - 2%; (Zarlpr 1Zagls
V1,RR 1 7.2 722
Oud’ nin% 36 C<u; - 2?5[2 [WR]pt [WR}:s NL( - ?\% [ZUR}pT [Z(JRJSt
prst w z
V8,RR (8) 92 X
Oud n%nﬁ 36 Cpg‘gf - % [WR]pt [WR]TS
Total | 2n2n?+ in2(n +1)
+ 3n3(n2 +1) 127

Table 14. Dimension-six four-fermion operators: two right-handed currents in LEFT. The
(RR)(RR) operators are divided into leptonic, semileptonic, and nonleptonic operators. The second
column is the number of operators for an arbitrary number of charged lepton flavors n., u-type
quark flavors n,,, and d-type quark flavors ng4, and the third column is the number in the SM LEFT
with ne = 3, ny, = 2, and ng = 3. The last column is the tree-level matching coefficient in SMEFT.
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(LL)(RR)
Number ‘ SM Matching
Leptonic
= 2
Ol‘//éLR ngnl% 81 ¢ le — 5]]\% [ZV]pr [ZER]st
prst Z
= 2
oLt nd 81 | Cie =25 (7] [ Zenly
prst Z r
Total n2(n? +n2) 162
Semileptonic
= 2
OyﬁLR ”Z”Z 36 Cu — -‘]7\4% [ZV]p'r‘ [ZUR]st
prst Z
= 2
0y nZn3 81 | Cu — 22 (2], (Zanl,
prst Z
= 2
OZZLR nZn; 36 Cu — % (Zeplpr [Zurl g
prst Z P
V.LR 9z°
Ocd ngnﬁ 81 C ld — ?\/[% [ZEL]:W [ZdR]st
prst z
V,.LR 922
Oue n?:ni 36 Cp(’lrit - S]Z\/[Lé [ZuL}pr [ZeR]st
V.LR = 2
Ode TlgTLz 81 Cpgit - % [ZdL}pr [ZCR]st
— 2
OVLE 4 he. 2 X NenyNung 2 x 54 — stz Wi, Wrlj,
Total (2n2 + n2)(n2 + n2)
+ 2nenynyng 459
Nonleptonic
— 2
Out" ni 16| Ok =55 (Zus)yr (Zunl.e
prst z
OySLR nd 16 c®)
prst
V1,LR (1) = 2
0.4 n2n? 36 | Cu— % (Zur)pr [Zar) o
prst
V8,LR 8
0.4 n%ng 36 C<q;
prst
V1,LR 1 G2
O ni”i 36 Cigf):t - % [ZdL]p'r (Zurl s
OLS’LR n2n? 36 C (;2
prst
V1,LR 1 942
() ni 81 C<q3 _ % (Zap )y [Zag) s
prst
V8,LR 8
oVt nd 81 c®)
prst
V1,LR Go? *
Opgiu +hec. 2 x nang 2x36 | i (W, Wal,
OVELE 4 e 2 x n2n? 2 x 36 0
Total 2(nd +nd +4n2n2) | 482

Table 15. Dimension-six four-fermion operators: left-handed times right-handed currents in
LEFT. The (LL)(RR) operators are divided into leptonic, semileptonic, and nonleptonic opera-
tors. Semileptonic operators (9}255 and nonleptonic operators OZ;&&R and OZ;&ﬁR all come with
additional Hermitian conjugate operators. All other operators are Hermitian. The second column
is the number of operators for an arbitrary number of neutrino flavors n,, charged lepton flavors
ne, u-type quark flavors n,, and d-type quark flavors ng, and the third column is the number in
the SM LEFT with n, = 3, n, = 3, n, = 2, and ng = 3. The last column is the tree-level matching

coefficient in SMEFT.
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(LR)(RL) + h.c.

Number ‘

SM | Matching

Semileptonic
S.RL
ZLR nznﬁ 36 0
S,RL 2,2
o2 ning 81 Cledq
prst
S,RL
O, NNy NyNd 54 Cledq
prst
Total ng(ni + ni) + nenynyng | 171

Table 16. Dimension-six four-fermion operators: (LR)(RL) scalar bilinears in LEFT. There are
also Hermitian conjugate operators, as indicated in the table heading. All of the operators are
semileptonic operators. The second column is the number of operators for an arbitrary number of
neutrino flavors n,,, charged lepton flavors n., u-type quark flavors n,, and d-type quark flavors ng,
and the third column is the number in the SM LEFT with n, = 3, n. = 3, n, = 2, and ng = 3.

The last column is the tree-level matching coefficient in SMEFT.

(LR)(LR) + h.c.

Number

| SM | Matching

Leptonic
R ‘ %nz(nz +1) ‘ 45 ‘ 0
Semileptonic
SRR 1
(@) ngni 36 7Cl(eq)u
prst
T,RR 3
Ocy; ngnﬁ 36 7Cl(cq)u
prst
Oi’{RR n2n? 81 0
ol R n2n2 81 0
S,RR 1
Ouédu NeMNyNy Mg 54 Cl(eq)u
prst
T,RR 3
O, NeNy Ny Ny 54 C[(eq)u
prst
Total | 2n2(n2 + ’nﬁ) + 2nenynyng | 342
Nonleptonic
oLLiR in2(n2 +1) 10 0
55]?]?’ %nﬁ(ni +1) 10 0
S1,RR 2.9 (1)
O nyng 36 Clugd
prst
S8,RR 8
(@ nang 36 C;“Ld
prst
osLaR nd(ng+1) 45 0
OB R 33 +1) 45 0
S1,RR 2,2 (1)
Ouddu nung 36 7Cquqd
stpr
S8,RR 2 (®)
Ouddu oy 1y 36 _Cquqd
stpr
Total 4n2n2 +n2(n2 +1)
+n3(n+1) 254

Table 17. Dimension-six four-fermion operators: (LR)(LR) scalar and tensor bilinears in LEFT.
There are also Hermitian conjugate operators, as indicated in the table heading. The operators are
divided into leptonic, semileptonic, and nonleptonic operators. The second column is the number
of operators for an arbitrary number of neutrino flavors n,, charged lepton flavors n., u-type quark
flavors n,, and d-type quark flavors ng4, and the third column is the number in the SM LEFT
with n, = 3, n. = 3, n, = 2, and ng = 3. The last column is the tree-level matching coefficient

in SMEFT.
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AL =4+ h.c.
Number SM | Matching

OnM | Ln2n2 1) | 6 0

Table 18. Dimension-six AL = 4 operators in LEFT. There are also Hermitian conjugate operators,
as indicated in the table heading. The second column is the number of operators for an arbitrary
number of neutrino flavors n,, and the third column is the number in the SM LEFT with n, = 3.
The last column is the tree-level matching coefficient in SMEFT.

AL =2+ h.c.
Number ‘ SM ‘ Matching
Leptonic
O3S LL in, (ny, 4+ 1)n? 54 0
OLLL in,(n, — 1)n? 27 0
OSLR in,(n, + 1)n? 54 0
Total in,(3n, + 1)n2 135
Semileptonic

O3, LL in,(ny + 1)n? 24 0
OL.LL in,(n, — 1)n? 12 0
OS.Lh 31 (ny + 1)n? 24 0
Oi’iLL sny(ny + 1)n3 54 0
oLt In,(ny, — 1)n? 27 0
OS5 I, (n, +1)n? 54 0
Oy nen,nuna 54 0
O NNy NN 54 0
Ofégf NNy Ny Mg 54 0
O;/édqu NNy My Mg 54 0
(’),‘j/égf NNy Ny Ng 54 0
Total %ny(?)nl, +1)(n2 + nfi) + Bnenynyng | 465

Table 19. Dimension-six AL = 2 operators in LEFT. There are also Hermitian conjugate opera-
tors, as indicated in the table heading. The operators are divided into leptonic and semileptonic
operators. The second column is the number of operators for an arbitrary number of neutrino
flavors n,,, charged lepton flavors n., u-type quark flavors n,,, and d-type quark flavors ng4, and the
third column is the number in the SM LEFT with n, = 3, n. = 3, n, = 2, and ng = 3. The last
column is the tree-level matching coefficient in SMEFT.
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AB=AL =1+ h.c.
Number SM Matching
S,LL 2
O.ad Ny Mg 54 | =Cyeq — Coqql
prst rpst
S,LL 2
Oirn NeNdly, 36 | —Clgqt — Coqai
prst rpst
S,LR 1
O §ndnu(nu — 1)n, 9 0
OSLZR nenind 36 | —Cqque — Cqque
prst rpst
S,RL 1
O §ndnu(nu — 1)n, 9 0
S,RL 2
Oduu NNy Nd 36 Cduql
prst
S,RL 2
Odud ALY o4 - C1duql
prst
S,RIL 1
Ol 5nd(ng — 1)nyn, 18 0
S,RR 2
Oduu NeNgMy, 36 Cduue
prst
Total %nznynu + 5ndneni — NgNeNy — %ndnynu 288

Table 20. Dimension-six AB = AL = 1 operators in LEFT. There are also Hermitian conjugate
AB = AL = —1 operators, as indicated in the table heading. The second column is the number of
operators for an arbitrary number of neutrino flavors n,, charged lepton flavors n., u-type quark
flavors n,, and d-type quark flavors ng4, and the third column is the number in the SM LEFT
with n, = 3, n. = 3, n, = 2, and ng = 3. The last column is the tree-level matching coefficient
in SMEFT.

AB=—-AL=1+h.c.
Number SM | Matching

O Ing(n? —1)n. 24 0
Ofgl(LiR nynunz 54 0
OdSC’hLLR %nd(nd — 1)nyn, 18 0
oL In3(na — 1)ne 27 0
O HE In3(na — 1)ne 27 0
OfglgR nynunfl 54 0
O AR Ing(n? —1)n. 24 0
Total gngn@ + %nyngnu — nfine — %ndnynu — %ndne 228

Table 21. Dimension-six AB = —AL = 1 operators in LEFT. There are also Hermitian conjugate
AB = —AL = —1 operators, as indicated in the table heading. The second column is the number
of operators for an arbitrary number of neutrino flavors n,, charged lepton flavors n., u-type quark
flavors n,, and d-type quark flavors ng4, and the third column is the number in the SM LEFT
with n, = 3, n. = 3, n, = 2, and ng = 3. The last column is the tree-level matching coefficient
in SMEFT.
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Operator type C P-even CP-odd
SM SM
AL =2+h.c. iny(ny +1) 6 iny(ny +1) 6
LR)X + h.c. : leptonic n2 9 n? 9
e €
(LR)X + h.c. : nonleptonic 2(n2 + n2) 26 2(n2 + n2) 26
AL =2 (vw)X +h.c. iny(ny, — 1) 3 iny(ny, — 1) 3
X3 1 1 1 1
(LL)(LL) : leptonic %(n n2 +nen,) %ne(ng +2n2 + 3n. +2) %(n n2 —nen,) + Sne(n 1)(ne +2)
+ Lny(nd + 2n2 + 3n, +2) 87 + tny(n2 — 1)(n, +2) 66
(LL)(LL) : semileptonic (2 +n3)(n? +nd) (2 +n3)(n2 +nd)
+ %(nu + nq)(ne + ny) + nenynyng 186 | — %(nu + n4)(ne + ny) + nenynyng | 156
(LL)(LL) : nonleptonic L(nd +4n2n? +n} L(nd +4n2n2 +n}
+ 3n2 + dnyng + 3n3) 76 —n2 — dnyng — n3) 51
(RR)(RR) : leptonic éng(ne +1)(n2 +ne +2) 21 %ne(ng —1)(ne + 2) 15
(RR)(RR) : semileptonic Ine(ne(n? 4+ n3) + ny + na) 66 Ine(ne(n? +n3) — ny — na) 51
(RR)(RR) : nonleptonic 1(nd + 4n2n3 + n} L(nd + 4n2n3 +n
+ 3n2 + dnyng + 3n3) 76 —n2 — dnyng — n3) 51
(LL)(RR) : leptonic %ne(ng +ne(n2 + 1) +ny) 90 %ne(ng +ne(n? —1) —ny) 72
(LL)(RR) : semileptonic 1(n2 +n2)(2n? +n2) 1(n2 +n2)(2n2 +n2)
+ 3 (nu + 19)(2ne + 1) + nenyNyng 252 | — L(ny +n4)(2ne +n,) + nenyngng | 207
(LL)(RR) : nonleptonic ng +4n2n2 + ng +nl + 2nyng +n? 266 | ni +4n2n3 +nh —n2 — 2nung —n3 | 216
(LR)(RL) +h.c. n2(n2 + n3) + nenynyng 171 n2(n2 +n3) + nenynuyng 171
(LR)(LR) + h.c. : leptonic éng(ng +1) 45 n2(n2 +1) 45
(LR)(LR) + h.c. : semileptonic 2n2(n2 + n2) + 2nenynyng 342 2n2(n2 + n2) + 2nenynung 342
(LR)(LR) + h.c. : nonleptonic n2(nZ + 1)+ n2(nd + 1) + 4n2n2 254 | ni(nZ+1)+n3(n2+1)+4n2n? | 254
AL=4+hc Ln2(n2 —1) 6 Ln2(n2 —1) 6
AL =2+ h.c. : leptonic 1n,(3ny, + 1)n2 135 in,(3n, + 1)n? 135
AL =2 + h.c. : semileptonic én,,(?m,, +1)(n2 + 7L;Zi) + Bnenynyng 465 %ny(?m,, +1)(n2 + ng) + 5nenyngng | 465
AB=AL=1+h.c. gngn,,nu + bngnen? gnzn,,nu + bngnen?
— NgNeNy — %ndnynu 288 — NgNeNy — %ndnynu 288
AB=—-AL=1+h.c. %ndnL +2 n,,ndnu - ngnc %nflnL + gn,,n?inu - nﬁnc
— Endn,,nu — Endne 228 — %ndn,,nu — %ndne 228
Total 3099 2864

Table 22. Number of operators in LEFT at dimensions three, five, and six, divided into C' P-even

and CP-odd operators.

The number of operators is given for an arbitrary number of neutrino

flavors n,,, charged lepton flavors n., u-type quark flavors n,,, and d-type quark flavors ng4, and for
the case of SM LEFT with n, = 3, n. = 3, n, = 2, and ngy = 3. The LEFT operators in each
category are given explicitly in tables 9-21.
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