
 

Low-energy scattering and effective interactions of two baryons
at m

π
∼ 450 MeV from lattice quantum chromodynamics

Marc Illa ,
1,*

Silas R. Beane ,
2
Emmanuel Chang, Zohreh Davoudi ,

3,4
William Detmold ,

5

David J. Murphy,
5
Kostas Orginos,

6,7
Assumpta Parreño ,

1
Martin J. Savage ,

8
Phiala E. Shanahan ,

5

Michael L. Wagman,
9
and Frank Winter

7

(NPLQCD Collaboration)

1
Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos,
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The interactions between two octet baryons are studied at low energies using lattice quantum

chromodynamics (LQCD) with larger-than-physical quark masses corresponding to a pion mass of

mπ ∼ 450 MeV and a kaon mass ofmK ∼ 596 MeV. The two-baryon systems that are analyzed range from

strangeness S ¼ 0 to S ¼ −4 and include the spin-singlet and triplet NN, ΣN (I ¼ 3=2), and ΞΞ states, the

spin-singlet ΣΣ (I ¼ 2) and ΞΣ (I ¼ 3=2) states, and the spin-triplet ΞN (I ¼ 0) state. The corresponding

s-wave scattering phase shifts, low-energy scattering parameters, and binding energies when applicable are

extracted using Lüscher’s formalism. While the results are consistent with most of the systems being bound

at this pion mass, the interactions in the spin-triplet ΣN and ΞΞ channels are found to be repulsive and do

not support bound states. Using results from previous studies of these systems at a larger pion mass, an

extrapolation of the binding energies to the physical point is performed and is compared with available

experimental values and phenomenological predictions. The low-energy coefficients in pionless effective

field theory (EFT) relevant for two-baryon interactions, including those responsible for SUð3Þ flavor-

symmetry breaking, are constrained. The SUð3Þ flavor symmetry is observed to hold approximately at the

chosen values of the quark masses, as well as the SUð6Þ spin-flavor symmetry, predicted at large Nc. A

remnant of an accidental SUð16Þ symmetry found previously at a larger pion mass is further observed. The

SUð6Þ-symmetric EFT constrained by these LQCD calculations is used to make predictions for two-baryon

systems for which the low-energy scattering parameters could not be determined with LQCD directly in

this study, and to constrain the coefficients of all leading SUð3Þ flavor-symmetric interactions,

demonstrating the predictive power of two-baryon EFTs matched to LQCD.

DOI: 10.1103/PhysRevD.103.054508

I. INTRODUCTION

Hyperons (Y) are expected to appear in the interior of

neutron stars [1], and unless the strong interactions between

hyperons and nucleons (N) are sufficiently repulsive, the

equation of state (EoS) of dense nuclear matter will be

softer than for purely nonstrange matter, leading to corre-

spondingly lower maximum values for neutron star masses.

While experimental data on scattering cross sections in the
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majority of the YN channels are scarce, there are reason-
ably precise constraints on the interactions in the ΛN
channel from scattering and hypernuclear spectroscopy
experiments [2,3], and they indicate that the interactions
in this channel are attractive. Given that the Λ baryon is
lighter than the other hyperons, it is likely the most
abundant hyperon in the interior of neutron stars.
However, models of the EoS including Λ baryons and
attractive ΛN interactions [4] predict a maximum neutron
star mass that is below the maximum observed mass at
2 M⊙ [5–9].

1
Several remedies have been suggested to

solve this problem, known in the literature as the “hyperon
puzzle” [11–13]. For example, if hyperons other than the Λ
baryon (such as Σ baryons) are present in the interior of
neutron stars and the interactions in the corresponding YN
and YY channels are sufficiently repulsive, the EoS would
become more stiff [14,15]. Another suggestion is that
repulsive interactions in the YNN, YYN, and YYY channels
may render the EoS stiff enough to produce a 2 M⊙ neutron
star [4,14,16–18]. Repulsive density-dependent inter-
actions in systems involving the Λ and other hyperons
have also been suggested, along with the possibility of a
phase transition to quark matter in the interior of neutron
stars; see Refs. [11–13] for recent reviews. Given the
scarcity or complete lack of experimental data on YN and
YY scattering and all three-body interactions involving
hyperons, SUð3Þ flavor symmetry is used to constrain
effective field theories (EFTs) and phenomenological
meson-exchange models of hypernuclear interactions. In
this way, quantities in channels for which experimental data
exist can be related via symmetries to those in channels
which lack such phenomenological constraints [19,20]. For
example, the lowest-order effective interactions in several
channels with strangeness S ∈ f−2;−3;−4g were con-
strained using experimental data on pp phase shifts and the
Σ
þp cross section in the same SUð3Þ representation in

the framework of chiral EFT (χEFT) in Refs. [21–23].
However, only a few of the SUð3Þ-breaking low-energy
coefficients (LECs) of the EFT could be constrained [23].

2

To date, the knowledge of these interactions in nature
remains unsatisfactory, demanding more direct theoretical
approaches.

3

Building upon our previous works [24–31], we present
further studies which constrain hypernuclear forces in
nature by direct calculations starting from the underlying
theory of the strong interactions, quantum chromodynamics
(QCD). To this end, the numerical technique of lattice QCD
(LQCD) is used to obtain information on the low-energy
spectra and scattering on two-baryon systems, which can be
used to constrain EFTs or phenomenological models of
two-baryon interactions. In recent years, LQCD has allowed
a wealth of observables in nuclear physics, from hadronic
spectra and structure to nuclear matrix elements [32–34],
to be calculated directly from interactions of quarks and
gluons, albeit with uncertainties that are yet to be fully
controlled. In the context of constraining hypernuclear
interactions, LQCD is a powerful theoretical tool because
the lowest-lying hyperons are stable when only strong
interactions are included in the computation, circumventing
the limitations faced by experiments on hyperons and
hypernuclei. Nonetheless, LQCD studies in the multibaryon
sector require large computing resources as there is an
inherent signal-to-noise degradation present in the correla-
tion functions of baryons [25,26,35–38], among other issues
as discussed in a recent review [34]. Consequently, most
studies of two-baryon systems to date [24,26–31,39–51]
have used larger-than-physical quark masses to expedite
computations, and only recently have results at the physical
values of the quark masses emerged [52–55], making it
possible to directly compare with experimental data [56].
The existing studies are primarily based on two distinct
approaches. In one approach, the low-lying spectra of two
baryons in finite spatial volumes are determined from the
time dependence of Euclidean correlation functions com-
puted with LQCD, and are then converted to scattering
amplitudes at the corresponding energies through the use of
Lüscher’s formula [57,58] or its generalizations [59–75]. In
another approach, nonlocal potentials are constructed based
on the Bethe-Salpeter wave functions determined from
LQCD correlation functions, and are subsequently used
in the Lippmann-Schwinger equation to solve for scattering
phase shifts [55,76,77]. Given that Lüscher’s formalism
is model-independent below inelastic thresholds, it is this
approach that is used in the present study as the basis to
constrain scattering amplitudes and their low-energy para-
metrizations in a number of two-(octet)baryon channels
with strangeness S ∈ f0;−1;−2;−3;−4g.
While LQCD studies at unphysical values of the quark

masses already shed light on the understanding of (hyper)

nuclear and dense-matter physics, a full account of all

systematic uncertainties, including precise extrapolations to

the physical quark mass, is required to further impact

phenomenology. Additionally, LQCD results for scattering

amplitudes can be used to better constrain the low-energy

interactions within given phenomenological models and

applicable EFTs. In the case of exact SUð3Þ flavor

symmetry and including only the lowest-lying octet bary-

ons, there are six two-baryon interactions at leading order

(LO) in pionless EFT [78,79] that can be constrained by the

1
Very recently, the gravitational wave signal GW190814,

originated from the merger of a 23 M⊙ black hole and a
2.6 M⊙ compact object, was reported [10], where the nature
of the compact object is a subject of discussion. If this compact
object was a neutron star, it would have been the most massive
one known, imposing a mass-limit constraint very difficult to
fulfill for the majority of existing nuclear EoS models.

2
Note that SUð3Þf χEFT is less convergent than for two

flavors.
3
Other observational means to constrain these interactions,

such as radius measurements of neutron stars, their thermal and
structural evolution, and the emission of gravitational waves in
hot and rapidly rotating newly born neutron stars, can be used to
indirectly probe the strangeness content of dense matter and
provide complementary constraints on models of hypernuclear
interactions [11].
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s-wave scattering lengths in two-baryon scattering [80].

LQCD has been used in Ref. [31] to constrain the corre-

sponding LECs of these interactions by computing the

s-wave scattering parameters of two baryons at an SUð3Þ
flavor-symmetric point withmπ ∼ 806 MeV. Strikingly, the

first evidence of a long-predicted SUð6Þ spin-flavor sym-

metry in nuclear and hypernuclear interactions in the limit of

a large number of colors (Nc) [81]was observed in that study,

along with an accidental SUð16Þ symmetry. This extended

symmetry has been suggested in Ref. [82] to support the

conjecture of entanglement suppression in nuclear and

hypernuclear forces at low energies, pointing to intriguing

aspects of strong interactions in nature.
The objective of this paper is to extend our previous

study to quark masses that are closer to their physical
values, corresponding to a pion mass of ∼450 MeV and a
kaon mass of ∼596 MeV, and further to study these
systems in a setting with broken SUð3Þ flavor symmetry
as is the case in nature. The present study provides
new constraints that allow preliminary extrapolations to
physical quark masses to be performed, and complements
previous independent LQCD studies at nearby quark
masses [24,26–29,39,42,45,46,83,84]. In particular, pre-
dictions for the binding energies of ground states in a
number of YN and YY channels based on the results of the
current work and those of Ref. [31] at larger quark masses
are consistent with experiments and phenomenological
results where they exist. Our LQCD results are used to
constrain the leading SUð3Þ symmetry-breaking coeffi-
cients in pionless EFT. This EFT matching enables the
exploration of large-Nc predictions, pointing to the validity
of SUð6Þ spin-flavor symmetry at this pion mass as well,
and revealing a remnant of an accidental SUð16Þ symmetry
that was observed at a larger pion mass in Ref. [31].
Strategies to make use of the QCD-constrained EFTs to
advance the ab initio many-body studies of larger hyper-
nuclear isotopes and dense nuclear matter are beyond the
scope of this work. Nevertheless, the methods applied in
Refs. [85–87] to connect the results of LQCD calculations
to higher-mass nuclei can also be applied in the hyper-
nuclear sector using the results presented in this work.
This paper is organized as follows. Section II presents a

summary of the computational details (Sec. II A), followed
by the results for the lowest-lying energies of two-baryon
systems from LQCD correlation functions, along with a
description of the method used to obtain these spectra
(Sec. II B), a determination of the s-wave scattering
parameters in the two-baryon channels that are studied,
along with the formalism used to extract the scattering
amplitude (Sec. II C), and finally the binding energies of
the bound states that are identified in various channels,
including an extrapolation to the physical point (Sec. II D).
Section III discusses the constraints that these results
impose on the low-energy coefficients of the next-to-
leading order (NLO) pionless EFT Lagrangian, including
some of the SUð3Þ flavor-symmetry breaking terms
(Sec. III A). This is followed by a discussion of the

predictions for the values of the coefficients that appear, in
the limit of large Nc, in the SUð6Þ spin-flavor Lagrangian at
LO (Sec. III B). The main results of this work are summa-
rized in Sec. IV. In addition, several appendixes are presented
to supplement the conclusions of this study. Appendix A
contains an analysis of our results in view of the consistency
checks of Refs. [88,89], demonstrating that the checks are
unambiguously passed. Appendix B presents an exhaustive
comparison between the results obtained in this work and
previous results presented in Ref. [42] for the two-nucleon
channels using the sameLQCDcorrelation functions, aswell
as with the predictions of the low-energy theorems analyzed
in Ref. [90]. Appendix C includes relations among the LECs
of the three-flavor EFT Lagrangian of Ref. [20] and the ones
used in the present work, as well as a recipe to access the full
set of leading symmetry-breaking coefficients from future
studies of a more complete set of two-baryon systems. Last,
AppendixD contains figures and tables that are omitted from
the main body of the paper for clarity of presentation.

II. LOWEST-LYING ENERGIES AND

LOW-ENERGY SCATTERING PARAMETERS

A. Details of the LQCD computation

This work continues, revisits, and expands upon the

study of Ref. [42]. In particular, the same ensembles of

QCD gauge-field configurations that were used in Ref. [42]

to constrain the low-lying spectra and scattering amplitudes

of spin-singlet and spin-triplet two-nucleon systems at a

pion mass of ∼450 MeV are used here. The same con-

figurations have also been used to study properties of

baryons and light nuclei at this pion mass, including the rate

of the radiative capture process np → dγ [91], the response
of two-nucleon systems to large magnetic fields [92], the

magnetic moments of octet baryons [93], the gluonic

structure of light nuclei [94], and the gluon gravitational

form factors of hadrons [95–97]. For completeness, a short

summary of the technical details is presented here and a

more detailed discussion can be found in Ref. [42].

The LQCD calculations are performed with nf ¼ 2þ 1

quark flavors, with the Lüscher-Weisz gauge action [98]

and a clover-improved quark action [99] with one level of

stout smearing (ρ ¼ 0.125) [100]. The lattice spacing is

b ¼ 0.1167ð16Þ fm [101]. The strange quark mass is tuned

to its physical value, while the degenerate light (up and

down)-quark masses produce a pion of mass mπ ¼
450ð5Þ MeV and a kaon of mass mK ¼ 596ð6Þ MeV.

Ensembles at these parameters with three different volumes

are used. Using the two smallest volumes with dimensions

243 × 64 and 323 × 96, two different sets of correlation

functions are produced, with sink interpolating operators

that are either pointlike or smeared with 80 steps of a

gauge-invariant Gaussian profile with parameter ρ ¼ 3.5 at

the quark level. In both cases, the source interpolating

operators are smeared with the same parameters. These two

types of correlation functions are labeled SP and SS,
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respectively. For the largest ensemble with dimensions

483 × 96, only SP correlation functions are produced for

computational expediency. Table I summarizes the param-

eters of these ensembles.

Correlation functions are constructed by forming baryon

blocks at the sink [102],

B
ijk
B ðp; τ; x0Þ ¼

X

x

eip·xS
ðf1Þ;i0
i ðx; τ; x0Þ

× S
ðf2Þ;j0
j ðx; τ; x0ÞSðf3Þ;k

0

k ðx; τ; x0ÞwB
i0j0k0 ; ð1Þ

where S
ðfÞ;n0
n is a quark propagator with flavor f ∈ fu; d; sg

and with combined spin-color indices n; n0 ∈
f1;…; NsNcg, where Ns ¼ 4 is the number of spin

components and Nc ¼ 3 is the number of colors. The

weights wB
i0j0k0 are tensors that antisymmetrize and collect

the terms needed to have the quantum numbers of the

baryons B ∈ fN;Λ;Σ;Ξg. The interpolating operators for

the single-baryon systems studied in this work are local,

i.e., include no covariant derivatives. Explicitly,

N̂μ1μ2μ3
ðxÞ ¼ ϵabc

1
ffiffiffi

2
p ½uaμ1ðxÞdbμ2ðxÞ − daμ1ðxÞubμ2ðxÞ�ucμ3ðxÞ;

Λ̂μ1μ2μ3
ðxÞ ¼ ϵabc

1
ffiffiffi

2
p ½uaμ1ðxÞdbμ2ðxÞ − daμ1ðxÞubμ2ðxÞ�scμ3ðxÞ;

Σ̂μ1μ2μ3
ðxÞ ¼ ϵabcuaμ1ðxÞubμ2ðxÞscμ3ðxÞ;

Ξ̂μ1μ2μ3
ðxÞ ¼ ϵabcsaμ1ðxÞsbμ2ðxÞucμ3ðxÞ; ð2Þ

where μi denote spin indices and a, b, c denote color indices
[103]. Only the upper-spin components in the Dirac spinor

basis are used, requiring only specific μi indices: p↑ðxÞ ¼
N̂121ðxÞ, Λ↑ðxÞ ¼ Λ̂121, Σ

þ
↑ ðxÞ ¼

ffiffi

2
3

q

½Σ̂112ðxÞ − Σ̂121ðxÞ�,

and Ξ
0
↑ðxÞ ¼

ffiffi

2
3

q

½Ξ̂112ðxÞ − Ξ̂121ðxÞ�. The neutron, Σ
−,

and Ξ− operators are obtained by simply interchanging u ↔
d in the expressions above. The sum over the sink position x

in Eq. (1) projects the baryon blocks to well-defined three-

momentum p. In particular, two-baryon correlation functions

were generated with total momentum P ¼ p1 þ p2, where pi
is the three-momentum of the ith baryon taking the values

pi ¼ 2π
L
n with n ∈ fð0; 0; 0Þ; ð0; 0;�1Þg. Therefore, P ¼

2π
L
d, with d ∈ fð0; 0; 0Þ; ð0; 0;�2Þg.4 Additionally, two

baryon correlation functions with back-to-back momenta

were generated at the sink, with momenta p1 ¼ −p2 ¼
2π
L
n. This latter choice provides interpolating operators for

the two-baryon system that primarily overlap with states that

are unbound in the infinite-volume limit, providing a con-

venient means to identify excited states as well. The con-

struction of the correlation functions continues by forming a

fully antisymmetrized local quark-level wave function at the

location of the source, with quantum numbers of the two-

baryon system of interest. Appropriate indices from the

baryon blocks at the sink are then contracted with those at

the source, in a way that is dictated by the quark-level wave

function; see Refs. [30,102] for more detail. The contraction

codes used to produce the correlation functions in this study

are the same as those used to perform the contractions for the

larger class of interpolating operators used in our previous

studies of the SUð3Þ flavor-symmetric spectra of nuclei

and hypernuclei up to A ¼ 5 [30], and two-baryon scattering

[31,41,42].
5

In this study, correlation functions for nine different two-

baryon systems have been computed, ranging from strange-

ness S ¼ 0 to −4. Using the notation ð2sþ1LJ; IÞ, where
s is the total spin, L is the orbital momentum, J is the

total angular momentum, and I is the isospin, the

systems are

S ¼ 0∶ NNð1S0; I ¼ 1Þ; NNð3S1; I ¼ 0Þ;

S ¼ −1∶ ΣN

�

1S0; I ¼
3

2

�

; ΣN

�

3S1; I ¼
3

2

�

;

S ¼ −2∶ ΣΣð1S0; I ¼ 2Þ; ΞNð3S1; I ¼ 0Þ;

S ¼ −3∶ ΞΣ

�

1S0; I ¼
3

2

�

;

S ¼ −4∶ ΞΞð1S0; I ¼ 1Þ; ΞΞð3S1; I ¼ 0Þ:

TABLE I. Parameters of the gauge-field ensembles used in this work. L and T are the spatial and temporal

dimensions of the hypercubic lattice, β is related to the strong coupling, b is the lattice spacing,mlðsÞ is the bare light
(strange) quark mass, Ncfg is the number of configurations used, and Nsrc is the total number of sources computed.

For more details, see Ref. [42].

L3 × T β bml bms b [fm] L [fm] T [fm] mπL mπT Ncfg Nsrc

243 × 64 6.1 −0.2800 −0.2450 0.1167(16) 2.8 7.5 6.4 17.0 4407 1.16 × 106

323 × 96 6.1 −0.2800 −0.2450 0.1167(16) 3.7 11.2 8.5 25.5 4142 3.95 × 105

483 × 96 6.1 −0.2800 −0.2450 0.1167(16) 5.6 11.2 12.8 25.5 1047 6.8 × 104

4
For the rest of the paper, d ¼ ð0; 0;�2Þ will be denoted as

d ¼ ð0; 0; 2Þ for brevity.
5
The same code was generalized to enable studies of np → dγ

[91], proton-proton fusion [104], and other electroweak proc-
esses, as reviewed in Ref. [34].
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Under strong interactions, these channels do not mix with

other two-baryon channels or other hadronic states below

three-particle inelastic thresholds. In the limit of exact

SUð3Þ flavor symmetry, the states belong to irreducible

representations (irreps) of SUð3Þ: 27 (all the singlet states),
10 (tripletNN), 10 (triplet ΣN and ΞΞ), and 8a (triplet ΞN).

In the rest of this work, the isospin label will be dropped for

simplicity.

B. Low-lying finite-volume spectra of two baryons

The two-point correlation functions constructed in the

previous section have spectral representations in Euclidean

spacetime. Explicitly, the correlation function C
Ô;Ô0ðτ; dÞ

formed using the source (sink) interpolating operators Ô

(Ô0) can be written as

C
Ô;Ô0ðτ; dÞ ¼

X

x

e2πid·x=LhÔ0ðx; τÞÔ†ð0; 0Þi

¼
X

i

Z0
iZ

�
i e

−EðiÞτ; ð3Þ

where all quantities are expressed in lattice units. EðiÞ

is the energy of the ith eigenstate jEðiÞi, Zi (Z0
i) is an

overlap factor defined as Zi ¼
ffiffiffiffi

V
p

h0jÔð0;0ÞjEðiÞi (Z0
i ¼

ffiffiffiffi

V
p

h0jÔ0ð0; 0ÞjEðiÞi), and V ¼ L3. The boost-vector

dependence of the energies, states, and overlap factors is

implicit. The lowest-lying energies of the one- and two-

baryon systems required for the subsequent analyses can be

extracted by fitting the correlation functions to this form. To

reliably discern the first few exponents given the discrete τ

values and the finite statistical precision of the computations

is a challenging task. In particular, a well-known problem in

the study of baryons with LQCD is the exponential degra-

dation of the signal-to-noise ratio in the correlation function

as the source-sink separation time increases—an issue that

worsens as the masses of the light quarks approach their

physical values. First highlighted by Parisi [35] and Lepage

[36], and studied in detail for light nuclei in Refs. [25,26], it

was later shown that this problem is related to the behavior of

the complex phase of the correlation functions [38,105].

Another problem that complicates the study of multibaryon

systems is the small excitation gaps in the finite-volume

spectrum that lead to significant excited-state contributions

to correlation functions. To overcome these issues, sophis-

ticated methods have been developed to analyze the corre-

lation functions, such as Matrix Prony [37] and the

generalized pencil-of-function [106] techniques, as well as

signal-to-noise optimization techniques [107]. Ultimately, a

large set of single- and multibaryon interpolating operators

with the desired quantum numbers must be constructed to

provide a reliable variational basis to isolate the lowest-lying

energy eigenvalues via solving a generalized eigenvalue

problem [108], as is done in the mesonic sector [75]. Such an

approach is not yet widely applied to the study of two-baryon

correlation functions, given its computational-resource

requirement, but progress is being made. In Ref. [50], a

partial set of two-baryon scattering interpolating operators

were used to study the two-nucleon andH-dibaryon channels

with results that generally disagreed with previous works

[27,30,49]. Investigations continue to understand and resolve

the observed discrepancies [31,33,34,88,109–111]. For the

present study, in which only up to two types of interpolating

operators were computed, no variational analysis could be

performed. Instead, we have developed a robust automated

fitting methodology to sample and combine fit range and

model selection choices for uncertainty quantification.

Given that the correlation functions are only evaluated at

a finite number of times and with finite precision, to fit

Eq. (3) the spectral representation is truncated to a relatively

small number of exponentials and fitted in a time range

fτmin; τmaxg, where τmax is set by a threshold value deter-

mined by examining the signal-to-noise ratio, and τmin is

chosen to take values in the interval ½2; τmax − τplateau�. Here,
τplateau ¼ 5 is chosen to be the minimum length of the fitting

window (numbers are expressed in units of the lattice

spacing). A scan over all possible fitting windows is treated

as a means to quantify the associated systematic uncertainty.

With a fixed window, a correlated χ2-function is minimized

to obtain the fit parametersZ0
iZ

�
i andEi for i ∈ f0; 1;…; eg,

where eþ 1 is the number of exponentials in a given fit form.

Variable projection techniques [112,113] are used to obtain

the value of the overlap factors for a given energy, since they

appear linearly in C
Ô;Ô0ðτ; dÞ. Furthermore, given the finite

statistical sampling of correlation functions, shrinkage tech-

niques [114] are used to better estimate the covariance

matrix. The number of excited states included in the fit is

decided via the Akaike information criterion [115]. The

confidence intervals of the parameters are estimated via

the bootstrap resampling method. For a fit to be included in

the set of accepted fits (later used to extract the fit parameters

and assess the resulting uncertainties), several checks must

be passed, including χ2=Ndof being smaller than 2, and

different optimization algorithms leading to consistent

results for the parameters (within a tolerance)—see

Ref. [116] for further details on this and other checks. The

accepted fits are then combined to give the final result for the

mean value of the energy,

E ¼
X

f

ωfEf; ð4Þ

with weights ωf that are chosen to be the following

combination of the p-value, pf, and the uncertainty of each

fit, δEf,

ωf ¼
pf=δE

2
f

P

f0pf0=δE
2
f0
; ð5Þ
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see Ref. [117] for a Bayesian framework. Here, the indices f,
f0 run over all the accepted fits. The statistical uncertainty is
defined as that of the fit with the highest weight, while the

systematic uncertainty is defined as the average difference

between the weighted mean value and each of the accepted

fits:

δEstat¼ δEf∶max½fwfg�; δEsys ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

f

wfðEf−EÞ2
s

: ð6Þ

It should be noted that instead of fitting to the correlation

function, the effective energy function can be employed,

derived from the logarithmof the ratio of correlation functions

at displaced times,

C
Ô;Ô0ðτ; d; τJÞ ¼

1

τJ
log

�

C
Ô;Ô0ðτ; dÞ

C
Ô;Ô0ðτ þ τJ; dÞ

�

!τ→∞
Eð0Þ; ð7Þ

where τJ is a nonzero integer that is introduced to improve the

extraction of Eð0Þ (for a detailed study, see Ref. [37]).

Consistent results are obtained when either correlation

functions or the effective energy functions are used as input.
In order to identify the shift in the finite-volume energies

of two baryons compared with noninteracting baryons, the

following ratio of two-baryon and single-baryon correla-

tion functions can be formed:

RB1B2
ðτ; dÞ ¼

C
ÔB1B2

;Ô0
B1B2

ðτ; dÞ
C
ÔB1

;Ô0
B1

ðτ; dÞC
ÔB2

;Ô0
B2

ðτ; dÞ ; ð8Þ

with an associated effective energy-shift function,

RB1B2
ðτ; d; τJÞ ¼

1

τJ
log

�

RB1B2
ðτ; dÞ

RB1B2
ðτ þ τJ; dÞ

�

: ð9Þ

Constant fits to ratios of correlation functions can be used

to obtain energy shifts ΔEð0Þ ¼ Eð0Þ −m1 −m2 (where m1

and m2 are the masses of baryons B1 and B2, respectively),

requiring time ranges such that both the two-baryon and the

single-baryon correlation functions are described by a

single-state fit. However, if both correlation functions are

not in their ground states, cancellations may occur between

excited states (including the finite-volume states that would

correspond to elastic scattering states in the infinite

volume), either in correlation function or in ratios of

correlation functions, producing a “mirage plateau” [88].

Despite this issue, as demonstrated in Ref. [109], our

previous results, such as those in Refs. [30,31] are argued to

be free of this potential issue (similar discussions can be

found in Ref. [111]). To determine ΔEð0Þ in this work, the

two-baryon and single-baryon correlation functions are fit

to multiexponential forms (which account for excited

states) within the same fitting range, and afterwards the

energy shifts are computed at the bootstrap level, in such a

way that the correlations between the different correlation

functions are taken into account. The use of correlated

differences of multistate fit results is convenient, in

particular for automated fit range sampling, since the

number of excited states can be varied independently for

one- and two-baryon correlation functions, unlike fits to the

ratio in Eq. (8). Consistent results were obtained via fitting

the ratio in Eq. (8) in the allowed time regions.
The effective mass plots (EMPs) for the single-baryon

correlation functions, and for each of the ensembles

studied in the present work, are displayed in Fig. 22 of

Appendix D. The bands shown in the figures indicate the

baryon mass which results from the fitting strategy

explained above, with the statistical and systematic uncer-

tainties included, and the corresponding numerical values

listed in Table II. The table also shows the baryon masses

extrapolated to infinite volume, obtained by fitting the

masses in the three different volumes to the following form:

M
ðVÞ
B ðmπLÞ ¼ M

ð∞Þ
B þ cB

e−mπL

mπL
; ð10Þ

where M
ð∞Þ
B and cB are the two fit parameters. This form

incorporates LO volume corrections to the baryon masses in

heavy-baryon chiral perturbation theory (HBχPT) [118]. As

is evident from themπL values listed in Table I, the volumes

used are large enough to ensure small volume dependence in

the single-baryon masses.
6
This is supported by the obser-

vation that the value M
ð∞Þ
B obtained for each baryon is

compatible with all the finite-volume results M
ðVÞ
B . In

physical units, MN ∼ 1226 MeV, MΛ ∼ 1313 MeV, MΣ ∼

1346 MeV, andMΞ ∼ 1414 MeV.While theΛ baryon is not

relevant to subsequent analysis of the two-baryon systems

studied in this work, the centroid of the four octet-baryon

masses is used to define appropriate units for the EFT LECs;

hence MΛ is reported for completeness.

The results for the two-baryon energy shifts are shown in

Fig. 1.
7
For display purposes, the effective energy-shift

functions, defined in Eq. (9), are shown in Figs. 23–31 of

Appendix D, along with the corresponding two-baryon

effective-energy functions, defined in Eq. (7). The asso-

ciated numerical values are listed in Tables XVII–XXVof

the same appendix.
8
In each subfigure of Figs. 23–31, two

correlation functions are displayed: the one yielding the

6
For the smallest volume e−mπL=mπL ∼ 10−4 and cB are of

Oð1Þ but consistent with zero within uncertainties, e.g., for the
nucleon, cB ¼ 3ð4Þð7Þ l:u:

7
The channels within the figures/tables are sorted according to

the SUð3Þ irrep they belong to in the limit of exact flavor

symmetry, ordered as 27, 10, 10, and 8a, and within each irrep
according to their strangeness, from the largest to the smallest.

8
Future studies with a range of values of the lattice spacing will

be needed to extrapolate the results of two-baryon studies to the
continuum limit. Nonetheless, the use of an improved lattice
action in this study suggests that the discretization effects may be
mild, and the associated systematic uncertainty, which has not
been reported in the values in this paper, may not be significant at
the present level of precision.
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lowest energy (labeled as n ¼ 1 in Tables XVII–XXV)

corresponds to having both baryons at rest or, if boosted,

with the same value of the momentum, and the one yielding

a higher energy (labeled as n ¼ 2 in the tables) corresponds

to the two baryons having different momenta, e.g., having

back-to-back momenta or one baryon at rest and the other

with nonzero momentum. While the first case (n ¼ 1)

couples primarily to the ground state, the latter (n ¼ 2) is

TABLE II. The values of the masses of the octet baryons. The first uncertainty is statistical, while the second is

systematic. Quantities are expressed in lattice units (l.u.).

Ensemble MN [l.u.] MΛ [l.u.] MΣ [l.u.] MΞ [l.u.]

243 × 64 0.7261(08)(15) 0.7766(07)(13) 0.7959(07)(10) 0.8364(07)(08)

323 × 96 0.7258(05)(08) 0.7765(05)(06) 0.7963(05)(06) 0.8362(05)(05)

483 × 96 0.7250(06)(12) 0.7761(05)(09) 0.7955(06)(07) 0.8359(08)(08)

∞ 0.7253(04)(08) 0.7763(04)(06) 0.7959(04)(05) 0.8360(05)(05)

FIG. 1. Summary of the energy shifts extracted from LQCD correlation functions for all two-baryon systems studied in this work,

together with the noninteracting energy shifts defined as ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1 þ jp1j2

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
2 þ jp2j2

p

−m1 −m2, where jp1j2 ¼ jp2j2 ¼ 0

corresponds to systems that are at rest (continuous line), jp1j2 ¼ jp2j2 ¼ ð2π
L
Þ2 corresponds to systems which are either boosted or are

unboosted but have back-to-back momenta (dashed line), and jp1j2 ¼ 0 and jp2j2 ¼ ð4π
L
Þ2 correspond to boosted systems where only one

baryon has nonzero momentum (dash-dotted line). The points with no boost have been shifted slightly to the left, and the ones with

boosts have been shifted to the right for clarity. Quantities are expressed in lattice units.
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found to have a small overlap onto the ground state and

gives access to the first excited state directly.

As a final remark, it should be noted that the single-

baryon masses and the energies extracted for the two-

nucleon states within the present analysis are consistent

within 1σ with the results of Ref. [42], obtained with the

same set of data but using different fitting strategies.

Despite this overall consistency, the uncertainties of the

two-nucleon energies in the present work are generally

larger compared with those reported in Ref. [42] for the

channels where results are available in that work. The

reason lies in a slightly more conservative systematic

uncertainty analysis employed here. The comparison

between the results of this work and that of Ref. [42] is

discussed extensively in Appendix B.

C. Low-energy scattering phase shifts

and effective-range parameters

Below three-particle inelastic thresholds, Lüscher’s

quantization condition [57,58] provides a means to extract

the infinite-volume two-baryon scattering amplitudes from

the energy eigenvalues of two-baryon systems obtained

from LQCD calculations, e.g., those presented in Sec. II B.

This condition holds if the range of interactions is smaller

than (half of) the spatial extent of the cubic volume, L, and

the corrections to this condition scale as e−mπL for the two-

baryon systems. Such corrections are expected to be small

in the present work given the mπL values in Table I. The

quantization conditions are those used in Refs. [31,42]: in

the case of spin-singlet states, only the s-wave limit of the

full quantization condition is considered. For coupled 3S1 −
3D1 states, in which the Blatt-Biedenharn parametrization

[119] of the scattering matrix can be used, only the α-wave

approximation of the quantization condition is considered

[74]. In both cases, and with denoting the (s-wave or α-

wave) phase shift by δ, the condition can be written as [63]

k� cot δ ¼ 4πcd00ðk�2;LÞ; ð11Þ

where k� is the center-of-mass (c.m.) relative momentum of

each baryon, d is the total c.m. momentum in units of

2π=L, and cdlm is a kinematic function related to Lüscher’s

Z-function, Zd
lm:

cdlmðk�2;LÞ ¼
ffiffiffiffiffiffi

4π
p

γL3

�

2π

L

�

l−2

Zd
lm½1; ðk�L=2πÞ2�; ð12Þ

with γ ¼ E=E� being the relativistic gamma factor. Here, E
and E� are the energies of the system in the laboratory and

c.m. frames, respectively. The three-dimensional zeta-

function is defined as

Zd
lm½s; x2� ¼

X

n

jrjlYlmðrÞ
ðr2 − x2Þs ; ð13Þ

where r ¼ γ̂−1ðn − αdÞ and α ¼ 1
2
½1þ ðm2

1 −m2
2Þ=E�2�,9

with m1 and m2 being the masses of the two baryons. The

factor γ̂−1 acting on a vector u modifies the parallel

componentwith respect to d, while leaving the perpendicular

component invariant, i.e., γ̂−1u ¼ γ−1uk þ u⊥. Convenient

expressions have beenderived to exponentially accelerate the

numerical evaluation of the function in Eq. (13) [64,120–

122], and the following expression is used in the present

analysis:

Zd
00½1;x2�¼−γπex

2þ ex
2

ffiffiffiffiffiffi

4π
p

X

n

e−jrj
2

jrj2−x2

þγ
π

2

Z

1

0

dt
etx

2

t3=2

�

X

m≠0

cosð2παm ·dÞe−π2 jγ̂mj2
t þ2tx2

�

:

ð14Þ

The values of k� cot δ at given k�2 values are shown for

all two-baryon systems in Fig. 2, and the associated

numerical values are listed in Tables XVII–XXV of

Appendix D. The validity of Lüscher’s quantization con-

dition must be verified in each channel, in particular in

those that have exhibited anomalously large ranges, such as

ΣNð3S1Þ, in previous calculations. The consistency

between solutions to Lüscher’s condition and the finite-

volume Hamiltonian eigenvalue equation using a LO EFT

potential was established in Ref. [29] for the ΣNð3S1Þ
channel and at values of the quark masses (mπ ∼ 389 MeV)

close to those of the current analysis. The conclusion of

Ref. [29], therefore, justifies the use of Lüscher’s quanti-

zation condition in the current work for this channel.

The energy dependence of k� cot δ can be parametrized

by an effective range expansion (ERE) below the t-channel
cut [123–125],

10

k� cot δ ¼ −
1

a
þ 1

2
rk�2 þ Pk�4 þOðk�6Þ; ð15Þ

where a is the scattering length, r is the effective range, and
P is the leading shape parameter. These parameters can be

constrained by fitting k� cot δ values obtained from the use

of Lüscher’s quantization condition as a function of k�2. To
this end, one could use a one-dimensional choice of the χ2

function, minimizing the vertical distance between the

fitted point and the function,

χ2ða−1; r; PÞ ¼
X

i

½ðk� cot δÞi − fða−1; r; P; k�2i Þ�2
σ2i

; ð16Þ

9
Here α should not be confused with α-wave mentioned above.
10
Since the pion is the lightest hadron that can be exchanged

between any of the two baryons considered in the present study,
k�t-cut ¼ mπ=2.
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where
11

fða−1; r; P; k�2Þ corresponds to the ERE para-

metrization given by the right-hand side of Eq. (15), and the

sum runs over all extracted pairs of fk�2i ; ðk� cot δÞig, where
the compound index i counts data points for different

boosts, n values of the level, and different volumes. Each

contribution is weighted by an effective variance that

results from the combination of the uncertainty in both

k�2i and ðk� cot δÞi, σ2i ¼ ½δðk� cot δÞi�2 þ ½δk�2i �2, with δx
being the mid-68% confidence interval of the quantity x.

The uncertainty on the fk�2i ; ðk� cot δÞig pair can be under-

stood by recalling that each pair is a member of a bootstrap
ensemble with the distribution obtained in the previous step

of the analysis. To generate the distribution of the scattering

parameters, pairs of fk�2i ; ðk� cot δÞig are randomly selected

from each bootstrap ensemble and are used in Eq. (16) to

obtain a new set of fa−1; r; Pg parameters. This procedure

is repeated N times, where N is chosen to be equal to the

number of bootstrap ensembles for fk�2i ; ðk� cot δÞig. This
produces an ensemble of N values of fit parameters

FIG. 2. k� cot δ values as a function of the squared c.m. momentum k�2 for all two-baryon systems studied in this work. The darker

uncertainty bands are statistical, while the lighter bands show the statistical and systematic uncertainties combined in quadrature. The

kinematic functions cdlmðk�2;LÞ, given by Eq. (12), are also shown as continuous and dashed lines. Quantities are expressed in

lattice units.

11
The inverse scattering length can be constrained far more

precisely compared with the scattering length itself given that a−1

samples can cross zero in the channels considered. As a result, in
the following all dependencies on a enter via a−1.

LOW-ENERGY SCATTERING AND EFFECTIVE INTERACTIONS … PHYS. REV. D 103, 054508 (2021)

054508-9



fa−1; r; Pg, from which the central value and the associated

uncertainty in the parameters can be determined (median

and mid-68% intervals are used for this purpose).

Alternatively, one can use a two-dimensional choice of

the χ2 function.
12

Knowing that k� cot δ values must lie

along the Z-function, as can be seen from Eq. (11) and

Fig. 2, one could take the distance between the data point

and the point where the ERE crosses the Z-function along

this function (arc length) in the definition of χ2. Explicitly,

χ2ða−1; r; PÞ

¼
X

i

DZ ½fk�2i ; ðk� cot δÞig; fK�2
i ; fða−1; r; P; K�2

i Þg�2
σ2i

;

ð17Þ

where σ2i is now defined as

σ2i ¼ ½δðk� cot δÞi�2 þ
�

∂ðk� cot δÞi
∂k�2

�

�

�

�

k�2¼k�2
i

�

2

½δk�2i �2; ð18Þ

and DZ½fx1; y1g; fx2; y2g� denotes the distance between

the two points fx1; y1g and fx2; y2g along the Z-function.

The quantity K�2 is the point where the ERE [f in Eq. (17)]

crosses the Z-function. To obtain this point, and given the

large number of discontinuities present in the Z-function,

Householder’s third order method can be used as a reliable

root-finding algorithm [126]:

4πcd00ðK�2; LÞ − fða−1; r; P; K�2Þ≡ FðK�2Þ ¼ 0∶

K�2
mþ1 ¼ K�2

m þ 3
ð1=FÞ00
ð1=FÞ000

�

�

�

�

K�2
m

; ð19Þ

where the starting point is set to be K�2
0 ¼ k�2i and the

number of primes over 1=F indicates the order of the

derivative computed at the point K�2
m . The stopping cri-

terion is defined as jK�2
mþ1 − K�2

m j < 10−6, which occurs for

m ∼Oð10Þ. Since the extraction of this point requires

knowledge of scattering parameters, the minimization must

be implemented iteratively. This second choice of the χ2

function has been used in the main analysis of this work;

however, the use of the one-dimensional χ2 function is

shown to yield statistically consistent results (within 1σ) for

scattering parameters, as demonstrated in Appendix B.

For a precise extraction of the ERE parameters, a

sufficient number of points below the t-channel cut must

be available, for positive or negative k�2. In general, for the
channels studied throughout this work, there are only a few

points in the positive k�2 region below the t-channel cut

(starting at k�2t-cut ∼ 0.018 l:u:). For a noninteracting system,

states above the scattering threshold have c.m. energies
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1 þ k�2

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
2 þ k�2

p

, with the c.m. momenta roughly

scaling with the volume as k�2 ∼ ð2πjnj=LÞ2. With the

minimum value of jnj2 used in this work (jnj2 ¼ 1), only

the states from the ensemble with L ¼ 48 are expected to

lie below the t-channel cut (4π2=482 < k�2t-cut). This behav-
ior is consistent with the data. Comparing with the results

of the analysis at mπ ∼ 806 MeV in Ref. [31], where lattice

configurations of comparable size (in lattice units) were

used, the larger value of the pion mass resulted in the

position of the t-channel cut being moved further away

from zero, and the majority of the lowest-lying states

extracted in that study remained inside the region where the

ERE parametrization could be used. Therefore, with only

ground-state energies available for the analysis of the ERE

in the ensembles with L ∈ f24; 32g, the precision in the

extraction of scattering parameters is noticeably reduced

compared with the study at mπ ∼ 806 MeV in Ref. [31].

Inclusion of the shape parameter, P, does not improve the

fits, and although the scattering lengths remain consistent

with those obtained with a two-parameter fit, the effective

ranges are larger in magnitude, and the uncertainties in the

scattering parameters are increased. Moreover, the central

values of the extracted shape parameters are rather large,

bringing into question the assumption that the contribution

of each order in the ERE should be smaller than the

previous order. However, uncertainties on the shape param-

eters are sufficiently large that no conclusive statement can

be made regarding the convergence of EREs. In one case,

i.e., the ΣNð1S0Þ channel, the three-parameter ERE fit is not

performed given the large uncertainties. For these reasons,

while the scattering parameters are reported for both the

two- and three-parameter fits in this section, only those of

the two-parameter fits will be used in the EFT study in the

next section.

Fits to k� cot δ as a function of k�2 in various two-baryon
channels are shown in Fig. 3, along with the correlation

between the inverse scattering length and the effective

range in each channel depicted in Fig. 4 using the 68% and

95% confidence regions of the parameters. The areas in the

parameter space that are prohibited by the constraints

imposed by Eq. (11) are also shown in Fig. 4, highlighting

the fact that the two-parameter ERE must cross the Z-

functions for each volume in the negative-k�2 region. For

fits including higher-order parameters, these constraints are

more complicated and are not shown. For the ΣNð3S1Þ and
ΞΞð3S1Þ channels, the ground-state energy is positively

shifted, i.e., ΔE≳ 0, and only the values of k�2 associated
with the ground states are inside the range of validity of the

ERE. As a result, no extraction of the ERE parameters is

possible in these channels given the number of data points.

Results for the scattering parameters obtained using two-

and three-parameter ERE fits in the other seven channels

are summarized in Table III and are shown in Fig. 5 for

better comparison in the case of two-parameter fits.

12
We thank Sinya Aoki for suggesting that we further explore

this choice of χ2.
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The inverse scattering lengths extracted for all systems

are compatible with each other (albeit within rather large

uncertainties), signaling that there may exist enhanced

flavor symmetries at this pion mass at low energies, a

feature that will be thoroughly examined in Sec. III. The

effective range in most systems is compatible with zero.
13

Furthermore, the ratio r=a can be used as an indicator of the
naturalness of the interactions; for natural interactions,

r=a ∼ 1, while for unnatural interactions r=a ≪ 1. At the

physical point, both NN channels are unnatural and exhibit

large scattering lengths, with r=a being close to 0.1 for the

spin-singlet channel and 0.3 for the spin-triplet channel.

From Table IV, the most constrained ratios are obtained for

the ΣΣð1S0Þ, ΞΞð1S0Þ, and ΞNð3S1Þ channels, for which

r=a ∼ 0.2–0.3, indicating unnatural interactions at low

energies. For other channels, the larger uncertainty in this

ratio precludes drawing conclusions about naturalness.

Alternatively, naturalness can be assessed by considering

the ratio of the binding momentum to the pion mass, as this

quantity is better constrained in this study; see TableVI in the

next subsection. The values for κð∞Þ=mπ in each of the bound

two-baryon channels are between 0.2 and 0.4, indicating that

the range of interactions mediated by the pion exchange

is not the only characteristic scale in the system, suggesting

unnaturalness. However, at larger-than-physical quark

FIG. 3. k� cot δ values as a function of the c.m. momenta k�2, along with the band representing the two- (yellow) and three-parameter

(red) ERE for the two-baryon channels shown. The bands denote the 68% confidence regions of the fits. Quantities are expressed in

lattice units.

13
In Appendix B, results for NN channels are compared with

the previous scattering parameters obtained in Ref. [42] using the
same correlation functions, as well as with the predictions
obtained from low-energy theorems in Ref. [90]. Through a
thorough investigation, the various tensions are discussed and
resolved.
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FIG. 4. The two-dimensional 68% and 95% confidence regions (C.R.) corresponding to the combined statistical and systematic

uncertainty on the scattering parameters a−1 and r for all two-baryon systems that exhibit bound states, obtained from two-parameter

ERE fits. The prohibited regions where the two-parameter ERE does not cross the Z-function for given volumes (as well as the infinite-

volume case) are denoted by hashed areas. Quantities are expressed in lattice units.

FIG. 5. Summary of the inverse scattering length a−1 (left panel), effective range r (middle panel), and ratio r=a (right panel)

determined from the two-parameter ERE fit for the two-baryon systems analyzed. The background color groups the channels by the

SUð3Þ irreps they would belong to if SUð3Þ flavor symmetry were exact (orange for 27, green for 10, and blue for 8a). Quantities are

expressed in lattice units.
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masses, pion exchange may not be the only significant

contribution to the long-range component of the nuclear

force, as is discussed in Ref. [41]. For these reasons, both

natural and unnatural interactions are considered in the next

section when adopting a power-counting scheme in con-

straining the LECs of the EFT.
14
Although the ERE is only

valid below the t-channel cut, one may still fit the k� cot δ
values beyond this threshold using a similar polynomial form

as the ERE in Eq. (15). To distinguish the “model” fit

parameters from those obtained from the ERE, two- and

three-parameter polynomials are characterized by two

fã−1; r̃g or three fã−1; r̃; P̃g parameters. Such forms are

motivated by the fact that in most channels, k� cot δ values as
a function of k�2 exhibit smooth and monotonic behavior

beyond the t-channel cut, as is seen in Fig. 2. The only

exceptions are the spin-singlet NN and ΣN channels, for

TABLE III. The values of the inverse scattering length a−1, effective range r, and shape parameter P determined

from the two- and three-parameter ERE fits to k� cot δ versus k�2 for various two-baryon channels (see Fig. 3).

Quantities are expressed in lattice units.

Two-parameter ERE fit Three-parameter ERE fit

a−1 [l.u.] r [l.u.] a−1 [l.u.] r [l.u.] P [l.u.]

NNð1S0Þ 0.084
ðþ20Þðþ44Þ
ð−42Þð−35Þ

−2.4
ðþ8.4Þðþ8.3Þ
ð−5.5Þð−9.0Þ 0.053

ðþ33Þðþ43Þ
ð−29Þð−52Þ 15.4

ðþ6.5Þðþ20.8Þ
ð−6.2Þð−5.7Þ 803

ðþ46Þðþ510Þ
ð−570Þð−190Þ

ΣNð1S0Þ 0.079
ðþ25Þðþ14Þ
ð−27Þð−31Þ −2.8

ðþ6.7Þðþ6.0Þ
ð−5.3Þð−4.0Þ

� � � � � � � � �
ΣΣð1S0Þ 0.040

ðþ15Þðþ06Þ
ð−13Þð−14Þ 5.8

ðþ2.8Þðþ1.5Þ
ð−2.9Þð−0.9Þ 0.059

ðþ17Þðþ41Þ
ð−28Þð−18Þ 10.0

ðþ3.8Þðþ3.8Þ
ð−2.4Þð−4.1Þ 563

ðþ200Þðþ490Þ
ð−330Þð−260Þ

ΞΣð1S0Þ 0.061
ðþ16Þðþ06Þ
ð−17Þð−12Þ 2.4

ðþ3.6Þðþ1.8Þ
ð−3.4Þð−1.6Þ 0.062

ðþ28Þðþ21Þ
ð−22Þð−11Þ 10.6

ðþ2.5Þðþ1.8Þ
ð−2.1Þð−0.9Þ 469

ðþ310Þðþ210Þ
ð−280Þð−140Þ

ΞΞð1S0Þ 0.058
ðþ07Þðþ07Þ
ð−07Þð−08Þ 4.6

ðþ0.8Þðþ1.5Þ
ð−1.4Þð−0.8Þ 0.075

ðþ16Þðþ19Þ
ð−22Þð−16Þ 10.9

ðþ0.9Þðþ1.0Þ
ð−1.0Þð−1.0Þ 538

ðþ190Þðþ200Þ
ð−250Þð−180Þ

NNð3S1Þ 0.063
ðþ18Þðþ10Þ
ð−24Þð−09Þ 0.5

ðþ5.5Þðþ2.4Þ
ð−4.1Þð−2.9Þ 0.082

ðþ42Þðþ18Þ
ð−47Þð−26Þ 8.0

ðþ5.0Þðþ4.8Þ
ð−5.1Þð−1.9Þ 812

ðþ570Þðþ300Þ
ð−560Þð−340Þ

ΞNð3S1Þ 0.086
ðþ07Þðþ11Þ
ð−10Þð−13Þ 3.0

ðþ1.7Þðþ1.7Þ
ð−0.9Þð−1.6Þ 0.080

ðþ14Þðþ23Þ
ð−21Þð−22Þ 12.2

ðþ3.5Þðþ4.8Þ
ð−3.0Þð−4.5Þ 307

ðþ220Þðþ310Þ
ð−190Þð−170Þ

TABLE IV. The values of the ratio of the effective range and scattering length, r=a, determined from the two-

parameter ERE fit to k� cot δ values in each channel.

r=a

NNð1S0Þ ΣNð1S0Þ ΣΣð1S0Þ ΞΣð1S0Þ ΞΞð1S0Þ NNð3S1Þ ΞNð3S1Þ

−0.2
ðþ0.5Þðþ0.3Þ
ð−0.6Þð−1.3Þ −0.22

ðþ43Þðþ27Þ
ð−60Þð−37Þ 0.23

ðþ06Þðþ04Þ
ð−08Þð−04Þ 0.15

ðþ13Þðþ05Þ
ð−22Þð−11Þ 0.27

ðþ02Þðþ05Þ
ð−07Þð−03Þ 0.03

ðþ22Þðþ12Þ
ð−31Þð−23Þ 0.26

ðþ10Þðþ07Þ
ð−06Þð−13Þ

TABLE V. The values of the parameters ã−1, r̃, P̃ from a two- or three-parameter polynomial fit for two-baryon

channels that exhibit smooth and monotonic behavior in k� cot δ as a function of k�2 beyond the t-channel cut.
Quantities are expressed in lattice units.

Two-parameter polynomial fit Three-parameter polynomial fit

ã−1 [l.u.] r̃ [l.u.] ã−1 [l.u.] r̃ [l.u.] P̃ [l.u.]

ΣΣð1S0Þ 0.038
ðþ12Þðþ09Þ
ð−16Þð−05Þ 6.2

ðþ2.7Þðþ0.8Þ
ð−2.6Þð−0.7Þ 0.044

ðþ08Þðþ11Þ
ð−12Þð−07Þ 10.9

ðþ1.3Þðþ2.5Þ
ð−2.6Þð−0.6Þ 331

ðþ100Þðþ98Þ
ð−120Þð−80Þ

ΞΣð1S0Þ 0.043
ðþ08Þðþ07Þ
ð−10Þð−05Þ 6.3

ðþ1.7Þðþ0.5Þ
ð−1.1Þð−1.3Þ 0.052

ðþ11Þðþ07Þ
ð−11Þð−07Þ 7.7

ðþ1.6Þðþ1.8Þ
ð−2.4Þð−1.0Þ 173

ðþ43Þðþ25Þ
ð−46Þð−37Þ

ΞΞð1S0Þ 0.047
ðþ03Þðþ08Þ
ð−07Þð−03Þ 6.9

ðþ0.9Þðþ0.5Þ
ð−0.3Þð−0.9Þ 0.053

ðþ03Þðþ06Þ
ð−06Þð−04Þ 8.9

ðþ0.7Þðþ1.3Þ
ð−0.9Þð−1.0Þ 149

ðþ23Þðþ31Þ
ð−23Þð−28Þ

NNð3S1Þ 0.038
ðþ12Þðþ07Þ
ð−16Þð−07Þ 7.2

ðþ2.3Þðþ1.0Þ
ð−1.9Þð−1.3Þ 0.051

ðþ12Þðþ09Þ
ð−13Þð−08Þ 8.3

ðþ2.2Þðþ2.0Þ
ð−3.1Þð−2.4Þ 265

ðþ89Þðþ62Þ
ð−66Þð−72Þ

ΣNð3S1Þ 0.073
ðþ22Þðþ16Þ
ð−20Þð−21Þ 3.5

ðþ1.2Þðþ0.9Þ
ð−1.2Þð−0.8Þ 0.085

ðþ23Þðþ31Þ
ð−39Þð−19Þ 5.2

ðþ2.9Þðþ4.3Þ
ð−5.6Þð−3.2Þ −8

ðþ27Þðþ16Þ
ð−14Þð−15Þ

ΞΞð3S1Þ 0.20
ðþ17Þðþ14Þ
ð−09Þð−18Þ −2.6

ðþ4.3Þðþ1.0Þ
ð−2.9Þð−6.1Þ 0.25

ðþ22Þðþ29Þ
ð−14Þð−13Þ 1

ðþ14Þðþ22Þ
ð−15Þð−10Þ −19

ðþ87Þðþ62Þ
ð−54Þð−88Þ

ΞNð3S1Þ 0.059
ðþ05Þðþ02Þ
ð−01Þð−05Þ 6.9

ðþ0.2Þðþ0.4Þ
ð−0.3Þð−0.3Þ 0.066

ðþ02Þðþ04Þ
ð−04Þð−03Þ 7.1

ðþ0.5Þðþ0.3Þ
ð−0.3Þð−0.5Þ 36

ðþ08Þðþ08Þ
ð−11Þð−04Þ

14
For a detailed discussion of naturalness in EFTs, see

Ref. [127].
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which such a polynomial fit will not be performed. The
results of this fit, using the same strategy as described above
for ERE fits, are shown in Table V and Fig. 6. In the next
section, the EFTs and approximate symmetries of the
interactions will be utilized to make predictions for the
inverse scattering length in channels forwhichERE fits could

not be performed, i.e.,ΣNð3S1Þ andΞΞð3S1Þ channels, and in
those cases, the scattering length is found consistent with the

ã−1 values obtained from this model analysis. It should be
emphasized that such a polynomial fit beyond the t-channel
cut is only one out ofmany applicable parametrizations of the
amplitude, and a systematic uncertainty associated with
multiple model choices and model-selection criteria needs
to be assigned to reliably constrain the energy dependence of
the amplitude at higher energies.

15

D. Binding energies

A negative shift in the energy of two baryons in a finite

volume compared with that of the noninteracting baryons

may signal the presence of a bound state in the infinite-

volume limit. However, to conclusively discern a bound

state from a scattering state, a careful inspection of the

volume dependence of the energies is required. Lüscher’s

quantization condition can be used to identify the volume

dependence of bound-state energies.
16
Explicitly, the infin-

ite-volume binding momentum κð∞Þ can be determined by

expanding Eq. (11) in the negative-k�2 region [63],

jk�j ¼ κð∞Þ þ Z2

L

�

X

m

1

jγ̂mj e
i2παm·de−jγ̂mjκð∞ÞL

�

; ð20Þ

where Z2 is the residue of the scattering amplitude

at the bound-state pole. In this study, the boost vectors

are d ¼ ð0; 0; 0Þ and d ¼ ð0; 0; 2Þ, and the values of γ

deviate from one at the percent level.
17

Therefore, all

systems considered are nonrelativistic to a good approxi-

mation. Only the first few terms in the sum in Eq. (20),

corresponding to jmj ∈ f0; 1;
ffiffiffi

2
p

g, are considered in the

volume extrapolation performed below, with corrections

that scale as Oðe−2κð∞ÞLÞ.

FIG. 6. k� cot δ values as a function of the c.m. momenta k�2, along with the bands representing the two- and three-parameter

polynomial fits for two-baryon systems under the assumption that there is a smooth and monotonic behavior in k� cot δ as a function of
k�2 beyond the t-channel cut. Quantities are expressed in lattice units.

15
More precise LQCD results may be required to identify

nonpolynomial behavior in k�2. This is analogous to the efforts to
uniquely identify nonanalytic terms in chiral expansions, such as
in π − π scattering, where very high-precision calculations are
required to reveal the logarithmic dependence on mπ; see, e.g.,
Ref. [128].

16
Alternatively, LQCD eigenenergies in a finite volume can be

matched to an EFT description of the system in the same volume
to constrain the interactions. The constrained EFT can then be
used to obtain the infinite-volume binding energy; see, e.g.,
Ref. [129]. This approach is more easily applicable to the
multibaryon sector; however, it relies on the validity of the
EFT that is used.

17
The largest value of γ is found in the NNð1S0Þ system with

L ¼ 24, where γ ∼ 1.015.
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Alternatively, one can compute κð∞Þ by finding the pole

location in the s-wave scattering amplitude:

k� cot δjk�¼iκð∞Þ þ κð∞Þ ¼ 0: ð21Þ

To obtain κð∞Þ, the scattering amplitude has to first be

constrained using Lüscher’s quantization condition as

discussed in the previous subsection, and then be expressed

in terms of an ERE expansion. This approach, therefore,

requires an intermediate step compared with the first

method, but does not require a truncation of the sum

in Eq. (20).

Results for the infinite-volume binding momenta κð∞Þ

are shown in Table VI. The columns labeled as d ¼
ð0; 0; 0Þ and d ¼ ð0; 0; 2Þ correspond, respectively, to

fitting separately the values of k� with no boost, or with

boost d ¼ ð0; 0; 2Þ, using Eq. (20). The column labeled as

d ¼ fð0; 0; 0Þ; ð0; 0; 2Þg is the result of fitting both sets of

k� values simultaneously, i.e., imposing the same value for

κð∞Þ and Z2 in both fits. The last column shows the κð∞Þ

values obtained using Eq. (21), with the parameters listed in

Table III as obtained with a two-parameter ERE fit to

k� cot δ. The results obtained with the different extractions

of κ∞ are seen to be consistent with each other within

uncertainties. The largest difference observed is in the

ΞΞð1S0Þ channel, with a difference between the volume-

extrapolation and pole-location results of around 1.5σ. The

agreement between the two approaches suggests that the

higher-order terms neglected in the sum in Eq. (20) are not

significant.

The binding energy, B, is defined in terms of the infinite-

volume baryon masses and binding momenta as

B ¼ M
ð∞Þ
1 þM

ð∞Þ
2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M
ð∞Þ2
1 − κð∞Þ2

q

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M
ð∞Þ2
2 − κð∞Þ2

q

;

ð22Þ

where M
ð∞Þ
i is the infinite-volume mass of baryon i

obtained from Eq. (10). This quantity is computed for

all systems that exhibit a negative c.m. momentum squared

in the infinite-volume limit, i.e., those listed in Table VI.

The binding energies in physical units are listed for these

systems in Table VII. The binding energies of the two-

nucleon systems computed here are consistent within 1σ

with the values published previously in Ref. [42] using the

same LQCD correlation functions. The same two-baryon

systems studied here were also studied atmπ ∼ 806 MeV in

Ref. [31], and were found to be bound albeit with larger

binding energies. While the results at mπ ∼ 806 MeV were

inconclusive regarding the presence of bound states in the

10 irrep, the ΣNð3S1Þ and ΞΞð3S1Þ systems are found to be

unbound at this pion mass. The results obtained in the

present work can be combined with those of Ref. [31]

obtained at mπ ∼ 806 MeV to perform a preliminary

extrapolation of the binding energies to the physical pion

mass.
18

This enables a postdiction of binding energies in

nature in cases where there are experimental data, and a

prediction for the presence of bound states and their

binding in cases where no experimental information is

available.

For systems with nonzero strangeness, experimental

knowledge is notably limited in comparison to the

nucleon-nucleon sector, and almost all phenomenological

predictions are based on SUð3Þ flavor-symmetry assump-

tions as discussed in the Introduction. There is a significant

body of work devoted to building phenomenological

TABLE VI. The infinite-volume binding momenta κð∞Þ for bound states obtained either by using the extrapolation
in Eq. (20) or from the pole location of the scattering amplitude as in Eq. (21). Quantities are expressed in lattice

units.

κð∞Þ [l.u.]

d ¼ ð0; 0; 0Þ d ¼ ð0; 0; 2Þ d ¼ fð0; 0; 0Þ; ð0; 0; 2Þg −k� cot δjk�¼iκð∞Þ

NNð1S0Þ 0.077
ðþ08Þðþ06Þ
ð−11Þð−04Þ 0.072

ðþ10Þðþ08Þ
ð−14Þð−16Þ 0.075

ðþ05Þðþ06Þ
ð−10Þð−01Þ 0.076

ðþ06Þðþ12Þ
ð−28Þð−32Þ

ΣNð1S0Þ 0.073
ðþ13Þðþ05Þ
ð−16Þð−13Þ 0.083

ðþ09Þðþ06Þ
ð−09Þð−13Þ 0.080

ðþ08Þðþ02Þ
ð−09Þð−09Þ 0.072

ðþ12Þðþ09Þ
ð−14Þð−24Þ

ΣΣð1S0Þ 0.068
ðþ08Þðþ08Þ
ð−10Þð−11Þ 0.072

ðþ11Þðþ07Þ
ð−10Þð−16Þ 0.069

ðþ07Þðþ06Þ
ð−07Þð−09Þ 0.047

ðþ15Þðþ07Þ
ð−15Þð−17Þ

ΞΣð1S0Þ 0.078
ðþ08Þðþ06Þ
ð−09Þð−09Þ 0.080

ðþ08Þðþ05Þ
ð−08Þð−11Þ 0.079

ðþ06Þðþ04Þ
ð−05Þð−07Þ 0.066

ðþ10Þðþ05Þ
ð−14Þð−14Þ

ΞΞð1S0Þ 0.086
ðþ05Þðþ05Þ
ð−05Þð−06Þ 0.086

ðþ06Þðþ06Þ
ð−05Þð−09Þ 0.086

ðþ04Þðþ04Þ
ð−03Þð−05Þ 0.069

ðþ05Þðþ08Þ
ð−08Þð−09Þ

NNð3S1Þ 0.072
ðþ08Þðþ06Þ
ð−11Þð−08Þ 0.076

ðþ08Þðþ03Þ
ð−09Þð−08Þ 0.074

ðþ08Þðþ04Þ
ð−07Þð−05Þ 0.064

ðþ10Þðþ08Þ
ð−20Þð−08Þ

ΞNð3S1Þ 0.108
ðþ04Þðþ06Þ
ð−04Þð−08Þ 0.106

ðþ05Þðþ06Þ
ð−04Þð−08Þ 0.107

ðþ03Þðþ05Þ
ð−03Þð−05Þ 0.101

ðþ05Þðþ06Þ
ð−05Þð−09Þ

18
The results in the literature for the binding energies of two-

baryon systems obtained at larger-than-physical quark masses
must be compared with the results of the current work with
caution, as the use of different scale setting schemes makes a
comparison in physical units meaningless, unless the physical
limit of the quantities are taken. In the two-baryon sector, no
continuum extrapolation has been performed in any of the
previous studies.
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models of two-baryon interactions based on one-boson-

exchange potentials, such as the Nijmegen hard-core [130–

132], soft-core (NSC) [133–135], and extended-soft-core

(ESC) [136–144] models, as well as the Jülich [145–147]

and Ehime [148,149] models. EFTs [19,21–23,150–155]

and quark models [156–158] have also been used to

construct two-baryon potentials. A short summary of the

results in the literature for the relevant channels with

nonzero strangeness is as follows:

(i) The 1S0 and 3S1 ΣN channels do not exhibit bound

states in any of the models listed above. The spin-

singlet state behaves in a similar way toNNð1S0Þ, and
the interactions are slightly attractive, while those in

the spin-triplet channel are found to be repulsive.

(ii) For the ΞNð3S1Þ system, almost all the models

find that the interactions are slightly attractive, but

only a few exhibit a bound state.
19
Among the most

recent results are “ESC08a” [139] which gives B ¼
0.9 MeV‡ and “ESC08c1” [140] which gives

B ¼ 0.5 MeV‡. There is one LQCD calculation of

this system near the physical values of the quark

masses performed by the HAL QCD Collaboration

[159] using a different method than the current work,

and no bound state is observed.

(iii) The “NSC97” model [135] finds a bound state for

the ΣΣð1S0Þ channel, with binding energies ranging

from 1.53 to 3.17 MeV. χEFT at NLO [23] finds a

binding energy between 0 and 0.01 MeV (no bound

state is found with ESC or quark models in this

channel).

(iv) The ΞΣð1S0Þ system is found to be bound in the

NSC97 model [135], with a binding energy between

3.02 and 16.5 MeV, and by χEFT [22,23], with a

binding energy between 2.23 and 6.18 MeV at LO

and 0.19 and 0.58 MeV at NLO. With the quark

model “fss2” [157], although the interaction in this

system is found to be attractive, no bound state is

predicted (similar to the ESC08c1 model [140]).

(v) Using one-boson-exchange potentials, with NSC97

[135] the ΞΞð1S0Þ state is bound with a binding

energy between 0.1 and 15.8 MeV, and with

“Ehime” [149] between 0.23 and 0.71 MeV (no

bound state is found with ESC08c1 [140]). χEFT

[22,23] also finds this state to be bound with a

binding energy of 2.56–7.27 MeV at LO and 0.40–

1.00 MeVat NLO. The quark model fss2 [157] does

not find a bound state. In the ΞΞð3S1Þ channel, no
bound state is found with one-boson-exchange

potentials, except for Ehime that finds a deeply

bound state with a binding energy of 9–15 MeV. The

model fss2 [157] finds this channel to be repulsive.
The quark-mass dependences of multibaryon spectra

have not been studied extensively in the literature. For the

octet-baryon masses, it was found that LQCD calculations

performed with 2þ 1 dynamical fermions are consistent

with a linear dependence on the pion mass at unphysical

values of the quark masses, compared to the HBχPT

prediction of quadratic dependence at LO [160–162].

Nonetheless, recent precision studies near the physical

values of the quark masses appear to be more consistent

with chiral predictions [163]. In the two-baryon sector the

situation is more complicated. On the theoretical side,

χEFT was used in Ref. [164] to extrapolate LQCD results

to the physical point, assuming no dependence on the light

quark masses for the LECs of the EFT (at a fixed order).

The same premise was taken in Ref. [29] to determine the

I ¼ 3=2 ΣN interaction at LO, which was used to address

the possible appearance of Σ− hyperons in dense nuclear

matter. In the absence of a conclusive form for the quark-

mass extrapolation of two-baryon binding energies, two

naive expressions with linear and quadratic mπ dependence

were used in Ref. [40] to extrapolate the binding energy of

H-dibaryon to its physical value. In Refs. [165–167],

under the assumption that the H-dibaryon is a compact

six valence-quark state (and not a two-baryon molecule),

χEFT was used to extrapolate the binding energies,

resulting in an unbound state.

Two analytical forms with different mπ dependence are

used here to obtain the binding energies at the physical

light-quark masses, using the results presented in Ref. [31]

at mπ ∼ 806 MeV and those listed in Table VII for

mπ ∼ 450 MeV,

BlinðmπÞ ¼ B
ð0Þ
lin þ B

ð1Þ
linmπ; ð23Þ

BquadðmπÞ ¼ B
ð0Þ
quad þ B

ð1Þ
quadm

2
π; ð24Þ

TABLE VII. Binding energies for bound states in MeV. The values are obtained using κð∞Þ from the volume-

extrapolation method with a combined fit to d ¼ ð0; 0; 0Þ and d ¼ ð0; 0; 2Þ data. The uncertainty from scale setting

is an order of magnitude smaller than the statistical and systematic uncertainties quoted.

B [MeV]

NNð1S0Þ ΣNð1S0Þ ΣΣð1S0Þ ΞΣð1S0Þ ΞΞð1S0Þ NNð3S1Þ ΞNð3S1Þ

13.1
ðþ2.0Þðþ2.3Þ
ð−3.1Þð−0.4Þ 14.3

ðþ3.1Þðþ0.9Þ
ð−3.0Þð−2.8Þ 10.2

ðþ2.1Þðþ2.0Þ
ð−1.9Þð−2.3Þ 12.8

ðþ2.1Þðþ1.6Þ
ð−1.6Þð−2.2Þ 14.9

ðþ1.5Þðþ1.4Þ
ð−1.0Þð−1.8Þ 12.7

ðþ2.4Þðþ1.5Þ
ð−2.4Þð−1.7Þ 25.3

ðþ1.5Þðþ2.2Þ
ð−1.5Þð−2.2Þ

19
Since the binding energies are not explicitly computed in

these references and only the s-wave scattering parameters are
reported, binding energies are computed here using Eqs. (21) and
(22), assuming a two-parameter ERE for k� cot δ. These are
marked with the symbol ‡.
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where B
ð0Þ
lin , B

ð1Þ
quad, B

ð0Þ
lin , and B

ð1Þ
quad are parameters to be

constrained by fits to data. These fits are shown in Fig. 7,

along with the experimental value and predictions at the

physical point. The binding energies extrapolated to the

physical point, i.e., Blinðmphys
π Þ and Bquadðmphys

π Þ, are

summarized in Table VIII.
20

It should be emphasized that

given the lack of knowledge of the quark-mass dependence

of binding energies, the preliminary extrapolations per-

formed here are only to point out an emerging trend in the

binding energies toward the physical point, and they do not
provide conclusive predictions.

These extrapolations highlight some interesting features.

The values obtained at the physical point are consistent

with the experimental values for the NN channels. The rest

of the binding predictions are at the same level of precision

as the phenomenological results. The ΞΞð1S0Þ and ΞNð3S1Þ
channels are more consistent with being bound than

the other channels, using both extrapolation functions.

Moreover, the ΣNð3S1Þ channel was found not to support

a bound state in this study, a conclusion that is in agreement

with phenomenological models. The same conclusion

holds for ΞΞð3S1Þ, noting that only in one model, namely

Ehime, a different conclusion is reached [149]. The spread

of results and some contradictory conclusions in the models

FIG. 7. Extrapolation of the binding energies of different two-baryon systems, using the results obtained in this work and those at

mπ ∼ 806 MeV from Ref. [31]. For comparison, the results with values obtained using one-boson-exchange models or χEFTs are also

shown (and where needed, are shifted slightly in the horizontal direction for clarity).

20
Performing fits to dimensionless ratios of the binding

energies to the baryon masses (to minimize the effects of nonzero
lattice spacing) do not change the qualitative conclusions
presented in the text.
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motivate the need for LQCD studies of these states at near-

physical values of the quark masses in the upcoming years.

III. EFFECTIVE LOW-ENERGY INTERACTIONS

OF TWO BARYONS

A. Leading and next-to-leading order interactions

in the EFT

Even though SUð3Þ flavor symmetry is explicitly broken

in this study by the different values of the light- and

strange-quark masses, it is still useful to classify the

different two-(octet)baryon channels according to the

SUð3Þ irrep that they belong to. In the spin-flavor decom-

position of the product of two octet baryons with JP ¼ 1
2
þ,

the 64 existing channels can be grouped into

8 ⊗ 8 ¼ 27 ⊕ 8s ⊕ 1 ⊕ 10 ⊕ 10 ⊕ 8a: ð25Þ

The states belonging to the f27; 8s; 1g irreps are symmetric

with respect to the exchange of two baryons, and by the

Pauli exclusion principle must have total spin J ¼ 0. The

f10; 10; 8ag irreps, with an antisymmetric flavor wave

function, have J ¼ 1. Each of the systems studied in this

work belongs to only one single irrep: all of the singlet

states belong to the 27 irrep, NNð3S1Þ to 10, the triplet

states ΣN and ΞΞ to the 10 irrep, and ΞNð3S1Þ to the 8a

irrep. However, since mu ¼ md ≠ ms, which explicitly

breaks SUð3Þ symmetry, mixing among the irreps will

appear. Note that the structure of the LQCD interpolating

operators used in this study, i.e., single-point quark-level

wave functions at the source, does not allow accessing

channels in the 8s irrep. Moreover, the state in the 1 irrep is

a coupled flavor channel, which is excluded from this study

given that a large number of kinematic inputs are required

to constrain the corresponding coupled-channel scattering

amplitudes.
21

The Lagrangian for the low-energy interactions of two

octet baryons was first constructed in Ref. [80] using the

HBχEFT formalism, and consists of two-baryon contact

operators at LO. These interactions have also been studied in

chiral perturbation theory (χPT) in Refs. [19,168], where in

addition to the momentum-independent operators at LO, the

pseudoscalar-meson exchanges are included in the interact-

ing potential. At LO, all terms in both HBχEFT and χPT are

SUð3Þ symmetric. At NLO, there are two types of contri-

butions: the SUð3Þ-symmetric interactions, obtained by the

addition of derivative terms to the LO Lagrangian, and the

SUð3Þ symmetry-breaking interactions, denoted by SUð3Þ
in the following, that arise from the inclusion of the quark-

massmatrix. TheNLO extension of the two-baryon potential

within χPTwas first presented inRefs. [20,152] and includes

interactions in higher partial waves.

In this paper, two-baryon systems are analyzed at low

energies; therefore only s-wave interactions are considered.
The LO Lagrangian of Ref. [80] is used, and the NLO

contributions are formed to follow the organization of the

LO terms. In other words, the same spin-flavor operator

structure is preserved in the NLO Lagrangian, up to the

inclusion of derivative operators and the quark-mass

matrix. The EFT considered is therefore a pionless EFT

[78,79] in the hypernuclear sector. The LO coefficients are

known as Savage-Wise coefficients in the literature. This

organization is different from that of Petschauer and Kaiser

in Ref. [20], and while the notation used here to label the

NLO LECs is the same as in Ref. [20], their meaning is

different. The differences between the two organizations

and the relations between both sets of SUð3Þ coefficients
are presented in Appendix C. The full pionless EFT

Lagrangian, up to NLO, is written as

LBB ¼ L
ð0Þ;SUð3Þ
BB þ L

ð2Þ;SUð3Þ
BB þ L

ð2Þ;SUð3Þ
BB ; ð26Þ

with

L
ð0Þ;SUð3Þ
BB ¼ −c1TrðB†

iBiB
†
jBjÞ − c2TrðB†

iBjB
†
jBiÞ − c3TrðB†

iB
†
jBiBjÞ

− c4TrðB†
iB

†
jBjBiÞ − c5TrðB†

iBiÞTrðB†
jBjÞ − c6TrðB†

iBjÞTrðB†
jBiÞ; ð27Þ

TABLE VIII. Extrapolated binding energies at the physical quark masses for bound states in MeV using two

different forms, linear and quadratic in mπ .

NNð1S0Þ ΣNð1S0Þ ΣΣð1S0Þ ΞΣð1S0Þ ΞΞð1S0Þ NNð3S1Þ ΞNð3S1Þ

Blinðmphys
π Þ 6.4

ðþ6.3Þ
ð−6.5Þ 8.4

ðþ7.8Þ
ð−6.6Þ 1.0

ðþ6.1Þ
ð−6.1Þ 5.9

ðþ5.7Þ
ð−5.8Þ 9.6

ðþ4.5Þ
ð−4.7Þ −0.9

ðþ6.1Þ
ð−6.1Þ 11.7

ðþ5.4Þ
ð−6.2Þ

Bquadðmphys
π Þ 9.9

ðþ4.6Þ
ð−4.5Þ 11.5

ðþ5.7Þ
ð−4.8Þ 5.8

ðþ4.2Þ
ð−4.3Þ 9.5

ðþ3.8Þ
ð−4.0Þ 12.4

ðþ3.0Þ
ð−3.1Þ 6.3

ðþ4.3Þ
ð−4.4Þ 18.9

ðþ3.8Þ
ð−4.1Þ

21
The ground state of the flavor channels belonging to the 1 irrep has been determined in previous LQCD studies to be bound at larger-

than-physical values of the quark masses, corresponding to the long-sought-for H-dibaryon state; see Refs. [26,27,40,48,50].

MARC ILLA et al. PHYS. REV. D 103, 054508 (2021)

054508-18



L
ð2Þ;SUð3Þ
BB ¼ −c̃1TrðB†

i∇
2BiB

†
jBj þ H:c:Þ − c̃2TrðB†

i∇
2BjB

†
jBi þ H:c:Þ

− c̃3TrðB†
iB

†
j∇

2BiBj þ H:c:Þ − c̃4TrðB†
iB

†
j∇

2BjBi þ H:c:Þ
− c̃5½TrðB†

i∇
2BiÞTrðB†

jBjÞ þ H:c:� − c̃6½TrðB†
i∇

2BjÞTrðB†
jBiÞ þ H:c:�; ð28Þ

L
ð2Þ;SUð3Þ
BB ¼ −c

χ
1TrðB†

i χBiB
†
jBjÞ − c

χ
2TrðB†

i χBjB
†
jBiÞ − c

χ
3TrðB†

iBiχB
†
jBjÞ

− c
χ
4TrðB†

iBjχB
†
jBiÞ − c

χ

5
TrðB†

i χB
†
jBiBj þ H:c:Þ − c

χ
6
TrðB†

i χB
†
jBjBi þ H:c:Þ

− c
χ
7TrðB†

iB
†
jχBiBjÞ − c

χ
8TrðB†

iB
†
jχBjBiÞ − c

χ
9TrðB†

iB
†
jBiBjχÞ

− c
χ
10TrðB†

iB
†
jBjBiχÞ − c

χ
11TrðB†

i χBiÞTrðB†
jBjÞ − c

χ
12TrðB†

i χBjÞTrðB†
jBiÞ; ð29Þ

where only terms that contribute to s-wave interactions are included in the NLO Lagrangian L
ð2Þ;SUð3Þ
BB . The indices i and j

denote spin indices, B is the octet-baryon flavor matrix,

B ¼

2

6

6

6

4

Σ
0
ffiffi

2
p þ Λ

ffiffi

6
p Σ

þ p

Σ
− − Σ

0
ffiffi

2
p þ Λ

ffiffi

6
p n

Ξ
−

Ξ
0 −

ffiffi

2
3

q

Λ

3

7

7

7

5

; ð30Þ

and χ is the quark-mass matrix, which can be written in terms of the meson masses using the Gell-Mann–Oakes–Renner

relation [169]:

χ ¼ 2B0

2

6

4

mu 0 0

0 md 0

0 0 ms

3

7

5
∝

2

6

4

m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

3

7

5
; ð31Þ

where the constant B0 is proportional to the quark condensate.

In order to constrain the values of the LECs ci, c̃i, and c
χ
i ,

the LO and NLO EREs of the inverse scattering amplitudes

in the s-wave can be used. It is known that if the

interactions between octet baryons are unnatural, that is

r=a ≪ 1, a better justified power-counting scheme in the

EFT is the KSW-vK (Kaplan, Savage and Wise [170,171]

and van Kolck [78]) scheme, where at LO in the scatte-

ring amplitude, the contributions from LO momentum-

independent operators are summed to all orders.With natural

interactions, a power-counting scheme based on naive

dimensional analysis is used and the expansion of the

amplitude remains perturbative in the interaction strength,

including for the LO interaction. As mentioned in Sec. II C,

given the large uncertainties in the scattering parameters (in

particular in the effective range), the ratio r=a shown in

Table IV is not well constrained and does not conclusively

prove unnaturalness in all channels. Since in at least two

channels the interactions seem unnatural, in the following

both the natural and the unnatural cases will be considered in

expressing relations between LECs and the scattering

parameters. These relations for each two-baryon channel

can be separated into those that are momentum-independent,

with contributions from LO and NLO SUð3Þ terms in the

Lagrangian, and momentum-dependent, with only contri-

butions from NLO SUð3Þ terms:

�

−
1

aB1B2

þ μ

�

−1

¼ MB1B2

2π
ðcðirrepÞ þ c

χ
B1B2

Þ; ð32Þ

rB1B2

2

�

−
1

aB1B2

þ μ

�

−2

¼ MB1B2

2π
c̃ðirrepÞ; ð33Þ

where cðirrepÞ stands for the appropriate linear combinations

of the ci LECs defined in the Lagrangian in Eq. (26). These
relations are given in Table IX for each two baryon channel

consisting of baryons B1 and B2, where the LECs corre-

sponding to given SUð3Þ irreps in this table are related to the
ci LECs by

22

22
While the relations for the 1 and 8s irreps are not used here,

they will be needed in Sec. III B in connection to the SUð6Þ spin-
flavor symmetry relations.
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cð27Þ ¼ 2ðc1 − c2 þ c5 − c6Þ;
cð10Þ ¼ 2ðc1 þ c2 þ c5 þ c6Þ;

cð8sÞ ¼ 1

3
ð−4c1 þ 4c2 − 5c3 þ 5c4 þ 6c5 − 6c6Þ;

cð10Þ ¼ 2ð−c1 − c2 þ c5 þ c6Þ;

cð1Þ ¼ 2

3
ð−c1 þ c2 − 8c3 þ 8c4 þ 3c5 − 3c6Þ;

cð8aÞ ¼ 3c3 þ 3c4 þ 2c5 þ 2c6: ð34Þ

The same relations hold for c̃ðirrepÞ, replacing ci with c̃i.

Similarly, c
χ
B1B2

≡ c
χ
B1B2

ðm2
K −m2

πÞ and c
χ
B1B2

are linear

combinations of the c
χ
i LECs as given in Table IX. The

variables aB1B2
and rB1B2

are the scattering length and

effective range of the channel B1B2, and MB1B2
is the

reduced mass of that system. The renormalization scale μ

depends on the naturalness of the interactions. For the natural

case μ ¼ 0, and Eqs. (32) and (33) correspond to a tree-level

expansion of the scattering amplitude. For the unnatural case,

the expansion does not converge for momenta larger than

a−1, and in the KSW-vK scheme μ is introduced as a

renormalization scale for the s-channel two-baryon loops

appearing in the all-orders expansion of the amplitude with

LO interactions. Since a pionless EFT is used, a convenient

choice is μ ¼ mπ (where mπ ∼ 450 MeV is the mass of the

pion obtained with the quark masses used in the LQCD

study).
Two sets of inputs can be used to constrain the numerical

values for the LECs: (1) the scattering parameters fa−1; rg
obtained from two-parameter ERE fits in Sec. II C, tabulated

in Table III, can be used to compute LECs of both

momentum-independent and momentum-dependent opera-

tors (method I), and (2) the binding momenta from Sec. II D

can be used to compute the corresponding scattering length,

related at LO by−a−1 þ κð∞Þ ¼ 0, and this single parameter

can be used to constrain the LECs of momentum-indepen-

dent operators (method II). This second method is motivated

by the fact that κð∞Þ is extractedwith higher precision than the
parameters from the ERE fits, therefore enabling tighter

constraints on the LECs of momentum-independent oper-

ators. The results for both types of LECs are presented in

Table X and are depicted in Fig. 8. Results are presented in

units of 2π=MB for the momentum-independent operators

and 4π2=M2
B for the momentum-dependent operators, where

MB is the centroid of the octet-baryon masses, MB ¼
1
4
MN þ 1

8
MΛ þ 3

8
MΣ þ 1

4
MΞ ¼ 0.78583ð23Þð30Þ l:u:

As can be seen from the values of the LECs that are

obtained, the NLO SUð3Þ coefficients have large uncer-

tainties and are mostly consistent with zero, because the

TABLE IX. The LECs of the LO and NLO pionless EFT that contribute to the scattering amplitude of the various two-baryon channel.

The first three columns are total angular momentum (J), strangeness (S), and isospin (I).

J S I Channel SUð3Þ LO SUð3Þ NLO SUð3Þ NLO
0 0 1 NN cð27Þ c̃ð27Þ 4ðcχ3 − c

χ
4Þ

−1 3
2

ΣN cð27Þ c̃ð27Þ 2ðcχ3 − c
χ
4Þ

−2 2 ΣΣ cð27Þ c̃ð27Þ 0

−3 3
2

ΞΣ cð27Þ c̃ð27Þ 2ðcχ1 − c
χ
2 þ c

χ
11 − c

χ
12Þ

−4 1 ΞΞ cð27Þ c̃ð27Þ 4ðcχ1 − c
χ
2 þ c

χ
11 − c

χ
12Þ

1 0 0 NN cð10Þ c̃ð10Þ 4ðcχ3 þ c
χ
4Þ

−1 3
2

ΣN cð10Þ c̃ð10Þ −2ðcχ3 þ c
χ
4Þ

−4 0 ΞΞ cð10Þ c̃ð10Þ −4ðcχ1 þ c
χ
2 − c

χ
11 − c

χ
12Þ

−2 0 ΞN cð8aÞ c̃ð8aÞ 2ð2cχ
5
þ 2c

χ

6
þ 2c

χ
7 þ 2c

χ
8 þ 2c

χ
9 þ 2c

χ
10 þ c

χ
11 þ c

χ
12Þ

TABLE X. LECs of the momentum-independent and momentum-dependent operators as they appear in Table IX for the two-baryon

channels, obtained by solving Eq. (32) in units of ½ 2π
MB

� for the momentum-independent operators, and Eq. (33) in units of ½4π2
M2

B

� for the
momentum-dependent operators, where MB is the centroid of the octet-baryon masses. c̃ðirrepÞ are only determined using method I.

LECs μ Method NNð1S0Þ ΣNð1S0Þ ΣΣð1S0Þ ΞΣð1S0Þ ΞΞð1S0Þ NNð3S1Þ ΞNð3S1Þ
cðirrepÞ þ c

χ
B1B2

0 I −26
ðþ9Þ
ð−50Þ −26

ðþ7Þ
ð−27Þ −49

ðþ14Þ
ð−42Þ −32

ðþ7Þ
ð−17Þ −33

ðþ5Þ
ð−7Þ −34

ðþ8Þ
ð−23Þ −24

ðþ3Þ
ð−5Þ

II −29
ðþ3Þ
ð−4Þ −26

ðþ3Þ
ð−5Þ −28

ðþ3Þ
ð−5Þ −25

ðþ2Þ
ð−3Þ −22

ðþ1Þ
ð−2Þ −29

ðþ3Þ
ð−4Þ −19

ðþ1Þ
ð−1Þ

mπ I 11.9
ðþ4.2Þ
ð−2.7Þ 11.1

ðþ2.0Þ
ð−2.0Þ 8.8

ðþ0.7Þ
ð−0.7Þ 9.4

ðþ0.9Þ
ð−0.9Þ 9.0

ðþ0.4Þ
ð−0.4Þ 10.7

ðþ1.2Þ
ð−1.2Þ 11.2

ðþ0.9Þ
ð−0.9Þ

II 11.3
ðþ0.5Þ
ð−0.5Þ 11.1

ðþ0.6Þ
ð−0.7Þ 10.0

ðþ0.5Þ
ð−0.5Þ 10.3

ðþ0.4Þ
ð−0.5Þ 10.4

ðþ0.3Þ
ð−0.3Þ 11.3

ðþ0.5Þ
ð−0.5Þ 12.8

ðþ0.5Þ
ð−0.5Þ

c̃ðirrepÞ 0 I −47
ðþ1600Þ
ð−82Þ −58

ðþ550Þ
ð−91Þ 437

ðþ1800Þ
ð−320Þ 80

ðþ390Þ
ð−110Þ 164

ðþ160Þ
ð−83Þ 19

ðþ570Þ
ð−120Þ 51

ðþ86Þ
ð−36Þ

mπ I −10
ðþ34Þ
ð−84Þ −10

ðþ27Þ
ð−33Þ 14

ðþ5Þ
ð−7Þ 7

ðþ9Þ
ð−11Þ 13

ðþ3Þ
ð−4Þ 2

ðþ16Þ
ð−19Þ 12

ðþ6Þ
ð−7Þ
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effective ranges used to constrain them have rather large

uncertainties. Another feature of the results is that assuming

the interactions to be unnatural leads to better-constrained

parameters in general, as a nonzero scale μ in the left-hand

side of Eqs. (32) and (33) reduces the effect of uncertainties

on the scattering lengths (this was also observed in

Ref. [31] for systems at mπ ∼ 806 MeV). Furthermore,

as is expected, the values obtained with method II have

smaller uncertainties than the ones obtained from method I,

given the more precise scattering lengths, although the

method is limited to LO predictions. Another anticipated

feature is that in the cases where the effective range is

resolved from zero within uncertainties [e.g., in the ΞΞð1S0Þ
channel], the values from method II are slightly different

from those obtained from method I, indicating the non-

negligible effect of the NLO effective-range contributions

that are neglected with this method.

It should benoted that the input for scattering parameters is

not sufficient to disentangle the LO SUð3Þ and NLO SUð3Þ
coefficients in general, hence the cðirrepÞ þ c

χ
B1B2

entry in

TableXandFig. 8. For the systems that belong to the 27 irrep,

since the spin-singlet pairs fNN;ΣNg and fΞΣ;ΞΞg depend
on the same SUð3Þ LO and SUð3Þ NLO LECs but with

different linear combinations of the coefficients, a system of

equations can be formed to separate each contribution.

The results are shown in Table XI and Fig. 9, along with

the result for the ΣΣ channel for comparison purposes, as

there is no contribution from SUð3Þ interactions for this

channel at this order. From these results, it can be seen that the

values of the symmetry-breaking coefficients c
χ
3−c

χ
4 and

FIG. 8. LECs obtained by solving Eqs. (32) (upper panels) and (33) (lower panels) under the assumption of natural (left panels) and

unnatural (right panels) interactions. The LECs of momentum-independent operators are in units of ½ 2π
MB

� and those of the momentum-

dependent operators are in units of ½4π2
M2

B

�, whereMB is the centroid of the octet-baryon masses. The gray-circle markers denote quantities

that are extracted using the ERE parameters (method I), while black-square markers are those obtained from scattering lengths that are

computed from binding momenta (method II).

TABLE XI. The values of the momentum-independent SUð3Þ coefficient cð27Þ and specific linear combinations of

theSUð3Þ coefficients cχi . Quantities are expressed in units of ½ 2πMB
�, whereMB is the centroid of the octet-baryonmasses.

μ Method cð27Þ fNN;ΣNg cð27Þ fΣΣg cð27Þ fΞΣ;ΞΞg c
χ
3 − c

χ
4 c

χ
1 − c

χ
2 þ c

χ
11 − c

χ
12

0 I −27
ðþ58Þ
ð−62Þ −49

ðþ14Þ
ð−42Þ −31

ðþ21Þ
ð−36Þ 0

ðþ18Þ
ð−26Þ 0

ðþ10Þ
ð−7Þ

II −23
ðþ9Þ
ð−12Þ −28

ðþ3Þ
ð−5Þ −27

ðþ6Þ
ð−7Þ −1

ðþ4Þ
ð−3Þ 1

ðþ2Þ
ð−2Þ

mπ I 10.3
ðþ6.3Þ
ð−7.7Þ 8.8

ðþ0.7Þ
ð−0.7Þ 9.8

ðþ2.1Þ
ð−2.1Þ 0.4

ðþ2.9Þ
ð−2.2Þ −0.2

ðþ0.6Þ
ð−0.6Þ

II 10.9
ðþ1.6Þ
ð−1.9Þ 10.0

ðþ0.5Þ
ð−0.5Þ 10.1

ðþ1.2Þ
ð−1.2Þ 0.1

ðþ0.6Þ
ð−0.5Þ 0.1

ðþ0.4Þ
ð−0.4Þ
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c
χ
1−c

χ
2þc

χ
11−c

χ
12 are compatiblewithzero.Togetherwith the

observation that the scattering lengthsandbindingenergies in

all of the systems are similar within uncertainties, it appears

that the SUð3Þ flavor symmetry remains an approximate

symmetry at the quark masses used in this study. These

observations in the two-baryon sector are consistent with

those in the single-baryon sector as presented in Ref. [42]

at the same quark masses. There, it was found that the

quantity δGMO ¼ 1
MB

ðMΛ þ 1
3
MΣ −

2
3
MN − 2

3
MΞÞ, which is

ameasure of SUð3Þ flavor-symmetry breaking, is an order of

magnitude smaller than its experimental value.
23

In Appendix C, the full list of relations needed to

independently constrain all 24 different LECs that appear

at LO and NLO are shown, demonstrating that the proper

combinations of 18 two-baryon flavor channels are suffi-

cient to extract all these LECs. These channels will be the

subject of upcoming LQCD studies toward the physical

values of the quark masses.

B. Compatibility with large-Nc predictions

In the limit of SUð3Þ flavor symmetry and large Nc, two-

baryon interactions are predicted to be invariant under an

SUð6Þ spin-flavor symmetry, with corrections that gener-

ally scale as 1=Nc [81]. In the two-nucleon sector, this

encompasses the SUð4Þ spin-flavor Wigner symmetry

[174–176], with corrections that scale as 1=N2
c. Under

SUð6Þ group transformations, the baryons transform as a

three-index symmetric tensor Ψ
μνρ, where each SUð6Þ

index is a pair of spin and flavor indices ðiαÞ. At LO,
only two independent terms contribute to the interacting

Lagrangian of two-baryon systems:

L
ð0Þ;SUð6Þ
BB ¼ −aðΨ†

μνρΨ
μνρÞ2 − bΨ†

μνσΨ
μντ

Ψ
†
ρδτΨ

ρδσ; ð35Þ

where the baryon tensor can be expressed as a function of

the octet-baryon matrices, B,
24

Ψ
μνρ ¼ Ψ

ðiαÞðjβÞðkγÞ

¼ 1
ffiffiffiffiffi

18
p ðBα

ω;iϵ
ωβγϵjk þ B

β
ω;jϵ

ωγαϵik þ B
γ
ω;kϵ

ωαβϵijÞ:

ð36Þ

Here, α, β, γ, ω are flavor indices, i, j, k are spin indices,

and the Levi-Civita tensor ϵ is in either flavor or spin space

depending on the type and number of indices. A priori, the

relative size of the Kaplan-Savage coefficients, a and b, is
unknown, and only experimental data or LQCD input may

constrain these LECs. As is seen in Eqs. (37) below, the

contribution from the b coefficient to the LO amplitude is

parametrically suppressed compared with that of the

coefficient a. As a result, if b in Eq. (35) is comparable

to or smaller than a, there remains only one type of

FIG. 9. The LO SUð3Þ LEC cð27Þ (upper panels) and NLO SUð3Þ LECs cχB1B2
(lower panels) under the assumption of natural (left

panels) and unnatural (right panels) interactions, in units of ½ 2π
MB

�, where MB is the centroid of the octet-baryon masses. The gray-circle

markers denote quantities that are extracted using method I, while black-square markers show results obtained from method II. See the

text for further details.

23
The violation of the Gell-Mann-Okubo mass relation

[172,173] results from SUð3Þ breaking transforming in the 27

irrep of SUð3Þ flavor symmetry, which can only arise from
insertions of the light-quark mass matrix or from nonanalytic
meson-mass dependence induced by loops in χPT.

24
Those components of the field Ψ that correspond to decuplet

baryons [81] have been neglected as they are not relevant to the
low-energy scattering of two octet baryons.
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interaction that contributes significantly to the scattering

amplitude, a situation that would realize an accidental

SUð16Þ symmetry of the nuclear and hypernuclear forces.

The first evidence for SUð16Þ symmetry in the two-(octet)

baryon sector was observed in a LQCD study at a pion mass

of ∼806 MeV [31], and the goal of the present study is to

examine these predictions at smaller values of the light-quark

masses. Such a symmetry is suggested in Ref. [82] to be

consistent with the conjecture of maximum entanglement

suppression of the low-energy sector of QCD.

As in Sec. III A, the a and b coefficients can be matched

to scattering amplitudes in a momentum expansion at LO.

Since at least some of the SUð3Þ symmetry-breaking LECs

c
χ
i were found to be consistent with zero in this study, one

can assume an approximate SUð3Þ symmetry in general,

and relate the SUð6Þ LECs a and b directly to the LECs of

the LO SUð3Þ-symmetric Lagrangian for given irreps:

cð27Þ¼2a−
2b

27
þO

�

1

N2
c

�

; cð10Þ¼2a−
2b

27
þO

�

1

N2
c

�

;

cð8sÞ¼2aþ2b

3
þO

�

1

Nc

�

; cð10Þ¼2aþ14b

27
þO

�

1

Nc

�

;

cð1Þ¼2a−
2b

3
þO

�

1

Nc

�

; cð8aÞ¼2aþ2b

27
þO

�

1

Nc

�

:

ð37Þ

In order to extract a and b, states in the 27 and 10 irreps can
be combined with those in the 8a irrep, allowing for six

possible extractions.
25

The results are shown in Table XII

and Fig. 10. As seen in Eqs. (37), the contributions from the

b coefficient are suppressed by at least a factor of 3

compared with those from the a coefficient, and thus the

rescaled coefficient b=3 is considered. Considering that the

results presented should be valid only up to corrections that

scale as 1=Nc, individual values of the coefficientsa andb=3
obtained from different pairs of channels exhibit remarkable

agreement, indicating that theSUð6Þ spin-flavor symmetry is

a good approximation at these values of the quark masses. A

correlated weighted average
26

of the results is obtained,

following the procedure introduced by Schmelling [177] and

used by the FLAG Collaboration [178], and is shown as the

pink bands in Fig. 10. Given the uncertainty in b=3, no
conclusion can be drawn about the relative importance of a
and b=3. We will return to the question of the presence of an

accidental SUð16Þ symmetry shortly.

Given the extracted values of a and b=3, several checks
can be performed, and several predictions can be made. The

simplest check is to compute all of the LO SUð3Þ LECs,
cðirrepÞ, using the relations in Eqs. (37). The results are

shown in the first rows of Table XIII and the upper panels

of Fig. 11. Columns with hashed backgrounds are the

coefficients whose values were used as an input to make

predictions for other coefficients, presented in panels

with solid colored backgrounds. These input coefficients

TABLE XII. The leading SUð6Þ LECs, a and b=3, obtained by solving a given pair of equations in Eqs. (37). The last column shows the

results of a constant fit to the LECs obtained in each case as described in Eqs. (38). The spin specifications are dropped from channel labels

for brevity, but one clarification is necessary: in the first pair of two-baryon channels,NN refers to the spin-singlet case,while in the last pair,

it denotes the spin-triplet case. Quantities are expressed in units of ½ 2π
MB

�, where MB is the centroid of the octet-baryon masses.

LEC μ Method fNN;ΞNg fΣN;ΞNg fΣΣ;ΞNg fΞΣ;ΞNg fΞΞ;ΞNg fNN;ΞNg Combined

a 0 I −12
ðþ3Þ
ð−13Þ −12

ðþ2Þ
ð−8Þ −18

ðþ4Þ
ð−11Þ −14

ðþ2Þ
ð−5Þ −14

ðþ2Þ
ð−3Þ −14

ðþ3Þ
ð−7Þ −15

ðþ4Þ
ð−4Þ

II −11.9
ðþ0.9Þ
ð−1.3Þ −11.2

ðþ0.9Þ
ð−1.4Þ −11.8

ðþ1.0Þ
ð−1.6Þ −10.8

ðþ0.8Þ
ð−1.0Þ −10.2

ðþ0.6Þ
ð−0.7Þ −12.0

ðþ0.9Þ
ð−1.4Þ −11.0

ðþ1.0Þ
ð−1.0Þ

mπ I 5.8
ðþ1.2Þ
ð−0.9Þ 5.6

ðþ0.7Þ
ð−0.7Þ 5.0

ðþ0.4Þ
ð−0.4Þ 5.2

ðþ0.4Þ
ð−0.4Þ 5.1

ðþ0.3Þ
ð−0.3Þ 5.5

ðþ0.5Þ
ð−0.5Þ 5.2

ðþ0.4Þ
ð−0.4Þ

II 6.0
ðþ0.2Þ
ð−0.3Þ 6.0

ðþ0.3Þ
ð−0.3Þ 5.7

ðþ0.2Þ
ð−0.3Þ 5.8

ðþ0.2Þ
ð−0.2Þ 5.8

ðþ0.2Þ
ð−0.2Þ 6.0

ðþ0.2Þ
ð−0.2Þ 5.9

ðþ0.2Þ
ð−0.2Þ

b
3

0 I 5
ðþ110Þ
ð−31Þ 6

ðþ65Þ
ð−26Þ 57

ðþ99Þ
ð−42Þ 18

ðþ41Þ
ð−27Þ 20

ðþ23Þ
ð−22Þ 24

ðþ57Þ
ð−29Þ 24

ðþ36Þ
ð−36Þ

II 23
ðþ11Þ
ð−9Þ 16

ðþ12Þ
ð−8Þ 22

ðþ14Þ
ð−10Þ 13

ðþ9Þ
ð−7Þ 7

ðþ6Þ
ð−6Þ 24

ðþ12Þ
ð−9Þ 14

ðþ9Þ
ð−9Þ

mπ I −1
ðþ7Þ
ð−11Þ 0

ðþ6Þ
ð−6Þ 6

ðþ3Þ
ð−3Þ 4

ðþ4Þ
ð−4Þ 5

ðþ3Þ
ð−3Þ 1

ðþ4Þ
ð−4Þ 4

ðþ4Þ
ð−4Þ

II 3
ðþ2Þ
ð−2Þ 4

ðþ2Þ
ð−2Þ 6

ðþ2Þ
ð−2Þ 6

ðþ2Þ
ð−2Þ 5

ðþ2Þ
ð−2Þ 3

ðþ2Þ
ð−2Þ 5

ðþ2Þ
ð−2Þ

25
Note that the ERE parameters were obtained in the previous

section only for two-baryon channels belonging to the f27; 10; 8ag
irreps.

26
The average of a series of values fxig with uncertainties fσig

is computed as

xaverage ¼
X

i

xiwi; wi ¼
σ−2i

P

jσ
−2
j

;

σ2average ¼
X

ij

wiwjCij; Cij ¼ σiσj; ð38Þ

where, since the different values of xi (and their uncertainties) are
correlated, a 100% correlation is assumedwhen computing σ2average.

For asymmetric uncertainties in xi, the following procedure is used

to symmetrize them: a value xi ¼ c
ðþuÞ
ð−lÞ ismodified to cþðu− lÞ=4

with uncertainty σ ¼ max½ðuþ 3lÞ=4; ð3uþ lÞ=4�.
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(cð27Þ, cð10Þ, and cð8aÞ) can be reevaluated using the average
values of a and b=3, which therefore gives back consistent

values but with different uncertainties (for cð27Þ, the average
of the values given in Table XI is computed). The large

uncertainties in the cð8sÞ, cð1Þ, and cð10Þ coefficients are due
to the fact that b=3, with a larger uncertainty than a, is
numerically more important in these cases; see Eqs. (37).
Additionally, the Savage-Wise coefficients ci can be

computed by inverting the relations in Eqs. (34), and the

resulting values are presented in the last rows of Table XIII

and the lower panels of Fig. 11. Due to large uncertainties

in the natural case, no conclusions can be made regarding

the relative size of the coefficients. In the unnatural case

and at the chosen value of the renormalization scale, the c5
coefficient has a larger value than the rest of the coef-

ficients. The relative importance of c5 is a remnant of an

FIG. 10. The leading SUð6Þ LECs, a (upper panels) and b=3 (lower panels), under the assumption of natural (left panels) and

unnatural (right panels) interactions, in units of ½ 2π
MB

�, where MB is the centroid of the octet-baryon masses. The gray-circle markers

denote quantities extracted using the ERE parameters (method I), with the light pink band showing the averaged value, while black-

square markers show results obtained from scattering lengths that are constrained by binding momenta (method II), with the dark pink

band showing the averaged value.

TABLE XIII. Predicted SUð3Þ LECs, cðirrepÞ, as well as the Savage-Wise coefficients, ci, obtained from the Kaplan-Savage SUð6Þ
coefficients a and b using the relations in Eqs. (37) and (34). Quantities are expressed in units of ½ 2π

MB
�, where MB is the centroid of the

octet-baryon masses.

μ Method cð27Þ cð8sÞ cð1Þ cð10Þ cð10Þ cð8aÞ

0 I −35
ðþ12Þ
ð−12Þ 17

ðþ73Þ
ð−73Þ −76

ðþ73Þ
ð−73Þ −35

ðþ12Þ
ð−12Þ 7

ðþ57Þ
ð−57Þ −24

ðþ12Þ
ð−12Þ

II −25
ðþ3Þ
ð−3Þ 6

ðþ17Þ
ð−17Þ −50

ðþ17Þ
ð−17Þ −25

ðþ3Þ
ð−3Þ 0

ðþ14Þ
ð−13Þ −19

ðþ3Þ
ð−3Þ

mπ I 9.5
ðþ1.2Þ
ð−1.2Þ 18.0

ðþ7.9Þ
ð−7.5Þ 2.7

ðþ7.6Þ
ð−7.8Þ 9.5

ðþ1.2Þ
ð−1.2Þ 16.2

ðþ6.2Þ
ð−5.9Þ 11.2

ðþ1.2Þ
ð−1.2Þ

II 10.7
ðþ0.6Þ
ð−0.7Þ 21.1

ðþ4.2Þ
ð−4.3Þ 2.4

ðþ4.3Þ
ð−4.2Þ 10.7

ðþ0.6Þ
ð−0.7Þ 19.0

ðþ3.3Þ
ð−3.3Þ 12.8

ðþ0.6Þ
ð−0.7Þ

μ Method c1 c2 c3 c4 c5 c6
0 I −18

ðþ28Þ
ð−28Þ 8

ðþ12Þ
ð−12Þ 9

ðþ13Þ
ð−13Þ −12

ðþ19Þ
ð−19Þ 1

ðþ24Þ
ð−24Þ −8

ðþ12Þ
ð−12Þ

II −11
ðþ6Þ
ð−7Þ 5

ðþ3Þ
ð−3Þ 5

ðþ3Þ
ð−3Þ −7

ðþ4Þ
ð−4Þ −2

ðþ6Þ
ð−6Þ −5

ðþ3Þ
ð−3Þ

mπ I −3.0
ðþ2.9Þ
ð−3.0Þ 1.3

ðþ1.3Þ
ð−1.3Þ 1.4

ðþ1.4Þ
ð−1.4Þ −2.0

ðþ1.9Þ
ð−2.0Þ 7.7

ðþ2.7Þ
ð−2.5Þ −1.3

ðþ1.3Þ
ð−1.3Þ

II −3.6
ðþ1.7Þ
ð−1.6Þ 1.6

ðþ0.7Þ
ð−0.7Þ 1.7

ðþ0.8Þ
ð−0.8Þ −2.4

ðþ1.1Þ
ð−1.1Þ 9.0

ðþ1.4Þ
ð−1.4Þ −1.6

ðþ0.7Þ
ð−0.7Þ
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accidental approximate SUð16Þ symmetry of s-wave

two-baryon interactions that is more pronounced in the

SUð3Þ-symmetric study with mπ ∼ 806 MeV in Ref. [31].

It will be interesting to explore whether the remnant of this

symmetry remains visible in studies closer to the physical

quark masses.

The values of the SUð6Þ coefficients a and b allow

predictions to be made for the scattering lengths of the

systems that could not be constrained in this study by an

ERE fit, namely the ΣNð3S1Þ and ΞΞð3S1Þ channels. Using
the cðirrepÞ coefficients computed previously, the relations in

Eq. (32) can be inverted to obtain a−1, assuming that the

values of c
χ
i are negligible compared with those of cðirrepÞ

[an observation that is only confirmed for given linear

combinations of these LECs but is assumed to hold in

general given the hints of an approximate SUð3Þ symmetry

in this study]. This exercise leads to consistent results

for the inverse scattering length for systems for which the

ERE allowed a direct extraction of this parameter, while

it provides predictions for the channels shown in

Table XIV. For the case of natural interactions, the

scattering lengths are not constrained well, although they

are consistent within uncertainties with those in the

unnatural case, demonstrating the renormalization-scale

independence of the scattering length. For the unnatural

case, both methods are consistent and give rise to inverse

scattering lengths that are positive and larger than those

obtained for the rest of the systems studied in this work.

This is in agreement with the parameters found when fitting

the results for k� cot δ in these channels beyond the t-
channel cut; see Table V.

IV. CONCLUSIONS

Nuclear and hypernuclear interactions are key inputs into

investigations of the properties of matter, and their knowl-

edge continues to be limited in systems with multiple

neutrons or when hyperons are present. In recent years,

LQCD has reached the stage where controlled first-prin-

ciples studies of nuclei are feasible and may soon constrain

nuclear and hypernuclear few-body interactions in nature.

FIG. 11. The predicted (filled markers) LO SUð3Þ coefficients cðirrepÞ (upper panels) as well as Savage-Wise coefficients ci (lower
panels) reconstructed from the SUð6Þ relations are compared with the directly extracted LECs (empty markers) under the assumption of

natural (left panels) and unnatural (right panels) interactions, in units of ½ 2π
MB

�, where MB is the centroid of the octet-baryon masses. The

gray-circle symbols denote quantities that have been extracted using the scattering parameters obtained from the ERE fit (method I),

while black-square symbols denote those that are obtained from scattering lengths constrained by binding momenta (method II). The

hashed background in the upper panels denotes coefficients whose values were used to constrain a and b, and hence are not predictions.

TABLE XIV. Predicted inverse scattering lengths, a−1, for the
systems where an ERE fit was not possible, using the SUð6Þ
LECs a and b. Quantities are expressed in lattice units.

μ Method a−1
ΣNð3S1Þ

a−1
ΞΞð3S1Þ

0 I −0.02
ðþ11Þ
ð−07Þ −0.02

ðþ10Þ
ð−06Þ

II 0.06
ðþ33Þ
ð−44Þ 0.05

ðþ30Þ
ð−40Þ

mπ I 0.14
ðþ04Þ
ð−07Þ 0.15

ðþ03Þ
ð−06Þ

II 0.16
ðþ02Þ
ð−02Þ 0.17

ðþ02Þ
ð−01Þ
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The present work demonstrates such a capability in the case

of two-baryon interactions, albeit at an unphysically large

value of the quark masses corresponding to a pion mass of

∼450 MeV. It illustrates how Euclidean two-point corre-

lation functions of systems with the quantum numbers of

two baryons computed with LQCD can be used to constrain

a wealth of quantities, from scattering phase shifts to low-

energy scattering parameters and binding energies, to EFTs

of forces, or precisely the LECs describing the interactions

of two baryons. This same approach can be expected to be

followed in upcoming computations with the physical

quark masses, and its output, in the form of both finite-

volume energy spectra and constrained EFT interactions,

can serve as input into quantum many-body studies of

larger isotopes, at both unphysical and physical values of

quark masses; see, e.g., Refs. [85–87] for previous studies

in the nuclear sector. By supplementing the missing

experimental input for scattering and spectra of two-baryon

systems, such LQCD analyses can constrain phenomeno-

logical models and EFTs of hypernuclear forces.

In summary, the present paper includes a computation of

the lowest-lying spectra of several two-octet baryon sys-

tems with strangeness ranging from 0 to −4. These results

have been computed in three different volumes, using a

single lattice spacing, and with unphysical values of the

light-quark masses. The finite-volume nature of the ener-

gies provides a means to constrain the elastic scattering

amplitudes in these systems through the use of Lüscher’s

formalism. Assuming small discretization artifacts given

the improved LQCD action that is employed, our results

reveal interesting features about the nature of two-baryon

forces with larger-than-physical values of the quark masses.

In particular, the determination of scattering parameters of

two-baryon systems at low energies has enabled constraints

on the LO and NLO interactions of a pionless EFT, for both

the SUð3Þ flavor-symmetric and the symmetry-breaking

interactions. While the two-baryon channels studied in this

work only allowed two sets of leading SUð3Þ symmetry-

breaking LECs to be constrained, and those values are seen

to be consistent with zero, the present study is the first

such analysis to access these interactions, extending the

previous EFT matching presented in Ref. [31] at an SUð3Þ-
symmetric point with mπ ¼ mK ∼ 806 MeV. Given the

limited knowledge of flavor-symmetry-breaking effects in

the two-baryon sector in nature, this demonstrates the

potential of LQCD to improve the situation. Finally, the

observation of an approximate SUð3Þ symmetry in the two-

baryon systems of this work led to an investigation of the

large-Nc predictions of Ref. [81], through matching the

LQCD results for scattering amplitudes to the EFT. In

particular, the s-wave interactions at LO are found to

exhibit an SUð6Þ spin-flavor symmetry at this pion mass,

as also observed in Ref. [31] at a larger value of the pion

mass. Both of the two independent spin-flavor-symmetric

interactions at LO are found to contribute to the amplitude.

Nonetheless, the extracted values of the coefficients of

the LO SUð3Þ-symmetric EFT suggest a remnant of an

approximate accidental SUð16Þ symmetry observed in the

SUð3Þ flavor-symmetric study at mπ ∼ 806 MeV [31]. It

will be interesting to examine these symmetry consider-

ations in the hypernuclear forces at the physical values of

the quark masses, particularly given the conjectured con-

nections between the nature of forces in nuclear physics

and the quantum entanglement in the underlying systems

[82]. While no attempt is made in the current work to

constrain forces within the EFTs at the physical point, a

naive extrapolation is performed using the results of this

work and those at mπ ∼ 806 MeV, with simple extrapola-

tion functions, to make predictions for the binding energies

of several two-baryon channels. The results for ground-

state energies of two-nucleon systems are found to be

compatible with the experimental values. Furthermore,

stronger evidence for the existence of bound states in

the ΞΞð1S0Þ and ΞNð3S1Þ channels is observed compared

with other two-baryon systems. Such predictions are in

agreement with current phenomenological models and

EFT predictions. However, conclusive results can only

be reached by performing LQCD studies of multibaryon

systems at or near the physical values of the quark masses

and upon taking the continuum limit using multiple values

of lattice spacing, a program that will be pursued in the

upcoming years.
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Note added.—After this manuscript was completed, an
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APPENDIX A: ON THE VALIDITY OF THE

EXTRACTION OF THE LOWEST-LYING

ENERGIES AND THE CORRESPONDING

SCATTERING AMPLITUDES

In Refs. [88,89], several criteria were presented to

validate studies of two-baryon systems that rely on the

extraction of finite-volume energies from Euclidean LQCD

FIG. 12. The values of k�2 for all systems analyzed in this work. Quantities are expressed in lattice units.
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correlation functions for use in Lüscher’s formalism. The

results of the present work are examined and validated with

regard to these criteria. Similar investigations were per-

formed in Refs. [31,109] for the study at mπ ∼ 806 MeV

in Ref. [31].

Interpolating-operator independence: The two different

source-sink operator structures, denoted SP and SS and

described in Sec. II A, yield the same energies for both

the ground and the first excited states obtained in this

work.This consistency can beverified by examining the

late-time behavior of the effective energy and effective

energy-shift functions constructed from the SS and SP

correlation functions in Figs. 22–-31. Moreover, the

c.m. momenta k�2 obtained from the correlation func-

tions with d ¼ ð0; 0; 0Þ and d ¼ ð0; 0; 2Þ must be

consistent, up to negligible relativistic and small

Oððm2
1 −m2

2Þ=E�2Þ corrections [63], a feature that is

observed in the results presented here, as shown in

Fig. 12. The largest difference is seen in the NNð1S0Þ
channel for the n ¼ 2 level on the ensemble with
L ¼ 24, for which the c.m. momenta in the unboosted
and boosted cases exhibit a ∼2σ difference.

Consistency between ERE parameters for k�2 < 0 and

k�2 > 0: In the two-baryon channels studied in this
work, there are not sufficient data points for k� cot δ
below the t-channel cut to extract precise scattering
parameters, as pointed out in Sec. II B. Nonetheless,
for the cases for which two sets of data at positive and

negative values of k�2 are available, the ERE fits

obtained by fitting to all k�2 versus only fitting to

FIG. 13. k�2 cot δ values as a function of the c.m. momenta k�2, together with bands representing the two-parameter ERE using all the

energy levels (ground state n ¼ 1 and excited states n ¼ 2) in lighter yellow, or using just the ground state in darker yellow. Quantities

are expressed in lattice units.
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k�2 < 0 values are fully consistent with each other, as
is shown in Fig. 13.

Nonsingular scattering parameters: None of the scatter-

ing parameters extracted show singular behavior, as

can be seen from the values in Table III.

Requirement on the residue for the scattering amplitude

at the bound-state pole: In order to support a physical

bound state, the slope of the ERE as a function of k�2

must be smaller than the slope of the −
ffiffiffiffiffiffiffiffiffiffi

−k�2
p

at the

bound-state pole. The two slopes and associated un-

certainty bands are depicted in Fig. 14 for all two-

baryon channels and the two-parameter EREs obtained,

demonstrating that the needed inequality is satisfied.

The values of bindingmomenta used in this analysis are

taken from Table VI (the d ¼ fð0; 0; 0Þ; ð0; 0; 2Þg
column).

The absence of more than one bound state with an ERE

parametrization of amplitudes: None of the systems

analyzed exhibit more than one bound state; i.e., the

ERE does not cross the −
ffiffiffiffiffiffiffiffiffiffi

−k�2
p

curve more than

once. Therefore, applying the ERE parametrization of

the s-wave scattering amplitude in all channels ap-

pears to be justified.

Constrained range for ERE parameters in the presence

of a bound state: If the system presents a bound state,

the ratio r=a must be smaller than 1=2 for the two-

parameter ERE to cross the −
ffiffiffiffiffiffiffiffiffiffi

−k�2
p

function once

from below, which is the condition for a physical

bound state. Moreover, the ERE must cross the Z-

functions corresponding to different volumes to sat-

isfy Lüscher’s quantization condition, introducing

more constraints on scattering parameters. With the

FIG. 14. Comparison between the two-parameter ERE and the slope of −
ffiffiffiffiffiffiffiffiffiffi

−k�2
p

at k�2 ¼ −κð∞Þ2, where κð∞Þ is taken from the

d ¼ fð0; 0; 0Þ; ð0; 0; 2Þg column of Table VI. Quantities are expressed in lattice units.
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use of the two-dimensional χ2 in this work to fit the

k� cot δ values, the confidence region of the ERE

parameters does not cross these prohibited areas, as

was demonstrated in Fig. 4.

APPENDIX B: COMPARISON WITH PREVIOUS

LQCD RESULTS AND THOSE OBTAINED FROM

LOW-ENERGY THEOREMS

A subset of the correlation functions used in this work

has already been analyzed in Ref. [42], where the NNð1S0Þ
and NNð3S1Þ channels were studied. In the following, we

present the outcome of a careful comparison of the results

obtained using both analyses, along with a comparison of

the updated scattering parameters from this work and those

obtained from low-energy theorems in Ref. [183].

1. Differences in the fitting strategy

The ground-state and first excited-state energies obtained

in this work and those from Ref. [42] are shown in Fig. 15.

While all numbers are in agreement within uncertainties, it

is clear that, in general, the analysis performed in Ref. [42]

led to smaller uncertainties (one exception is the NNð3S1Þ
first excited state with L ¼ 32). That analysis consisted of

the following: (1) taking linear combinations of the SP and

FIG. 15. Comparison of the ground-state and first excited-state energies obtained in this work (blue circles) and from Ref. [42] (orange

diamonds), labeled as NPLQCD 15. The figure shows results with statistical and systematic uncertainties combined in quadrature.

Quantities are expressed in lattice units.

FIG. 16. Ground-state energies for the NNð1S0Þ system computed on ensembles with L ¼ 24 (left) and L ¼ 32 (right), sorted by their

weight. The weight of each individual fit is indicated by the level of transparency of each point (darker points have larger weight). The

band shows the final result, obtained by combining the individual points with the corresponding weight according to Eq. (6), with

statistical and systematic uncertainties combined in quadrature. To facilitate the comparison, the orange point in the right panel of each

figure shows the result of Ref. [42], labeled as NPLQCD 15.
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SS correlation functions (except for the L ¼ 48 ensemble,

where only SP correlation functions were computed);

(2) the use of the Hodges-Lehmann (HL) robust estimator

under bootstrap resampling to estimate the ensemble-

averaged correlation functions; and (3) fitting constants

to the effective-(mass) energy functions built from the

combinations mentioned above. In the present analysis,

multiexponential fits are performed to both SP and SS

correlation functions in a correlated way (when available),

using the mean under bootstrap resampling.

Taking a closer look at how the statistical and systematic

uncertainties are computed, it is worth examining the

individual fits from all accepted time windows. These

are shown in Fig. 16 for the NNð1S0Þ L ¼ 24 and

L ¼ 32 ground states, sorted by their weight, wf, as defined

in Eq. (5). As can be seen, there are cases for which the size

of the uncertainty is similar to or smaller than that presented

in Ref. [42]. However, the final combined uncertainty,

represented by the band in Fig. 16, is larger. This can be

understood as using a more conservative procedure for

quantifying the systematic uncertainty, as well as a more

thorough one: not only are variations of the fitting range

considered, but also variations in the fitting form, including

forms with multiple exponentials; see Sec. II B. Next,

the implications of using the HL estimator (instead of

the mean) on the individual SP and SS correlation functions

are analyzed. When correlations are fully taken into

account, the covariance matrix associated with the HL

estimator is computed with the median absolute deviation

(MAD):

FIG. 17. Normalized inverse covariance matrices computed for the NNð1S0Þ ground state with L ¼ 24 (top) and L ¼ 32 (bottom) for

τ ∈ ½4; 11� l.u. using the mean and HL estimators applied to the effective energy function and correlation function.
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Cðτ;τ0Þ¼
Median½ðC̃ðτÞ−Median½C̃ðτÞ�ÞðC̃ðτ0Þ−Median½C̃ðτ0Þ�Þ�;

ðB1Þ
where C̃ðτÞ is the bootstrap ensemble computed with the

HL estimator of the original correlation function CðτÞ.
However, in some cases the resulting covariance matrix is

found not to be positive semidefinite, and it only becomes

well behaved when a single type of correlation function is

used (or a linear combination of several) in the form of

an effective-(mass) energy function. To illustrate this,

Fig. 17 shows the normalized inverse covariance matrix,

C−1ðτ; τ0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C−1ðτ; τÞC−1ðτ0; τ0Þ
p

, for the NNð1S0Þ ground

state with L ¼ 24 and L ¼ 32 for all possible choices, i.e.,

HL estimator versus mean and correlation function versus

the effective energy function.

FIG. 18. Comparison of the effective energy-shift plots of the SP and SS correlation functions for the NNð1S0Þ L ¼ 24 (left panel) and

L ¼ 32 (right panel) first excited states computed using the mean (dark green/red circles) and the HL estimator (light green/red squares,

shifted horizontally for clarity). The bands show the results of this work and of Ref. [42], labeled as NPLQCD 15.

FIG. 19. The bootstrap estimates of the variance κ2ðCðτÞÞ=C2ðτÞ and skewness κ3ðCðτÞÞ=C2ðτÞ for the SS correlation functions

corresponding to the NNð1S0Þ first excited state with L ¼ 24 (green circles) and L ¼ 32 (red diamonds). The L ¼ 32 points have been

shifted slightly along the τ axis for clarity.
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Therefore, in order to incorporate the HL estimator into
the fitting strategy used here, only the fully uncorrelated
covariance matrix can be used, and this leads to results

which are compatible with the ones presented here using

the mean. In Fig. 18, the effective energy functions

computed with the mean and HL are compared for the

FIG. 20. Comparison of the 68% confidence region of the scattering parameters obtained using the energy levels extracted in this work

(yellow area) and from Ref. [42] (gray area) with four different analyses. The regions include both statistical and systematic uncertainties

combined in quadrature. The prohibited regions where the two-parameter ERE does not cross the Z-function are the crossed areas.

Quantities are expressed in lattice units.
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NNð1S0Þ first excited states, showing agreement within

uncertainties.

To understand the ill-behaved behavior of some of the

HL correlation functions, it is important to recall that

baryonic correlation functions exhibit distributions that

are largely non-Gaussian with heavy tails, and the mean

becomes Gaussian only in the limit of large statistics.

However, at late times, the signal-to-noise degradation

worsens, and outliers occur more frequently in the dis-

tribution. For the L ¼ 32 and L ¼ 48 cases, the point at

which the HL estimator gives different results compared

with the usual estimator (mean and standard deviation),

which would indicate a deviation from Gaussian behavior,

occurs at a much later time compared with the maximum

time included in the fits using the automated fitter of this

work. For the L ¼ 24 case, the data are more noisy than on

the other two ensembles, showing non-Gaussianity at

earlier times. To illustrate the different behavior between

the L ¼ 24 and L ¼ 32 ensembles, the second and third

cumulants of CðτÞ, defined as

κnðCðτÞÞ ¼ hCðτÞni −
X

n−1

m¼1

�

n − 1

m − 1

�

κmðCðτÞÞhCðτÞn−mi;

ðB2Þ

with n ∈ f2; 3g, respectively, are shown in Fig. 19 for the

two ensembles in the case of theNNð1S0Þ first excited state.
Looking at the second cumulant (variance), κ2, it is clear

that L ¼ 24 is more noisy than L ¼ 32, and looking at the

third cumulant (skewness), κ3, it is clear that L ¼ 24

deviates from zero, an indication of the non-Gaussian

behavior. The use of robust estimators is, therefore, ques-

tionable in this case. This is the main reason for abandoning

the use of the HL estimator in the analysis of correlation

functions in the present study.

2. Differences in the scattering parameters

The 68% confidence region of the scattering parameters

from a two-parameter ERE extracted in this work and in

Ref. [42] are shown in Fig. 21. It can be seen that the values

of the parameters obtained in the two analyses do not fully

agree at the 1σ level, although the uncertainties are rather

large. There are two significant differences between the two

analyses: (1) the use of the new definition for the χ2

function (2D-χ2) in the present work, as opposed to the

usual χ2 function (1D-χ2) used in Ref. [42], and (2) the use

of the L-dependent ground-state k�2 values in the fits to

ERE in the present work, instead of using only the infinite-

volume extrapolated value, κð∞Þ, used in Ref. [42]. To see

the effects of each, a comprehensive analysis has been

performed, the results of which are shown in Fig. 20.

Here, four different possibilities, corresponding to the types

of the χ2 function (1D or 2D) and the use of ground-state

k�2 data (L-dependent or extrapolated), are tested using the
lowest-lying spectra obtained in Ref. [42] and those in the

present work.

From these tests, several interesting features are

observed. First, the use of the 1D-χ2, either with the L-

dependent k�2 or the extrapolated one, is insensitive to the

conditions imposed by Lüscher’s quantization condition,

and as a result, the confidence regions of the scattering

parameters could lie on top of the prohibited regions. This

is because the distance minimized in the 1D-χ2 is the

vertical one, and not the one along the Z-function, so the

ERE is not forced to cross it. Second, when the 2D-χ2 is

used with the extrapolated k�2 value, κð∞Þ2, the only region

FIG. 21. Comparison of the 68% confidence region of the scattering parameters obtained in this work (yellow area), from Ref. [42]

(gray area, labeled as NPLQCD 15), and predictions of low-energy theorems from Ref. [90] (LO and NLO results). The regions include

both statistical and systematic uncertainties combined in quadrature. The prohibited regions where the two-parameter ERE does not

cross the Z-functions at given volumes or in the infinite-volume limit are denoted as hashed areas. Quantities are expressed in

lattice units.

MARC ILLA et al. PHYS. REV. D 103, 054508 (2021)

054508-34



that is avoided is the one corresponding to L ¼ ∞ in the

figures, which is expected: with the value of the pole

position given by Eq. (21), the function k� cot δjk�¼iκð∞Þ

equals −
ffiffiffiffiffiffiffiffiffiffi

−k�2
p

and the ERE crosses the −
ffiffiffiffiffiffiffiffiffiffi

−k�2
p

function,

imposing the r=a < 1=2 constraint on the scattering

parameters. Third, it is reassuring that the regions obtained

using the two different energy inputs, from this work or

from Ref. [42], are always overlapping.

Perhaps the most significant observation is that the

choice of including the points in the negative k�2 region

in the fit, i.e., the infinite-volume extrapolated value of the

momenta versus the L-dependent values, has far more

impact on the differences observed than which χ2 function

is used. What the new χ2 function does is to move the

scattering parameters to the allowed region by the Z-

functions. Furthermore, with the new fitting methodology,

several questions raised about the validity of the ERE

fits are addressed, as was presented in Appendix A. An

important one is that the updated results of this work

recover the position of the bound state pole obtained via the

infinite-volume extrapolation of the energies, and do not

yield a second pole near threshold, which would be

incompatible with the use of the ERE. As a final remark,

it should be noted that the data fitted to extract these

parameters are highly non-Gaussian, as can be seen from

the correlation between k�2 and k cot δ in Fig. 2, and exhibit
large uncertainties. This can be compared with the results

of Refs. [31,41] at mπ ∼ 806 MeV, where more finite-

volume energy eigenvalues, with better precision, could be

used in the ERE fitting. As a result, it has been verified that

either the L-dependent or the infinite-volume extrapolated

value of k�2 in the ERE fitting gives compatible scattering

parameters.

In Ref. [90], low-energy theorems [183] were used

to compute the scattering parameters from the binding

energies of the NN systems obtained in Ref. [42], and it

was pointed out that there were some tensions with the

scattering parameters obtained from the LQCD data using

Lüscher’s method, i.e., those reported in Ref. [42]. Since

the binding energies obtained in this work are in full

agreement with those obtained in Ref. [42], the results

obtained in Ref. [90] can be compared with the updated

scattering parameters of this work. As is depicted in

Fig. 21, the tension has reduced considerably. For the

two-parameter ERE results, the scattering length is now

completely consistent with the low-energy theorem pre-

dictions, at both LO and NLO. For the effective range, since

the NLO predictions of the low-energy theorems enter the

prohibited region for the two-parameter ERE, the com-

parison may only be made with the LO results. As is seen,

for both the 1S0 and 3S1 channels, the effective ranges are

also in agreement (with the 1S0 state having a better

overlap).

APPENDIX C: ON LEADING FLAVOR-

SYMMETRY BREAKING COEFFICIENTS IN

THE EFT

Table 10 of Ref. [20] lists the SUð3Þ flavor-symmetry-

breaking LECs ciχ for all of the two-(octet) baryon

channels. These coefficients are a combination of different

terms in the Lagrangian shown in Table 9 of the same

reference (terms 29–40). The relations between the ciχ from

Ref. [20] and the ones in Eq. (29) introduced in the present

work are presented in Table XV. Instead of the ð2sþ1LJ; IÞ
notation, the channels are labeled as ð2Iþ1

2sþ1
Þ for brevity, as

L ¼ 0 in all cases.

In Table XVI, a list of the two-baryon channels one

needs to study in order to obtain independently all the LECs

of this work is provided. There are 6 LO and 12 NLO

TABLE XV. Comparison between the symmetry-breaking LECs of this work and those in Ref. [20] for the two-baryon channels for

which only one ciχ appears in that reference.

Channel ð2Iþ1
2sþ1

Þ Ref. [20] Coefficients in Eq. (29)

NN → NNð31Þ c1χ=2 4ðcχ3 − c
χ
4Þ

ΛN → ΛNð21Þ c2χ
1
3
ð4cχ1 − 4c

χ
2 þ 9c

χ
3 − 9c

χ
4 − 4c

χ

5
þ 4c

χ
6 − c

χ
9 þ c

χ
10 þ 4c

χ
11 − 4c

χ
12Þ

ΛN → ΣNð21Þ −c3χ c
χ
3 − c

χ
4 þ 2c

χ

5
− 2c

χ
6 þ c

χ
9 − c

χ
10

ΣN → ΣNð21Þ c4χ −c
χ
3 þ c

χ
4 − 3c

χ
9 þ 3c

χ
10

ΛΛ → ΛΛð11Þ c5χ=2
8
9
ð2cχ1 − 2c

χ
2 þ 2c

χ
3 − 2c

χ
4 − 4c

χ

5
þ 4c

χ
6 − 2c

χ
7 þ 2c

χ
8 − 2c

χ
9 þ 2c

χ
10 þ 3c

χ
11 − 3c

χ
12Þ

ΞN → ΞNð31Þ c6χ 2ð−2cχ
5
þ 2c

χ

6
þ c

χ
11 − c

χ
12Þ

NN → NNð13Þ c7χ=2 4ðcχ3 þ c
χ
4Þ

ΛN → ΛNð23Þ c8χ
1
3
ð4cχ1 þ 4c

χ
2 þ 7c

χ
3 þ 7c

χ
4 þ 12c

χ

5
þ 12c

χ
6 þ 9c

χ
9 þ 9c

χ
10 þ 4c

χ
11 þ 4c

χ
12Þ

ΛN → ΣNð23Þ −c9χ −c
χ
3 − c

χ
4 þ 2c

χ

5
þ 2c

χ

6
þ 3c

χ
9 þ 3c

χ
10

ΣN → ΣNð23Þ c10χ c
χ
3 þ c

χ
4 þ 3c

χ
9 þ 3c

χ
10

ΞN → ΞNð13Þ c11χ 2ð2cχ
5
þ 2c

χ

6
þ 2c

χ
7 þ 2c

χ
8 þ 2c

χ
9 þ 2c

χ
10 þ c

χ
11 þ c

χ
12Þ

ΞN → ΞNð33Þ c12χ 2ð2cχ
5
þ 2c

χ

6
þ c

χ
11 þ c

χ
12Þ
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symmetry-breaking coefficients that are referred to as

momentum independent in this paper, as well as 6 NLO

momentum-dependent coefficients, making a total of 24

parameters that need to be constrained in a more exhaustive

study in the future. For the momentum-independent coef-

ficients, the choice of the systems is not unique, as there are

37 different channels that can be used to constrain only 18

parameters [assuming SUð2Þ flavor symmetry and no

electromagnetic interaction]. For the momentum-depen-

dent coefficients, no extra channels are needed besides

those used for the momentum-independent coefficients.

For simplicity, only channels that do not change the

baryon content are used (e.g., ΣN → ΣN, denoted as ΣN

in short).

APPENDIX D: SUPPLEMENTARY FIGURES

AND TABLES

This appendix contains all the figures omitted from the

main body of the paper for ease of presentation. These

include the effective-mass plots of the single baryons in

Fig. 22, and the effective energy and effective energy-shift

plots for the two-baryon systems in Figs. 23–31. In Fig. 22,

the thin horizontal line and the horizontal band surrounding

it represent, respectively, the central value of the baryon

mass at each volume, and the associated statistical and

systematic uncertainties combined in quadrature, obtained

with the fitting procedure described in Sec. II B. Similarly,

in Figs. 23–31 the line and the band represent, respectively,

the central value of the two-baryon energy shifts compared

TABLE XVI. Combinations of two-baryon channels necessary to constrain independently all of the LOþ NLO EFT LECs introduced

in Sec. III A.

Coefficient Channels ð2Iþ1
2sþ1

Þ
cð27Þ 2ΞΣð41Þ − ΞΞð31Þ
cð8sÞ 15

4
ΛΛð11Þ þ 35

36
ΣΣð11Þ − 5ΞΛð21Þ − 5

3
ΞNð11Þ þ 5

9
ΞΣð21Þ þ 1

3
ΞΣð41Þ þ 37

18
ΞΞð31Þ

cð1Þ −6ΛΛð11Þ þ 10
9
ΣΣð11Þ þ 8ΞΛð21Þ þ 8

3
ΞNð11Þ − 8

9
ΞΣð21Þ − 2

3
ΞΣð41Þ − 29

9
ΞΞð31Þ

cð10Þ
1
3
NNð13Þ þ 8

9
ΣNð23Þ þ 2

9
ΣNð43Þ þ 4

3
ΞΛð23Þ − 2

3
ΞNð13Þ − 2

3
ΞNð33Þ − 4

9
ΞΣð23Þ þ 4

9
ΞΣð43Þ − 4

9
ΞΞð13Þ

cð10Þ 1
3
NNð13Þ − 4

9
ΣNð23Þ þ 8

9
ΣNð43Þ − 2

3
ΞΛð23Þ þ 1

3
ΞNð13Þ þ 1

3
ΞNð33Þ þ 2

9
ΞΣð23Þ − 2

9
ΞΣð43Þ þ 2

9
ΞΞð13Þ

cð8aÞ − 11
12
NNð13Þ þ 17

9
ΣNð23Þ − 7

9
ΣNð43Þ − 1

6
ΞΛð23Þ − 17

12
ΞNð13Þ þ 19

12
ΞNð33Þ þ 37

18
ΞΣð23Þ − 5

9
ΞΣð43Þ − 25

36
ΞΞð13Þ

c
χ
1

9
16
ΛΛð11Þ − 1

48
NNð13Þ − 5

36
ΣNð23Þ − 1

2
ΣNð41Þ þ 1

36
ΣNð43Þ þ 7

48
ΣΣð11Þ − 5

24
ΞΛð23Þ − 1

4
ΞNð11Þ

þ 5
48
ΞNð13Þ − 1

4
ΞNð31Þ þ 5

48
ΞNð33Þ þ 5

72
ΞΣð23Þ þ 5

6
ΞΣð41Þ þ 1

18
ΞΣð43Þ þ 1

144
ΞΞð13Þ − 13

24
ΞΞð31Þ

c
χ
2 − 9

16
ΛΛð11Þ − 1

48
NNð13Þ − 5

36
ΣNð23Þ þ 1

2
ΣNð41Þ þ 1

36
ΣNð43Þ − 7

48
ΣΣð11Þ − 5

24
ΞΛð23Þ þ 1

4
ΞNð11Þ

þ 5
48
ΞNð13Þ þ 1

4
ΞNð31Þ þ 5

48
ΞNð33Þ þ 5

72
ΞΣð23Þ − 5

6
ΞΣð41Þ þ 1

18
ΞΣð43Þ þ 1

144
ΞΞð13Þ þ 13

24
ΞΞð31Þ

c
χ
3

1
12
NNð13Þ − 1

9
ΣNð23Þ þ 1

4
ΣNð41Þ − 1

36
ΣNð43Þ − 1

6
ΞΛð23Þ þ 1
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to noninteracting baryons at rest (bottom panels) for each

volume, and the associated statistical and systematic

uncertainties combined in quadrature.

The appendix also contains the numerical results that

were omitted from the main body. These include the energy

shifts, ΔE, of the two-baryon systems, the c.m. momenta,

k�2, and the value of k� cot δ for all the systems in

Tables XVII–XXV. In these tables, the values in the first

and second parentheses correspond to statistical and

systematic uncertainties, respectively, while those in the

FIG. 22. Single-baryon EMPs for the SP (blue squares) and SS (orange diamonds) source-sink combinations. The SS points have been

slightly shifted along the horizontal axis for clarity.
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FIG. 23. The effective energy plots (upper panel of each segment) and the effective energy-shift plots (lower panel of each segment)

for the NNð1S0Þ system at rest (left panels) and with boost d ¼ ð0; 0; 2Þ (right panels) for the SP (blue circles) and SS (orange diamonds)

source-sink combinations.
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FIG. 24. The effective energy plots (upper panel of each segment) and the effective energy-shift plots (lower panel of each segment)

for the ΣNð1S0Þ system at rest (left panels) and with boost d ¼ ð0; 0; 2Þ (right panels) for the SP (blue circles) and SS (orange diamonds)

source-sink combinations.
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FIG. 25. The effective energy plots (upper panel of each segment) and the effective energy-shift plots (lower panel of each segment)

for the ΣΣð1S0Þ system at rest (left panels) and with boost d ¼ ð0; 0; 2Þ (right panels) for the SP (blue circles) and SS (orange diamonds)

source-sink combinations.
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FIG. 26. The effective energy plots (upper panel of each segment) and the effective energy-shift plots (lower panel of each segment)

for the ΞΣð1S0Þ system at rest (left panels) and with boost d ¼ ð0; 0; 2Þ (right panels) for the SP (blue circles) and SS (orange diamonds)

source-sink combinations.
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FIG. 27. The effective energy plots (upper panel of each segment) and the effective energy-shift plots (lower panel of each segment)

for the ΞΞð1S0Þ system at rest (left panels) and with boost d ¼ ð0; 0; 2Þ (right panels) for the SP (blue circles) and SS (orange diamonds)

source-sink combinations.
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FIG. 28. The effective energy plots (upper panel of each segment) and the effective energy-shift plots (lower panel of each segment)

for the NNð3S1Þ system at rest (left panels) and with boost d ¼ ð0; 0; 2Þ (right panels) for the SP (blue circles) and SS (orange diamonds)

source-sink combinations.
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FIG. 29. The effective energy plots (upper panel of each segment) and the effective energy-shift plots (lower panel of each segment)

for the ΣNð3S1Þ system at rest (left panels) and with boost d ¼ ð0; 0; 2Þ (right panels) for the SP (blue circles) and SS (orange diamonds)

source-sink combinations.
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FIG. 30. The effective energy plots (upper panel of each segment) and the effective energy-shift plots (lower panel of each segment)

for the ΞΞð3S1Þ system at rest (left panels) and with boost d ¼ ð0; 0; 2Þ (right panels) for the SP (blue circles) and SS (orange diamonds)

source-sink combinations.
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FIG. 31. The effective energy plots (upper panel of each segment) and the effective energy-shift plots (lower panel of each segment)

for the ΞNð3S1Þ system at rest (left panels) and with boost d ¼ ð0; 0; 2Þ (right panels) for the SP (blue circles) and SS (orange diamonds)

source-sink combinations.
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TABLE XVII. The values of the energy shift ΔE, the c.m. momentum k�2, and k� cot δ for the NNð1S0Þ channel.

Ensemble Boost vector State ΔE [l.u.] k�2 [l.u.] k� cot δ [l.u.]

243 × 64 (0,0,0) n ¼ 1 −0.0166ð19Þð31Þ −0.0120ð13Þð22Þ −0.078
ðþ13Þðþ25Þ
ð−11Þð−17Þ

n ¼ 2 0.0953(23)(61) 0.0715(17)(47) � � �
(0,0,2) n ¼ 1 0.0812(16)(28) −0.0079ð12Þð21Þ −0.033

ðþ23Þðþ51Þ
ð−18Þð−27Þ

n ¼ 2 0.1960(16)(35) 0.0833(13)(29) −0.233
ðþ32Þðþ65Þ
ð−34Þð−93Þ

323 × 96 (0,0,0) n ¼ 1 −0.0090ð25Þð20Þ −0.0065ð18Þð14Þ −0.056
ðþ29Þðþ27Þ
ð−19Þð−15Þ

n ¼ 2 0.0477(37)(24) 0.0352(28)(17) 0.7
ðþ3.4Þðþ32.0Þ
ð−0.3Þð−0.1Þ

(0,0,2) n ¼ 1 0.0422(20)(21) −0.0075ð15Þð16Þ −0.068
ðþ18Þðþ21Þ
ð−13Þð−13Þ

n ¼ 2 0.0976(22)(27) 0.0347(18)(21) � � �
483 × 96 (0,0,0) n ¼ 1 −0.0093ð22Þð11Þ −0.0067ð16Þð08Þ −0.079

ðþ13Þðþ06Þ
ð−10Þð−05Þ

n ¼ 2 0.0197(25)(23) 0.0143(18)(16) 0.2
ðþ0.5Þðþ1.8Þ
ð−0.1Þð−0.1Þ

(0,0,2) n ¼ 1 0.0183(25)(26) −0.0038ð18Þð20Þ −0.051
ðþ38Þðþ80Þ
ð−19Þð−17Þ

n ¼ 2 0.0444(25)(24) 0.0156(19)(19) � � �

TABLE XVIII. The values of the energy shift ΔE, the c.m. momentum k�2, and k� cot δ for the ΣNð1S0Þ channel.

Ensemble Boost vector State ΔE [l.u.] k�2 [l.u.] k� cot δ [l.u.]

243 × 64 (0,0,0) n ¼ 1 −0.0122ð13Þð26Þ −0.0093ð10Þð20Þ −0.048
ðþ14Þðþ35Þ
ð−12Þð−22Þ

n ¼ 2 0.0873(19)(32) 0.0682(15)(26) � � �
(0,0,2) n ¼ 1 0.0771(17)(35) −0.0083ð14Þð27Þ −0.040

ðþ24Þðþ60Þ
ð−18Þð−31Þ

n ¼ 2 0.1780(18)(48) 0.0747(16)(40) −0.7
ðþ0.2Þðþ0.3Þ
ð−0.2Þð−1.7Þ

323 × 96 (0,0,0) n ¼ 1 −0.0082ð21Þð16Þ −0.0063ð16Þð12Þ −0.052
ðþ26Þðþ25Þ
ð−18Þð−13Þ

n ¼ 2 0.0456(31)(16) 0.0351(24)(13) 0.6
ðþ1.6Þðþ2.2Þ
ð−0.3Þð−0.1Þ

(0,0,2) n ¼ 1 0.0396(18)(17) −0.0080ð14Þð13Þ −0.073
ðþ14Þðþ16Þ
ð−12Þð−10Þ

n ¼ 2 0.0924(18)(23) 0.0339(15)(19) � � �
483 × 96 (0,0,0) n ¼ 1 −0.0092ð48Þð38Þ −0.0070ð36Þð29Þ −0.081

ðþ36Þðþ43Þ
ð−21Þð−16Þ

n ¼ 2 0.0126(48)(30) 0.0096(36)(23) 0.03
ðþ11Þðþ11Þ
ð−06Þð−03Þ

(0,0,2) n ¼ 1 0.0139(50)(40) −0.0066ð38Þð30Þ −0.078
ðþ42Þðþ66Þ
ð−23Þð−18Þ

n ¼ 2 0.0366(51)(44) 0.0110(39)(34) � � �

TABLE XIX. The values of the energy shift ΔE, the c.m. momentum k�2, and k� cot δ for the ΣΣð1S0Þ channel.

Ensemble Boost vector State ΔE [l.u.] k�2 [l.u.] k� cot δ [l.u.]

243 × 64 (0,0,0) n ¼ 1 −0.0126ð13Þð15Þ −0.0100ð10Þð12Þ −0.057
ðþ13Þðþ17Þ
ð−11Þð−12Þ

n ¼ 2 0.0788(21)(26) 0.0643(18)(21) 1.3
ðþ0.9Þðþ2.1Þ
ð−0.4Þð−0.3Þ

(0,0,2) n ¼ 1 0.0725(14)(29) −0.0095ð11Þð24Þ −0.054
ðþ15Þðþ39Þ
ð−13Þð−25Þ

n ¼ 2 0.1618(34)(17) 0.0668(30)(15) � � �
323 × 96 (0,0,0) n ¼ 1 −0.0080ð12Þð14Þ −0.0063ð10Þð12Þ −0.053

ðþ14Þðþ20Þ
ð−12Þð−13Þ

n ¼ 2 0.0424(19)(25) 0.0342(16)(20) 0.50
ðþ31Þðþ71Þ
ð−15Þð−15Þ

(0,0,2) n ¼ 1 0.0381(19)(23) −0.0079ð15Þð19Þ −0.071
ðþ17Þðþ25Þ
ð−13Þð−14Þ

n ¼ 2 0.0889(22)(22) 0.0341(18)(19) � � �
(Table continued)

LOW-ENERGY SCATTERING AND EFFECTIVE INTERACTIONS … PHYS. REV. D 103, 054508 (2021)

054508-47



TABLE XIX. (Continued)

Ensemble Boost vector State ΔE [l.u.] k�2 [l.u.] k� cot δ [l.u.]

483 × 96 (0,0,0) n ¼ 1 −0.0065ð19Þð17Þ −0.0051ð15Þð14Þ −0.066
ðþ17Þðþ18Þ
ð−12Þð−10Þ

n ¼ 2 0.0150(19)(11) 0.0119(16)(09) 0.083
ðþ66Þðþ47Þ
ð−42Þð−23Þ

(0,0,2) n ¼ 1 0.0154(19)(20) −0.0049ð16Þð16Þ −0.063
ðþ19Þðþ24Þ
ð−13Þð−13Þ

n ¼ 2 0.0359(19)(16) 0.0117(15)(14) 0.077
ðþ64Þðþ72Þ
ð−39Þð−31Þ

TABLE XX. The values of the energy shift ΔE, the c.m. momentum k�2, and k� cot δ for the ΞΣð1S0Þ channel.

Ensemble Boost vector State ΔE [l.u.] k�2 [l.u.] k� cot δ [l.u.]

243 × 64 (0,0,0) n ¼ 1 −0.0137ð10Þð09Þ −0.0112ð08Þð08Þ −0.070
ðþ09Þðþ08Þ
ð−08Þð−07Þ

n ¼ 2 0.0745(17)(22) 0.0621(14)(19) 0.81
ðþ25Þðþ44Þ
ð−16Þð−18Þ

(0,0,2) n ¼ 1 0.0701(12)(17) −0.0101ð10Þð15Þ −0.062
ðþ13Þðþ19Þ
ð−11Þð−15Þ

n ¼ 2 0.1541(29)(21) 0.0631(25)(19) � � �
323 × 96 (0,0,0) n ¼ 1 −0.0096ð12Þð13Þ −0.0078ð10Þð10Þ −0.070

ðþ10Þðþ12Þ
ð−09Þð−09Þ

n ¼ 2 0.0370(20)(18) 0.0306(17)(15) 0.233
ðþ83Þðþ98Þ
ð−60Þð−46Þ

(0,0,2) n ¼ 1 0.0371(10)(14) −0.0079ð09Þð11Þ −0.071
ðþ09Þðþ13Þ
ð−08Þð−09Þ

n ¼ 2 0.0806(34)(34) 0.0288(29)(29) 0.19
ðþ16Þðþ25Þ
ð−08Þð−06Þ

483 × 96 (0,0,0) n ¼ 1 −0.0078ð26Þð12Þ −0.0063ð22Þð09Þ −0.075
ðþ20Þðþ08Þ
ð−14Þð−05Þ

n ¼ 2 0.0129(26)(13) 0.0106(22)(11) 0.045
ðþ65Þðþ41Þ
ð−41Þð−18Þ

(0,0,2) n ¼ 1 0.0133(28)(14) −0.0063ð23Þð10Þ −0.075
ðþ22Þðþ11Þ
ð−15Þð−07Þ

n ¼ 2 0.0340(32)(18) 0.0109(26)(14) 0.06
ðþ11Þðþ08Þ
ð−05Þð−03Þ

TABLE XXI. The values of the energy shift ΔE, the c.m. momentum k�2, and k� cot δ for the ΞΞð1S0Þ channel.

Ensemble Boost vector State ΔE [l.u.] k�2 [l.u.] k� cot δ [l.u.]

243 × 64 (0,0,0) n ¼ 1 −0.0134ð09Þð15Þ −0.0112ð07Þð12Þ −0.070
ðþ08Þðþ14Þ
ð−07Þð−11Þ

n ¼ 2 0.0712(14)(30) 0.0609(12)(26) 0.66
ðþ13Þðþ43Þ
ð−10Þð−17Þ

(0,0,2) n ¼ 1 0.0675(10)(13) −0.0110ð09Þð11Þ −0.070
ðþ09Þðþ13Þ
ð−08Þð−10Þ

n ¼ 2 0.1519(14)(27) 0.0643(12)(25) � � �
323 × 96 (0,0,0) n ¼ 1 −0.0109ð11Þð14Þ −0.0090ð09Þð12Þ −0.081

ðþ08Þðþ11Þ
ð−07Þð−09Þ

n ¼ 2 0.0349(12)(16) 0.0295(10)(14) 0.195
ðþ38Þðþ58Þ
ð−31Þð−38Þ

(0,0,2) n ¼ 1 0.0349(10)(17) −0.0091ð08Þð14Þ −0.082
ðþ07Þðþ13Þ
ð−06Þð−10Þ

n ¼ 2 0.0800(11)(30) 0.0299(10)(26) 0.23
ðþ04Þðþ17Þ
ð−04Þð−08Þ

483 × 96 (0,0,0) n ¼ 1 −0.0087ð12Þð13Þ −0.0072ð10Þð11Þ −0.082
ðþ07Þðþ08Þ
ð−06Þð−07Þ

n ¼ 2 0.0115(13)(14) 0.0096(11)(12) 0.026
ðþ22Þðþ27Þ
ð−19Þð−19Þ

(0,0,2) n ¼ 1 0.0120(13)(16) −0.0071ð11Þð13Þ −0.081
ðþ08Þðþ10Þ
ð−07Þð−08Þ

n ¼ 2 0.0321(13)(17) 0.0099(11)(15) 0.033
ðþ27Þðþ37Þ
ð−20Þð−26Þ
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TABLE XXII. The values of the energy shift ΔE, the c.m. momentum k�2, and k� cot δ for the NNð3S1Þ channel.

Ensemble Boost vector State ΔE [l.u.] k�2 [l.u.] k� cot δ [l.u.]

243 × 64 (0,0,0) n ¼ 1 −0.0140ð18Þð19Þ −0.0101ð13Þð14Þ −0.058
ðþ17Þðþ20Þ
ð−14Þð−13Þ

n ¼ 2 0.0860(30)(26) 0.0643(22)(20) 1.3
ðþ1.4Þðþ2.8Þ
ð−0.5Þð−0.3Þ

(0,0,2) n ¼ 1 0.0819(18)(27) −0.0074ð14Þð20Þ −0.023
ðþ31Þðþ55Þ
ð−22Þð−29Þ

n ¼ 2 0.1744(25)(36) 0.0658(20)(29) � � �
323 × 96 (0,0,0) n ¼ 1 −0.0090ð15Þð12Þ −0.0065ð11Þð08Þ −0.056

ðþ15Þðþ13Þ
ð−12Þð−09Þ

n ¼ 2 0.0442(16)(12) 0.0326(12)(10) 0.340
ðþ97Þðþ98Þ
ð−70Þð−45Þ

(0,0,2) n ¼ 1 0.0434(18)(12) −0.0066ð13Þð08Þ −0.057
ðþ20Þðþ14Þ
ð−14Þð−08Þ

n ¼ 2 0.0952(20)(23) 0.0328(15)(18) 0.44
ðþ30Þðþ75Þ
ð−13Þð−12Þ

483 × 96 (0,0,0) n ¼ 1 −0.0083ð27Þð15Þ −0.0060ð19Þð11Þ −0.073
ðþ18Þðþ12Þ
ð−13Þð−07Þ

n ¼ 2 0.0167(30)(17) 0.0122(22)(12) 0.09
ðþ13Þðþ11Þ
ð−06Þð−03Þ

(0,0,2) n ¼ 1 0.0149(29)(15) −0.0063ð21Þð11Þ −0.076
ðþ19Þðþ12Þ
ð−14Þð−07Þ

n ¼ 2 0.0393(31)(16) 0.0117(23)(12) 0.08
ðþ12Þðþ09Þ
ð−06Þð−02Þ

TABLE XXIII. The values of the energy shift ΔE, the c.m. momentum k�2, and k� cot δ for the ΣNð3S1Þ channel.

Ensemble Boost vector State ΔE [l.u.] k�2 [l.u.] k� cot δ [l.u.]

243 × 64 (0,0,0) n ¼ 1 0.0012(57)(41) 0.0009(44)(31) � � �
n ¼ 2 0.1325(28)(27) 0.1050(24)(22) 0.102

ðþ42Þðþ40Þ
ð−40Þð−36Þ

(0,0,2) n ¼ 1 0.0816(57)(88) −0.0048ð46Þð69Þ � � �
n ¼ 2 0.2047(84)(60) 0.0975(71)(50) 0.03

ðþ13Þðþ09Þ
ð−12Þð−10Þ

323 × 96 (0,0,0) n ¼ 1 0.0096(32)(33) 0.0073(24)(25) −0.107
ðþ27Þðþ26Þ
ð−37Þð−53Þ

n ¼ 2 0.0742(22)(13) 0.0578(18)(10) 0.047
ðþ40Þðþ24Þ
ð−38Þð−18Þ

(0,0,2) n ¼ 1 0.0609(38)(16) 0.0088(30)(11) −0.087
ðþ29Þðþ11Þ
ð−40Þð−17Þ

n ¼ 2 0.1252(46)(25) 0.0604(38)(19) 0.15
ðþ14Þðþ08Þ
ð−10Þð−05Þ

483 × 96 (0,0,0) n ¼ 1 0.0087(32)(25) 0.0066(24)(18) −0.021
ðþ37Þðþ31Þ
ð−33Þð−28Þ

n ¼ 2 0.0352(34)(27) 0.0270(26)(19) 0.08
ðþ14Þðþ13Þ
ð−09Þð−06Þ

(0,0,2) n ¼ 1 0.0291(35)(37) 0.0051(27)(29) −0.041
ðþ39Þðþ44Þ
ð−45Þð−91Þ

n ¼ 2 0.0527(38)(52) 0.0235(30)(41) −0.03
ðþ11Þðþ18Þ
ð−14Þð−65Þ

TABLE XXIV. The values of the energy shift ΔE, the c.m. momentum k�2, and k� cot δ for the ΞΞð3S1Þ channel.

Ensemble Boost vector State ΔE [l.u.] k�2 [l.u.] k� cot δ [l.u.]

243 × 64 (0,0,0) n ¼ 1 0.0012(11)(09) 0.0010(10)(08) � � �
n ¼ 2 0.0944(28)(16) 0.0812(25)(14) −0.38

ðþ09Þðþ05Þ
ð−12Þð−08Þ

(0,0,2) n ¼ 1 0.0797(13)(28) −0.0003ð12Þð24Þ � � �
n ¼ 2 0.1712(19)(29) 0.0820(18)(26) −0.29

ðþ05Þðþ07Þ
ð−06Þð−10Þ

(Table continued)
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upper and lower parentheses are, respectively, the right

and left uncertainties when the error bars are asymmetric,

as is generally the case for the k� cot δ values. When

there is an ellipsis sign in the tables, it indicates that the

quantity k cot δ diverges due to the singularities in the

Zd
00-function.

All quantities in the plots and tables are expressed in

lattice units.
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