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Abstract

The low-lying spectra of heavy nuclei are investigated within the quasiparticle–

phonon model. This microscopic approach goes beyond the quasiparticle

random-phase approximation by treating a Hamiltonian of separable form

in a microscopic multiphonon basis. It is therefore able to describe the

anharmonic features of collective modes as well as the multiphonon states,

whose experimental evidence is continuously growing. The method can be

put in close correspondence with the proton–neutron interacting boson model.

By associating the microscopic isoscalar and isovector quadrupole phonons

with proton–neutron symmetric and mixed-symmetry quadrupole bosons,

respectively, the microscopic states can be classified, just as in the algebraic

model, according to their phonon content and their symmetry. In addition,

these states disclose the nuclear properties which are to be ascribed to genuine

shell effects, not included in the algebraic approach. Due to its flexibility, the

method can be implemented numerically for systematic studies of spectroscopic

properties throughout entire regions of vibrational nuclei. The spectra and

multipole transition strengths so computed are in overall good agreement with

the experimental data. By exploiting the correspondence of the method with

the interacting boson model, it is possible to embed the microscopic states

into this algebraic frame and, therefore, face the study of nuclei far from shell

closures, not directly accessible to merely microscopic approaches. Here, it

is shown how this task is accomplished through systematic investigations of

magnetic dipole and, especially, electric dipole modes along paths moving from

the vibrational to the transitional regions. The method is very well suited to the

study of well-deformed nuclei. It provides reliable descriptions of low-lying
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magnetic as well as electric multipole modes of nuclei throughout the rare-

earth and actinide regions. Attention is focused here on the low-lying 0+ states

produced in large abundance in recent experiments. The analysis shows that the

quasiparticle–phonon model accounts for the occurrence of so many 0+ levels

and discloses their nature.

(Some figures may appear in colour only in the online journal)

1. Introduction

Multiphonon collective modes in nuclei were already predicted within the Bohr–Mottelson

model [1]. Their evidence, however, has grown considerably in the last two decades. At

low energy, fluorescence scattering experiments have detected low-lying double–quadrupole,

double–octupole and mixed quadrupole–octupole multiplets in nearly spherical heavy nuclei

[2–4]. At high energy, reaction experiments have established the existence of a double giant

dipole resonance (GDR) [5, 6].

The discovery of these complex spectra has stimulated several theoretical studies in

different approaches. The proton–neutron (π − ν) interacting boson model (IBM2) [7] came

out to be a precious tool for a systematic analysis of low-energy spectra throughout the

whole periodic table. The IBM2 is able to classify the states according to their symmetry and

show how the gross properties of nuclei evolve as one moves from spherical to transitional

and, eventually, well-deformed regions. Because of its phenomenological nature, however,

the IBM2 cannot unveil the fine structure of collective modes. These need to be studied in

approaches that explicitly consider the nucleonic degrees of freedom.

The particle–hole (ph) random-phase approximation (RPA) and its quasiparticle (qp)

version (QRPA) are perhaps the most widely adopted microscopic approaches to collective

motion in nuclei [8, 9]. The QRPA, for instance, not only explains the global properties

of collective modes but also accounts for the fragmentation induced by the single-particle

levels (Landau damping) [10]. It relies, however, on a harmonic approximation and, therefore,

cannot account for the collisional damping, responsible for the so-called spreading width, and

is unable to describe multiphonon spectra and their anharmonic features.

The RPA can be extended so as to include the two-particle two-hole (2p2h) states. This

extension in the small-amplitude limit is known as the second RPA (SRPA). The SRPA

equations were derived first by Sawicki [11] and later by Yannouleas et al [12, 13] using the

equations of motion method of Rowe [14]. Their solution in finite nuclei is quite problematic

and, therefore, requires more or less severe approximations.

The most drastic one is to neglect the mutual coupling among 2p2h states [15, 16] as in

recent calculation based on the unitary correlation method [17]. A more refined approximation

consists in replacing one ph pair with a correlated state (RPA phonons) thereby obtaining a

particle–phonon coupling [1, 18–21]. A further step was made in SRPA calculations using a

Skyrme force [22–24], where the interaction between 2p2h states is partly taken into account.

The relativistic RPA plus phonon coupling (PC) [25, 26] relies on equivalent

approximations. It is based on the Migdal theory, which exploits the Green function techniques

to enlarge the configuration space beyond the ph space underlying the RPA [27]. An upgraded

version, based on modern extensions of the Landau–Migdal theory [28, 29], was developed

recently [30, 31]. This new formulation, dubbed as relativistic quasiparticle time blocking

approximation, uses the quasiparticle formalism and treats consistently the quasiparticle–

phonon coupling.
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All the above approaches include up to two ph or qp phonons. Thus, they can account

for the fragmentation of the resonances but are not suited to the description of multiphonon

collective modes, especially at low energy.

An equations of motion phonon method, proposed recently [32, 33], iteratively generates

a multiphonon basis and formulates an exact eigenvalue problem within the space spanned by

such a basis. Its numerical implementation on 16O within a space covering up to three-phonon

states has pointed out the strong impact of the multiphonon states on spectra and transitions.

Most of the approaches mentioned above adopt realistic Hamiltonians and, therefore, are

not flexible enough to be used for systematic studies. They are, in fact, adopted mostly for

investigating the fine structure of giant and pygmy resonances.

The quasiparticle–phonon model (QPM) [34] is, to our knowledge, the only microscopic

extension of QRPA that is suited to the study of low-energy spectra and high-energy responses.

The QPM adopts a two-body Hamiltonian which is a sum of several separable multipole–

multipole potentials. Due to this simplifying assumption, the QPM is able to cover a very large

configuration space and to include up to three-phonon basis states.

Because of its handiness, the QPM is widely adopted for systematic microscopic studies

of low- and high-energy spectroscopic properties. We will confine our review to low-energy

spectroscopy. In vibrational nuclei, we will focus our attention on quadrupole collective modes

and, especially, on the excitations described by states of mixed symmetry (ms) with respect

to the exchange of proton–neutron pairs. These states were introduced within the IBM2. As

we shall see, the QPM multiphonon states can be put in correspondence with the multiboson

ones of the algebraic approach. This is not surprising since the IBM has to be viewed as a

phenomenological realization of a fermion–boson mapping [35]. The mapping procedure was

inspired by the boson expansion techniques developed in the 1960s [36–38]. The leading ideas

of the fermion–boson mapping also underlie the QPM.

The correlation of the QPM with the IBM came out to be very fruitful. In most cases,

the QPM provides the microscopic support to the IBM picture of some phenomena. On the

other hand, it points out the role of the shell structure which is smoothed out in the algebraic

approach. Moreover, it can be exploited to embed the RPA and QPM states within the IBM

frame and, therefore, extend the microscopic analysis of low-lying collective modes to nuclei

far away from proton and neutron shell closure, not directly accessible to the QPM. We will

adopt this method to investigate magnetic and, especially, electric dipole collective excitations.

The QPM represents a precious tool for exploring the properties of well-deformed nuclei.

It was widely adopted to investigate electric and magnetic collective excitations of several

multipolarities [34]. It contributed considerably to clarify the nature of low-lying electric

dipole modes [2].

Here, we will focus our attention on the 0+ states which were produced in large abundance

in several nuclei of the rare-earth and actinide regions [39–44].

2. A brief outline of the QPM

The QPM [34] adopts a Hamiltonian of the form

H = Hsp + Vpair + V
ph

M + V
ph

SM + V
pp

M . (1)

Hsp is a one-body Hamiltonian which includes a Woods–Saxon potential VWS, Vpair is the

monopole pairing, V
ph

M and V
ph

SM are, respectively, sums of separable multipole and spin–

multipole interactions acting in the ph channel and V
pp

M is the sum of particle–particle multipole
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potentials. The ph separable pieces have the structure

V
ph

M =
ττ ′
∑

λμ

κλ(ττ ′)M†
λμ(τ )Mλμ(τ ′), (2)

V ph
σ =

ττ ′
∑

λμ

κ
(σ )
λ (ττ ′)S†

λμ(τ )Sλμ(τ ′), (3)

where τ = π, ν. The multipole pieces are

Mλμ =
∑

qq′

〈q|Fλμ|q′〉a†
qaq′ , (4)

Sλμ =
∑

qq′

〈q|F (σ )
λμ |q′〉a†

qaq′ , (5)

where

Fλμ = R(r)Yλμ(r̂) = dVWS

dr
Yλμ(r̂), (6)

F
(σ )
λμ = R(r)[σ ⊗ Yλ−1(r̂)]λμ = dVWS

dr
[σ ⊗ Yλ−1(r̂)]λμ. (7)

The particle–particle potential acts among proton or neutron pairs only and has a similar

structure

V
pp

M (τ ) =
∑

λμ

Gλ(τ )P
†
λμ(τ )Pλμ(τ ), (8)

where

P
†
λμ =

∑

qq′

〈q|R(r)Yλμ(r̂)|q′〉a†
qa

†
q′ . (9)

The QPM procedure goes through several steps. One first transforms the ph a†
q (aq) into qp α†

q

(αq) operators by making use of the Bogoliubov canonical transformation

a†
q = uqα

†
q + vqαq̄

aq = uqαq + vqα
†
q̄,

(10)

where αq̄ and α
†
q̄ are time-reversal operators. For a spherical basis, for instance, αq̄ =

(−) j−mα j−m.

The quasiparticle separable Hamiltonian so obtained is then adopted to generate the QRPA

energies ωλ and the corresponding phonons

Q
†
λ = 1

2

∑

qq′

{

ψλ
qq′

[

α†
qα

†
q′
]

λ
− ϕλ

qq′ [αq′αq]λ̄
}

. (11)

The ψλ
qq′ and ϕλ

qq′ amplitudes fulfill the equations

1

2

∑

qq′

[

ψλ
qq′ψ

λ′

qq′ − ϕλ
qq′ϕ

λ′

qq′
]

= δλλ′ (12)

obtained from enforcing the normalization condition

〈0|Qλ′Q
†
λ|0〉 = 〈0|

[

Qλ′ , Q
†
λ

]

|0〉 ≃ δλλ′ (13)

valid in the quasiboson approximation.
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Once the QRPA phonons are generated, it is possible to express the quasiparticle separable

Hamiltonian into the phonon form

HQPM =
∑

λ

ωλQ
†
λQλ + Hvq. (14)

The first term is the unperturbed phonon Hamiltonian and Hvq is a PC piece whose exact

expression can be found in [34].

The phonon Hamiltonian is diagonalized in a space spanned by states composed of one,

two and three QRPA phonons yielding the eigenfunctions

νJM =
∑

i

R
(νJ)
i Q

†
iJM|0〉 +

∑

λ1λ2

P
(νJ)
λ1λ2

[

Q
†
λ1

⊗ Q
†
λ2

]

JM
|0〉

+
λ3I
∑

λ1λ2

T
(νJ)
λ1λ2λ3I

[[

Q
†
λ1

⊗ Q
†
λ2

]

I
⊗ Q

†
λ3

]

JM
|0〉, (15)

where i and ν label, respectively, the QRPA phonons and the QPM states of a given spin JM.

The above wavefunctions are properly normalized and antisymmetrized according to the

procedure outlined in [34, 45]. Use is made of the exact commutation relations [34, 46–48]

[

Qλ, Q
†
λ′
]

= 1

2
δλλ′

∑

qq′

[

ψλ
qq′ψ

λ
qq′ − ϕλ

qq′ϕ
λ
qq′

]

−
∑

qq′

C
λλ′

qq′ α
†
qαq′ , (16)

where

C
λλ′

qq′ =
∑

q1

ψλ
q′q1

ψλ′

qq1
Cλ

q′q1
Cλ′

qq1
− ϕλ

qq1
ϕλ′

q′q1
Cλ̄

qq1
Cλ̄′

q′q1
.

While the first term corresponds to the boson approximation, the second one takes into

account the internal fermion structure of phonons and insures the antisymmetrization of the

multiphonon wavefunction (15). Such a term considerably affects the structure of the excited

states in many spherical even–even nuclei [46–49].

Each one-body transition operator

M(Xλ) =
∑

qq′

〈q|M(Xλ)|q′〉a†
qaq′ , (17)

expressed in terms of quasiparticle and phonon operators, splits into two pieces [48]

M(Xλ) = Mph(Xλ) + Msc(Xλ). (18)

The first term is given by

Mph(Xλμ) = 1

2λ̂

∑

qq′

〈q‖M(Xλ)‖q′〉(uqvq′ ± vquq′ )
(

ψλ
qq′ + ϕλ

qq′
)(

Q
†
λ + Qλ̄

)

, (19)

where λ̂ =
√

2λ + 1 and the + (−) sign holds for time even (odd) operators. Being linear in

the QRPA phonon operators Qλ and Q
†
λ, it connects states differing by one phonon. This is the

leading term and promotes the boson-allowed transitions.

The second piece is a quasiparticle scattering term and is given by

Msc(Xλ) = 1

λ̂

∑

qq′

〈q‖M(Xλ)‖q′〉(uquq′ ∓ uquq′ )[α†
q × αq′ ]λ, (20)

where the − (+) sign holds for time even (odd) operators. It links states with the same number

of phonons, or differing by two phonons, and promotes the boson-forbidden transitions.

The first term is dominant in transitions between ground and one-phonon states. The

second is responsible for the transitions between one-phonon states, which would be forbidden

otherwise.
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Table 1. Parameters of the Woods–Saxon potential in two typical nuclear regions.

Nucleus r0 (fm) V0 (MeV) κ(fm2) α(fm−1)

136Ba N 1.28 43.40 0.413 1.613
Z 1.31 53.43 0.349 1.538

94Mo N 1.29 44.70 0.413 1.613
Z 1.24 56.86 0.338 1.587

One of the problems to be faced in the QPM is the determination of the Hamiltonian

parameters. The Woods–Saxon parameters appropriate for the two regions around N = 50 and

N = 82 are shown in table 1. They were determined in [50, 51] and yield single-particle spectra

in overall agreement with the data [52]. The single-particle space includes all shells below the

Fermi energy and all bound states above, so as to allow the investigation of the properties of

the excited states over a wide energy range. A constant monopole pairing potential is used.

Its value is obtained by a fit of odd–even mass differences. The coupling strength parameters

κ2 and κ3 of the quadrupole–quadrupole and octupole–octupole ph potential are fixed by a

fit to the energies of the first 2+ and 3− states. The strengths κλ of the other multipole terms

are adjusted so as to leave unchanged the energy of the computed lowest two-quasiparticle

states [52].

The multipole pairing interaction has been the object of thorough investigations since

the first study of Belyaev [53]. It was shown [53, 54] to be necessary to restore the Galilean

invariance. This request fixes the strength of the quadrupole pairing [54].

The quadrupole pairing turned out to be the only particle–particle potential relevant to

low-energy spectra. It is assumed to be equal for protons and neutrons, G2 = G2(ν) = G2(π )

(G2(νπ ) = 0). As we shall see, the quadrupole pairing plays a crucial role in determining the

properties of the low-energy quadrupole modes.

The parameters in different mass regions were determined by procedures discussed in

[46–49]. A unique set of parameters is used throughout the nuclei of a given mass region to

calculate the low-lying as well as high-lying spectra.

Another problem is connected with the quasiparticle formalism and the quasiboson

approximation underlying the QRPA. The Bogoliubov transformation (10) only conserves

the particle number on average. The violation of the particle number is small. For example,

in 136Ba the violation of the neutron number is 6.5% of the valence neutrons and 2.5% of the

total number of neutrons.

The validity of the quasiboson approximation can be tested by analyzing the influence

of the ground-state correlations on the excited states within the RPA [8, 55–59] and QPM

[60]. The effect is small for nuclei around closed shells, where the collectivity of the low-

lying vibrational states is not too strong. In fact, the backward amplitudes ϕλ
qq′ entering the

corresponding RPA phonons (11) are small. They are quenched by the strong quadrupole–

pairing interaction. In the case of 136Ba, only few components of the
[

2+
is

]

RPA
have appreciable

backward amplitudes.

In order to quantify the effect of the ground-state correlations, we have computed the

ratio
(

ϕλ
qq′

)2/(

ψλ
qq′

)2
. This turned out to be

(

ϕλ
qq′

)2/(

ψλ
qq′

)2 ∼ 0.06, at most, for the neutron

components and
(

ϕλ
qq′

)2/(

ψ iλ
qq′

)2 ∼ 0.03 for protons.

The backward amplitudes of the isovector
[

2+
iv

]

RPA
are much smaller. We can then conclude

that the contribution of the terms including backward amplitudes ϕλ
qq′ can be neglected except

when ϕλ
qq′ is the leading term. This is the case of the direct excitation of the two-phonon states

from the ground state [46–49].
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Finally, we have to select the phonons to be included in the multiphonon basis used

for diagonalizing the Hamiltonian (1). The choice of the phonon basis is dictated by the

properties of the states to be determined. For low-lying positive parity QPM states, we include

only phonons of positive parity. We consider phonons of multipolarities λ = 1–6 and, for

each λ, we include all phonons up to a given energy. Since the QPM Hamiltonian mixes the

multiphonon components differing by one phonon, the fragmentation of the two-phonon states

is sensitive to the number of one- and three-phonon configurations. In the present calculation

the one-phonon space was spanned by several RPA states of energy up to 5 MeV. Only in the

case of 1+ states, the one-phonon space was extended to an energy which includes the M1

resonance.

The structure of the QPM states changes as we increase the number of two-phonon basis

states until this number reaches a saturation value. Increasing the number of two-phonon

states further will not affect any longer the structure of the wavefunction (15). The onset

of this plateau determines the dimensions of the multiphonon space to be used in actual

calculations.

3. Symmetric and mixed-symmetry states in the IBM2

In the IBM2 the low-lying states are classified according to the number of their constituent

s (L = 0) and d (L = 2) bosons and their symmetry with respect to the exchange of

proton versus neutron bosons. The symmetry is determined by the F-spin quantum number

[61], the boson counterpart of isospin. Proton and neutron bosons form an F-spin doublet

with F3 = 1/2 for protons and F3 = −1/2 for neutrons. States with maximum F-spin,

F = Fmax, are completely symmetric with respect to π − ν exchange. The other states with

F < Fmax have mixed symmetry. Only ms states with F = Fmax − 1 have been observed

so far.

A clear picture of the structure of the IBM2 states is gained in the so-called Q-phonon

scheme [62–64]. Such a scheme yields simple expressions containing only one or two Q-

phonon configurations capable of describing the yrast, second 2+ and second 0+ states. It also

yields different relations between transition matrix elements.

In the Q-phonon formalism, the states are given by the schematic formulas
∣

∣2+
s

〉

∝ Qs

∣

∣0+
1

〉

, (21)

|2+
ms〉 ∝ Qms|0+

1 〉, (22)

|J+
s 〉 ∝ [Qs × Qs]

J|0+
1 〉, (23)

|J+
ms〉 ∝ [Qms × Qs]

J|0+
1 〉, (24)

where |0+
1 〉 is a correlated ground state and

Qs = Qπ + Qν, Qms = Qπ − Qν (25)

are, respectively, the π − ν symmetric (F-scalar) and antisymmetric (F-vector) components

of the boson quadrupole operator.

The IBM E2 operator is composed of a sum of F-scalar and F-vector components

T (E2) = eπQπ + eνQν = esQs + emsQms, (26)

where Qs and Qms are given by (25) and the charges are es = (eπ +eν )/2 and ems = (eπ −eν )/2.

The M1 operator has a similar structure

T (M1) = gπLπ + gνLν = gsLs + gmsLms, (27)

7
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0

2 s n 1

2 s n 2

2 ms n 1

2 ms n 2

E2

E2

E 2

M1

M1

Figure 1. Signature of symmetric and mixed-symmetry states.

where

Ls = Lπ + Lν, Lms = Lπ − Lν . (28)

The corresponding gyromagnetic ratios are gs = (gπ + gν )/2 and gms = (gπ − gν )/2.

Both components of the E2 operator couple states that differ by one d boson. On the

other hand, the F-scalar E2 operator connects states of the same π − ν symmetry, while the

F-vector component couples ms to symmetric states differing by one d boson.

The F-scalar M1 operator, being proportional to the total angular momentum, does not

promote any transition. The F-vector component, instead, connects ms with symmetric states,

both having the same number of d bosons. Its main action, in fact, is to transform an F-scalar

into an F-vector quadrupole boson

Lms|2+
s 〉 = LmsQs|0+

1 〉 = (Lπ − Lν )(Qπ + Qν )|0+
1 〉

= (LπQπ − LνQν )|0+
1 〉 ∝ (Qπ − Qν )|0+

1 〉. (29)

This formula points out that the one-phonon ms state describes a π −ν scissors-like oscillation

mode built on an excited quadrupole vibrational mode.

It is also clear from the above description that the E2 and M1 transition strengths provide

the signature of the low-lying states in vibrational nuclei, as illustrated schematically in

figure 1.

It is possible to state a correspondence of the IBM with the QPM states. The d bosons

correspond to the quadrupole QRPA phonons Q
†
λ=2. This is not surprising. In fact, the IBM

states result from a boson mapping of highly correlated fermion pairs. Correspondingly, the

RPA phonons are composed of correlated quasiparticle pairs. The isospin nature of the QRPA

phonons can be deduced from the phase relations between the proton and neutron quasiparticle

pair components. More quantitative, it can be determined by computing the ratio [65]

RQ(2+) = |〈2+
RPA|Qiv|0+

RPA〉|2
|〈2+

RPA|Qis|0+
RPA〉|2 , (30)

where

Qis = Q(p) + Q(n), Qiv = Q(p) − Q(n) (31)

8
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are the isoscalar and isovector fermion quadrupole operators expressed in terms of the proton

and neutron operators

Q(τ )
μ =

τ
∑

i

r2
i Y2μ(r̂i). (32)

The
∣

∣2+
RPA

〉

state can be considered isoscalar or isovector according that RQ(2+) < 1 or

RQ(2+) > 1, respectively.

4. Low-lying collective modes: experimental evidence and theoretical description

The most prominent low-lying collective modes have an isoscalar or symmetric character.

The lowest 2+
1 , for instance, which describes a quadrupole surface vibration of protons and

neutrons in phase, is present in all spherical or weakly deformed nuclei and carries a large E2

strength. The corresponding isoscalar quadrupole modes in deformed nuclei are known as β

and γ vibrational states.

The mixed-symmetry states eluded experimental observation for long time. The first

collective excitation of this nature was observed in deformed nuclei and is known as

scissors mode. This was predicted in a geometrical model [66] and discovered by Richter

and co-workers in an (e, e′) experiment [67]. It is a Jπ = 1+ mode at an excitation of

about 3 MeV and is strongly excited from the ground state with a large M1 strength. Its

discovery has triggered a long series of experimental and theoretical investigations that have

ascertained its existence in most deformed nuclei. These systematic studies have also provided

a complete characterization of the mode. Its many facets were discussed in several review

papers [2, 68–70].

The lowest ms state in spherical and weakly deformed nuclei has Jπ = 2+ and, therefore,

cannot be excited directly from the ground state through an M1 transition, hence the difficulty

of detecting such a mode. Its first evidence was inferred from the analysis of the E2/M1

mixing and branching ratios in N = 84 isotones [71]. Several subsequent works have guessed

the mixed-symmetry character of low-spin states in vibrational and transitional nuclei on the

ground of similar arguments [72–76] or by exploiting the sensitivity of the probe to isospin

[77–80]. A more reliable assessment of the mixed-symmetry nature of 2+ states could be made

after the measurements of absolute electromagnetic decay strengths [81–89].

A conclusive evidence was provided by an experiment on 94Mo exploiting β-decay as a

populating mechanism [90]. This and other subsequent experiments using different techniques

[91–93] have produced an impressive body of data which greatly enriched our knowledge about

the low-energy spectrum of this nucleus.

Since then, a series of experiments has systematically discovered and studied low-energy

modes in several other nuclei in the proximity of N = 50 [94–101] and N = 82 [102–110].

In all the above experiments, the analysis of the data was carried out within the framework

of the IBM2. This, indeed, is a natural tool for classifying the states according to the π − ν

symmetry and the number of constituent bosons. IBM2 is also ideal for systematics throughout

the periodic table.

These experimental discoveries have also triggered several microscopic studies. Some of

them were carried out in a restricted shell model space [96, 97, 100]. More recently, large-

scale shell model calculations using realistic two-body potentials were performed to study

the structure of ms states in N = 80 isotones [111–113]. Shell model calculations are exact

in principle and include a large number of configurations. These, however, are all low-lying

0 − �ω configurations. High-energy configurations are included in the QPM. Because of

its flexibility, the QPM lends itself to systematic studies of low-energy spectra. In fact, this

9



J. Phys. G: Nucl. Part. Phys. 39 (2012) 043101 Topical Review

Table 2. QRPA isoscalar to isovector E2 ratio and transition strengths versus the ratio G2/κ2 in
136Ba (taken from [45]).

G2/κ2 RQ(2+) B(E2; g.s. → 2+
iv )RPA B(M1; 2+

iv → 2+
is )RPA

[e2b2] [μ2
N]

0 0.58 0.0032 0.042
0.85 22.6 0.011 0.24

Table 3. Quasiparticle composition of the lowest 2+ RPA phonons in 136Ba and the corresponding

E2 strength and isovector to isoscalar RQ(2+) ratios (taken from [45]).

ω B(E2) ↑
(MeV) Structure [e2b2] RQ(2+)

2+
is 0.95 0.76(1h11/2)

2
n + 0.72(2g7/2)

2
p 0.51 0.0034

0.24(3s1/22d3/2)n + 0.43(2d5/2)
2
p

0.31(2d3/2)
2
n + 0.23(1g7/22d3/2)p

2+
iv 2.009 0.85(1h11/2)

2
n − 0.98(1g7/2)

2
p 0.011 22.6

0.37(2d3/2)
2
n − 0.17(2d5/2)

2
p

0.22(3s1/22d3/2)n − 0.1(1h11/2)
2
p

approach has allowed systematic theoretical studies of ms states in nuclei around N = 50 [45,

114–116] and near N = 82 [117, 118] to be performed.

4.1. QRPA quadrupole states

The occurrence of an isovector QRPA 2+ state at low energy is the preliminary condition

for obtaining the QPM counterparts of the IBM ms states. In QRPA, the π − ν symmetry of

the low-lying 2+ states is tested by computing the ratio RQ(2+) defined by (30). This ratio

shows that, in all nuclei, the first [2+]RPA state is an isoscalar, or π − ν symmetric, mode.

It will be denoted by
[

2+
is

]

RPA
. Its properties are determined almost solely by the isoscalar

quadrupole–quadrupole interaction.

The occurrence of an isovector low-lying [2+]RPA state depends critically on the

competition between quadrupole–quadrupole and quadrupole–pairing forces. The example

of 136Ba shown in table 2 is illustrative of all nuclei. The dramatic increase of the RQ(2+)

ratio with G2/κ2 indicates clearly that the second [2+]RPA changes from isoscalar to

isovector.

Thus, in order to have a low-lying mixed-symmetry 2+ state, it is necessary to

choose comparable quadrupole–pairing and quadrupole–quadrupole strengths, G2 ∼ κ2.

We will denote this RPA state as
[

2+
iv

]

RPA
. Its collectivity increases as G2/κ2 increases.

Indeed, both B
(

E2; 0+
gs →

[

2+
iv

]

RPA
) and B

(

M1;
[

2+
iv

]

RPA
→

[

2+
is

]

RPA

)

strengths grow with

G2/κ2.

The isospin nature of the [2+]RPA states can be tested also by looking at the phase relations

between the neutron and proton components of the RPA phonons (11). As shown in table 3

for 136Ba, the proton and neutron forward amplitudes ψ are in phase in the
[

2+
is

]

RPA
and in

opposition of phase in the
[

2+
iv

]

RPA
. For an appropriate value of the ratio G2/κ2 (=0.8–0.9),

which is close to the estimations made in [54], the RPA basis contains a collective isoscalar
[

2+
is

]

RPA
and a slightly collective isovector

[

2+
iv

]

RPA
state. The two states are mutually coupled

via a strong M1 transition.

10
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Table 4. Energy and phonon structure of selected low-lying excited states in 94Mo and 136Ba.

Symmetric and non-symmetric states are denoted by |s〉 and |ms〉, respectively. The data are taken

from [45].

AX J π E (MeV) Structure,%

EXP QPM

94Mo 2+
1 0.871 0.860 93%[2+

is ]RPA

|s〉 2+
2 1.864 1.750 82%[2+

is ⊗ 2+
is ]RPA

4+
1 1.573 1.733 82%[2+

is ⊗ 2+
is ]RPA

2+
3 2.067 1.940 95%[2+

iv]RPA

2+
4 2.393 2.730 27%[2+

is ⊗ 2+
iv]RPA

|ms〉 2+
5 2.870 3.014 59%[2+

is ⊗ 2+
iv]RPA

3+
2 2.965 2.940 87%[2+

is ⊗ 2+
iv]RPA

1+
2 3.129 2.880 90%[2+

is ⊗ 2+
iv]RPA

|spin − flip〉 1+
3 3.512 3.550 40%[1+]RPA

136Ba 2+
1 0.810 0.760 77%[2+

is ]RPA + 19%[2+
is ⊗ 2+

is ]RPA

|s〉 2+
2 1.551 1.640 48%[2+

is ⊗ 2+
is ]RPA + 17%[2+

is ]RPA

4+
1 1.866 1.630 60%[2+

1 ⊗ 2+
1 ]RPA

2+
4 2.129 1.850 73%[2+

iv]RPA

1+
2 2.694 2.800 85%[2+

is ⊗ 2+
iv]RPA

|ms〉 2+
5 3.120 51%[2+

is ⊗ 2+
iv]RPA

4+
2 3.230 41%[2+

is ⊗ 2+
iv]RPA

3+
2 3.040 90%[2+

is ⊗ 2+
iv]RPA

|noncoll〉 2+
3 2.080 2.370 ∼ |q1q2〉

4.2. QPM multiphonon states and transitions

Once at least one isoscalar and one isovector QRPA quadrupole excitation mode have been

ascertained to occur at low energy, it is possible to face the final task, namely to generate

within the QPM the microscopic states and investigate their π − ν symmetry and phonon

composition.

As shown in table 4, most of the QPM states in 94Mo have a dominant component which

exhausts 60% –90% of the norm of the total wavefunction. The table also shows that in
136Ba most of the states are fragmented. In fact, several one- and two-phonon components get

admixed. Analogous structure is observed for the states of the other nuclei in the vicinity of

N = 82.

Going into the details, we observe that the lowest isoscalar and isovector 2+ states have a

dominant one-phonon component. The others are mainly two-phonon states with a dominant

symmetric
[

2+
is ⊗ 2+

is

]

RPA
or mixed-symmetry

[

2+
is ⊗ 2+

iv

]

RPA
component. There are also non-

collective states which do not fall in either of the two groups. The 2+
3 shown in table 4 is an

example.

The phonon structure of the states combined with the isospin properties of the phonons

leads to well-defined E2 and M1 selection rules. As shown in table 5, only the E2 transitions

among states differing by one phonon are strong. They are promoted by the phonon–exchange

term (19) of the transition operator. The E2 operator promotes mainly transitions between

states of the same π − ν symmetry. Especially enhanced are the E2 transitions between π − ν

symmetric states. Weak E2 transitions occur between symmetric and ms states, only if they

differ by an even number of phonons. They are promoted by the scattering term (20).

A reverse pattern holds for the M1 transitions (table 6). These occur only between states

with an equal number of phonons or differing by two phonons, like in the 1+
2 → 0+

1 transition.

11
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Figure 2. B(E2; 0+
1 → 2+

k
) and B(M1; 2+

k
→ 2+

1 ) strength distributions in 94Mo.

Table 5. B(E2)(e2b2) strengths in 94Mo. �nph gives the difference in the number of phonons

between initial and final states. The theoretical values are from [45]. The experimental data are

taken from [90, 91, 93].

�nph Ji → J f Exp QPM IBM2

|s〉 → |s〉 1 0+
1 → 2+

1 0.2030(40) 0.1978 0.2333
1 2+

2 → 2+
1 0.0720(260) 0.0673 0.0592

IS 1 4+
1 → 2+

1 0.0670(100) 0.0661 0.0592
2 0+

1 → 2+
2 0.0032(7) 0.035 0

|ms〉 → |ms〉 1 1+
2 → 2+

3 <0.0690 0.0374 0.0556

1 0+
1 → 2+

3 0.0230(30) 0.0150 0.0151
1 1+

2 → 2+
1 0.0030(10) 0.0013 0.0049

IV 2 0+
1 → 2+

4 0.0027(8) 0.018 0
2 0+

1 → 2+
5 0.0083(10) 0.010 0

Table 6. B(M1)(μ2) strengths in 94Mo. The theoretical values are from [45]. The experimental

data are taken from [90, 91, 93].

�nph Ji → J f Exp QPM IBM2

0 2+
3 → 2+

1 0.56(5) 0.72 0.30
0 2+

5 → 2+
2 0.27(3) 0.24 0.1

0 1+
2 → 2+

2 0.44(3) 0.75 36
0 3+

2 → 2+
2 0.24(3) 0.34 0.18

0 3+
2 → 4+

1 0.075(10) 0.26 0.18

2 1+
2 → 0+

1 0.160+0.011
−0.010 0.14 0.16

1 2+
5 → 2+

1 0.0017+0.0010
−0.0012 0.001 0

1 1+
2 → 2+

1 0.012(3) 0.0006 0

The transitions between ms and symmetric states are enhanced while those linking states of

the same π − ν symmetry are suppressed.

The transition pattern determined by the selection rules is pictorially illustrated in

figures 2 and 3. The π − ν symmetric, mainly one-phonon, 2+
1 state collects by far the

largest E2 strength (left panel of figure 2), while the M1 strength goes mostly to the ms

one-phonon 2+
3 state (right panel of figure 2).
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Figure 3. E2 and M1 strength distributions in 94Mo.

The same rule applies to the multiphonon states. The E2 strength goes almost entirely to

the symmetric, dominantly two-phonon, 2+
2 and 4+

1 states decaying to the one-phonon 2+
1 of

the same symmetry (left panel of figure 3).

The M1 strength goes mostly to the dominant two-phonon 1+
2 , 2+

5 and 3+
2 ms states

decaying to the π − ν symmetric two-phonon 2+
2 (right panel of figure 3). The 1+

2 , 2+
5 and 3+

2

states may be viewed as the components of a scissors multiplet built on the 2+
2 state. Such a

multiplet collects an M1 strength of the order
∑

n Bn(M1) ∼ 0.9–1μ2
N .

Although differing in the details, the QPM energies and strengths are in overall good

agreement with the experimental data. They are consistent with the IBM picture. The transitions

allowed in the IBM2 are strong in the QPM. Those forbidden in IBM2 are weak in the QPM.

This correspondence is almost one to one, with few exceptions.

In 94Mo, for instance, the measured 1+
2 → 0+

1 and 1+
3 → 0+

1 M1 strengths are both

reproduced by the QPM calculation. The 1+
2 and 1+

3 states, however, have a totally different

structure. As shown in table 4, 1+
2 is basically a two-phonon ms state, consistently with the

IBM picture. In this algebraic approach the M1 transition of this ms state to the ground state

is forbidden in the U (5) spherical vibrational limit and is allowed only in the O(6) limit. In

the QPM the 1+
2 → 0+

1 transition is boson forbidden and is promoted by the scattering term

of the M1 operator (20).

The other 1+
3 state, instead, has a composite structure and contains a sizable [1+]RPA

with the dominant spin–flip quasiparticle configuration (2p3/2 ⊗ 2p1/2). This component is

responsible for the transition to the ground state. Such a transition is out of the domain of the

algebraic IBM.

The role of the shell structure also emerges from a series of experiments in some N = 80

[104] and N = 84 [85, 88] isotones, where the E2 (figures 4 and 5) and M1 (figure 6) strengths

are distributed over few 2+ states. Especially fragmented is the strength of the M1 transitions

in the N = 84 isotones (figure 6). In these isotones, the isovector RPA 2+ state is almost

degenerate with the symmetric quadrupole–quadrupole two-phonon states as a result of the

gap between the j-subshells present in the neutron single-particle spectrum above the N = 82

closed shell. The PC is, therefore, especially effective.

The gap between j-subshells is absent in the neutron hole spectra of the N = 80 isotones,

hence the lack of splitting in nuclei like 136Ba [89] (figure 6). An appreciable fragmentation

is present in 138Ce, nonetheless. In this nucleus, the mechanism responsible for such a

phenomenon is a different one. It is promoted by the gap in correspondence of the proton

13
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Figure 4. Distribution of the 2+
i → 0+

1 (left) and 2+
i → 2+

1 (right) E2 strengths in 142Ce (bottom)

and 144Nd (top) (from [118]).

Figure 5. Distribution of the 2+
i → 0+

1 (left) and 2+
i → 2+

1 (right) E2 strengths in 138Ce (bottom)

and 134Xe (top) (from [117]).

1g7/2 subshell closure and the pairing responsible for the diffuseness of the Fermi surface

which yields a relatively higher density of two-quasiparticle states at low energy. This leads to

a higher number of low-lying states of mixed-symmetry character, hence the splitting of the

M1 strength. Though different, both mixing mechanisms are genuine shell effects that can be

explained only within a microscopic context which goes beyond the algebraic IBM and, even,

the approaches like the QRPA based on the harmonic approximation.

4.3. Probing the mixed-symmetry states through electron and proton scattering

Scattering experiments using probes sensitive to isospin give information complementary to

γ -ray spectroscopy. Early experiments of this kind consisted in combining inelastic proton

and deuteron scattering [77–80]. The F-spin content could be related to changes in the cross-

sectional ratio σ (p, p′)/σ (d, d′).
A thorough test of the symmetry character and the phonon content of low-lying states

was provided recently by a combined analysis of (e, e′) and (p, p′) experiments on 94Mo

[119, 120] and 92Zr [120, 121], in which all low-lying 2+ states get populated. The different
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Figure 6. M1 strength distributions in N = 84 (left) and N = 80 (right) isotones, taken from [118]

and [117], respectively.

sensitivity of the two probes to isospin allowed to establish the π − ν symmetry of each 2+.

In fact, electrons couple only to protons, while proton scattering is dominated by the isoscalar

central part of the effective proton–nucleus interaction.

Let us consider the proton and neutron transition densities of the 2+
s and 2+

ms states in 92Zr.

The wavefunctions of these states are

|2+
s 〉 = + 0.85|(2d5/2)

2〉n + 0.36|(1g9/2)
2〉p + . . .

|2+
ms〉 = − 0.54|(2d5/2)

2〉n + 0.57|(1g9/2)
2〉p + . . . , (33)

where the dotted lines (. . .) stand for the remaining components contributing to the transitions.

The phase relations confirm the isovector character of the second state.

The neutron (left-hand side) and proton (right-hand side) transition densities of the

symmetric (top) and mixed-symmetry (bottom) 2+ states just described are plotted in figure 7.

An out-of-phase coupling between the neutron valence–shell contribution and the

contribution from the collective piece in the 2+
ms state leads to a destructive quantum interference

that reduces the neutron transition density at large radii (due to the larger radius of the (2d5/2)
2
n

orbital) and consequently shifts the maximum of the full neutron transition density to the

interior with respect to that one of the 2+
s state, as indicated by the arrows in the left-hand

side of figure 7. This effect reduces the neutron transition radius of the 2+
ms with respect to the

2+
s . In contrast, the proton transition radius remains essentially unchanged since the (1g9/2)

2
p

components have the same sign in both states and, therefore, contribute constructively to the

transition.

As already pointed out, two probes with different sensitivity to protons and neutrons

are needed to study this quantum interference experimentally. Electron scattering at low

momentum transfer provides a measure of the charge transition radius. Data covering a

momentum-transfer range q ≃ 0.3–0.6 fm−1 [120, 121] were obtained from an (e, e′)
scattering experiment performed at the Darmstadt superconducting electron linear accelerator

(S-DALINAC). They indicate no difference between the charge transition radii of the the 2+
s

and 2+
ms states within experimental uncertainties (figure 7, top).
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Figure 7. QPM neutron (left-hand side) and proton (right-hand side) transition densities of the

2+
s (top) and 2+

ms (bottom) states in 92Zr (taken from [120]). The full transition densities (solid

lines) are decomposed in parts stemming from the main two-quasiparticle configurations (dashed

lines) and from all other configurations (dotted lines). The arrows indicate the maxima of the

corresponding full transition densities.

Information about the neutron transition radii can be derived from the proton scattering

data [122]. At an incident energy of 800 MeV, the protons interact predominantly via the

isoscalar central piece of the effective projectile–nucleus interaction [123]. Clearly, the

refraction patterns of the (p, p′) cross section for the 2+
ms state are shifted to higher q values

as compared to those of the 2+
s state (figure 7, bottom) corresponding to a smaller transition

radius. The combination of both data sets unambiguously demonstrates that the phase of the

neutron valence–shell configurations changes its sign between the 2+
s and 2+

ms states.

The transition densities from figure 7 were used to evaluate the cross sections in distorted

wave Born approximation with the codes DWBA07 [124] for proton scattering and the one

described in [125] for electron scattering. The T-matrix parametrization of Franey and Love

[123] was used to describe the effective proton–nucleus interaction. The QPM calculation

reproduces well both the absolute values of cross sections for both probes and the shift of the

refraction pattern to higher q values for the 2+
ms state in the (p, p′) reaction as displayed in

figure 8. The same effect is detected in 94Mo [119, 120].

4.4. Mixed-symmetry states away from shell closure

The above analysis was limited to nearly spherical nuclei. It is, on the other hand, of great

interest to study the evolution of ms states along a path which goes from vibrational to

deformed nuclei and see, for instance, if they disappear at some critical point when permanent

deformation sets in and the scissors mode appears.

Xe isotopes offer an almost unique opportunity to carry out such a study. A series of

experiments has provided a large abundance of data on the isotopic chain 124−134Xe [87, 102,

107–110, 126].

The evolution of these states from the vibrational regime to deformation was studied

within the algebraic IBM. Shell model approaches could just face the study of the isotopes in

the proximity of the neutron shell closure [113].

The QPM is not suited to such a study. Being based on the quasiboson approximation, the

QPM relies on the assumption that the ground-state correlations are not very pronounced. This

is not the case of the nuclei in which both protons and neutrons are away from shell closures.

On the other hand, the correspondence between QPM and IBM suggests a way of

disclosing, partly, the microscopic structure of low-lying states even in nuclei of the transitional

region. This way consists in mapping the RPA phonon operators into the IBM bosons [127].
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Figure 8. Momentum-transfer dependence of the experimental and QPM cross sections of the 2+
s

and 2+
ms in electron (top) and proton (bottom) scattering (taken from [120]).

We consider the Hamiltonian

H = Hms + Hcoll. (34)

Here, Hms is the mixed-symmetry Hamiltonian, assumed to be harmonic in the RPA phonon

operators (bms, b†
ms)

Hms = ǫmsb
†
ms · bms, (35)

where ǫms is the energy of the RPA phonons. The other term is obtained by the mapping of

the RPA phonons into IBM bosons. Let us consider the quasiparticle quadrupole–quadrupole

Hamiltonian

H =
∑

s

ǫsα
†αs − κQ† · Q. (36)

We express the quadrupole operator in terms of the RPA isoscalar quadrupole phonon operators

(b†, b). Keeping only the most collective phonons, we obtain

Hcoll = ω1

[

5

2
+ b† · b

]

+ ω2[b† · b† + h.c], (37)

where

ω1 =
∑

rs

ǫrs

[(

ψ (1)
rs

)2 +
(

ϕ(1)
rs

)2] − 1√
5
κ

[

∑

rs

Q(qp)
rs

(

ψ (1)
rs + ϕ(1)

rs

)

]2

(38)

ω2 =
∑

rs

(ǫrs)
(

ψ (1)
rs

)

ϕ(1)
rs − 1

2
√

5
κ

[

∑

rs

Q(qp)
rs

(

ψ (1)
rs + ϕ(1)

rs

)

]2

. (39)

We have put ǫrs = (ǫr + ǫs)/2 and Q
(qp)
rs = Qrs(urvs + usvr).
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Figure 9. Trend of M1 reduced strengths and M1 ratios in the chain of Xe isotopes. The data are

taken from [127].

The Hamiltonian (37) can be turned into an IBM Hamiltonian by replacing the RPA

phonons with the IBM d bosons (b → d) and introducing the s boson so that the number of

bosons is conserved. After adding the ms piece (35), we obtain

Hcoll = ǫmsb
†
ms · bms + ω1

[

5

2
+ d† · d

]

+ ω2

1

N(N − 1)
[b† · b†ss + h.c.]. (40)

We have now an IBM Hamiltonian whose parameters can be computed microscopically. A

similar mapping procedure is applied to the scissors component of the M1 shell model operator

M(M1) = g(Jπ − Jν ). (41)

This is also expressed in terms of ms RPA phonons and IBM bosons. Thus, one may use states

having the IBM structure to compute the M1 transitions amplitudes. Figure 9 shows the results

for the ratios

R1(M1) = B(M1, 1+
ms → 2+

2 )

B(M1; 1+
ms → 0+

1 )
,

R2(M1) = B(M1, 2+
ms → 2+

1 )

B(M1; 1+
ms → 0+

1 )
, (42)

R3(M1) = B(M1, 2+
ms → 2+

1 )

B(M1; 1+
ms → 2+

2 )
.

A good agreement between theory and experiments is obtained for the ratio R1(M1). On

the other hand, theory and experiments diverge in the estimates of R2(M1) and, especially,

of R3(M1). This divergence originates from the strong discrepancy between computed and
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measured strengths of the 2+
ms → 2+

1 M1 transition. As shown in figure 9, the behavior of the

theoretical B(M1; 2+
ms → 2+

1 ) versus the mass number is just opposite to what is indicated by

experiments, suggesting that the description of the one-phonon ms 2+
ms is to be improved. The

whole procedure should be reexamined in order to check if important ingredients are missing

in the mapping process or to find the way of incorporating anharmonic features in the ms

states.

5. Low-lying negative parity dipole excitations

It is a well-known fact that almost the total E1 strength is concentrated into the GDR lying

at high energy, above 1�ω. Relatively strong E1 transitions were nonetheless observed near

the particle threshold in spherical nuclei and attributed to the so-called E1 pygmy dipole

resonance (PDR) [128–136]. These excitations are properly described within approaches

which go beyond the harmonic approximation. In fact, they were investigated within relativistic

extensions of the RPA [30, 31] as well as within the QPM [137, 138].

At even lower energy, strong E1 transitions were detected in nuclear resonance

fluorescence (NRF) experiments on spherical even–even nuclei near shell closures. The

strength of these transitions is ∼ 10−3 W.u., orders of magnitude larger than the strengths

normally measured in this energy region, which range from 10−5 to 10−6 W.u.. For a review

and references, see [2, 3].

These low-lying 1− states do not originate from the ph excitations building up the

GDR. The experimental analysis [2, 139–147] has established that they have a more complex

structure.

They are mainly characterized by the two-phonon component |(2+
1 ⊗ 3−

1 )1−〉 arising from

the coupling between the collective quadrupole |2+
1 〉 and octupole |3−

1 〉 modes. In fact, in all

cases, the excitation energies of these 1− states roughly equal the sum of the energies of the

two mentioned modes. Moreover, the 1− → 0+
1 E1 strengths reach their maximum values in

nuclei with a closed proton or neutron shell and drop off sharply when moving away from

shell closure. The reverse trend is observed for the 1− → 2+
1 E1 transitions, whose strengths

are the lowest in magic nuclei and increase in going away from closed shells.

The quadrupole–octupole two-phonon structure qualifies these 1− states as isoscalar. On

the other hand, the E1 operator has an isovector character. This intriguing circumstance allows

precious information to be drawn on the π − ν structure of these composite 1− states from the

analysis of the isovector E1 transitions.

Among the properties of the strong E1 transitions between low-lying states, the following

one deserves special attention. The plot of the |〈0+
1 ‖M(E1)‖1−

1 〉| amplitudes versus the

neutron number N presents a minimum at N = 78 or N = 86 in each chain of the Nd, Sm

and Ba isotopes [148–150], consistently with a prediction made in RPA-based calculations

[151]. All these isotopes have four valence neutron particles or holes. On the other hand, no

minimum was observed in Xe isotopes [152] with four valence neutron holes. Thus, if existing,

the minimum in these latter isotopes should occur at a larger number of neutron holes.

According to a very schematic IBM analysis [153–155], such a behavior results from a

mutual cancellation of proton and neutron contributions to the 0+
1 → 1−

1 E1 transition. The

phenomenological IBM approach, however, was not able to determine the position of the

neutron minimum.

Microscopic investigations are therefore necessary in order to establish if and where the

minimum occurs and to determine its position. These studies must be reliable. Thus, they have

to reproduce the experimental data. More specifically:

19



J. Phys. G: Nucl. Part. Phys. 39 (2012) 043101 Topical Review

(i) the calculation should yield a ratio B(E1; 1−
1 → 0+

1 )/B(E1; 3−
1 → 2+

1 ) ≈ 1, at least in

the vicinity of magic nuclei;

(ii) in going away from shell closures, the computed B(E1; 1−
1 → 2+

1 ) strength should

increase, while the B(E1; 0+
1 → 1−

1 ) should reach a minimum at some value of the

neutron number N when moving off the semimagic nuclei;

(iii) the E1 transition from the octupole 3− to the mixed-symmetry 2+
ms states should

be much stronger than the corresponding transition to the symmetric 2+
1 , namely

B(E1; 3−
1 → 2+

ms) ≫ B(E1; 3−
1 → 2+

1 ) and

(iv) the E1 strength should increase with quadrupole and octupole deformation, namely

B(E1; 0+
1 → 1−

1 ) ∝
〈

β2
2

〉〈

β2
3

〉

.

The behavior of |〈0+
1 ‖M‖1−

1 〉| versus the neutron number was studied within the fermionic

Q-phonon scheme [155, 156], which came out to be an efficient tool for the analysis of the

low-lying collective states of both positive and negative parities and, in particular, of the 1−

states.

5.1. Q-phonon description of low-lying 1− states in spherical nuclei

The Q-phonon scheme, aside from yielding simple and physically transparent relations

between transition amplitudes, can be applied to nuclei far away from the region of validity of

the harmonic approximation.

In order to keep memory of the microscopic structure, we adopt the fermionic Q-phonon

scheme. This is analogous to the corresponding bosonic approach adopted within the IBM,

discussed in section 3. The Q operators, however, have a fermionic structure.

The states of spin λ and parity π have the following expression:

|λπμ〉 = NλQ̂λμ|0+
1 〉, (43)

where the multipole operator is expressed in the fermionic form

Q̂λμ =
∑

j j′mm′

〈 jm|rλYλμ| j′m′〉a+
jma j′m′ (44)

and the normalization constant is given by

Nλ =
√

2λ + 1

|〈0+
1 ‖Qλ‖λπ 〉| . (45)

We consider the quadrupole and octupole states

|2+
1 , μ〉 = N2Q̂2μ|0+

1 〉, |3−
1 , μ〉 = N3Q̂3μ|0+

1 〉, (46)

respectively. According to RPA calculations [34], such a simple phonon structure is well suited

to describe the lowest excited 2+
1 and 3−

1 states. These are also shown to collect most of the

E2 and E3 strengths from the ground state.

The analysis of the experimental data suggests that the 1−
1 state should be composed of

quadrupole and octupole collective operators, Q2 and Q3, so that

|1−
1 , M〉 = N1−

1
(Q̂2 × Q̂3)1M|0+

1 〉. (47)

The normalization factor is given approximately byN1−
1

≈ N2+
1
N3−

1
, if we neglect contributions

from mixing terms whose contribution resulted to be less than 1% [157].

The |1−
1 , M〉 states (47) can be written in terms of the RPA collective phonons and the

dominant two-quasiparticle components of the non-collective RPA solutions. The resulting

formula shows that the |1−
1 , M〉 has a dominant two-phonon component built of one quadrupole

and one octupole collective RPA phonons, a three-phonon component composed of two
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collective quadrupole phonons coupled to one collective octupole RPA phonon and two-

quasiparticle 1− components. Given its complex structure, such a state should be compared

with calculations which extend RPA so as to include anharmonic effects.

As we approach a deformed region, the 1− levels split into a K = 0 and K = 1 band heads.

In order to describe these two branches, we need to admix the |1−
1 , M〉 given by (47) with

the Q-phonon component [(Q2 × Q2)4 × Q3]1M|0+
1 〉. This mixing is large in deformed nuclei,

about 70% for one component and 30% for the other. It is much smaller near spherical regions.

In transitional nuclei with soft γ -modes, also the Q-phonon state [(Q2 × Q2)2 × Q3]1M|0+
1 〉

becomes important.

The simple structure of the states allows relations to be derived between transition

amplitudes which are valid also outside of the analytically solvable harmonic vibrator and

rotor limits. Using, indeed, the model states just constructed, it is possible to compute the

transition amplitude

〈1−
1 , M|M1M(E1)|0+

1 〉 = N1−
1
〈0|(Q2 × Q3)1MM1M(E1)|0+

1 〉. (48)

By making use of the Wigner–Eckart theorem, we obtain after some Racah algebra

〈1−
1 ‖M(E1)‖0+

1 〉 = 〈3−
1 ‖M(E1)‖2+

1 〉, (49)

which yields

B(E1; 1−
1 → 0+

1 )/B(E1; 3−
1 → 2+

1 ) = 7
3
. (50)

This ratio coincides with that obtained in the harmonic limit, although no harmonic assumption

was made here. The value obtained is only qualitatively consistent with the experimental one,

of the order 1–2. This discrepancy suggests the presence of some admixtures in the |1−
1 〉, |2+

1 〉
and |3−

1 〉 states not taken into account in the Q-phonon scheme. It must be also mentioned that,

at least in one experiment [158], a very small B(E1; 3−
1 → 2+

1 ) was obtained yielding a ratio

much larger than 7/3.

By analogous algebraic manipulations we obtain

〈1−
1 ‖M(E1)‖2+

1 〉
〈1−

1 ‖M(E1)‖0+
1 〉 =

√

5

3

〈1−
1 ‖Q2‖1−

1 〉
〈0+

1 ‖Q2‖2+
1 〉 . (51)

Since the quadrupole moment of the 1−
1 state can be expressed approximately in terms of the

quadrupole moments of the 2+
1 and 3−

1 states, we obtain

〈1−
1 ‖M(E1)‖2+

1 〉
〈1−

1 ‖M(E1)‖0+
1 〉 ≈ 1√

35〈0+
1 ‖Q2‖2+

1 〉
[〈2+

1 ‖Q2‖2+
1 〉 +

√
6〈3−

1 ‖Q2‖3−
1 〉]. (52)

The above formula explains why the 1−
1 → 2+

1 transition gets enhanced with respect to the

1−
1 → 0+

1 transition as we move away from magic or semimagic nuclei. It is simply because

the quadrupole moments of the first 2+
1 and 3−

1 increase as we depart from shell closures.

The above ratio deviates from the Alaga rule indicating that other components, like

(|4+
1 〉 ⊗ |3−

1 〉)1, enter the composite |1−
1 〉 state.

5.2. IBM analysis

An immediate insight into the underlying physics can be gained from an analysis based on the

IBM [153, 154]. It is more convenient to evaluate the matrix element 〈3−
1 ‖M(E1)‖2+

1 〉. This

automatically yields the 〈1−
1 ‖M(E1)‖0+

1 〉 amplitude, in virtue of equality (49).

As pointed out already, the IBM |2+
1 〉 and |3−

1 〉 states are π − ν symmetric and, therefore,

have maximum F-spin (F = Fmax). The dipole transition operator M(E1) is mainly an F-spin

vector. If it is assumed to be exactly an F-spin vector, we obtain

〈3−
1 ‖M(E1)‖2+

1 〉 ∼ (Nπ − Nν ). (53)
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According to this formula, only protons will contribute in a nucleus with a closed neutron

shell. As valence neutron pairs are added, neutrons also contribute and tend to counteract the

protons. A minimum value at Nπ = Nν is reached eventually.

For the transition from the symmetric 3−
1 to the mixed-symmetry 2+

ms state with

F = Fmax − 1, an IBM calculation [154] yields

〈3−
1 ‖M(E1)‖2+

ms〉 ∼
√

NπNν

(2Nπ + 2Nν − 1)(Nπ + Nν )
. (54)

Clearly, no cancellation between proton and neutron contributions occurs, suggesting a possible

reason why the 〈3−
1 ‖M(E1)‖2+

ms〉 amplitudes are large.

This merely phenomenological analysis cannot determine the minimum value of neutron

and proton pair numbers. In fact, the physical E1 transition operator is not a pure F-spin

vector. Moreover, the IBM cannot account for possible changes in the microscopic structure

of proton and neutron bosons from nucleus to nucleus.

A similar result is obtained in the Q-scheme, where the ms 2+ state is given by

|2+
ms〉 =

(

Qν
2

〈0+
1 |(Qν

2Qν
2 )0|0+

1 〉1/2
− Qπ

2

〈0+
1 |(Qπ

2 Qπ
2 )0|0+

1 〉1/2

)

|0〉. (55)

Since the proton and neutron components have the same sign, the action of the F-spin vector

E1 operator is constructive. It is, instead, destructive when acting on the symmetric |2+
1 〉.

Indeed, using expression (55) for |2+
ms〉 in (54), after commuting the E1 operator with the

quadrupole ones, we obtain the inequality

|〈3−
1 ‖M(E1)‖2+

ms〉| ≫ |〈3−
1 ‖M(E1)‖2+

1 〉|. (56)

In virtue of (49), we also have

|〈(3−
1 ⊗ 2+

ms)1‖M(E1)‖0+
1 〉| ≫ |〈(3−

1 ⊗ 2+
1 )1‖M(E1)‖0+

1 〉|. (57)

The last inequality seems to be non-consistent with the analytical result obtained in [153]

within the sdf IBM2. In this latter approach, the E1 operator contains a two-body piece

with proton and neutron components of the same sign. Our shell-model-based E1 operator is

basically isovector so that the isoscalar contribution comes only from the small component

proportional to (N − Z)/A, necessary to subtract the spurious contribution due to the center

of mass motion.

5.3. Effect of the RPA ground-state correlations

The dipole transition amplitude 〈1−
1 ‖M(E1)‖0+

1 〉 may be be evaluated using expressions (43)

and (47) for the state vectors |2+
1 〉, |3−

1 〉 and |1−
1 〉

|2+
1 , μ〉 = Ñ2+

1
Q̂2μ|0+

1 〉RPA, (58)

|3−
1 , μ〉 = Ñ3−

1
Q̂3μ|0+

1 〉RPA, (59)

|1−
1 , M〉 = Ñ1−

1
(Q̂2 × Q̂3)1M|0+

1 〉RPA, (60)

where now |0+
1 〉RPA is a RPA-correlated ground state. The use of such a state is legitimate

since the derivation of the ratios (50) and (52) relies only on the Q-phonon form of the state

vectors, independent of the actual structure of the 0+
1 state.

We assume that the ground state contains only those correlations which are produced

by the quadrupole–quadrupole and octupole–octupole interactions. The quadrupole and

octupole interaction strength constants are fixed so as to reproduce the experimental values of
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B(E2; 0+
1 → 2+

1 ) and B(E3; 0+
1 → 3−

1 ), respectively. The ground-state correlations induced

by the dipole–dipole interaction are not included. Thus, in calculating the E1 transition

strength, we must introduce the core polarization factor χ which comes from the coupling of

the low-lying excitations with the GDR [1]. RPA-like calculations of the E1 transitions were

performed in [151, 159–161].

When the RPA-correlated ground state is included in (58) and (59), the |2+
1 〉 and |3−

1 〉
states assume the microscopic structure

|2+
1 , μ〉 = Ñ2+

1

(

b+
2μ − 2

√
21

P(2)

∑

ss′

Wss′ (3)
[(

α+
s × α+

s′
)

1
× b+

3

]

2μ

)

|0〉, (61)

|3−
1 , μ〉 = Ñ3−

1

(

b+
3μ + 2

√
15

P(3)

∑

ss′

Wss′ (2)
[(

α+
s × α+

s′
)

1
× b+

2

]

3μ

)

|0〉, (62)

where (Fλ = iλrλYλ)

Wss′ (3) =
∑

t

〈t‖F2‖s〉(−1) jt+ js′ (utus − vtvs)

{

3 2 1

js js′ jt

}

ϕ
(3)

ts′ ,

Wss′ (2) =
∑

t

〈t‖F3‖s〉(−1) jt+ js′ (utus − vtvs)

{

2 3 1

js js′ jt

}

ϕ
(2)

ts′ ,

P(λ) =
∑

ss′

〈s‖Fλ‖s′〉(usvs′ + us′vs)
(

ψ
(λ)

ss′ + ϕ
(λ)

ss′
)

.

The operators b
†
2μ

and b
†
3μ

create the most collective quadrupole and octupole RPA phonons

defined by the amplitudes ψ
(λ)

ss′ and ϕ
(λ)

ss′ corresponding to the first roots of the RPA secular

equation; α†
s are the quasiparticle creation operators determined by the coefficients u and v of

the Bogoliubov transformation.

Given the absence of dipole–dipole correlations in the ground state, no 1− phonon appears.

It follows that the 1−
1 state has a composite structure whose components are (b+

2 × b+
3 )1|0〉

and
∑

ss′ Wss′ (λ)(α+
s α+

s′ )1|0〉 (with λ = 2, 3). The bosonic component is by far the dominant

one. Its contribution to the norm is close to 100%.

The 1− two-quasiparticle components are needed in order to have a complete basis.

They are coupled to the RPA phonons by the quasiparticle–phonon coupling term of the

QPM Hamiltonian [34, 151, 157, 159–161]. As we shall see, they give a sizable contribution

even if their weight is small (∼1%). There are also other components in the 2+
1 , 3−

1 and 1−
1

states. They are, however, small and of no relevance to the E1 transitions [159]. These are

given by

〈1−
1 ‖M(E1)‖0+

1 〉 = eeff

√

4π

3

[(

1 + N − Z

A

)

Bπ −
(

1 − N − Z

A

)

Bν

]

, (63)

where the effective charge eeff = e
2
(1 + χ) accounts for polarization effects incorporated in χ

[1], and Bπ and Bν are microscopic quantities which incorporate the contribution coming from

the quadrupole–octupole phonons and the phonon–quasiparticle interference terms present

in the 2+ and 3+ states (61) and (62). Their involved formulas can be found in [155]. Apparently,

the transition amplitude depends on the balance between these proton and neutron quantities

Bπ and Bν .

The trend of the 0+ → 1− E1 transition amplitudes with the mass number is illustrated

in the plots of figures 10 and 11 for several chains of isotopes. One may note that the

measured amplitudes are either close or just above the theoretical quantities when computed
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Figure 10. Theoretical (dashed line) versus experimental (solid line) E1 0+
1 → 1−

1 absolute reduced

amplitudes in Cd, Sn and Ba (from [155]). The dot line gives the contribution obtained once the

two-quasiparticle admixtures are eliminated.

Figure 11. The same as in figure 10, but for Ce, Nd and Sm isotopes (from [155]).

without the two-quasiparticle admixture to the collective quadrupole–octupole two-phonon

component.

The two-quasiparticle components, though accounting for less than 1%, considerably

enhance the transition amplitudes with respect to the measuring quantities. This result suggests

that their contribution is overestimated. How to obtain a quenching is not straightforward given

their small weight in the total wavefunction.

We may conclude by saying that the two-phonon component (|2+
1 〉 ⊗ |3−

1 〉)1− , which

gives the main contribution to the norm of the |1−
1 〉 state, determines the excitation energy

and the E2 and E3 decay properties of the |1−
1 〉 state. It is, nonetheless, necessary to include

the contribution induced by the dipole two-quasiparticle components, although quenched with
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Table 7. Proton (Bπ ) and neutron (Bν ) contributions to 〈1−
1 ‖M(E1)‖0+

1 〉 (63) in Nd isotopes.

Nucleus Bπ (in fm) Bν (in fm)

142Nd82 0.78 0.17
144Nd84 0.80 0.21
146Nd86 0.87 0.26
148Nd88 1.05 0.32

respect to the present estimate, in order to obtain a satisfactory description of the electric

dipole transition 0+
1 → 1−

1 .

In both cases, the calculation reproduces the observed trend of the E1 transition amplitudes

with the mass number. 146Nd and 148Sm represent a notable exception. These nuclei have a

deep minimum when the number of valence neutrons Nv = 4, a fact already pointed out in the

introduction. The calculation yields a shallow minimum for Nv = 2 instead.

In the case of the Nd and Sm isotopes, the A-dependence of |〈0+
1 ‖M‖1−

1 〉| obtained in

the microscopic calculations deviates from the one predicted by the IBM. As already pointed

out, the IBM-reduced E1 transition amplitudes decrease, for a given number of valence proton

pairs, as we add neutron pairs starting from the neutron closed shell. In the microscopic

case, the same amplitudes increase with the neutron number starting from Nv = 2. In the

microscopic scheme, the contribution to the E1 transition coming from protons changes even

if their number is kept constant. In fact, the ground-state correlations change as the number

of valence neutrons increases. This fact is illustrated in table 7, where the proton contribution

Bπ grows at the same rate of Bν .

It is useful to relate the electric dipole two-quasiparticle component entering the 1−
1

state to the p-boson introduced within the IBM [162] to construct α-cluster dipole states. If

disentangled from the other pieces of the 1−
1 state, this two-quasiparticle component can be

normalized to one and then used to calculate the E1-reduced amplitude obtaining values of

the order 0.6–0.7 e · fm. For comparison, we obtain approximately 6 e · fm for a pure α-cluster

state and 1.7 e · fm for a 1p1h (1h11/2 1g−1
9/2)1− proton state. These numbers indicate that the

correspondence of the two-quasiparticle admixtures in the microscopic 1−
1 state with the IBM

p-boson is rather loose.

In conclusion, in order to account for the enhanced E1 transitions, it is necessary to

go beyond the harmonic approximation. This necessity emerges clearly from the following

example. In RPA only boson-allowed transitions are promoted. In this approximation, in fact,

the one-body fermion operators contain only the α†
s α

†
t and αsαt terms which change the number

of quasiparticles by two units.

Thus, RPA cannot describe the E1 3−
1 → 2+

1 transition promoted by the boson-forbidden

α†
s αt pieces. These terms should be included in the quadrupole and octupole operators

Q2, Q3, thereby leading to the appearance of anharmonic terms in the Hamiltonian which

contains quadrupole–quadrupole and octupole–octupole interactions. The inclusion of the

terms in α†
s αt is necessary in order to preserve the commutation relations between Q2, Q3 and

M(E1).

5.4. Neutron number dependence of the E1 transition amplitude

The approach outlined above may be adopted to study the trend of B(E1; 0+
1 → 1−

1 ) versus

the number of neutrons. Dealing mainly with spherical nuclei, it is appropriate to describe the

ground-state correlations in RPA.

Xe isotopes are a good test ground for analyzing the validity and the effect of this

approximation. Heavier Xe isotopes are spherical. The treatment of their ground state in RPA
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is therefore justified. For the study of the lightest transitional 124,126Xe, it may be useful to be

guided by the analogy between IBM and RPA.

In IBM, the lighter Xe isotopes belong to the O(6) dynamical symmetry limit. Thus, their

ground state may be written as

|0+
1 〉 =

√

1 − c2
1 − c2

2 − · · · 1√
N!

(s+)N |0〉

+ c1

1√
2
(d+d+)0

1√
(N − 2)!

(s+)N−2|0〉

+ c2(d
+d+d+d+)0

1√
(N − 4)!

(s+)N−4|0〉 + · · · , (64)

where |0〉 is the boson vacuum and N is the maximum number of bosons.

In RPA, one may consider the following form:

|0+
1 〉 =

√

1 − c2
1 − c2

2 − · · ·|0〉 + c1
1√
2
(A+

2 A+
2 )0|0〉 + c2(A

+
2 A+

2 A+
2 A+

2 )0|0〉 + · · · , (65)

where |0〉 is the quasiparticle vacuum and A+
2 is the operator creating a collective superposition

of two-quasiparticle states coupled to the angular momentum L = 2.

Thus, RPA and IBM ground states exhibit a similar structure if the bilinear fermion

operator A+
2 is put in correspondence with the d+s boson operator.

They differ, of course, in the values of the coefficient ci. In RPA, the main component

of the ground-state wavefunction is the first term of (65) proportional to the quasiparticle

vacuum. In the IBM, instead, the second term in (64) is in general dominant. This quantitative

difference establishes the limit of validity of the use of a RPA-correlated ground state

In fact, using a consistent-Q IBM Hamiltonian, we found that RPA is adequate to describe

the heavy 128−136Xe isotopes. It underestimates, instead, the ground-state correlations of the

lighter 124,126Xe. The state of these isotopes is better described as a combination of two lowest

0+ RPA states. A visible effect of this mixture is the splitting of the E1 strength in two 1−

peaks.

We can now face the calculation of the reduced E1 transition amplitudes using (63).

These depend critically on the competition between the proton and neutron contributions. We

therefore consider first the behavior of Bπ and Bν with the neutron number. As shown in

figure 12, in Xe isotopes the proton contribution is by far dominant in correspondence of the

neutron shell closure (N = 82). The neutron quantity Bν raises rapidly with the number of

neutron holes. Though at a slower rate, however, also the proton piece increases, even if the

number of protons is kept constant. In fact, the ground state gets more and more correlated as

the number of neutron holes increases.

As a result, the difference (Bπ − Bν ) decreases with the neutron number and reaches a

minimum value at A=128. As A decreases further, (Bπ − Bν ) changes sign but its absolute

value increases. Thus, |〈1−
1 ‖M‖0+

1 〉| has a minimum at A=128. According to our calculations,

this occurs when the number of the neutron holes is equal to 8 (see figure 13).

A similar behavior is obtained in Nd and Sm isotopes. In these isotopes, the minimum

occurs when the number of the valence neutrons or neutron holes is equal to 4.

The picture changes in the chain of 116−124Sn and 108−116Cd isotopes. In 116−124Sn, as

shown in figure 12, Bπ is almost vanishing throughout the whole chain and Bν is large but

varies slowly without following a monotonic behavior. Apparently, the shell closure inhibits

the protons. These remain basically inert and affect the valence neutrons very little.

The same quantities Bπ and Bν undergo large variations with A in 108−116Cd, as shown in

figure 12. Their trend, however, is similar. Both quantities have a minimum in correspondence

of the neutron number N = 60 and, then, increase with A. The net result is that Bπ and Bν do
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Figure 12. Proton (Bπ ) and neutron (Bν ) contributions to the E1 transition amplitudes in Sn, Cd and

Xe isotopes (Reproduced with kind permission of Springer Science+Business Media from Jolos

R V, Shirikova N Yu and Voronov V V 2006 On neutron number dependence of B(E1; 0+
1 → 1−

1 )

reduced transition probability Eur. Phys. J. A 29 147).

Figure 13. Experimental versus calculated electric dipole transition amplitudes in Xe isotopes

(Reproduced with kind permission of Springer Science+Business Media from Jolos R V, Shirikova

N Yu and Voronov V V 2006 On neutron number dependence of B(E1; 0+
1 → 1−

1 ) reduced

transition probability Eur. Phys. J. A 29 147).

not cross, since the neutron contribution remains larger for all isotopes. In these isotopes, the

active proton holes are only two and, therefore, not effective enough in changing the collective

behavior of the neutron-rich isotopes.

Going back to Xe isotopes, figure 13 shows that the E1-reduced amplitudes decrease in

going from 136Xe to 128Xe, in agreement with the experiments [152]. The E1 amplitudes reach

a minimum at A = 128 and, then, increase as the number of neutron holes increases.

The experimental situation for the isotopes with A < 128 is unclear. Strong dipole

transitions were observed, but the parity was not determined. If they are assumed to be

induced by low-energy octupole excitations [163], we deduce from the experimental reduced

width Ŵred
0 the amplitudes |〈0+

1 ‖M‖1−
1 〉|= 0.051e·fm for 124Xe and |〈0+

1 ‖M‖1−
1 〉|= 0.041e·fm

for 126Xe. The first value is close to the calculated one; the second one is somewhat larger.

27

http://dx.doi.org/10.1140/epja/i2006-10086-8
http://dx.doi.org/10.1140/epja/i2006-10086-8


J. Phys. G: Nucl. Part. Phys. 39 (2012) 043101 Topical Review

In the heavier Xe isotopes (A > 128), the calculation overestimates the E1 transition

amplitudes, especially as we approach the magic neutron number N = 82 (figure 13). We

may try to explain the results by observing that the strength of the 0+
1 → 1−

1 E1 transition is

determined by the ground-state correlations. These are, in turn, determined by the collective

properties of the octupole and quadrupole phonons. The collectivity of these phonons increases

in Xe isotopes with an increasing number of neutron holes and, therefore, enhances both proton

and neutron contributions. As we approach the shell closure, instead, the neutron correlations

are not sufficiently accounted for by the nuclear forces we used. Thus, the neutron contribution

Bν is underestimated and the difference (Bπ − Bν ) becomes too large.

In conclusion, by exploiting the Q-phonon scheme, it is possible to derive simple relations

between different reduced matrix elements which qualitatively explain the trend and properties

of the E1 transitions.

By treating the ground-state correlations in the RPA approximation and using the Q-

phonon form of the 1−
1 states, we could fairly well reproduce the observed trend of the

0+
1 → 1−

1 E1-reduced amplitudes versus the neutron number and relate such a behavior to a

competing contribution of protons versus neutrons.

Such a competition may yield a minimum which the calculation is able to determine. The

occurrence of a minimum is not a general rule. It has been shown that this does not exist in

chains of isotopes due to their specific shell structure.

It has been also shown that the two-quasiparticle components of the |1−
1 〉 state, though

small, should be taken into account in order to achieve a fair agreement with the experimental

data.

6. QPM in deformed nuclei

In deformed nuclei, the QPM states are characterized by the quantum number Kπ . In general

it is sufficient to include up to two phonons to study their spectroscopic properties. Thus, the

generic intrinsic state has the structure

nKπ =
∑

i

C
(n)
i |i, Kπ 〉 +

∑

v1v2

C(n)
v1v2

|[v1 v2]Kπ 〉, (66)

where vi = iλiμi, and λ and μ give the multipolarity and magnetic component of the phonon

operators.

The QPM was adopted extensively to study the low-lying properties of deformed nuclei. It

has provided a thorough description of the low-lying M1 excitations associated with the scissor

mode [66, 67] (see [68–70] for an exhaustive review). Indeed, by accounting for the quenching

and fragmentation induced by the PC, it was possible to reproduce with fair accuracy the fine

structure as well as the magnitude of the M1 strength throughout the nuclei of the rare-earth

region [164, 165].

The QPM gave a crucial contribution to the understanding of the low-energy enhanced

E1 transitions [2] by correlating them to octupole vibrations [165]. A QPM review of E1 and

M1 low-lying transitions can be found in [166, 167].

Here we concentrate our review on the QPM analysis of the 0+ states, which attracted

great attention in recent years.

6.1. 0+ states in deformed nuclei

In the past, several experimental and theoretical studies have thoroughly examined the

properties of the low-lying 0+ excitations in order to verify if some of them exhibit the typical

properties of a β vibrational mode [168]. The results were controversial and not conclusive.
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Nonetheless, these studies lead to a discovery of great interest. A large number of low-

lying excited 0+ levels were observed in 158Gd through a high resolution (p, t) experiment

[39]. Such a large number was not peculiar of 158Gd. Copious 0+ levels were detected in

actinide nuclei [40], in 168Er [41] and in several other nuclei [42–44]. The number of 0+ states

detected in 168Er is particularly large, the levels below 4 MeV amounting to about 30 [41].

The distribution pattern of the two-nucleon transfer transition strengths shows that one

single 0+ state is strongly populated in all nuclei, with the exception of 168Er where the strength

is fragmented into several small peaks.

The first theoretical investigation [169] was carried out within the IBM. Since standard

IBM and other collective models could yield a very small number of 0+ levels, it was necessary

to use the extended (sdpf) IBM in order to account for a large fraction of the detected 0+

states. The (sdpf) IBM analysis points out the importance of the octupole degrees of freedom.

In fact, several 0+ levels were associated with collective octupole two-boson IBM states.

The first microscopic analysis was performed in the framework of the projected shell model

[170] adopting a restricted space spanned by two- and four-quasiparticle states. Including the

latter states was crucial for covering the whole spectrum. The calculation reproduced all the

energy levels well.

Exhaustive investigations of these states were carried out within the QPM through

the calculation of energies, electromagnetic transition strengths and two-nucleon transfer

spectroscopic factors [171–173]. The normalized monopole strength

ρ2
(

E0; 0+
n → 0+

1

)

= 1

e2R4
0

∣

∣

∣

∣

〈0+
1 |

∑

k

eeff(k)r2
k |0+

n 〉
∣

∣

∣

∣

2

(67)

was computed in addition to the quadrupole one B(E2; 0+
n → 0+

0 ).

The most important information comes from the two-nucleon transfer spectroscopic

factors

Sn(p, t) =
(

Ŵn(p, t)

Ŵ0(p, t)

)2

, (68)

where

Ŵn(p, t) = 〈0+
n , N − 2|

(τ=ν)
∑

q

aqaq̄|0+
1 , N〉 =

∑

i

C
(n)
i Ŵi(p, t) (69)

are the QPM (p, t) transfer amplitudes. The Ŵi(p, t) amplitudes include the allowed transitions

to the one-phonon components |i, Kπ = 0+〉 of the QPM state (66) as well as the forbidden

transitions from the ground to the two-phonon components |[v1 v2]0+〉. The two-phonon

contribution, however, came out to be negligible, so that the full strength is carried by the

one-phonon allowed transitions. Thus, the amplitudes are basically given by

Ŵi(p, t) ≃ −2

τ=ν
∑

qq′

[

ψ i
qq′vqvq′ − φi

qq′uquq′
]

, (70)

where uq and vq are the occupation number coefficients of the Bogoliubov transformation.

The two-nucleon spectroscopic factors are directly extracted from the experiments and

represent a unique probe for pairing correlations. The effect of pairing, indeed, is to enhance

the cross sections of the 0+ two-nucleon reactions. Thus, the superfluid ground states of nuclei

far from shell closure, in particular the well-deformed ones, are strongly populated in (p, t)

and (t, p) reactions, due to the large overlap of the wavefunctions between N and N ±2 nuclei.

The same reactions may also appreciably populate excited 0+ states. These, being induced

by the fluctuations of the pairing field in the ground state, describe pairing vibrational modes

[174, 175].
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Figure 14. QPM versus experimental data in 168Er (from [172]). These include the energies of the

0+ states (top panel), the energy distribution of the (p, t) spectroscopic factors (middle) and their

running sum (bottom). The experimental data are taken from [41].

The QPM calculation yields, in general, more 0+ states than the ones observed. In 168Er,

for instance, the QPM levels are ∼40 below 4 MeV, to be compared with the ∼30 levels

detected experimentally (see top panel of figure 14). On the other hand, all the 0+ states in

excess carry a negligible (p, t) strength (second panel) and, therefore, cannot be observed.

The calculation reproduces the experimental energies fairly well, with the exception of few

levels in the high-energy sector which are underestimated.

Almost all the 0+ excitations below 3 MeV in 168Er are described by one-phonon states

which, in some cases, are rather fragmented. Only one, in this energy range, is a two-phonon

state built of a phonon with high multipolarity. The weight of the two-phonon components

becomes appreciable just above 3 MeV and increases more and more with the energy. The

octupole phonons do not play any special role, except for a few states above 3 MeV, where

they are dominant.

The computed strength of the E2 decay transition from the 0+
2 bandhead to the 2+ of the

ground band is small. One obtains, in fact, BQPM(E2; 0+
2 1 → 2+

1 ) = 0.11 W.u., in agreement

with the experimental value Bexp(E2; 0+
2 → 2+

1 ) = 0.08(1) W.u. [176]. The E2 decay

strengths of the other 0+ states are even smaller. Also the normalized monopole transitions

are generally weak. The strength collected by the bandhead 0+
2 is ρ2

QPM(E0; 0+
2 → 0+

1 ) =
1.48 × 10−3 close to the experimental value ρ2

exp(E0; 0+
2 → 0+

1 ) = 0.8(8) × 10−3 [177–179].

We therefore find an almost complete lack of quadrupole collectivity in all 0+ states of 168Er.

30



J. Phys. G: Nucl. Part. Phys. 39 (2012) 043101 Topical Review

0

0.5

1

1.5

2

2.5

3

3.5

         

 

228
Th

EXP  

QPM  

0

0.5

1

1.5

2

2.5

3

         

E
n
(M

e
V

)

 

230
Th

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16

n

232
U

0

0.1

0.2

0.3

0.4

       

 

228
Th EXP  

QPM  

0

0.1

0.2

0.3

       

S
(p

,t
)

 

230
Th

0

0.1

0.2

0.3

0 0.5 1 1.5 2 2.5 3

E (MeV)

232
U

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

      

 

228
Th

Exp 

QPM 

RPA 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

      

Σ
 S

(p
,t
)

 

230
Th

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 1 1.5 2 2.5 3

E (MeV)

232
U

Figure 15. Energy levels (left), energy distribution (middle) and running sum (right) of (p, t)

spectroscopic factors in the actinides (from [172]). The experimental data are taken from [40].

All these states, indeed, are composed almost solely of pairing correlated qq̄ components.

Pairing, however, acts coherently only into one RPA 0+ state. This collects most of the two-

nucleon transfer strength S(p, t). In the QPM, however, the coupling with the other phonons

depletes the (p, t) strength of the collective RPA 0+ state, yielding a fragmented spectrum

reasonably close to the experimental data (middle panel of figure 14).

Important discrepancies still remain in the height of the main peak and in the strength

distribution. The computed spectrum is shifted downward with respect to the experimental

one. These discrepancies are manifested even more in the bottom panel of figure 14 showing

that both the RPA and QPM strengths reach saturation too early with respect to experiments.

The insufficient damping of the highest 0+ RPA peak may be traced back to the truncation

of the two-phonon space. Configurations which couple appreciably to the 0+ RPA phonons

might have been excluded. Nonetheless, the QPM strength sums up to a value ∼ 0.25, which

closely approaches the experimental integrated strength.

The calculation yields very little strength above 3 MeV, consistent with experiments. The

levels above 3 MeV correspond predominantly to two-phonon excitations and are, therefore,

poorly populated in transfer reactions.

Figure 15 (left panel) shows that the QPM calculation reproduces fairly well the

experimental energy levels in 232U, 230Th and 228Th.

The E2 and, especially, the E0 strengths in the actinides are generally larger than the

corresponding quantities in 168Er by at least one order of magnitude. In 230Th, for instance,

the computed E2 strength is B(QPM)(E2; 0+
2 → 2+

1 ) = 1.71 W.u., fairly close to the measured

value B(exp)(E2; 0+
2 → 2+

1 ) = 1.10 W.u. [180]. The monopole transition strength collected

by the first excited 0+ is ρ2
QPM(E0; 0+

2 → 0+
1 ) = 8.2 × 10−3, smaller than the value

ρ2
exp(E0; 0+

2 → 0+
1 ) = 50(20) × 10−3 extracted from experiments [179].

As shown in the middle panel of figure 15, the QPM normalized spectroscopic factors

S(p, t) are in fair agreement with experiments. The calculation yields one strong peak close in

magnitude to the corresponding experimental value, while other peaks are small consistently

with experiments. These are typical features of a pairing vibrational mode.

Both RPA and QPM strengths reach saturation at higher energy with respect to

experiments. This discrepancy may be related to a mismatch between the QPM and
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Figure 16. Strength distribution of the two lowest octupole two-phonon components among

different QPM 0+ states in 230Th (from [172]).

experimental levels and may be cured by including hexadecapole and spin–quadrupole pieces

in the ph two-body potential. The spin–quadrupole interaction, in particular, was shown to

push an additional RPA 0+ level below the pairing gap in the actinides [181].

The octupole phonons, though observed at low energies in the actinides, have a modest

impact on the 0+ states, at variance with the IBM prediction [40]. The theory yields, indeed,

low-lying unperturbed octupole RPA two-phonons. On the other hand, the enforcement of

the Pauli principle according to the prescription discussed in section 2 spoils the octupole

coherence and yields a spreading of the octupole–octupole phonon components among several

QPM 0+ states. It follows that the strength of the two lowest octupole–octupole phonons gets

redistributed among many closely packed QPM 0+ states and pushed at higher energy. Such

a mechanism is illustrated in figure 16 for 230Th.

Transfer reaction experiments have populated in large abundance also states with Jπ = 2+

in 168Er [41] and, more recently, states with Jπ = 2+ and higher spins in 230Th [182]. Several

of them belong to rotational bands based on 0+ states. Others were interpreted as vibrational

excitation modes. This assumption was supported by QPM calculations that strongly predict

excited levels close to the observed ones. The QPM accounts for all states observed in 168Er

but underestimates the number of states in 230Th. On the whole, it yields energies and (p, t)

strengths in fair agreement with the data for both nuclei.

The QPM was applied to the 188−192Os isotopes in order to investigate the evolution of

the properties of 0+ states as one moves from well-deformed toward transitional nuclei [173].

A major finding was that the QPM 0+ states are a mixture of several QRPA 0+ phonons with

a γ γ two phonon component, in addition

|0+〉 ∼
∑

k

ck|0+
k 〉RPA + c22|2+

γ 2+
γ 〉. (71)

This mixing increases in going from A=188 to the heavier isotopes and is to be contrasted with

the purity of the 0+ states in the well-deformed regions discussed previously (|0+〉QPM ∼
|0+

k
〉RPA). The increasing fragmentation with the mass number reflects the fact that we

are approaching the γ -soft region. A consequence of this mixing is an overall quenching

of the two-nucleon transfer spectroscopic factors. The computed summed strengths are
∑

n Sn(p, t)QPM ∼ 0.09 − 0.10, comparable to the values
∑

n Sn(p, t) ∼ 0.12–0.15 extracted

from the experimental normalized cross sections [44]. Both values are considerably smaller

than the integrated spectroscopic factors in well-deformed nuclei. For 158Gd and 168Er, in
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fact, the QPM yielded
∑

n Sn(p, t)QPM ∼ 0.25 in very good agreement with the measured

values.

7. Concluding remarks

The review has shown that low-lying spectroscopic properties in vibrational and well-deformed

nuclei can be investigated thoroughly within the QPM. Like the IBM, the QPM satisfactorily

describes the gross properties of the low-lying spectra which vary smoothly with the number

of neutrons (protons) along a chain of isotopes (isotones) in the vicinity of proton (neutron)

shell closures.

Moreover, it accounts for features which are manifestation of the specific shell structure

of a given nucleus. An example of this kind was provided by the different origin of the

fragmentation of the M1 response in nuclei above and below the neutron magic number

N = 82, resulting from a subtle interplay between pairing and subshell closures in the N = 80

isotones and from a PC in the N = 84 isotones.

The close correspondence with the IBM has enabled us to embed, by a mapping

procedure, the QPM and RPA states into the IBM formalism and, thereby, successfully

perform microscopic studies of low-lying collective excitations in transitional regions, not

directly accessible to the QPM.

An important example is provided by the behavior of the E1 0+
1 → 1−

1 transition

amplitudes versus the neutron number. Such a RPA-based scheme reproduces the observed

trend with fair accuracy and shows that such a behavior results from a competition between

proton and neutron contributions. In Xe isotopes, for instance, the E1 transition amplitude

decreases with the number of neutron holes, in agreement with the experimental data [140],

until it reaches a minimum and, then, increases again.

The model is also able to determine the position of such a minimum and predict a threshold

in the number of protons for its occurrence. It has established, for instance, that no minimum

exists in Sn and Cd isotopes due to insufficient number of valence protons.

On the other hand, the microscopically based IBM analysis fails to account for other

properties. It yields, for instance, contradictory results on the M1 transitions. We saw, in fact,

that, while the behavior of the computed ratio R(M1) = B(M1, 1+
ms → 2+

2 )/B(M1; 1+
ms → 0+

1 )

versus the number of neutrons is consistent with the data, the absolute strength B(M1; 2+
MS →

2+
1 ) follows a trend which is at variance with the experimental one. A reexamination of the

method is therefore needed.

In deformed nuclei, the QPM accounts for the large number of 0+ levels observed in

several nuclei of rare-earth and actinide regions. It is able to reproduce the distribution of the

two-nucleon transfer strength and disclose the phonon composition of each state as well as

the quasiparticle structure of each phonon component. The conclusion emerging from such a

study is that most of the 0+ states are mainly one-phonon states built of qq̄ pairing correlated

configurations. Among them, only one phonon is pairing collective indicating that these 0+

states describe a pairing vibrational oscillation.

The QPM analysis of the E2 and E0 transitions indicates that quadrupole collectivity is

lacking in all 0+ states. Given the scarcity of data, however, reliable conclusions may be drawn

only after additional systematic measurements of E2 and E0 decay strengths.

States with Jπ = 2+ and higher spin were also produced in large abundance. Their

properties are satisfactorily described with the QPM.

In conclusion, the QPM proved to be a precious tool for studying the fine structure of

collective excitations in vibrational and well-deformed nuclei and disclosing the phonon and

quasiparticle composition of the low-lying states. Due to its flexibility, it may be used for
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reliable systematics in entire nuclear regions. Embedded in the IBM formalism, it may be

used to explore the properties of nuclei in the transitional regions not easily accessible to

microscopic approaches. Combining QPM and IBM represents a very promising route which

deserves to be explored further.
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