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Abstract. The random-field Ising model (RFIM), one of the basic models for quenched disorder, can be
studied numerically with the help of efficient ground-state algorithms. In this study, we extend these
algorithm by various methods in order to analyze low-energy excitations for the three-dimensional RFIM
with Gaussian distributed disorder that appear in the form of clusters of connected spins. We analyze
several properties of these clusters. Our results support the validity of the droplet-model description for
the RFIM.

PACS. 75.10.Nr Spin-glass and other random models – 75.40.Mg Numerical simulation studies – 02.60.Pn
Numerical optimization

1 Introduction

The random-field Ising model (RFIM) [1] is one of the
most basic models with quenched disorder. Similar to
the more prominent spin glasses (SGs) [2–4], there are
still many open questions concerning the low-temperature
properties of the RFIM. During the last few years, the
RFIM and the related diluted antiferromagnet in a field
have attracted growing attention [5–16], in particular
within simulation studies at finite [17–23], and zero tem-
perature [24–36].

There are few results [25,37] which give evidence that
the low-temperature behavior of the three-dimensional
RFIM is well described by the droplet theory [38–41],
which is one of the most important and most success-
ful theories to describe finite-dimensional systems exhibit-
ing quenched disorder. The droplet theory has already
turned out to be useful to describe the behavior of two-
dimensional (2d) SGs [42–45]. For the 2d SG model, much
evidence supporting the validity of the droplet-model de-
scription has been accumulated over the years in partic-
ular by studying low-energy excitations. Nevertheless, for
the three-dimensional (3d) RFIM, low-energy excitations
have been investigated only in few cases [25,37] so far. In
particular, since the 3d RFIM exhibits a phase transition
at non-trivial disorder [46], in contrast to the 2d SG, it is
of high interest to study the excitations as a function of
the disorder strength. Thus, in this paper we study three
different types of “typical” low-energy excitations. Our
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results show that the behavior in all three cases is com-
patible with the droplet theory, giving strong evidence for
the validity of this approach for the RFIM. In particu-
lar, the different excitations behave the same, for example
concerning their fractal properties. We also show that the
generated excitations exhibit the largest number of spins
close to the phase transition. Furthermore, the distribu-
tion of cluster radii is well described by a power-law R−θ

with θ ≈ 1.49 being the droplet scaling exponent [25].
The RFIM consists of N Ising spins si = ±1 on a reg-

ular lattice with nearest-neighbor interactions of strength
J . Additionally, site-dependent magnetic fields hi, which
are chosen according to some random distribution, act on
each lattice spin. Throughout this paper, a Gaussian dis-
tribution of width h is applied. Hence, the value of h mea-
sures the strength of the disorder. The Hamiltonian of the
RFIM given by

H = −J
∑

〈ij〉
sisj −

N∑

i=1

hisi. (1)

The sum 〈ij〉 runs over nearest neighbors of spins. We
apply periodic boundary condistions in all directions.

The competition between the nearest neighbor inter-
action and the tendency for spin si to align with its hi

is responsible for the complexity of the model. In the
RFIM with a three-dimensional lattice, there is a 2nd or-
der [25] phase transition [46] that separates a ferromag-
netically ordered phase existing at low temperature and
low disorder from a disordered phase with average zero
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magnetization m =
∑

i si. This transition is governed by a
zero-temperature fixed point. From renormalization group
arguments it follows that it is possible [47] to study the
properties of the RFIM also at T = 0, i.e. by calculating
ground states (GSs). It is convenient that the GS of the
RFIM of arbitrary dimension can be determined in a time
that scales polynomially with system size by effectively
algorithms (see next section). The equivalent task in spin
glasses is NP-hard [48] which implies that no algorithms
to solve it efficiently are know so far.

In this paper, we examine the phase transition in the
three-dimensional RFIM by analyzing low-energy excita-
tions from the GS via advanced ground-state methods.
We first explain the algorithms we used (Sect. 2) before
we present the results (Sect. 3). In the final section, we
give a summary.

2 Methods

We investigated the excitations in the RFIM via computer
simulations [49] by using sophisticated optimization algo-
rithms [50]. We applied three different methods of gener-
ating low-energy excitations. In each of these methods, the
first step is to calculate the GS of a random RFIM real-
ization. In a second step, the system is perturbed slightly
such that the GS is made a bit unfavorable. How this is
done specifically differs for the three method. In any case,
in the last step, the GS of the perturbed system is de-
termined. The resulting configuration is a low-energy ex-
citation of the original, unperturbed system. The excited
state, which consists of one or more clusters of connected
spins, can then be compared with the GS.

First, to calculate the exact GSs at given random-
ness h, algorithms [50–53] from graph theory [54,55] were
applied. To implement them, some algorithms from the
LEDA library [56] were utilized. Here the methods are
just outlined. More details can be found in the literature
cited below or in the pedagogical presentation in refer-
ence [50]. For each realization of the disorder, given by the
values {hi} of the random fields, the calculation works by
transforming the system into a network [57], calculating
the maximum flow in polynomial time [58–62] and finally
obtaining the spin configuration {si} from the values of
the maximum flow in the network. The running time of
the latest maximum-flow methods has a peak near the
phase transition and diverges [63] there like O(Ld+1). The
first results of applying these algorithms to random-field
systems can be found in reference [64]. In reference [65]
these methods were applied to obtain the exponents for
the magnetization, the disconnected susceptibility and the
correlation length from GS calculations up to size L = 80.
The most thorough study of the GSs of the 3d RFIM so
far is presented in reference [25].

Since the algorithms work only with integer values for
all parameters, a value of J = 10 000 was chosen here,
and all values were rounded to its nearest integer value.
This discreteness is sufficient, as shown in reference [25].
All results are quoted relative to J (or assuming J ≡ 1).

Note that in cases where the GS is degenerate [66],
it is possible to calculate all the GSs in one sweep [67],
see also references [68,69]. For the RFIM with a Gaussian
distribution of fields, the GS is non-degenerate, except for
a two-fold degeneracy at certain values of the randomness,
where there are zero-energy clusters of spins. Thus, it is
sufficient to calculate just one ground state here.

We are now going to sketch the different excitation
methods that we used. We assume that for a given realiza-
tion {hi} of the local fields a GS {s0

i } has been calculated.

I Single spin flip method : In this method, a “central”
spin si0 is picked randomly and frozen to an orienta-
tion opposite to its GS orientation s0

i0
. This is being

done by changing the local field hi to h′
i > 6J and

choosing the sign such that s′i is aligned opposite to
its GS orientation, e.g. h′

i0
= −7Js0

i0
. After recalcu-

lating the GS of the perturbed system, s′i0 is always
different from its GS orientation, but adjacent spins
may have flipped as well if it is energetically favorable.
The set of flipped spins will consist always of exactly
one connected cluster of spins.

II Random-excitation method : The system is perturbed
by adding a set of additional fields {δhi} of strength
δ on top of the original fields hi. Here it means that
each δhi is drawn from a uniform distribution [−δ, δ].
The method has been applied earlier by Alava and
Rieger to the two-dimensional RFIM [70], with a uni-
form distribution for the random fields as well as for
the perturbations.

III ε-coupling method : This method, which has been ap-
plied to spin glasses in [24], works in a very similar
way as the random-excitation method. The system is
perturbed by adding an additional field δhi of fixed
strength ε to each hi, however with a site-dependent
sign such that the field always acts against the GS ori-
entation, i.e. h′

i = hi − εs0
i , lowering the energy of GS

configuration.

For the second and third method, the calculated GS of the
modified system {h′

i} may yield the previous GS {s0
i }, in

particular if the strengths δ and ε are small. If the strength
is large enough, the excited state will typically exhibit for
both methods several clusters of spins flipped with respect
to the original GS.

The size of the resulting excited clusters, i.e. the num-
ber Nf of spins exhibiting s′i �= s0

i , can be analyzed in
more than one way. We determine the overlap

q =
1
N

N∑

i=1

s0
i s

′
i (2)

which characterizes the size of the global excitation, also
if it consists of multiple connected clusters. It is related to
the total number of flipped spins Nf by

1 − q =
2Nf

N
. (3)

In order to analyze the geometry of the clusters of con-
nected spins, it is convenient to introduce the following
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three quantities

– the volume V is given by the number of spins in a
single cluster of connected spins;

– the surface A for each cluster is given by the number of
bonds that connect a spin of the cluster with another
spin that does not belong to the cluster;

– the radius of a cluster we define as the root mean-
square distance between all spins of a cluster, also
sometimes called radius of gyration:

2R2 =
∑

i,j∈cluster

|ri − rj |2
V 2

. (4)

This means that a single-spin cluster has radius 0.

3 Results

3.1 Sensitivity of the GS to perturbations

In spin glasses, very small variations of parameters such
as the strength of the bonds or an external field can cause
excitations that affect the entire system. This property
of disordered systems resembles chaos in systems where a
small deviation from initial conditions can lead to a totally
different state of the system at later times. However, some
people prefer to use the term “hypersensitivity” [25] for
this non-dynamical phenomenon.

Small perturbations of this kind have been analyzed
in detail in the context of spin glasses [71,72]. In the two-
dimensional RFIM, it was found in [70] that a weak form
of chaos is present.

We first applied the random-excitation method with
strength δ to the 3d RFIM to investigate how the method
is sensitive to the disorder parameter h.

Most of the resulting excitations consist of flipping
clusters at preexisting interfaces between spins of different
orientations, see Figure 1. This is energetically favorable
since only a small number of unsatisfied bonds is created
by such an excitation. Excitations inside of domains with
ferromagnetic order in the GS are considerably less fre-
quent. This makes us expecting that close to (or maybe
even beyond) the phase transition, where many domain
walls exist, a high number of excitations is generated.

To gather statistics, we performed simulations for sys-
tems with different h at system sizes ranging from L = 10
to L = 100. For special values h = 2.0, h = 2.270, h = 2.40
and h = 3.0, we simulated n = 5000 samples for each value
of L, for the remaining values of h the number of samples
is dependent on the system size (n = 1000 for the largest
systems and a higher number for smaller systems).

We measured the overlap q as defined in equation (2)
where s0

i is the GS orientation of the spin at site i and s′i
its orientation in the perturbed state. Note that q ∈ [−1, 1]
independent of the system size.

We first checked whether the response of the system
to the perturbation for small δ is linear. The overlap q(δ)
is shown in Figure 2. It was averaged over 5000 samples
of size L = 40 for each (δ, h) pair. The errors are very

Fig. 1. Two-dimensional slice through a 3d RFIM (random-
excitation method at h = 2.6). Spins pointing ↑ are marked in
white, ↓-spins in black and spins that change their orientation
in the excitation in Grey.
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Fig. 2. (Color online) Overlap q of the random excitations
(type II) vs. perturbation strength δ for various disorder
strengths h.

small, due to the effect of self averaging, i.e. the total
overlap does not vary strongly among different samples.
For different values of h, and δ ranging from δ = .01 to
δ = 0.5, we found that at least until δ = 0.2 the relation
between q and δ is linear, with a slope that depends on h.
This justified to use a fixed δ = 0.1J , as we did throughout
our simulations.

In Figure 3, the overlap q(h) is shown for different val-
ues of the system size L. The error bars show the standard
error. For large disorder strength h, the value of q is in-
dependent of the system size and grows slowly towards
q = 1. In the limit h → ∞, each spin just follows its local
field independently of its neighbors, which explains this
behavior.
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Fig. 3. (Color online) Dependence of the overlap q(h) on the
random field strength h for random excitations (type II) of sys-
tem sizes from L = 20 to L = 100. The perturbation strength
is δ = 0.1J . The connecting lines are guides to the eyes.

Furthermore, one observes that close to the phase tran-
sition point hc ≈ 2.27, the overlap is smallest and changes
drastically when starting from small value of h. The curves
appear to be smooth for small sizes L and significantly
steeper at L = 100. Another effect is that with growing
L, the minimum of the overlap moves to smaller values
of q and closer to the phase transition hc ≈ 2.27. Thus,
in the thermodynamic limit L → ∞, one can expect to
see a jump in q(h) when approaching the phase transition
from low values of the disorder h. Note that when rescal-
ing the h-axis according to the standard finite-size scaling
(h−hc) ∗L1/ν (with ν = 1.32 from Ref. [24]), one obtains
a fair data collaps near h = hc ≈ 2.27. But the scaling
window is small since already for h ≥ 2.4 the data collaps
is bad, hence the finite-size scaling plot is not shown here.

We can compare this behavior with former results of
Alava and Rieger [70] on the two-dimensional RFIM. For
any small fields h, the GS is paramagnetic for the two-
dimensional case, in contrast three-dimensional RFIM,
where the GS is ferromagneticaly ordered. Yet, the two-
dimensional equivalent of Figure 3 has a shape similar to
the three-dimensional one with a “transition” to q = 1 for
small h. However, this apparent transition is in d = 2 not
an intrinsic property of the infinite system but a finite-size
effect that is caused by the breakup length scale Lc(h). The
GSs of finite two-dimensional systems with L < Lc are
ferromagnetic since no domains can exist typically where
their random-field energy exceeds their interface energy.
Order is broken only for the infinite system no matter
how small h is, as a consequence of the argument of Imry
and Ma [73]. Therefore, the two-dimensional transition to
q = 1 happens at some h > 0 only in finite systems. This
is reflected by the fact that for the 2d the apparent tran-
sition point shifts in two dimensions arbitrarily close to
h = 0 with growing L, thus it does not converge to a
certain hc > 0 as our d = 3-data suggests.

In the cited work of Alava and Rieger, the authors
also make predictions as to what they expect for three
dimensions. In the limits h → 0 and h → ∞, q = 1 is
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Fig. 4. (Color online) Histograms for the overlap distribution
P (q) at h = 2.0 and h = 2.27 for random excitations (type
II) with perturbation strength δ = 0.1J . The distribution is
sharply peaked very close to q = 1. Therefore, a zoom to this
region is shown in the respective inset. Lines are guides to the
eyes only, scales are consistent with Figure 5.

expected. However, also for other h, in the thermodynamic
limit, they claim explicitly q → 1. Our simulations rule
out that at criticality and also at other values of h, q → 1,
so that only the predictions in the limit of infinite large
and small h are affirmed. The discrepancy may be due to
the fact that Alava and Rieger do not take into account
an explicit summation over excitations of different sizes,
which is necessary for the three dimensional case (θ > 0,
see also Sect. 3.3), in contrast to two dimensions, where
all excitations are of order of system size (θ < 0).

For four selected values in the vicinity of hc ∼
2.270(4) [24,25], namely h = 2.0, h = 2.270, h = 2.40
and h = 3.0, we analyzed not only the average of the
overlap between ground state and excited state but also
the distributions of the overlaps. The results are shown in
Figures 4 and 5. In the ferromagnetic phase, represented
by h = 2.0, there is a peak very close to q = 1. With
increasing system size, the peak becomes sharper, so that
in the thermodynamic limit, P (q) clearly approaches a
δ-shaped peak which is close to q = 0.9995. The over-
lap distribution in the paramagnetic phase, represented
by the h = 3.0 plot, shows a behavior that is in some way
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Fig. 5. (Color online) Histograms for the overlap distribution
P (q) at h = 2.4 and h = 3.0. Similar to the insets of Figure 4,
the histograms extend a bit to smaller values of q. For better
visibility, only the central parts of the histograms are shown.
Lines are guides to the eyes only.

similar. For smaller systems, there is a rather broad distri-
bution with a maximum near q = 0.975. The width of the
distribution becomes smaller with increasing system size,
and the location of the peak converges to q ≈ 0.975. At
h = 2.4, slightly above hc, there is a transition from the
ferromagnetic peak to the onset of a developing peak at a
lower q that will probably become sharper for larger sys-
tems. (The maximum of the L = 80 distribution is slightly
smaller than the maximum of the L = 100 distribution.)
At the critical point with hc = 2.27, no clear statement
can be made: There is a peak at q ≈ 0.996 that resembles
the ferromagnetic case, but its width stays approximately
constant for the system sizes we could simulate. However,
it is impossible to predict the shape of the overlap distri-
bution in the thermodynamic limit.

The standard deviations δq of the distributions that
are shown in Figure 6 support this picture. While for h =
2.0 and h = 3.0, the width of the distribution decreases
with a power law δq ∼ L−α with α = 1.24(4) (h = 2.0)
and α = 1.54(3) (h = 3.0), no clear tendency can be
seen at the intermediate h. If there existed in the RFIM a
complex hierarchical phase-space organization resembling

1e-05

1e-04

0.001

 0.01

 0.1

 10  100

h=2.0
h=2.27
h=2.4
h=3.0

Fig. 6. (Color online) Dependence of the standard deviations
δq of the overlap probability distributions of Figure 4 on L
(h = 2.0, 2.27, 2.4, 3.0). For h = 2.0 and h = 3.0, the lines
represent power laws, while for h = 2.27 and h = 2.4, the lines
are guides to the eyes only.

the replica-symmetry broken phase of the mean-field SG,
the distribution of overlaps would not diverge to a δ-peak
in that phase. Instead, dependent on the type of replica
symmetry breaking, one would would expect a distribu-
tion that is double-peaked or even flat in the thermody-
namic limit. Although we could not make final predictions
for hc, our results and previous work on the sensitive of
the GS to changes of the boundary conditions [25] suggest
that for even larger systems for all values of h a δ-peaked
distribution should appear.

Note that the distributions we found can be compared
with overlap probability distributions of uncorrelated
thermal states of the RFIM in equilibrium, as performed
in [75]. In that work, the authors equilibrated samples
by MC simulations at a low temperature. After that, the
overlap distribution between the states in equilibrium was
measured. The resulting P (q) distributions do resemble
each other strongly, which is in principle a property of
a complex phase space. Nevertheless, the system sizes
that could be equilibrated in reference [75] were too small
(L < 11) to draw solid conclusions from these results.

3.2 Fractal dimension of clusters close to hc

Droplets that represent low-energy excitations in disor-
dered systems often exhibit a fractal structure. For the
RFIM, Middleton and Fisher [25] created domain walls
by comparing the GS configurations of different boundary
conditions in each sample. After calculating the GS where
the spins on the left and right border in x-direction are
fixed to ↑-orientation, the GS was recalculated with the
spins on the right border fixed to ↓-orientation while the
spins on the left border stay fixed in ↑-orientation. This
method guarantees that a domain wall is created.

The fractal surface dimension of these domain walls at
hc was determined to be dd

s = 2.30± 0.04. Middleton and
Fisher also analyzed the fractal properties of clusters as
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Fig. 7. (Color online) Volume as a function of the radius for
single spin excitation clusters at h = 2.27 ≈ hc, L = 80. Each
data point corresponds to one cluster. A fit to the function
f(x) = axb yields a = 0.59(2) and b = 2.99(1), confirming
V ∼ R3, as shown by the line.

areas of equal spin orientation in the simple pure GS with
the result dc

s = 2.27 ± 0.02.
We want to determine whether the fractal dimen-

sion of low energy excitations is compatible to these re-
sults. Theory suggests that the fractal dimensions of ex-
cited clusters and domain walls should be identical if
the droplet model applies. This is indeed the case for 2d
Edwards-Anderson spin glasses [24]. But for the RFIM,
system-wide non-domain-wall excitations that are uncom-
mon because θ > 0, i.e. the size of typical droplets is
small and not system-spanning. Note that the fact that
typical droplets are small prevents us from a direct deter-
mination of the value of θ for the droplet excitations, see
next section. This is in contrast to the domain-wall exci-
tations [25], which are always of the order of the system
size. This is also in contrast to the 2d SG model, where
θ < 0. In this case, droplets tend to be large, hence the
typical length scale is also given by the system size L.

We return to the fractal dimension, which is deter-
mined via measuring the following three quantities, see
Section 2: we define the volume V of a droplet as the
number of spins it contains. If there are “holes”, i.e. areas
of non-excited spins, inside of an excitation cluster they
do not contribute to V . The surface A is defined as the
number of bonds that connect a spin of the cluster with a
spin that is not in the cluster. For measuring the spatial
extension of a cluster, we use the radius (of gyration).

As first result we obtained that the clusters are com-
pact, i.e. the volume V is non-fractal: by plotting the vol-
ume V as a function of the radius of gyration R for the
one-spin flip method (type I) for L = 80 (h = hc), see Fig-
ure 7, we find a power law with an exponent of 2.99(1),
so that d = 3 fits the data well. Therefore, holes inside
of excited clusters are so rare and small that they do not
play an important role in the excitations of the RFIM.
The clusters of the other methods that were applied to
calculate ds are compact as well (no plots shown here).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1  10  100  1000  10000  100000

A

V

single spin
randomspin 10xA 
ε-coupling, 100xA

Fig. 8. (Color online) Excitation-cluster surface as a function
of the cluster volume. for the ε-coupling method (top), the
random-excitation method (middle), and the single-spin flip
method (bottom). In all three cases we observe a A ∼ V ds/d

behavior (shown as lines) with ds being the fractal dimension,
as shown in (6).

The surface scales like A ∼ Rds with the surface di-
mension ds that is possibly fractal. Combined with the
compactness of the clusters, which means V ∼ Rd, it fol-
lows that

A ∼ V ds/d. (5)

In Figure 8, A(V ) is shown for the three different methods
described above. In the double-logarithmic plot, the data
of the random spin method and the ε-coupling method is
shifted by multiplying it with a factor of 10 resp. 100 in
order to make all three curves visible in one diagram. For
the pure data, the curves overlap of course. The exponent
ds/d can be extracted from the numerical data by fitting
a power law to A(V ).

From Figure 8, it can be seen that for the three differ-
ent methods, the clusters have approximately the same
fractal properties. We fitted a power law of the form
A = cV ds/d to the data of each method. The resulting
fractal dimensions for each method are

ds = 2.34(2) single spin flip
ds = 2.37(1) random excitations
ds = 2.36(1) ε-coupling.

(6)

This means the three different types of excitations behave
similarly within error bars. Compared with the fractal di-
mensions calculated in [25] (dc

s = 2.27 ± 0.02 for clusters
and dd

s = 2.3 ± 0.04 for domain walls), our fractal dimen-
sion of small excitations is compatible with the exponent
for domain walls dd

s . The value for the clusters of refer-
ence [25] is a bit off our values, but this can be expected
since these clusters defined in reference [25] are not cov-
ered by the droplet theory. Hence, we have found that
different excitations described by the droplet theory are
compact and that they have the same fractal properties.
This is compatible with one of the main assumptions of
the droplet theory, namely that all types of physically rel-
evant excitations behave the same.
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3.3 Size distributions of clusters at hc

Another main assumption of the droplet theory [41] is that
the energy ΔE of minimum (free-) energy droplets with
a fixed center and a given scale l follows a probability
distribution

Pl(ΔE) =
1
lθ

P (ΔE/lθ), (7)

where θ is the droplet-scaling exponent and P (.) is an uni-
versal function. Within the droplet theory, as already in-
dicated above, it is assumed that the droplet exponent θ
describes universally also other types of excitations, such
as system-spanning domain-walls, which can be obtained
numerically, as described in the previous section. Using
such an approach, recently the value of θ = 1.49(3) has
been determined for domain walls [25].

Nevertheless, for the RFIM, we are not aware of a
direct determination of the value of θ via droplet-like
excitations. This is in contrast to the spin-glass case,
where for the two-dimensional (2d) systems numerical
simulations [42–44,76,77] indicate that domain-wall and
droplet-like excitations are described by one single droplet
exponent. For the 2d spin-glass case, the droplets were
generated by a variant of the single-spin-flip method used
in this work. Note that for 2d spin-glasses, the value of θ
is negative, such that the excitations automatically tend
to be as large as possible, such as to obtain an excitation
energy as small as possible. Thus, in this case, the droplet
scale l is on average automatically given by the system
size L.

In case the value of θ is positive, it is more difficult to
determine its value via the calculation of droplet-like ex-
citations. The reason is that size of the excitations tends
to be small, as mentioned above. This means, the scale of
the excitations is not given by the system size L, in par-
ticular each excitation will have its own scale, compatible
with the minimum-energy requirement. One could use in
principle a different approach to generate true droplet-like
excitations, as required by the droplet theory, by optimiz-
ing only among all clusters of a given scale l, i.e. within a
range of sizes. Nevertheless, there are no efficient optimiza-
tion algorithms available, which can perform this task, in
particular maximum-flow algorithms cannot be applied.
It is quite likely that the problem of miniming the energy
of an excitation under a size-constraint belongs even for
the RFIM to the class of NP-hard problems. This means
that only algorithms are known, where the running time
increases in the worst case like an exponential with the
system size, limiting drastically the size of tractable sam-
ples.

Therefore, we follow a different approach here: we want
to use the assumption (7) to calculate the properties of the
presently obtained excitations. As a first step, we want to
calculate the joint probability P (R, ΔE; L) that, for a sys-
tem size L, an minimum-energy excitation with fixed cen-
ter exhibits the energy ΔE and has scale R, here as given
by the radius of the excitation cluster (see Sect. 2). Since
the energy of the excitation is minimum, it means that

P (R, ΔE; L) is given by the probability that on (imag-
inary fixed) scale R the minimum excitations energy is
given by ΔE and by the probabilities that for all other
scales l ≤ L with l �= R, the excitation energy is higher.
If we assume that for a fixed scale l ≤ L the probabilities
are independent of the system size L, we obtain:

P (R, ΔE; L) = PR(ΔE)
∏

l�=R;l≤L

Probl(Ẽ > ΔE) (8)

where Probl(Ẽ > ΔE) is the probability to obtain, for a
fixed center and a fixed scale l a minimum-energy droplet
excitation larger that ΔE:

Probl(Ẽ > ΔE) = 1 − Probl(Ẽ ≤ ΔE)

= 1 −
∫ ΔE

0

dE′Pl(E′)

(7)
= 1 −

∫ ΔE

0

dE′ 1
lθ

P (E′/lθ)

= 1 −
∫ ΔE/lθ

0

dxP (x)

=: 1 − Q(ΔE/lθ), (9)

equation (8) can be rewritten as

P (R, ΔE; L) =
1

Rθ

P
(

ΔE
Rθ

)

1 − Q
(

ΔE
Rθ

)
∏

l≤L

[
1 − Q

(
ΔE

lθ

)]

=
1

Rθ

P
(

ΔE
Rθ

)

1 − Q
(

ΔE
Rθ

)e
∑�

l≤L ln[1−Q(ΔE

lθ
)]. (10)

Note that the sum
∑�

l≤L is performed according the
assumptions of the droplet theory over different scales.
Thus, it is the same as writing l = bk for some suitably
(basically arbitrarily) chosen base b and

∑
l≤L f(l) −→

∑logb L
k=0 f(bk).
Here, using P (R, ΔE; L), we are interested in the dis-

tribution of excitation radii:

PL(R) :=
∫ ∞

0

dΔE PL(R, ΔE; L). (11)

Unfortunately, this integral over ΔE cannot be performed
analytically. Nevertheless, the exponential (third) factor in
(10) does not depend on R. Furthermore, we can assume
that the factor 1/Rθ is dominating PL(R), i.e. different
contributions from ΔE/Rθ arising in the second factor
P/(1 − Q) will cancel to first order. In other words, the
Taylor expansion of the second term yields a constant plus
higher orders in ΔE/Rθ. This is not unreasonable: if we
consider the case of the exponential distribution, where for
P (x) = e−x we have Q(x) = 1−e−x, even all contributions
from ΔE/Rθ cancel. In this case, just for completeness,
one finally obtains, using λ(L) :=

∑logb L
k=0 (b−θ)k = (1 −

(b−θ)logb L+1)/(1 − b−θ) = (1 − b−θL−θ)/(1 − b−θ):

PL(R) =
1

Rθ

∫ ∞

0

dΔEeΔE
∑ �

k(bθ)k

(12)

=
1

Rθ

∫ ∞

0

dΔEeΔEλ(L) =
1

Rθ

1
λ(L)

. (13)
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Fig. 9. (Color online) Probabilities PL(R) of cluster radii R for
single-spin-flips at h = hc, the inset shows the same quantity
for excitations generated by the ε-coupling approach. Note that
the probabilities are measured (i.e. integrated) over logarithmic
scales, in accordance with the droplet definition within the
droplet theory. The solid lines show the power laws P (R) ∼
R−θ, which can be expected for single-spin-flip excitations (see
text).

Indeed, the probabilities PL(R) are normalized, since∑�
R≤L PL(R) = λ(L) 1

λ(L) = 1.
In Figure 9, the measured probabilities PL(R) for

R > 0 are shown for single-spin-flip excitations for system
with L = 80 at the transition point h = hc. The match
with the assumed scaling form ∼R−θ, using θ = −1.49 as
obtained [25] from the scaling of domain-wall energies at
h = hc, is reasonable. Also for smaller sizes L < 80, the
distribution looks similar, but they extend only to slightly
smaller radii. Interestingly, for example for the ε-coupling
case the distribution shows the same power-law behav-
ior (see inset), although the ε-coupling excitations are not
generated with a “central” spin and although each excita-
tion generates many excitation clusters, in contrast to the
assumptions used above (for the third type of excitations,
the statistics is not as good right at hc).

The results show that the behavior of the 3d RFIM ex-
citations, where θ > 0 right at h = hc, follow reasonably
well the assumptions of the droplet-scaling theory, simi-
larly to the case of 2d spin glasses, which is an example
for a system with θ < 0, hence simpler to treat. This re-
sult provides another strong indication that the behavior
of the RFIM at the phase transition is indeed described
to a large extend by the droplet theory.

4 Summary

In this paper we studied the properties of low-energy exci-
tations in the three-dimensional RFIM via GS calculations
and subsequent generation of GSs for perturbed systems.

By tracking the difference of the excited state with respect
to the GS of the unperturbed system, we found that the
overlap q undergoes a transition from q = 1 to a smaller
value that becomes steeper with growing sample size. The
finite-size behavior of the data is compatible with a con-
vergence of a drastic change of the overlap right at the
critical value hc. This constitutes a clear difference to the
2d RFIM that was analyzed by Alava and Rieger.

In the distributions P (q), the phase transition is also
visible in the form of a shifting peak. We did not find
any clear evidence of an interval of the disorder parame-
ter h where the distribution would reach anything but a
peak in the limit of infinite systems. Close to the tran-
sition h = hc our system sizes of even up to L = 100
are probably too small to reach the scaling regime. This
provides further evidence against a phase with a complex
phase space, similarly to replica-symmetry breaking, in
particular right above the transition point.

The geometry of the excitation clusters was found to
be compact (volume to radius) and fractal (volume to sur-
face). Depending on the method by which the excitations
were generated, the fractal dimension ds is slightly differ-
ent compared to domain walls, but not statistically sig-
nificant. Furthermore the probabilities of the excitation
cluster radii follow a power-law behavior R−θ, with θ be-
ing the droplet-scaling exponent measured previously for
domain walls at the phase transition point. This means
that two main assumptions of the droplet theory, com-
pactness and universality of the excitations, are verified
by our results.

For future work, it would be desirable to test whether
the main assumptions of the droplet theory hold also for
the four-dimensional RFIM, where also some GS results
have been obtained previously [27]. Furthermore it would
be desirable to study the dynamics of the RFIM within the
droplet pictures, for example the scaling of energy barriers
with system sizes.
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