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The low-energy atom-atom scattering properties are studied for various 
combinations of He isotopes interacting via a family of semiphenomenological 
potentials. Some of the potentials bind the (4He)2 molecule and some do not, 
and it is observed that molecular beam scattering measurements at energies 
currently accessible cannot resolve the difference between the two types of 
potentials. Our results are discussed within the framework of possible meas- 
urements to resolve this discrepancy. We present a method for solving the 
Schr6dinger equation which is uniformly applicable for both bound and 
scattering state solutions and which is particularly suited to the types of 
potentials describing interactions for the rare gas atoms. 

1 .  INTRODUCTION 

The underlying motivation and interest in understanding the interac- 

tion between helium atoms follow in part from the distinct quantal 

phenomena exhibited by the helium isotopes at 10w temperatures 1 and in 

part from the inherent simplicity of the electronic structure of the helium 
atom. 2 The pairwise interaction between helium atoms possesses many of 
the features displayed by other rare gas atoms. For helium it is the closed l s  

shell that simultaneously accounts for the weakly attractive long-range 
forces and the strongly repulsive short-range valence forces. These facts, 
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coupled with the validity of the Born-Oppenheimer approximation, lead to 

the representation of the interaction as a static central two-body potential. 3 

Historically our knowledge of the helium interatomic potential has 

evolved from thermodynamic and steady-state bulk properties. 4 There 

currently exists a substantial amount of thermodynamic data on helium in its 

solid, liquid, and gas.phases. However, only a fraction of these data can be 

meaningfully related t6 a two-body potential. In particular the absence of a 

theoretical understanding on a microscopic level of quantum crystals and 

quantum liquids precludes any direct extraction of atomic potential parame- 

ters from 'the low-temperature soiid 5 and liquid phases. 6 This is to be 

contrasted with the dilute gas data 7-1° and data from the recent precision 

molecular beam scattering experimentsJ ~-23 In this case a complete set of 

such measurements would in principle suffice to determine a unique energy- 

independent locai potential, 24 although in practice this aim is not realizable. 

The helium potential is bestunderstood in both theory and experiment 

in either of the limits of small or large separation. Most of the 

semiphenomenological: potentials 25-32 in present use are piecewise analytic 

functions of the interatomic separation r, which incorporate either or both of 

the theoretically determined short-range and long-range limits, and which 

exploit some empirical fit to interpolate between these two limits. The main 

uncertainty in the potential comes from the range between about 2 and 4 _~, 

which contains the region of the most physical importance, namely the 

region about the weakly attractive minimum. The long-range part of the 

interaction is usually given in the form of a multipole expansion, and it is 

customary to retain only the first two terms, namely the dipole-dipole 

(C6r -6) and dipole-quadrupole (Csr -8) terms. The values Of these coeffi- 

cients have been estimated by many authors 33-42 andare generally believed 

to be accurate to 5% for C6 (Ref. 38) and 3% for C8 (Ref. 42). The omitted 

termsin'the multipole expansion are consideredunlikely to contribute more 

than a few percent to the potential, and then only for larger atomic 

separations than are relevant to most physical parameters. 

Only comparatively recently have high quality ab initio theoretical 

calculations been reported for the region of the short-range repulsion and 

near the potential minimum. 4a-5° In general these calculations lead to a 

simple exponential dependence on the interatomic separations for r 

between about 1 and 2/~. 
In the present work we shall assume that the pairwise interaction 

between any combination~of helium isotopes can be equivalently rep- 

resented by the same two-body potential. Experimentally there have been 
data indicating that the interaction is measurably stronger iia the 3He system 

than for 4He. Most of the experimental work to date has investigated the 
4He-4He interaction. 11-22 The analysis of the data, at least within the 
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framework of a particular potential model, 18 suggests that the 3He-3He 

interaction is about 3.5% more attractive than for 4He-4He in the region of 
the potential minimum. Other measurements 21 support this qualitative 

trend, but find the difference smaller than the experimental error limits. 
The current study presents a theoretical comparison of two-body 

scattering for five of the moderately successful semiphenomenological 

potentials. The isotopes 3He and 4He are considered, together with the 

unstable isotope 6He. Our basic purpose is to analyze scattering properties 

of the various model potentials, focusing on whether Or not the present data 
can confirm the existence of a low-energy bound state in the 4He system. In 

computing the scattering and bound-state properties from the model poten- 

tials we Present a method of solving the Schr6dinger equation which is 
uniformly applicable for both bound and scattering state solutions, and 

which is particularly suited to the types of potentials that describe interac- 

tions in the rare gas atoms. The method requires the construction of 

momentum, space matrix elements and is only applicable to potentials that 

are Fourier-transformable, For bound States, the method displays a high 
degree of stability and is ideal for computing binding energies of weakly 

bound systems, while for scattering states, momentum-space matrix tech- 

niques provide a systematic method for calculating phase shifts over a wide 

range of energies. 

The five helium model potentials are discussed in Section 2.: Some of the 

potentials fit certain experimental data less well than others, and properties 

of helium in the gas, liquid, and solid phases as derived from the potentials 

are compared. The method of solving the bound-state Schr6dinger equation 

and computations of the binding energies of variou s diatomic n:olecules of 

helium are given in Section 3. The scattering formalism is presented in 
Section 4 as well as a detailed discussion of the numerical techniques 

employed. For the 3He-aHe system partial-wave phase shifts are given as a 

function of energy (l -< 7) and an effective range expansion is computed for 
each potential. The computed scattering lengths are accurate to better than 
0.1% and the effective ranges to better than 1.0%. For the 4He-4He system 

total elastic and viscosity cross sections are calculated:as a function of center- 
of-mass energy as well as differential cross sections at three different 

energies. Our results are summarized in Section 5 and are discussed within 

the framework of possible measurements that will resolve the remaining 
ambiguities i n the interaction. 

2. T H E  S E M I P H E N O M E N O L O G I C A L  P O T E N T I A L S  

In this work the scattering properties of five different He-He  potentials 

are compared, InTable I we present a representative cross section of recent 
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theoretical calculations 3°'51-s9 concerned with bulk properties of either or 

both 3He or 4He in one of the phases gas, liquid, or solid. The last column in 

Table I indicates the potential that seems to be preferred among those 

considered. It is seen that the FDD-1, MDD-2, S, and B potentials are 

widely favored by a range of calculations and it is these potentials, together 

with one other, that we focus upon. For convenience of classification these 

interactions may be separated into the following three main classes. 

Class A. The Frost-Musulin 29 Type 

This class compriseffthe following two potentials: 

(i) FDD-1. The Frost-Musulin potential of Bruch and McGee, 3° 

= I - e [ 1  +c(1 -rm/r)] exp [c(1 - r / r , ) ] ,  r<_ rs 

V(r) 
~ - - ( C 6 r - 6  + C 8 r - 8 ) ,  r ~  rs 

(ii) MFM. The "modified"* Frost-Musulin 29 potential, which is given 

by the short-range (r _< rs) part of the FDD-1 potential above, taken for all 

separations r, and which uses the same values of the parameters as FDD- 1. 

Class B. The Morse Type 

This class also comprises two potentials: 

(iii) MDD-2.  The Morse potential of Bruch and McGee. 39 

(iv) S. The Sposito potential. 32 

Both of these potentials are given by the analytic form 

I -e{2  exp [c(1 - r / rm) ] -exp  [2c(1 -r / r , ) ]} ,  r<_ rs 

V(r) = [ -  (C6/ '-6 --]- C8r-8), r ___ rs 

Class C 

This class contains just one potential, namely: 

(v) B. The Beck potential, 31 which is given by the analytic form 

V(r) = A exp ( -ar  -/3r 6) - B (r 2 + a 2)-3[ 1 --[- (b + 3 a 2)/(r2.4_ a 2)] 

The values of the various parameters relevant to these potentials are 

presented in Table II, and the potentials are compared in Fig. 1 in the region 
of their attractive minima. 

Of the five potentials, three (FDD-1, MDD-2, and B) were constructed 

by their authors along lines similar to those outlined in the introduction. The 

*The nomenclature "modified" Frost-Musulin potential is perhaps somewhat confusing, since 
the analytic form is identical to that originally proposed by FM. 29 We have chosen this 
notation both to avoid confusion with the FDD-1 potential, which is often referred to as the 
FM potential, and to indicate the particular set of values of the parameters that we have used. 
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TABLE II 

Parameters of the Potentials 

a b c 
e, r ~  o-. rs, C6, C8, 

Class Potential K ~ c ~ K ~6 K A s 

A:Fros t -  FDD-13° 12.54 2.98 2.649 8.00877 3.51078 10213.8 27671.4 
Musulin MFM 29'3° 12.54 2.98 2.649 8.00877 __a d a 

B: Morse MDD-23° 10.75 3.0238 2.682 6.12777 3.68280 10213.8 27671.4 
S 3z 9.25 2.948 2.637 6.2059 3.598 6842.0 26930.0 

A, B, fl, 
eV e V ~ - 6  ~'-1 ~ ~ 1 0  - 4  ~x - 6  

C: Beck B 31 10.370 2.969 2.637 399.7 0.869 4.390 3.746 0.675 2.709 

a_e is the minimum value of the. potential. 
bY m is the separation at the minimum; V ( r m )  = - e .  

Co" is the classical zero-energy turning point; V(o-) = 0. 
aNot relevant for the MFM potential. 
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Fig. 1. The five helium interatomic potentials considered in this 
work, in the region of the potential minimum. 
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MFM potential, on the other hand, has the same analytic form as the original 
Frost-Musulin potential 29'* (for all interatomic separations). One might 

object to its use here on account of its patently incorrect asymptotic behavior 
at large separations. However, our real motivation for including it is that its 

Fourier transform has a simple analytic form, which will turn out to provide 

us with a simple effective check on our numerical computations. Finally, the 
S interaction was constructed along somewhat different lines. Its short-range 

part was constructed so as to reproduce the repulsive potential deduced 
from the extensive high-energy 4He-4He scattering data of Jordan and 
Amdur, 23 whereas its long-range part has the correct asymptotic (dipole- 

dipole and dipole-quadrupole) behavior. Unlike the FDD-1, MDD-2, and 

B potentials, however, the S potential was adjusted so that it yielded the 
measured ground-state energy of liquid 4He, when combined with the virial 

theorem, and with the observed radial distribution function g(r) for liquid 
4He.6° It is therefore not surprising that the resulting potential is somewhat 

different from the others, which try to reproduce properties of gaseous, 

rather than liquid, helium. In particular, although its analytic form is 
identical to that of the MDD-2 potential, the S potential has a considerably 

shallower minimum at a slightly displaced separation, as seen in Fig. 1. This 

has evidently resulted from the effects of the many-body medium of the 

surrounding liquid, and is in general agreement with theoretical calculations 
on two-body potentials for nonpolar liquids. 61 Although the S potential 

might represent an excellent potential for liquid 4He, it is by no means clear 

whether it is a good representation for use in liquid 3He, or between other 

isotopic pairs. 

It is important to point out that, notwithstanding these considerations 
for the S potential, and the discussion of the 3He-3He and 4He-4He 

potential differences mentioned in the previous section, we shall use each of 

these five potentials as representing the interaction between any pair of 
helium isotopes. Apart from the common isotopes 3He and 4He, we consider 

also the isotope 6He. The isotope 6He is unstable and may be produced in 
such nuclear reaction as 9Be(n, c~)6He, and since it has a comparatively long 

half-life of 0.802 sec, it may prove possible to perform atomic beam 

experiments with 6He projectiles. Most of our results are sensitive to the 

precise values of the atomic masses, and these are listed in Table III together 
with values of the other physical constants used. We note that the basic 

conversion unit implied by these values? is 

h2/D't3--~ 16.0838 K ~2 

* See preceding footnote.  

+The incorrect value h2/m3 = 16.36 K .~2 seems to be widely used,  and appears  to have 
propagated through the liquid hel ium literature f rom the pioneering work of Brueckner  and 
Gammel .  6z 
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TABLE III 

Physical Constants 

Isotope Atomic mass, 7° amu (12C) 

3He m3 = 3.016030 
4He rn~ = 4.002603 

6He m6 = 6.01889 

Other physical constants 71 

1 amu (12C) = 9.31502 × 10 s eV 

kB = 8°61735 × 10 -5 eV K -1 

hc = 1973.29 e V A  

As a final note, it is important to realize that each of the five potentials 

documented above possesses a Fourier transform. This will turn out to be 

important since the methods that we later adopt are only applicable to 

Fourier-transformable potentials. Their use would be precluded for such 

interactions as those of  Lennard-Jones 4 or Yntema and Schneider, 25 which 

are too singular near the origin. The theoretical predictions for the asympto- 

tic behavior of the interatomic potential at short and large separations, 

however, strongly support the idea that a realistic potential should possess a 

Fourier transform. 

3. MOLECULES OF THE HELIUM ISOTOPES 

In this section we discuss the binding energies of the possible diatoms 

formed from two helium atoms, each of which can have mass number A = 3, 

4, or 6. It turns out that none of the five potentials discussed above is 

sufficiently attractive to bind either (3He)2 or 3He-4He. The only other 

possible diatom formed from the stable isotopes, (4He)z, is either unbound 

or bound with a very small energy, depending on the potential considered. 

For this reason, the unstable isotope 6He is also considered and we present 

results for the binding energies of the.molecules (4He)z, 4He-6He, and 
(6He)2.* 

For two atoms of mass rni and m i, with reduced mass/zij, the Schr6dinger 

equation in the bound-state region (E < 0) is 

[ -  (h 2/2~ij)v 2 + V(x)]~,,j(x) = E~,~j(x) (1) 

In order to achieve high accuracy, among other reasons, we have chosen to 

solve for the possible bound states in the momentum representation. 

*The possibility 3He-6He is not considered separately since the reduced mass for this diatom is 

to ~rn4 and therefore it will have a binding energy almost identical to that of very nearly equal 1 
(4He) 2. 
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Converting Eq. (1) and taking the partial wave decomposition, we 

obtain 

(p2 21zqE'~ t,(t)¢_,_ Io°~q2dq 21-tq 
"}'.¢.'ij k[  J )  - -  - -  2¢r2 h2 V/Qg, q)~p~)(q) (2) 

where 

~0 °° 
V/(p, q) = dx x2i,(px)V(x)h(qx) (3) 

Equation (2) is a homogeneous integral equation for the possible eigen- 

states, the kernel of which can be symmetrized by the substitution 

. . . .  1/ 2 , 2 ~ d E l ~  - v 2  tp~)(p)=gtkp)p ~p - e ~ ]  

Writing 

2/~uh-2]E] = e (4) 

we find 

 ,Qg) = ,  

The energy eigenvalue e now enters Eq. (5) in a rather complicated 
nonlinear way and it is useful to regard e as a parameter and to treat the 

overall strength of the potential as the eigenvalue. That is, we solve the 

linear eigenvalue problem 

Io°°dq~P-~q2 ~v/(p,q)[(p2+e)(q2+e)]-l/2g, z(q)=A~l(p) (6) 
2¢r 

for the eigenvalue A as a function of the parameter e. For a given pair (i, j), 

the binding energy is obtained using Eq. (4), from the value of e appropriate 

to the eigenvalue A (e)= Aq-=-rn3/2~q. The parameter A -1 thus plays the 
role of an overall variable strength factor for the potential. In general Eq. (6) 

will have an infinite set of eigenvalues in A for a given e, which are 

determined by the strengths of the given potential that sustain a bound state 
of energy E =-(h2/2tzq)e. Quite dearly, for the potentials of the form 

considered here (and see Fig. 1), the spectrum of eigenvalues A spans both 

positive and negative values. For the problem at hand the only relevant 
eigenvalue is the lowest, namely the negative eigenvalue of greatest absolute 
magnitude. 

The eigenvalue equation (6) may now be solved by any of the standard 
numerical techniques. We have chosen to use matrix diagonalization after 
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the integral has been discretized by an appropriate choice of a numerical 
quadrature rule over the interval (0, eo), using a set of integration points q~ 

and corresponding weights w~; c~ = 1, 2 . . . .  , N. In the present work Gaus- 

sian integration has been used and found to provide high accuracy for a 
relatively small number N of mesh points. The Gaussian integration points 

x~ provided on the interval (-1,  1) have been transformed onto the points q,, 

by use of the mapping 

q octan [¼7r(1 +x)] 

The substitution into Eq. (6) of the transformation 

g(p) = [ w ~  )]-l/2 g l~  ) 

then ensures that the resulting finite-dimenslonal matrix eigenvalue equa- 

tion 

K.~gt3 =Ag., g~ ------- g(p~) (7) 

has a symmetric kernel K,,t~ given by 

w,~wt~ ]~/2 P,~Pt~ m3 
K,~t~ = ( p Z + e ~ + £ ) j  ~ ~TVt(p,~,p~) (8) 

Equations (7) and (8) have been solved in the S-wave (l = 0) channel for 

each of the five potentials under consideration, giving the set of curves 

A = ,t (e) shown in Fig. 2. None of the five potentials is sufficiently strong to 

bind any of the possible He2 molecules in a state of nonzero relative angular 

momentum ( l -  1). The number of Gaussian integration points N has been 
varied between 24 and 192 in order to examine the convergence of the 

quadrature approximation. In every case N =  96 was found to give values of 
the eigenvalue h (e) accurate to better than 10-2%. In allof the numerical 

work reported we have actually employed N -  > 96. 

The binding energies (if a bound :state exists) of the molecules (4He)2, 
4He-6He, and (6He)2 can be read off from Fig. 2 f r o m  the respective 

eigenvalues ,t =--ma/21.z equal t o -0 .75352 ,  -0.62731, and -0.50109. 
Accurate values are listed in Table IV, where they are compared with values 
quoted by Bruch and McGee a° and Beck. 63 

Our results indicate that if a bound state exists at al l  for the (4He)2 
system, it will be  extremely loosely bound. This is in agreement with the 
theoretical estimates of Pais and Uhlenbeck 64 and with earlier numerical 

estimates using various He-He  potentials and computational tech- 
niques. 65"66 :! 
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Fig. 2. The  lowest eigenvaiue A Of Eqs. (7) and (8) in the l = 0 channel,  
as a function of the reduced energy 2tzh-21E[, for the five potentials 
considered. The arrows indicate the end points of each curve at E = 0. 
The  intercepts, if any, with the lines A = A 6 = - 0 . 5 0 1 1 ,  A =A4_6 = 
- 0 . 6 2 7 3 ,  and A = A4 = - 0 . 7 5 3 5  give, respectively, the binding ener-  
gies of the molecules (6He)2, 4He-6He, and (4He)2. 

4. H E L I U M - H E L I U M  S C A T T E R I N G  P H E N O M E N A  

We now wish to compare the predictions obtained from the various 
interatomic potentials for scattering processes. Any two-body scattering 
phenomenon can be described in its complete off-shell generality by the 
transition amplitude or t-matrix operator. Scattering of particles i and j 
from initial states of momentum hpl and hpj to final states hp~ and hp~- with a 
total (conserved) energy E is described by a t-matrix, written in the 
two-body momentum representation as t(pi, pj; p~, p~; E). In general the 

inequalities 2 E !2 ,2 

P~ t - P J - ~ h - ~ P '  -~2mg pj 
2m~ 2rnj 2rn i 

hold and define what is meant by off-shell scattering. The transition is best 
described in the CM frame of the scattering pair in terms of the relative and 
total momentum variables, respectively, 

p = (mip~ - m l p j ) / ( m i  + mj )  

p' = (rnjp~ - m~p~)/(mi  + mi)  

p = p~ +Pj  = p'~ + p~- 
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TABLE IV 

Bound States of the Molecules of Helium Isotopes 

Binding energyf  K 

Author Potential (4He)2 6He-4He (6He) 2 

Present work FDD-1 0.0140(1) 0.1418(1) 0.4558(2) 
MDD-2 0.000135(3) 0.0664(1) 0.2950(1) 
B b 0.0554(1) 0.2669(1) 
MFM b 0.00890(2) 0.2181(1) 
S b b 0.0533(1) 

Bruch and McGee 3° FDD-1 0.0137 
[0.0109] c 

MDD-2 0.000134 
[0.000133] c 

d d 

Beck 31 FDD-1 0.0067 0.1171 0.4145 
B b 0.0431 0.2405 

aThe figure in parentheses after the entry indicates the estimated error to the last significant 
figure quoted. 

bNo bound state. 
CThese authors quote two values for the binding energy: The first value is obtained from an 
"exact" solution of the radial Schrrdinger equation; the value in brackets is an estimate based 

on the S-wave scattering length. 

aNot quoted by these authors. 

where momentum conservation is guaranteed. The t-matrix may now be 

specified by matrix elements t(p, p'; s) in this frame, where the variable s is 

proportional to the available energy e in the CM frame, 

s = 21zijh-Ze = 2/zqh-2[E-½h2P2/(mi + rni)] 

and where/xii is the reduced mass of particles i and/. The variables E and P 

naturally enter the scattering description only in the combination specified 

by the parameter s. The Schrrdinger equation that describes the general 

two-body scattering process above may be rewritten as the Lippmann- 

Schwinger equation for the t-matrix, which after an angular momentum 

decomposition may be written as 

t t (p,p,;s)=~Vt(p,p,)_fo°°dqq z 21Zlih 2 Vl(p,q)tl(q,p';S)qz_s_b7 (9) 

where ~7 is a positive infinitesimal that acts as a stylized reminder of the 

outgoing wave b6u'ndary condition that is built into the definition of the 
t-matrix. With our choice of normalization, the fully on-shell t-matrix is 
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related to the phase shifts 8~ by the relation 

tl(p, p; p2) = ,4~rp-1 eiS,(p} sin St(p) (10) 

In the scattering region (s > 0) the kernel of the integral equation (9) 
becomes singular at the point q =+sl/2, and it is necessary that this 

singularity should be removed from the equation before a numerical solu- 

tion is attempted. Due to the i~/term in Eq. (9), the t-matrix is complex 

imaginary for s > 0  and for many purposes it is more convenient to deal with 
the analogous k-matrix, which has explicitly real momentum-space matrix 

elements, and which is obtained as the solution to an integral equation 

identical to Eq. (9) except that ~/is set to zero and the resulting integral is 

regarded as of principal value type. 

The k-matrix is thus the solution to a completely identical Schr6dinger 

equation, but with the outgoing-wave boundary condition replaced by a 
standing-wave boundary condition. From a knowledge of either the t-matrix 

or the k -matrix, the other is readily obtained by use of two-body unitarity. In 

particular, the fully on-shell k-matrix is given by 

kl(p, p;  p2)  __. _ 4~rp-X tan 3l(p) (11) 

From numerical solutions, the k-matrix counterpart of Eq. (9) has a term 
(which is identically zero) subtracted from the integrand, which has the effect 

of replacing the principal value condition by a smooth, nonsingular inte- 

grand. The resulting integral equation, 

k~(p,p'; s)=~V~(p,p') 

21d, ij f °° dq q2Vl(p,q)kl(q,p'; s)--sVl(p, K)kl(K,p'; s) 
h2 Jo 2 "n'2 q2-s 

(12) 

K ~ -t-S 1/2 

is now discretized exactly as in Section 3 by use of an appropriate N-point 
quadrature rule. The point q = K has now to be added to the N integration 

points, due to the smoothing procedure adopted, and the resulting set of 

N +  1 linear equations is solved by standard matrix inversion methods. In 

particular, the phase shifts gl (/7) are readily obtained by use of Eq. (11). In all 
of the  numerical work reported here, Gaussian quadrature has been em- 
ployed with the same tangent mapping as described in Section 3. The 

convergence of the discretization procedure has been tested by varying the 
number N of integration points, and in all cases N =96  was found to give 
extremely accurate results. 
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As an indication of the type of results obtained, we show in Fig. 3 

calculations for 3He-3He elastic scattering, parametrized in terms of phase 

shifts, of which we display the first seven obtained with the FDD- 1 potential. 

Each of these phase shifts tends asymptotically to zero as the relative 

momentum approaches infinity, and the fact that they do so only very slowly 

is a clear reflection of the strong short-range repulsion. It is this facet of the 

potentials that, when coupled with their large width, makes numerical 

computations with them so difficult. , The dependence of our results on the 

potential is illustrated in Fig. 4 for the S-wave phase shift for 3He-~He 

scattering. The fact that each of the phase shifts tends to.zero at zero relative 

angular momentum is related by Levinson's theorem 67 to the fact that none 

of the potentials is attractive enough to bind the (3He)2 molecule, as already 

discussed in the previous section. 

Low.-energy elastic scattering data are best parametrized in terms of the 

S-wave scattering length ao and effective range ro defined by the asymptotic 

L 

r~ 

,d' 

i I .  

0 

Relative Momentum,k [)~~] 

Fig.  3. The first seven phase shifts 6 : ( 1  = 0' 1 . . . . .  6) as a 
flmction of relative momentum k for 3He-aHe  scattering via 
the FDD-1 potential. 
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phase shifts 8o as functions of relative momentum 

k for the five interactions considered, 

expansion of the S-wave phase• shift, 

k cot 8 o ( k )  , - a o  1 +½rok2+ O(k 4) (13) 
k--*0 

Our results for these parameters (for 3He-3He scattering) with the potentials 
considered are shown in Table V. 

The  elastic scattering of 4He-4He is the s y s t e m t h a t  has been most 
studied experimentally. Most of the data to date have been obta inedfor  the 
total cross section or (k) ,  Due  to the requirement  of Bose statistics the 
differential cross section is given by* 

do- (k) 2 
" df~ = ½be(O) ÷f(~'- O) (14) 

* ~hi(!ff64) g~he: :hc~ oPr~Y ~ ~ lql ~ ~4; a~s iU~eab::o ~ff~ r e : s~  ~r °toS :~c ~ i° n::h tev~c rethTitz ee~ P y ~  dby 

wave function, and this result should be multiplied by an additional factor of two to account for 
the fact that the two particles are indistinguishable. We have adopted the definition of Eq, (14) 
to comply with the .majority, of the experimental papers in this field. 
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TABLE V 

The S-Wave 3He-3He Scattering Parameters for Various Potentials a 

Potential 
Scatteringlength a0, Effective range r0, 
z ~ k  A 

FDD-1 -9.612(3) 
MDD-2 -6.521(2) 
B -6.179(2) 
S : -2.098(1) 
MFM - i  .670( ! ) 

11.7(1) 
14.4(1) 

14.8(1) 
34.3(3) 
25.6(2) 

~The figure in parentheses is the estimated error to the last significant figure quoted. 

where the scattering amplitude f(O)=---f(O, k) is proportional to the fully 

on-shell t-matrix, 

f(O) = - (4,r)-~t(k, k'; k2); k 2 = k '2 

= (2ik) -~ ~. (2l + 1)(e iS'Ck)- 1)P~(cos 0) (15) 
1 

and where 0 =:cos-l(/~ •/~;) is the CM scattering ang le :The  total cross 

section is thus simply expressed in terms of the phase shiftS aS 

,n- 

O'r(k)'~: 2~/o  dOSinS(do-/da) 

- -  (2t ,  c 1)[i + ( -1¢]  sin 2 8l (16) 
l 

The total cross section for 4He-4He scattering obtained for each of the five 

potentials using Eq, (16) is showfi in Fig. 5 for relative momenta k ~< 4/~-1, 

which corresponds to velocities vl = 2hk/m4 of the projectile on a stationary 

target (v2 =0)  up to about 1300 m/sec. It was found to be necessary to 

include partial waves u p  to l = 18 to obtain reSults accurate to better than ½% 

in each case for k ~ 4 ~  -1. The typical oscillatory behavior of the cross 

section as a function of momentum, due to symmetrization of the wave 

function, is clearly observed. 

Corresponding differential cross sections as a function of the CM 

scattering angle 0 areshown in Fig. 6 for three different values of the relative 

momentum, chosen tO correspond approximately to the positions of the first 

three extrema of the total cross sections shown in Fig.  5--~the minima 

correspondingto cases (i) and (iii), and the maximum Corresponding to (ii). 
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Fig, 5. The total cross section o- r for 4He 'He scattering as a 
function of the relative momentum k for each of the five potentials 
considered. The scale vl = 2hk/m4 represents the corresponding 
velocity of a projectile atom on a stationary target atom, v2 = 0. 
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We have also cons idered  the so-cal led "viscosity cross sec t ion"  o-~, 

which is that  par t icular  m o m e n t  of the differential  cross sect ion def ined by 

fo o'. = 2~r dO sin 3 0 (do'/df~) (17) 

wh ich  is i n s t rumen ta l  in de t e rmin ing  the di lute  gas viscosity coefficient. 69 

Use of Eqs. (14) and (15) allows Eq. (17) to be rewr i t t en  as (for 4He-4He)  

2cry, ( l + l ) ( l + 2 ) r l + /  1~I1 
o- ,=~-~  (773--~ L ,-*, jsin2(&+2-&) (18) 
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iO 2 

iO 
I .  

b C  I 

IO-' 

i0 02 40 80 0 40  80 0 40  80 
e (degrees) 

Fig. 6. The differential cross section do-/dl~ for 4He-4He scattering as a 
function of CM scattering angle 0 at three different relative momenta  k. Cases 
(i) and (iii) are for values of k close to those that yield minima in the total cross 
section, and case (ii) is for a value of k close to the intervening maximum. The 
results are shown in each case for the FDD-1 potential (solid line) and the S 
potential (dotted line). 

The viscosity cross section for 4He calculated from Eq. (18) is shown in Fig. 

7. In both Figs. 6 and 7 we display results only for the two interactions 

FDD-1 and S. The corresponding curves for the other three potentials are 
similar and in both cases generally lie between the two curves displayed, as is 

shown in Fig. 5 for the total cross section. 

5. SUMMARY AND CONCLUSIONS 

In summary, we have carried out a series of computations for a family of 

semiphenomenological He-He  potentials, obtaining binding energies of the 

possible molecules of the isotopes of He, and low-energy scatteringproper- 
ties for the 3He-3He and 4He-4He systems. 

For the bound states, we solve a nonlinear (in energy) eigenvalue 
equation in a momentum representation, obtaining molecular binding ener- 
gies accurate to better than 10-2%. None of the potentials considered is 

sufficiently attractive to sustain a bound state in the 3He-3He system. All of 

the potentials bind the (~He)z molecule and two of the potentials (FDD-1 
and MDD-2) can form a weakly bound (4He)2 molecule. Only the S 
potential fails to bind the 4He-6He molecule (see Fig. 2 and Table IV). Our 
calculations confirm that the (4He)2  molecule is at best by about 50 mK (if at 
all). 
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Fig. 7. The viscosity cross section o- n for 4He as a function 
of the relative momenta  k for the two potentials FDD-1 

: (solid line) and S (dotted line). 

For low-energy scattering we calculate the fully off-shell k-matrix in a 

momentum representation, employing discrete quadrature techniques to 

reduce the inhomogeneous integral equation to a finite-dimensional matrix 

equation. For 3He we compute the first seven partial-wave phase shifts as a 

function of the relative momentum (see Fig. 3) and summarize the differ- 

ences in the scattering at low energies between the potentials by an effective 

range expansion. The scattering length is accurate to better than 10-1% and 

is quite sensitive to which class of potential is used. In 4He, total cross 

sections and viscosity cross sections are computed as a function of the 

relative momentum, and differential cross sections are computed at three 

relative momenta as a function of the CM scattering angle (see Figs, 5-7). 
The differences between the potentials for any of these data are small and 

probably not experimentally resolvable. 

I t  Should be emphasized that most of the uncertainty in the He-He 

potential occurs in a region about the attractive minimum, and a determina- 
tion of the binding energy of either of the molecules (4He)2 or 4He-6He 
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would go a long way in resolving this uncertainty. In principle an'experimen- 
tal determination of the 4He-6He binding energy could be extrapolated to 

find the (4He)2 binding energy (see Fig. 2). However, atomic 6He is unstable 

and therefore experiments using it are liable to prove difficult. In general the 

largest differences in the scattering data among the model potentials occur at 

low energy, and measurements of low-energy total cross sections would be 

valuable. Also, very low-temperature measurements of the dilute gas viscos- 

ity could in principle serve as an alternative method of obtaining the same 

information. This can be understood by the following simple argument. At 
low temperatures the viscosity coefficient ~/for a Bose system (4He) is given 
by 69 

-loc(2rn4___kBT~-l/2 ~ 7 2. r[2m4kBT/~ 1/2 1 
rl \ h 2 ] Io dxxexp(-x  )0",,[ I. ~ ] xj 

where o" 7 is given by Eq. (18). In the low-temperature limit only small values 

of the relative momenta x are important, and from Eq. (18) we find, 

o-~ (k )  .... > 1 6 ~ - a ~ / 3  
k-->O 

where ao is the S-wave scattering length of Eq. (13). This expression will be a 

good approximation whenever kao << 1, From the above integral expression 
it is clear that contributions to r/-1 become small for x 2 >> 7/2, which in turn 

implies 

/2rn4kBT\l/2 (2/7) 1/2 
-;~-- << 

/ ) ao 

If these conditions are satisfied, which in 4He would take place at tempera- 
tures below 300inK, then rl-lOCao 2, Thus, if even fairly rough viscosity 

measurements could be performed in this region, they could greatly help to 
distinguish the potentials used here since these show a wide variation for the 

parameter ao. 
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