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Low energy nuclear reactions of nuclei with halo structure are theoretically studied in a three· 
body model in which the projectile is described as the weakly bound state of the halo neutron and core 
nucleus. A time·dependent wave packet method is employed to solve the three·body Schrodinger 
equation and to calculate reaction probabilities. Numerical results with various internal 
Hamiltonians reveal that the reaction mechanisms depend strongly on the single particle structures 
of the core and target nuclei. The adiabatic dynamics is found to be important when the neutron is 
bound tightly in the projectile. For a weakly bound projectile with halo structure, the fusion 
probability is found to decrease due to the addition of a neutron. 

§ 1. Introduction 
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During the last decade, there has been much progress made in the study of light 
unstable nuclei by experiments with secondary unstable nuclear beams. Near the 
neutron drip-line, neutron halo structure has been discovered systematically.1),2) 
High energy secondary beam experiments have been useful to extract structure 
information of the unstable nuclei. Glauber-type theory is useful for the reaction of 
incident energies higher than a few tens of MeVs.3

) The reaction experiments have 
recently been extended to the low incident energy region, close to the Coulomb 
barrier.4

) 

In the low energy reactions of neutron rich unstable nuclei, dynamical roles of the 
excess neutrons are expected. Much attention has been paid to the fusion reaction, 
and in particular to the question of whether the fusion cross section is enhanced in the 
neutron rich nuclei. As an extreme case, there have been presented several theoreti
cal arguments on the fusion reaction of the nuclei with halo structure.5

) In these 
arguments, however, a specific reaction model is usually assumed for the dynamics of 
the halo neutron during the reaction, and the possible mechanisms which may enhance 
the fusion probability are discussed. Recently, Kim et al. have studied the transfer 
and fusion reactions of neutron rich nuclei with the time-dependent Hartree-Fock 
method.6

) The coupled-channel calculation has also been done for light system.7
) 

We previously reported the analysis of a three-body model in one spatial dimen
sion which simulates the low energy reactions of halo nuclei.S

) By exactly solving the 
three-body Schrodinger equation, we investigated the fusion reactions without any 
assumptions regarding reaction dynamics. There we found a decrease of the fusion 
probability by adding the halo neutron to the projectile. In the present paper, we 
extend our analysis of the three-body model to a realistic three-dimensional three
body system. 

The present paper is organized as follows: In § 2, our three-body model is 
presented. A time-dependent wave packet method to solve the three-body problem is 
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438 K. Yabana 

then presented. In § 3, the calculated results are presented when the neutron is bound 
tightly in the projectile nucleus. In § 4, the results for the projectile with halo 
structure are presented. In § 5, concluding remarks are given. 

§ 2. Formulation 

2.1. Three-body model 

We consider a nucleus with a single neutron halo, like a llBe nucleus. The 
three-body system is composed of the halo neutron and the core nucleus, which 
constitute the projectile and the target nucleus. We show in Fig. 1 the coordinate 
system in the incident channel, which will be used in the numerical calculations. The 
relative coordinate between the neutron and core nucleus is denoted by r, and the 
relative coordinate between the projectile and target nucleus is denoted by R. The 
time-dependent Schrodinger equation for this system is given as 

in 1t c/J(R, r, t)={ - 2~V~- :;[7;'+ VcT(RcT )+ Vnc(r)+ VnT(rnT)}c/J(R, r, t). 

(2 '1) 

In the above equation, M and f-l are the reduced masses between the projectile and 
target nuclei and between the neutron and core nucleus, respectively. RCT and rnT are 
the distances between the core and target nuclei and between the neutron and target 
nucleus, respectively. VCT, Vnc and VnT are the interaction potentials between the 
core and target nuclei, neutron and core nucleus, and neutron and target nucleus, 
respectively. 

The neutron potentials Vnc and VnT are taken to be real with the standard 
Woods-Saxon form. The potential between the core and target nuclei, VCT, consists 
of three terms, the nuclear attractive real potential, the nuclear absorptive imaginary 
potential, and the Coulomb repulsive potential. They are chosen so that the potential 
VCT describes the two-body collision of the core and target nuclei, in which the loss of 
the flux caused by the absorptive potential accounts for the fusion reaction. 

In the calculations presented below, we investigate the reaction which simulates 
the llBe+ 40Ca system. For the neutron-
core and neutron-target potentials, we 
choose the radius and the diffuseness 
parameters of the Woods-Saxon poten
tials as ro=1.3 fm and a=0.7 fm. The 
depths of the potentials are changed and 
are specified for each calculation. For 
the core-target potential, we also use the 
Woods-Saxon form for the nuclear part, 
V=-50MeV, W=-10MeV, rv 
=1.26 fm, rw=1.215 fm, av=0.44 fm, aw 
=0.45 fm and Rv,w= rv,w(Acl/3+ A Tl/3). 
This potential is known to reproduce 

Neutron 

Target Projectile 
Fig. 1. The three-body system in the model. The 

incident channel coordinate system which is 
used in the calculation is shown. 
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Low Energy Reactions of Halo Nuclei in a Three-Body Model 439 

systematically the fusion reactions of light nuclei.g) 
Since the Hamiltonian in Eq. (2 -I) is rotationally scalar, the total angular 

momentum is conserved. Because of the practical limitation of the numerical calcu
lations in our method, we have investigated only the case of total angular momentum 
L=O. We also set the incident relative angular momentum as 1=0. To understand 
the mechanism of fusion, the reaction dynamics of this incident channel will be 
valuable. 

2.2. Time-dependent method 

Although the three-body Hamiltonian in Eq. (2 -I) is static, we develop a numeri
cal method in which we first solve the time-dependent SchrCldinger equation for an 
initial incoming wave packet. Static scattering information will then be extracted 
from the final outgoing wave packet by a method of energy projection. 

The method will be presented for the case of zero total angular momentum. We 
take polar coordinate systems for both Rand r. The wave function can be expressed 
as 

(2 -2) 

The angular part of the wave function can be expressed by the Legendre function 
PI(cos()), in which the angle () is that between Rand r. The SchrCldinger equation 
for the radial wave function is given by 

(2- 3) 

with the potential Vll,(R, r) defined by 

Vll'(R, r)= jd(coS())PI(cos())PI'(cos()){ VCT(RcT) + VnT(rnT)}. (2 -4) 

For the initial conditions, the neutron orbital is set to the 2s bound orbital of the 
neutron-core potential and is denoted as ¢Jo( r). For the relative motion between the 
projectile and target nuclei, we employ the wave packet state which satisfies the 
following conditions: the wave packet consists only of the incoming waves in the 
incident 1=0 channel, and it is confined in a finite radial region in which only the 
Coulomb part of the core-target potential exists. In practice we use the following 
Gaussian wave packet: 

(
2 r )314 uI(R, r, to) = 010 n exp[ - r(R - RO)2- iKoR]¢Jo(r). (2-5) 

We solve Eq. (2-3) by discretizing both time and radial variables. The wave 
function after a short time period ill is obtained by applying the following two 
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440 K. Yabana 

procedures to the previous wave function. First the time evolution by a part of the 
Hamiltonian which is diagonal in the angular momentum space is considered: 

(2·6) 

(2·7) 

(2·8) 

Each partial wave function is then considered as evolving in time according to the 
Crank-Nicholson formula/Oj 

U/ n +(1/2)) (2·9) 

Next, the potential which mixes the different partial waves is applied, 

(2·10) 

where L1Vll' is defined as L1Vll'(R, r)= VwCR, r)-oll' VCT(R). 
We employ a radial mesh size 0.5 fm for both Rand r up to 40 fm. The five point 

formula is employed in approximating the second order differential operator. To 
describe accurately the transfer processes within the incident channel coordinate 
system, it is necessary to include partial waves of large I value. We included up to 
I =60, and confirmed the convergence of the results. The total number of mesh points 
to describe the wave function in each time step is, thus, approximately N =80 x 80 x 
60. 

Initially the center of mass of the wave packet is located at Ro=22 fm with the 
width of r=0.05 fm- 2 in Eq. (2·5). The time integration is continued until the center 
of mass of the final wave packet, which consists only of the outgoing waves, is located 
at around 20 fm. About 1000 time steps are employed for the time evolution. More 
time steps are required to obtain convergent results when the reaction probabilities 
(especially transfer probabilities) have a strong energy dependence. 

We show in Fig. 2 a typical density profile of the wave packet in the calculation. 
The density integrated over the angle eRr is plotted in the R,r plane, 

(2·11) 

In the initial density shown in Fig. 2(a), the nodal structure in the 2s neutron wave 
function is seen in the r direction. The wave packet moves toward negative R 
direction. There is a Coulomb barrier around the R ~ 10 fm region. A component 
which penetrates the barrier is absorbed by the core-target potential, which represents 
the fusion reaction. The final wave packet in Fig. 2(b) consists of two parts, the 
elastic and inelastic parts, which are confined in the small r region, and the transfer 
part which is located around the R ~ r region. Both waves move in the positive R 
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442 K. Yabana 

direction. In the figure, the breakup probability is small and is not seen. 

2.3. Energy projection 

A wave packet solution includes scattering information for a certain incident 
energy region. To extract the scattering information of a fixed incident energy E, we 
first define the energy distribution function of the wave packet, 

(2 °12) 

where ii represents the total three-body Hamiltonian. Employing the Fourier trans
form of the a·function, the energy distribution function can be expressed as 

(2 °13) 

The wave function rpa(t) satisfies the Schr6dinger equation (2 °1) with the initial 
condition rpa(O)=rpa. Thus the method to solve Eq. (2°1) can again be used to obtain 
the energy distribution functions. 

Since the imaginary potential is included only in the core· target potential, a loss 
of flux in the three-body calculation represents fusion between the core and target 
nuclei. We regard the loss of flux as fusion in the three-body reaction, irrespective of 
the destination of the halo neutron. The present definition of fusion, therefore, 
includes both complete and incomplete (one neutron escaping) fusion. 

The fusion probability at energy E, PAE), is defined as the ratio of the loss of the 
energy distribution to the initial energy distribution, 

PAE) 
W(E)- WAE) 

Wi(E) (2 °14) 

where W,-ulE) are the energy distribution functions calculated with the initial (final) 
wave packets, respectively. 

We next discuss the method to extract the probabilities of the elastic, inelastic 
and transfer processes. For elastic scattering, we define the elastic distribution 
function 

(2 °15) 

where Eo is the binding energy of the neutron in the core nucleus, and rpK(R) is a 
regular Coulomb wave function with the incident wave number vector K. The 
elastic scattering probability is calculated as 

(2 °16) 

Similarly, the probabilities for the inelastic reactions can be calculated. To obtain 
the transfer probability, the transfer distribution function, 

(2 °17) 
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Low Energy Reactions of Halo Nuclei in a Three-Body Model 443 

must be calculated. Here Mr and Rr are the reduced mass and the relative coordi
nate of the motion between the core nucleus and the target nucleus with transferred 
neutron. ¢i(rnr) is the i-th bound orbital of the neutron-target system, whose binding 
energy is given by €i. The function ¢K(Rr) again represents the regular Coulomb 
wave function. The transfer probability for the i-th target orbital is calculated as 

W/r(i)(E) 
W(E) (2-18) 

We denote the inelastic and transfer probabilities summed over the orbitals as Hr(E) 
and Rnel(E), respectively. In evaluating Eq. (2 '15), two-dimensional numerical inte
gration over Rand r is necessary. For Eq. (2 -17), the three-dimensional integration 
over R, r and Bar as well as the sum over I is necessary. 

Finally, the breakup probability is calculated as the remainder: 

(2 -19) 

0.4r-----~------_r------.-------r_----_, 
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Fig. 3. (a) Energy distribution for the four wave packets with different average energies. Solid 
curves are for initial wave packets and dashed curves for final wave packets. (b) Fusion (solid) 
and transfer (dotted) probabilities calculated with the four different wave packets are compared. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/97/3/437/1839398 by guest on 20 August 2022



444 K. Yabana 

The reaction probabilities calculated in the above prescription should not depend 
on the initial wave packet. We show the comparison of the reaction probabilities 
with different initial wave packets in Fig. 3. In Fig. 3(a), the energy distribution 
functions which are calculated with four different initial wave packets with average 
energies of 8, 10, 12 and 14 MeV are shown. The solid and dashed curves are the 
energy distributions calculated with the initial and final wave packets, respectively. 
The fusion probability is calculated according to Eq. (2 ·14) and is shown by the solid 
curves in Fig. 3(b). The curves calculated with different wave packets are seen to 
overlap with good accuracy. The transfer probabilities calculated with different 
wave packets are also shown by the dashed curves in Fig. 3(b). The transfer 
probabilities show strong energy dependence, and are slightly less accurate. In 
displaying the energy dependence of the reaction probabilities below, we performed 
the calculations with four initial wave packets with average incident energies of 8, 10, 
12, 14 MeV. These values are then connected at 9, 11, 13 MeV. 

§ 3. Tightly bound projectile 

In this section, we investigate the reaction mechanisms when the neutron is bound 
rather tightly in the projectile. We set the neutron-core potential depth to -65 MeV. 
The neutron occupies the 2s orbital, whose binding energy Eo is -3.58 MeV. 

To elucidate the reaction mechanism, and in particular the role of the neutron in 
the fusion reaction, we first show reaction probabilities varying the depth of the 
neutron-target potential. The projectile incident energy is fixed at 12 MeV, which is 
close to the energy of the Coulomb barrier top. 

In Fig. 4, the reaction probabilities 
of the fusion, inelastic, transfer and 
breakup processes are plotted against 
the depth of the neutron-target potential 
VT • The fusion probability of the core
target collision without neutron is 0.37 at 
the present incident energy. The fusion 
probability exhibits oscillatory behavior 
as a function of VT • On average, the 
fusion probability is slightly larger than 
that without the neutron. The inelastic 
and transfer probabilities are the values 
summed over the single particle orbitals 
which the neutron ultimately occupies. 
In practice, only one or two orbitals of 
small binding energies are occupied by 
the neutron in the inelastic and transfer 
processes. Therefore, the Pauli exclu
sion principle, which we do not take into 
account in the present calculation, 
should not be important. The transfer 

1. 0 ,...----r----r----r----r--, 
Eo=-3.58 MeV 
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Fig. 4. Fusion (solid), inelastic (short dashed), 
transfer (long dashed) and breakup (long·short 
dashed) probabilities are shown against the 
depth of neutron·target potential. The neu· 
tron is bound tightly in the projectile before 
collision. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/97/3/437/1839398 by guest on 20 August 2022



Low Energy Reactions of Halo Nuclei in a Three-Body Model 445 

probability shows significant dependence on VT, and is correlated with the VT depen
dence of the fusion probability. The breakup probability is small and even negative 
in some region of VT • As noted in the previous section, we calculate the breakup 
probability as the remainder of the probabilities of the fusion, elastic, inelastic and 
transfer processes, which are calculated independently. Therefore, the numerical 
errors are accumulated in the breakup probability and even result in a small negative 
value. 

In the VT region of large transfer probability, the binding energy of the single 
particle orbital in the target nucleus with large transfer probability is close to that in 
the projectile. The target orbitals are the 2p state around VT = -45 MeV, and the 3s 
state around VT= -65 MeV. 

The strong influence of the single particle orbitals of the target nuclei on the 
fusion and transfer probabilities indicates the importance of the adiabatic dynamics. 
Namely, the static neutron orbitals which extend to both core and target nucleus are 
formed. The oscillation of the fusion probability in changing the neutron-target 
potential depth may be understood as follows. When the neutron-target potential has 
a bound state whose binding energy is slightly smaller than the binding energy of the 
initial neutron orbital in the projectile nucleus, the single particle energy of the initial 
neutron orbital will be pushed down by the interaction with the target potential, as 
can be understood using the two-level perturbation theory. The increase of the 
binding energy in the projectile causes an increase of the kinetic energy of the 
projectile-target relative motion, and thus results in an increase of the fusion probabil· 
ity. An opposite mechanism works when the neutron state in the target potential is 
slightly more deeply bound than the initial neutron state in the projectile. When the 
orbitals of the core and target potential are approximately degenerate, the occurrence 
of the strong mixing of the two orbitals results in a large transfer probability. 
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Fig. 5. Incident energy dependence of various reaction probabilities when (a) the transfer probability 
is small (Vr= -58 MeV) and (b) the transfer probability is large (Vr= -67 MeV). The neutron 
is bound tightly in the projectile before collision. 
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We next show the incident energy dependence of the reaction probabilities, fixing 
the neutron-target potential depth_ We choose two VT values, VT = -58 MeV in Fig. 
5(a), where the transfer probability is small, and VT = -67 MeV in Fig. 5(b), where the 
large transfer probability is seen. In both figures, the fusion and transfer probabil
ities are shown. The core-target fusion probability without neutron is also shown for 
comparison. 

Figure 5(a) indicates that the influence of the neutron on the fusion probability is 
to shift the incident energy dependence. Namely, the addition of the neutron changes 
the fusion barrier height by a constant amount. This is consistent with our picture 
of the adiabatic dynamics. Since the formation of the adiabatic neutron orbital 
depends on the relative distance between two nuclei and does not depend on the 
relative velocity, the shift of the barrier height is independent of the incident energy. 

The energy dependence is different in Fig. 5(b), where a large transfer probability 
is seen. The transfer probability here has a maximum in the incident energy slightly 
below the barrier top. The fusion probability in this case is larger than that without 
the neutron when the incident energy is low and smaller when the incident energy is 
high. Thus the fusion barrier has a strong incident energy dependence. 

The calculated energy dependence of the fusion probability resembles those 
which have been observed in subbarrier fusion enhancement phenomena. One way to 
understand the relation between the energy dependences of the transfer and fusion 
probabilities may be given by the dispersion relation of the optical potential for 
elastic scattering. Let us suppose to construct an optical potential which describes 
elastic scattering of the present three-body model. The imaginary part of the optical 
potential should have a strong absorptive component caused by the large transfer 
probability, in addition to the absorptive core-target potential. A rapid increase of 
the transfer probability causes an increase of the absorptive potential as a function of 
the incident energy. Due to the dispersion relation which connects the real and 
imaginary parts of the optical potential, the real part of the optical potential should 
also have an incident energy dependence and cause the energy dependence of the 
fusion barrier.ll) 

§ 4. Weakly bound projectile (halo nuclei) 

We choose a neutron-core potential depth of -53 MeV, in which the binding 
energy of the neutron in the projectile is small, 0.61 MeV, in the 2s orbital. The wave 
function exhibits a spatially extended halo structure. Close to this parametrization 
but with the spin-orbit interaction, we presented the B(El) distribution of IlBe nucleus 
as a function of excitation energy, and found that the measured strong B(El) strength 
is reasonably reproduced.12

) Since we exactly solve the three-body Schrodinger 
equation, our calculation includes the effect of the strong B(El) strength in the low 
excitation. 

In Fig. 6, the reaction probabilities changing the neutron-target potential depth is 
shown. The incident energy is fixed at 12 MeV, as in the previous section. The most 
significant feature is the decrease of the fusion probability by adding a halo neutron. 
The fusion probability in the three-body model is smaller than the value without the 
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neutron, 0.37, for almost all regions of 
Vr values. There is oscillatory behav
ior seen in the fusion and transfer proba
bilities. We thus suppose the adiabatic 
dynamics is still important in the weakly 
bound projectile, though the amplitude 
of the oscillation is smaller than that in 
the tightly bound case. In the present 
case, the breakup probability is also 
substantial. The energy region with 
large breakup probability correlates 
with that with large transfer probability. 

The reason for the decrease of the 
fusion probability in the case of the 
weakly bound projectile may be under
stood as follows. *l When the neutron 
orbital in the target nucleus is bound 
slightly deeper than the weakly bound 
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Fig. 6. Various reaction probabilities against the 
depth of neutron-target potential. The neu· 
tron is bound weakly in the projectile before 
collision. 

projectile orbital, the fusion probability will decrease due to the coupling between two 
orbitals, as in the case of the tightly bound projectile. However, since the neutron is 
bound very weakly, the opposite situation cannot take place. Therefore, only the 
decrease in the fusion is seen when changing Vr values. 

Another possible reason for the decrease of the fusion would be a neutron 
spectator picture, which we proposed in our previous analysis in the one-dimensional 
model.8l In the limit of the weak binding of the halo neutron, the influence of the halo 
neutron on the fusion reaction between the core and target nuclei would be negligible. 
The fusion reaction then proceeds essentially in the two-body collision of the core and 
target nuclei. However, the incident energy of the projectile is shared between the 
halo neutron and the core nucleus. Therefore, the effective incident energy of the 
core nucleus is smaller by the amount LJE= mn/(Mc + mn)Etnc. 

The shift of the incident energy in the present mechanism is about 1 MeV. The 
fusion probability at the shifted energy (11 MeV) without the neutron is about O.l. 
This fact indicates that, though the spectator mechanism of the halo neutron could 
explain the decrease of fusion probability, the neutron binding in the present model is 
not so weak that the neutron spectator picture does not work quantitatively. 

As in the tightly bound case, the transfer probability is large when there is a 
neutron orbital in the neutron-target system whose binding energy is nearly degener
ate with the initial neutron orbital in the core nucleus. Since the halo neutron is 
bound very weakly, the target bound states of approximate degeneracy are also bound 
weakly. At a slightly shallower neutron-target potential, the target neutron states 
become unbound. The large breakup probability accompanying the abrupt decrease 
of the transfer probability with decrease in the depth of the neutron-target potential 
is seen in the figure and can be understood as the transfer to the target unbound 

*l The author is grateful to one of the referees who kindly pointed out the reason explained in the present 
paragraph. 
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orbitals. For each peak of the transfer probability, the relevant neutron orbitals of 
the target nuclei are the 2p orbital at VT = -40 MeV, 3s orbital at VT = -55 MeV, and 
2d orbital at VT = -60 MeV. 

For the reaction of the halo nuclei, the role of the B(Ei) strength at low excitation 
has been studied.5

) The breakup processes by way of such excitation are also 
expected in the present calculation, including the Coulomb excitation caused by the 
core-target Coulomb potential. In the present calculation, however, the dominant 
process contributing to the breakup is the quasi-bound orbital of the target potential, 
as mentioned above. The breakup process by way of the dipole excitation of the 
projectile should not be sensitive to the target potential depth. In the calculation, the 
breakup probability is rather small in the VT region of -60 to -70 MeV. This 
indicates that the breakup process by way of the dipole excitation of the projectile is 
not an important process in the present model. 

In Figs. 7(a) ~ (c), we show the incident energy dependence of the reaction 
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Fig. 7. Incident energy dependence of various 
reaction probabilities when (a) both the trans· 
fer and breakup are small (VT = -67 MeV), (b) 
the transfer is large (VT= -60 MeV), and (c) 
both the transfer and breakup are large (VT 

= -58 MeV). The neutron is bound weakly in 
the projectile before collision. 
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probabilities. The VT value is set to -67 MeV in (a), where the transfer and breakup 
probabilities are small, to -60 MeV in (b), where the transfer probability is large but 
with small breakup, and to -58 MeV in (c), where both the transfer and breakup 
probabilities are substantial. In each figure, the core-target fusion probability 
without the neutron is shown as a reference. 

When both the transfer and breakup probabilities are small (Fig. 7(a», the energy 
dependence of the fusion probability is similar to that without neutron. The fusion 
probability is smaller by an approximately constant amount, though a slight energy 
dependence of the fusion barrier is seen. When a large transfer occurs (Fig. 7(b», the 
fusion barrier shows an energy dependence as in the tightly bound case (Fig. 5(b». 
Though the fusion probability is slightly enhanced at low incident energy, it is reduced 
near barrier and at higher incident energies. In the transfer process, the halo neutron 
is transferred to 3s and 2d target orbitals. Figure 7(c) is calculated with a slightly 
shallower VT' value than Fig. 7(b), and the 2d orbital is now unbound. The fusion 
probability is very similar to the case of Fig. 7(b). The transfer process to the 2d 
orbital in Fig. 7(b) becomes the breakup in Fig. 7(c). Comparing with the transfer 
reaction of the tightly bound case, the transfer probability extends to the lower 
incident energy in the weakly bound case. The halo wave function extends in a large 
spatial region so that the transfer process may take place even when the two nuclei 
do not come close in the low incident energy. 

§ 5. Concluding remarks 

We presented an analysis of the three-body model to investigate the reaction 
mechanisms of the low energy reactions of halo nuclei. 

We presented a method to solve the three-body scattering problem in which the 
time-dependent Schrodinger equation is solved for the incoming wave packet state. 
We then explained a way to extract reaction probabilities for a fixed incident energy 
from the final outgoing wave packet. Though the time dependent method used 
provides an intuitive view of the reaction, it requires large computer resources. We 
achieved the calculation of zero total angular momentum only. 

When the neutron is bound tightly in the projectile, the adiabatic dynamics are 
found to be important. The attractive neutron-target potential does not always 
increase the fusion probability. Instead, the neutron-target potential influences the 
fusion barrier either attractively or repulsively, depending on the relative single 
particle energies of the neutron orbitals in the core and the target nuclei around the 
Fermi level. When the neutron orbitals of the core and the target nuclei are approxi
mately degenerate, a large transfer probability is seen. The fusion barrier height 
also shows a strong energy dependence in this case. 

When the neutron is bound weakly and exhibits halo structure, the fusion proba
bility is found to decrease with the addition of the halo neutron. This may be 
understood as follows: Since the neutron is bound weakly in the projectile, the neutron 
orbital in the target nucleus is usually bound deeper than that of the projectile. 
Therefore, only the repulsive effect for the fusion barrier emerges by the coupling of 
two orbitals. As another possible reason, we also propose the neutron spectator 
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picture in which the decrease of the effective incident energy of the core nucleus 
results in a repulsive effect on the fusion barrier. 
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