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1 Introduction

In a recent paper [1] we have proposed a model based on the flavor non-universal gauge

group PS3 = [SU(4)×SU(2)L×SU(2)R]3 as an interesting framework to describe the hints of

lepton-flavor non-universality observed in B meson decays, both in neutral currents [2, 3]

and in charged currents [4–7]. Besides the phenomenological success, the virtue of this

model is the natural link between the pattern of “anomalies” observed so far and the

hierarchical structure of quark and lepton mass matrices: both structures follow from the
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same dynamical breaking of the flavor symmetry present in the model. This, together

with the unification of quarks and lepton quantum numbers à la Pati-Salam [8], makes the

model quite interesting and worth being further investigated. The purpose of this paper is

to analyze in more detail the rich low-energy phenomenology of the model, which presents

several distinctive features with respect to other models proposed so far for a combined

explanation of the two sets of anomalies.

The link between the anomalies and Yukawa couplings in the PS3 model follows from

an approximate U(2)5 flavor symmetry [9–11] that, as shown in a series of recent papers,

provides a natural starting point to address this problem [12–15]. Interestingly enough, in

the PS3 model the U(2)5 flavor symmetry is an accidental symmetry of the gauge sector of

the theory (below about 100TeV) and its breaking is controlled by the spontaneous sym-

metry breaking PS3 → SM. The main TeV-scale mediator responsible for the B anomalies

is a vector leptoquark field, U ∼ (3,1)2/3, which has already been identified as an excellent

single mediator for the anomalies (assuming pure left-handed couplings) in refs. [13, 15, 16],

and has indeed been at the center of a series of explicit model-building attempts [17–22].1

The difference of the PS3 model with respect to these previous attempts is twofold: on the

one hand, two other TeV-scale fields can mediate flavor-changing processes: a color octet

and a Z ′ (as also in [18]); on the other hand, all these TeV fields are not only coupled to

left-handed currents, but also to right-handed currents.

In this paper we present a systematic analysis of the low-energy phenomenology of

the model. We focus mainly on the effects of the TeV-scale gauge mediators in processes

involving the transition of the b quark and τ lepton into lighter fermions, since they are

the most directly connected to the anomalies. In particular, we show that if the anomalies

were to be confirmed, the model would predict a rather characteristic pattern of correlations

among these observables. Processes involving only the light families, such as those in K

and D physics and µ → e transitions, are controlled by subleading free parameters (more

precisely subleading breaking terms of the U(2)5 symmetry) which are constrained neither

by the anomalies nor by the Yukawa couplings and are therefore more model dependent.

As far as these transitions are concerned, we investigate the consistency of the model and

the constraints on these subleading effects arising from neutral meson mixing and µ → e

Lepton Flavor Violating (LFV) observables.

The paper is organized as follows: in section 2 we summarize the key features of

the model, focusing in particular on the flavor structure of the massive gauge bosons at

the TeV scale. In section 3 we briefly illustrate the procedure adopted to integrate out

the heavy fields and build a corresponding low-energy effective theory. In section 4 we

present a detailed analytical discussion of the most interesting observables, namely ∆F = 2

amplitudes, b→ cℓν decays, b→ sℓℓ decays, and LFV processes. The results of a global fit

and a general discussion of the low-energy phenomenology is presented in section 5. The

results are summarized in the conclusions. A series of technical details about the model,

the construction of the low-energy effective theory, and expressions for the observables are

reported in the various appendices.

1Interesting recent attempts to explain the anomalies not based on vector leptoquark mediators have

been presented in refs. [23–32].
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2 The PS3 model

In this section we briefly summarize the main features of the model, with particular atten-

tion to its flavor structure, that plays a key role in low-energy flavor-changing observables,

and to the spectrum of exotic gauge bosons at the TeV scale.

2.1 High-scale dynamics

The gauge symmetry holding at high energies is PS3 ≡ PS1 × PS2 × PS3, where PSi =

SU(4)i × [SU(2)L]i × [SU(2)R]i. The fermion content is the same as in the SM plus three

right-handed neutrinos, such that each fermion family is embedded in left- and right-

handed multiplets of a given PSi subgroup: (4,2,1)i and (4,1,2)i. At this level the index

i = 1, 2, 3 can be identified with the generation index. The SM gauge group is a subgroup

of the diagonal group, PSdiag = PS1+2+3. The spontaneous symmetry breaking (SSB)

PS3 → SM occurs in a series of steps at different energy scales, with appropriate scalar

fields acquiring non-vanishing vacuum expectation values (VEVs), as described in ref. [1].

As far as low-energy physics is concerned, we can ignore what happens above the

scale where the initial gauge group is spontaneously broken to SM1+2 × PS3. This SSB

scale (Λ12) is chosen sufficiently high to neglect the effect of the d ≥ 6 effective operators

generated at this scale, even for rare processes such as KL → µe or K-K̄ mixing. The

key aspect of the SM1+2×PS3 local symmetry is the corresponding accidental U(2)5 global

flavor symmetry [9, 11]

U(2)5 = U(2)q ×U(2)ℓ ×U(2)u ×U(2)d ×U(2)e , (2.1)

acting on the first two generations of SM fermions, in the limit where we ignore the scalar

sector of the theory.

The SSB SM1+2 × PS3 → SM occurs below the scale Λ23 = few × 10 TeV via an

appropriate set of scalar (link) fields acquiring a non-trivial VEV:2

ΦL ∼ (1,2,1)1+2 × (1, 2̄,1)3 , ΦR ∼ (1,1,2)1+2 × (1,1, 2̄)3 ,

Ω1 ∼ (1,2,1)1+2 × (4̄, 2̄,1)3 , Ω3 ∼ (3,2,1)1+2 × (4̄, 2̄,1)3 .
(2.2)

The VEV of such fields obey a hierarchical pattern, 〈ΦL,R〉 > 〈Ω1,3〉, such that the heavy

fields with masses proportional to 〈ΦL,R〉 = O(10 TeV) can safely be decoupled due to

their heavy mass and the U(2)5 flavor symmetry.

The gauge bosons responsible for the flavor anomalies, and potentially relevant in many

flavor observables, are those acquiring mass in the last step of the breaking chain,

SU(4)3 × SU(3)1+2 × SU(2)L ×U(1)′ → SM , (2.3)

triggered by 〈Ω1,3〉 6= 0 around the TeV scale. The 15 broken generators give rise to the

following massive spin-1 fields: a leptoquark, U ∼ (3,1)2/3, a coloron, G′ ∼ (8,1)0, and a

2For simplicity, we classify the link fields according to their transformation properties under [SU(2)R]1+2,

rather than [U(1)Y]1+2. We also changed notation for the link fields with respect to ref. [1], given we focus

only in the last step of the breaking chain.
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Z ′ ∼ (1,1)0. As we discuss below, these are not the only TeV-scale fields: the spectrum

contains additional scalars and fermions with masses of the order of a few TeV. However,

these play no direct role in low-energy observables.

Finally, the breaking of the electroweak symmetry takes place through the VEV of four

SM-like Higgs fields (or two fields transforming as bi-doublets under SU(2)L×SU(2)R) that,
before the breaking of PS3, are embedded in the following two scalars:

H1 ∼ (1,2, 2̄)3 , H15 ∼ (15,2, 2̄)3 , (2.4)

with 〈H15〉 aligned along the T 15 generator of SU(4)3. Being singlets of SM1+2, these fields

allow us to extend the U(2)5 symmetry also to the Yukawa sector, which remains exact at

the level of renormalizable operators.

2.2 Yukawa couplings and breaking of the U(2)5 flavor symmetry

The Yukawa couplings for the light generations and, more generally, the breaking of the

U(2)5 symmetry, arise from higher-dimensional operators involving the link fields Ω1,3

and ΦL,R, generated at the scale Λ23 [1]. Taking into account the effect of operators up to

d = 7, quark and charged-lepton Yukawa couplings assume the following general parametric

structure

Yf ∼





〈ΦL〉〈Φ
†
R〉

Λ2
23

〈Ωa〉
Λ23

〈ΦL〉〈Φ
†
R〉〈Ωa〉

Λ3
23

yf3



 , (2.5)

with a = 3 (1) for quarks (leptons). Here, the 11 (12) entry of this matrix should be

understood as a 2× 2 matrix (2-component vector) in flavor space (see appendix A).

The only entries in eq. (2.5) induced by renormalizable interactions below the scale

Λ23 are the Yukawa couplings for the third generation, which arise from

LYuk = y1Ψ̄
3
LH1Ψ

3
R + y15Ψ̄

3
LH15Ψ

3
R + y′1Ψ̄

3
LH

c
1Ψ

3
R + y′15Ψ̄

3
LH

c
15Ψ

3
R + h.c. , (2.6)

where (Ψ3
L(R))

⊺ = [(q3L(R))
⊺, (ℓ3L(R))

⊺] denote the PS multiplets of third-generation fermions.

Here (q3R)
⊺ = (tR, bR), (ℓ

3
R)

⊺ = (τR, ν
τ
R), and q

3
L and ℓ3L indicate the SM left-handed dou-

blets.3 The yf3 couplings in eq. (2.5) are combinations of the y
(′)
1(15) weighted by the VEVs

of H1 and H15 normalised to v = 246GeV. The leading terms controlling the left-handed

mixing between third and second generations are generated by the following dimension-five

operators

Ld=5
Ω =

yq3
Λ23

q̄2LH1Ω3Ψ
3
R+

yℓ3
Λ23

ℓ̄2LH1Ω1Ψ
3
R+

y′q3
Λ23

q̄2LH
c
1Ω3Ψ

3
R+

y′ℓ3
Λ23

ℓ̄2LH
c
1Ω1Ψ

3
R+h.c. (2.7)

The upper index on the left-handed doublets denotes the second family (in the interaction

basis) that, by construction, is defined as the fermion combination appearing in these

3In the absence of tuning, this Lagrangian predicts yt and yντ to be of similar size. As pointed out in [22],

this prediction can be made compatible with realistic light-neutrino masses by means of an appropriate

inverse seesaw mechanism.

– 4 –



J
H
E
P
1
0
(
2
0
1
8
)
1
4
8

operators (see appendix A). Similarly, operators of d = 6 and 7 involving also the link

fields ΦL,R are responsible for the subleading terms in (2.5).

The dynamical origin of these higher-dimensional operators is not relevant to analyze

low-energy phenomenology. The only important point is the U(2)5 symmetry breaking

structure they induce. This is highlighted by re-writing each Yukawa matrix in terms

of three normalized U(2)5 breaking spurions {VL, VR, XLR}, with hierarchical ordered

coefficients (|ǫfR| ≪ |ǫ
f
LR| ≪ |ǫ

f
L| ≪ 1):

Yf = yf3

(

ǫfLRXLR ǫfL VL

ǫfR V
⊺
R 1

)

. (2.8)

Here VL and VR are unit vectors in the U(2)q+ℓ and U(2)u+d+e space, while XLR is a

bi-fundamental spurion of U(2)5.

We define the interaction basis for the left-handed doublets as the basis where the

second generation is identified by the direction of leading spurion VL in flavor space (i.e. in

this basis VL is aligned to the second generation). We move from the interaction to the

mass basis by means of the rotations

L†
uYuRu = diag(yu, yc, yt) , L†

dYdRd = diag(yd, ys, yb) , L†
eYeRe = diag(ye, yµ, yτ ) ,

(2.9)

where the yi are real and positive and VCKM = L†
uLd. The left-handed rotation matrices,

generated by the leading spurions, play a prominent role in the phenomenological analysis.

As discussed in detail in appendix A, the known structure of the SM Yukawa couplings

determines only some of the (complex) coefficients ǫfL,R,LR. In particular three real parame-

ters and two phases in the quark sector can be expressed in terms of CKM matrix elements,

leaving us with the mixing angles and phases listed in table 1. In the left-handed sector

we end up with three mixing angles (sb, sτ , se) and four CP-violating phases, out of which

only two play a relevant role (φb and αd). The other two phases (φτ and αe) are set to

zero for simplicity. The left-handed mixing angles, which are nothing but the magnitudes

of the ǫfL parameters in the down and charged-lepton sector, are expected to be small, the

natural size being set by |Vts|. The subleading right-handed rotations in the lepton sector,

controlled by the parameter ǫeR, play an important role in the rare Bs → µ̄µ decay and in

LFV transitions. Right-handed rotations in the quark sector, controlled by ǫdR and ǫuR, do

not significantly affect the phenomenology and thus are neglected in the following.

2.2.1 Additional U(2)5 breaking from non-Yukawa operators

An additional important aspect to analyze low-energy physics is the fact that the U(2)5

breaking is not confined only to the Yukawa sector, but it appears also in other effective

operators. Among them, those with phenomenological implications at low energies are the

d = 6 operators bilinear in the light fermion fields and in the Ω1,3 link fields:

Ld=6
Ω =

cqℓ
Λ2
23

(Xqℓ)ij Tr[iΩ
†
1D

µΩ3](q̄
i
Lγµℓ

j
L) +

cqq
Λ2
23

(Xqq)ij Tr[iΩ
†
3D

µΩ3](q̄
i
Lγµq

j
L)

+
cℓℓ
Λ2
23

(Xℓℓ)ijTr[iΩ
†
1D

µΩ1](ℓ̄
i
Lγµℓ

j
L) + h.c. ,

(2.10)
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Parameters Natural size

Left-handed mixing
ǫu,dL , ǫu,dLR

CKM−→ sb, φb, αd sb = O(|Vts|)
ǫeL, ǫ

e
LR −→ sτ , se, φτ , αe sτ = O(|Vts|), se ≪ sτ

Right-handed mixing
ǫdR, ǫ

u
R |ǫdR| = O(ms

mb
sb), |ǫuR| = O(mc

mt
|Vcb|)

ǫeR |ǫeR| = O(
mµ

mτ
sτ )

Table 1. Flavor mixing parameters arising from the U(2)
5
-breaking spurions in the Yukawa sector.

The mixing parameters in the left-handed sector (ǫfL,LR) are parameterized in terms of mixing

angles and phases after removing terms fixed by known CKM elements. The parameters φτ , αe,

and ǫu,dR are listed for completeness but are set to zero in the phenomenological analysis since they

play a marginal role (see main text).

(with i, j = 1, 2). These operators introduce three new bi-fundamental spurions of U(2)5,

Xqℓ ∼ 2q× 2̄ℓ, Xℓℓ ∼ 2ℓ× 2̄ℓ, and Xqq ∼ 2q× 2̄q that, as shown below, modify the couplings

of the TeV-scale vectors to the SM fermions. In order to simplify the phenomenological dis-

cussion, it is convenient to define a minimal breaking structure for these additional spurions

Xqq|min = 1 , Xℓℓ|min = Xqℓ|min = diag(0, 1) , (2.11)

corresponding to U(2)5 symmetric couplings for quark currents, and breaking terms aligned

to those appearing in the Yukawa couplings for lepton currents. As we show in section 4,

such minimal breaking structure helps evading the tight bounds from neutral meson mix-

ing while maximizing the impact on the b→ sℓℓ anomalies. In the limit where we neglect

deviations from this structure, the relevant parameters controlling the breaking of U(2)5

in the coupling of the TeV-scale leptoquark and Z ′ are

ǫU = cqℓ
ω1ω3

2Λ2
23

, ǫℓ = cℓℓ
ω2
1

2Λ2
23

, (2.12)

with ω1,3 defined in (2.14). For completeness we also mention the U(2)5-preserving

parameter

ǫq = cqq
ω2
3

2Λ2
23

, (2.13)

which however does not play any role in the phenomenological analysis. Deviations from

the minimal U(2)5 breaking stucture of eq. (2.11) are possible, and are unavoidably gen-

erated when considering the product of two or more spurions, hence they are expected to

be small. Leading and sub-leading U(2)5-breaking parameters are summarized in table 2,

together with their expected relative size (see eq. (2.22) for the definition of the subleading

terms). Analogous sub-leading U(2)ℓ breaking parameters could also be present; however,

their effect is irrelevant and thus we do not consider them here.

In appendix B we present an explicit dynamical realization of Ld=5
Ω and Ld=6

Ω in terms

of heavy fields to be integrated out. In particular, we show how these operators and the

minimal breaking structure can be generated by integrating out an appropriate set of TeV-

scale vector-like fermions with renormalizable interactions at the scale of unbroken SM1+2×

– 6 –
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Breaking Leading Sub-leading Sub-sub-leading Natural size

U(2)q ×U(2)ℓ ǫU ǫ̃dU , ǫ̃
e
U ∆ǫU ǫ̃d,eU = O(ǫUsd,e), ∆ǫU = O(ǫUsesd)

U(2)q - ǫ̃q ∆ǫq ǫ̃q = O(ǫUsτ ), ∆ǫq = O(ǫ2U )
U(2)ℓ ǫℓ - - ǫℓ = O(ǫU )

Table 2. U(2)
5
breaking parameters arising from non-Yukawa operators. Only ǫU is used as free

parameter in the fit. All the subleading terms are set to zero after checking that bounds set by

present data are less stringent than the expected natural size.

PS3. A discussion about the possible deviations from the minimal breaking structure in

eq. (2.11), is also presented. In principle, also d = 6 operators involving right-handed light

fermion fields could be relevant at low-energies. However, it is easy to conceive ultraviolet

completions where such operators are not generated (or are extremely suppressed), as in

the example presented in the appendix B. As argued in ref. [1] (see discussion in section II.B

of this reference), all other U(2)-violating operators at d = 6 operators either contribute

to the Yukawa couplings or have negligible impact at low energies. In particular, given

the connection of U(2)-violating terms with the link fields, U(2)5-violating four-fermion

operators are forbidden in our model.

2.3 The model at the TeV scale

Here we focus on the last step of the breaking chain before reaching the SM, namely

eq. (2.3). With an obvious notation, we denote the gauge couplings before the symmetry

breaking by gi, with i = 1 . . . 4, and the gauge fields of SU(4)3, SU(3)1+2, and U(1)′ by

Ha
µ, A

a
µ, and B

′
µ, respectively. The symmetry breaking in eq. (2.3) occurs via the VEVs of

Ω1,3 along the SM direction, that we normalize as

〈Ω⊺
3〉 =

1√
2











ω3 0 0

0 ω3 0

0 0 ω3

0 0 0











, 〈Ω⊺
1〉 =

1√
2











0

0

0

ω1











, (2.14)

with ω1,3 = O(TeV). These scalar fields can be decomposed under the unbroken SM

subgroup as Ω3 ∼ (8,1)0 ⊕ (1,1)0 ⊕ (3,1)2/3 and Ω1 ∼ (3̄,1)−2/3 ⊕ (1,1)0. As a result,

after removing the Goldstones, we end up with a real color octect, one real and one complex

singlet, and a complex leptoquark.

The gauge spectrum, which coincides with the one originally proposed in ref. [18],

contains the following massive fields

U1,2,3
µ =

1√
2

(

H9,11,13
µ − iH10,12,14

µ

)

, G′ a
µ =

1
√

g24 + g23

(

g3A
a
µ − g4Ha

µ

)

,

Z ′
µ =

1
√

g24 +
2
3 g

2
1

(

g4H
15
µ −

√

2

3
g1B

′
µ

)

,
(2.15)
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with masses

MU =
g4
2

√

ω2
1 + ω2

3 , MG′ =

√

g24 + g23
2

ω3 , MZ′ =
1

2

√

3

2
g24 + g21

√

ω2
1 +

ω2
3

3
. (2.16)

The combinations orthogonal to G′ a
µ and Z ′

µ are the SM gauge fields Gaµ and Bµ, whose

couplings are gc = g3g4/
√

g24 + g23 and gY = g1g4/
√

g24 +
2
3 g

2
1. For later convenience, we

introduce the effective couplings

gU ≡ g4 , gG′ ≡
√

g2U − g2c , gZ′ ≡ 1

2
√
6

√

g2U −
2

3
g2Y , (2.17)

that control the strength of the interactions with third-generation fermions. Note that in

the limit g4 ≫ g3 (hence gU ≫ gc), one has gU ≈ gG′ ≈ 2
√
6 gZ′ .

The interactions of the heavy gauge bosons with SM fermions (and right-handed neu-

trinos) are described by the following Lagrangian

Lint ⊃
gU√
2

(

UµJ
µ
U + h.c.

)

− gG′ G′ a
µ J

µa
G′ − gZ′ Z ′

µJ
µ
Z′ , (2.18)

where
JµU ⊃ qLNL

U γ
µℓL + uRN

R
U γµνR + dRN

R
U γµeR ,

JµaG′ ⊃ qLNL
G′γµT aqL + uRN

R
G′γµT auR + dRN

R
G′γµT adR ,

JµZ′ ⊃ 3 ℓLN
ℓ
Z′γµℓL + 3 νRN

ν
Z′γµνR − qLN q

Z′γ
µqL

+ 3 eRN
e
Z′γµeR − uRNu

Z′γµuR − dRNd
Z′γµdR ,

(2.19)

and the N ’s are 3 × 3 matrices in flavor space. In the absence of U(2)5 breaking, these

matrices assume the following form in the interaction basis

NL,R
U = NU ≡ diag (0, 0, 1) ,

N ℓ
Z′ = N q

Z′ = NZ′ ≡ diag

(

−2

3

(

g1
g4

)2

,−2

3

(

g1
g4

)2

, 1

)

,

NL,R
G′ = NG′ ≡ diag

(

−
(

g3
g4

)2

,−
(

g3
g4

)2

, 1

)

,

N
ν(e)
Z′ = NZ′ ± 2

3

(

g1
g4

)2

1 , N
u(d)
Z′ = NZ′ ∓ 2

(

g1
g4

)2

1 .

(2.20)

The inclusion of the effective operators of Ld=6
Ω in eq. (2.10) modifies these flavor couplings

into

NL
U →

(

ǫUXql 0

0 1

)

, N ℓ
Z′ → NZ′ +

(

ǫℓXℓℓ 0

0 0

)

,

N q
Z′(N

L
G′)→ NZ′(NG′) +

(

ǫqXqq 0

0 0

)

.

(2.21)

As discussed in appendix B, the natural size for the ǫℓ,q,U parameters is 10−3 <
∼ |ǫℓ,q,U | <∼

10−2. In the limit where we adopt the minimal breaking structure in eq. (2.11) the Z ′ and
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G′ couplings to quarks remain U(2)q symmetric. Additional modifications to the couplings

in eq. (2.21) arise when considering deviations from the minimal breaking structure (see

table 2). In this case one finds

NL
G′(N

q
Z′)→ NL

G′(N
q
Z′)
∣

∣

U(2)q−symm
+







0 0 0

0 ∆ǫq ǫ̃q
0 ǫ̃ ∗q 0






, (2.22)

NL
U →







∆ǫU ǫ̃dU 0

ǫ̃eU ǫU 0

0 0 1






.

These subleading effects are specially relevant in two cases: i) U(2)q violating terms in

the Z ′ and G′ couplings to quarks, which are severely constrained by ∆F = 2 ampli-

tudes; ii) non-vanishing entries of the U couplings involving the first family, which receive

important constraints from KL → µe.

When discussing low-energy observables, the heavy vectors are integrated out and the

overall strength of their interactions is controlled by three effective Fermi-like couplings

CU ≡
g2Uv

2

4M2
U

=
v2

ω2
1 + ω2

3

, CG′ ≡ g2G′v2

4M2
G′

, CZ′ ≡ g2Z′v2

4M2
Z′

, (2.23)

which span a limited range depending on the values of ω1 and ω3 and, to a smaller extent,

gU . These effective couplings (or better ω1 and ω3), together with the flavor parameters

listed in tables 1 and 2, are the free parameters used in the phenomenological analysis of

the low-energy observables.

3 Construction of the low-energy EFT

The construction of the EFT relevant for low-energy phenomenology occurs in three steps:

i) we integrate out the TeV fields at the tree-level, matching the theory into the so-called

SM effective field theory (SMEFT), for which we adopt the Warsaw operator basis [33];

ii) the SMEFT operators are evolved down to the electroweak scale using the one-loop

Renormalization Group (RG) equations in refs. [34–36]. At this point, all the ingredients

necessary to check possible modifications of the on-shell W and Z couplings are available.

For all the other observables a third step is needed: iii) the heavy SM fields are integrated

out and the theory is matched into a low-energy effective field theory (LEFT) containing

only light SM fields [37]. The key points of these three steps are briefly illustrated below.

3.1 Matching heavy gauge boson contributions to the SMEFT

Moving from the interaction basis to the quark down-basis, defined in (A.7), and the mass-

eigenstate basis of charged leptons, the currents in eq. (2.19) assume the form

JµU ⊃ qL βqγµℓL + uR βuγ
µνR + dR βdγ

µeR ,

JµaG′ ⊃ qL κqγµT aqL + uR κuγ
µT auR + dR κdγ

µT adR ,

JµZ′ ⊃ 3 ℓL ξℓγ
µℓL − qL ξqγµqL + 3 νR ξνγ

µνR + 3 eR ξeγ
µeR

− uR ξuγµuR − dR ξdγµdR + 2

(

g1
g4

)2

φ† i
←→
Dµ φ ,

(3.1)
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where the new flavor structures are expressed in terms of the N ’s and the unitary rotation

matrices that diagonalize the Yukawa couplings:

βq = L†
dN

L
ULℓ , κq = L†

dN
L
G′Ld , ξq = L†

dN
q
Z′Ld , ξℓ = L†

eN
ℓ
Z′Le ,

βu = R†
uN

R
URν , κu = R†

uN
R
G′Ru , ξu = R†

uN
u
Z′Ru , ξe = R†

eN
e
Z′Re ,

βd = −R†
dN

R
URe , κd = R†

dN
R
G′Rd , ξd = R†

dN
d
Z′Rd , ξν = R†

νN
ν
Z′Rν .

(3.2)

The relative sign in βd follows from the phase choice discussed in appendix A. This phase

choice fixes the sign of the scalar contribution to ∆RD(∗) , see eqs. (4.15) and (4.19), and

therefore it plays a key role in the explanation of the RD(∗) anomalies. Also note that, in

the case of the Z ′ current, we have included also the contribution of the SM Higgs (φ),

which is obtained combining the four SM-like Higgses of the model.

By integrating out U , Z ′ and G′ at the tree level we obtain the effective Lagrangians

LUEFT = −4GF√
2
CU J

µ
UJ

†
U µ = − 2

v2
CU
∑

k

BkQk ,

LG′

EFT = −4GF√
2
CG′ (JµG′)

2 = − 2

v2
CG′

∑

k

KkQk ,

LZ′

EFT = −4GF√
2
CZ′ (JµZ′)

2 = − 2

v2
CZ′

∑

k

ΞkQk ,

(3.3)

where Qk denote the SMEFT operators in the Warsaw basis [33], plus additional dimension

six operators involving right-handed neutrinos, reported in table 3. More compactly,

LSMEFT = −4GF√
2

∑

k

CkQk Ck = CUBk + CG′Kk + CZ′Ξk . (3.4)

Tables 4, 6, and 5 contain the tree level matching results for the SMEFT Wilson coeffi-

cients Ck.

3.2 From the SMEFT to the LEFT

After matching, we perform the RG evolution of the resulting Wilson coefficients using

DsixTools [38]. RG effects are particularly important for the scalar operators and for

dimension-six operators in the ψ2φ2D category. The latter introduce modifications to the

W and Z after SSB (see e.g. [37])4 which are tightly constrained by electroweak precision

data at LEP as well as by universality tests in lepton decays [39–41]. NP effects below the

electroweak scale are conveniently described in terms of a low-energy effective field theory

(LEFT) in which the W , the Z, the t and the Higgs have been integrated out:

LLEFT = −4GF√
2

∑

k

CkOk . (3.5)

We then proceed by matching the SMEFT to the LEFT and provide the expressions for

the relevant observables in terms of its Wilson coefficients. We adopt the same operator

basis for the LEFT as in table 7 of ref. [37], where the matching conditions between the

SMEFT and the LEFT can also be found.
4Contributions to other dimension-six operators that could potentially induce W and Z coupling modi-

fications, such as those of the class X2H2 or QHD, are negligible in our model.
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4 The key low-energy observables

In what follows we provide simplified expressions for the most relevant low-energy observ-

ables, and discuss their role in constraining the model and in offering future test of this

framework. This simplified expressions are mainly for illustration purposes; for all fig-

ures and numerical estimates throughout the paper we use the full expressions quoted in

appendix D.

4.1 ∆F = 2 transitions

As in any extension of the SM with non-trivial flavor strucutre, also in the PS3 framework

∆F = 2 amplitudes provide one of the most significant constraints on model parameters,

particularly on the new sources of flavor violation in the quark sector. These amplitudes

receive tree-level contributions mediated by the Z ′ and G′, whose strength is controlled

by the U(2)5 breaking spurions. To a good approximation, the three down-type ∆F = 2

amplitudes can be written as

M(K0→ K̄0)≈
∣

∣

∣M(tt)
SM

∣

∣

∣

[

(VtdV
∗
ts)

2

|VtdV ∗
ts|2

+e−2iαd
c4d [s

2
b+2sbRe(ǫ̃q e

−iφb)+∆ǫq]
2

|Vts|4
F0

]

+M(tc+cc)
SM ,

M(Bd→ B̄d)≈ |MSM|
(VtdV

∗
tb)

2

∣

∣VtdV
∗
tb

∣

∣

2

[

1+
c2d (sb e

−iφb+ǫ̃∗q)
2

|Vts|2
F0 e

−2i∆αd

]

,

M(Bs→ B̄s)≈ |MSM|
(VtsV

∗
tb)

2

∣

∣VtsV ∗
tb

∣

∣

2

[

1+
c2d (sb e

−iφb+ǫ̃∗q)
2

|Vts|2
F0 (1+f(θ

R
bs))

]

,

(4.1)

where

F0 =
16π2√

2GFM2
W S0(xt)

(

CZ′ +
CG′

3

)

, (4.2)

and S0(xt = m2
t /M

2
W ) ≈ 2.4 denotes the SM one-loop function (in the ∆S = 2 case we

normalize the NP amplitude to the short-distance top-quark SM contribution).

As far as left-handed flavor-mixing parameters are concerned, sb and φb arise from the

leading U(2)q breaking term in the quark sector; ∆αd = αd − (π −Arg {Vtd/Vts}) denotes
the phase difference between the leading quark spurion and subleading terms describing

light-quark masses (see appendix A); cd = 1+O(|Vus|2); ∆ǫq and ǫ̃q, defined in eq. (2.22),

encode the effect of the subleading breaking terms in the Z ′ and G′ couplings.

Finally, f(θRbs) describes the contributions from the right-handed flavor rotations

in (A.18). Using the inputs in [42] for the bag parameters of non-SM operators, we find

f(θRbs) ≈
16CZ′ + 22CG′

3CZ′ + CG′

(θRbs)
∗

cd sb e−iφb
+O[(θRbs)2] . (4.3)

As shown in appendix A, in the limit where we neglect contributions to the Yukawa cou-

plings from d = 7 effective operators, i.e. when we set ǫdR = 0, the right-handed rotation

angle is unambiguously fixed to θRbs = ms/mb sb e
iφb , that in turn implies f(θRbs) ≈ 0.4 for

typical values of CZ′/CG′ .
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CP violation in Kaon mixing. The most significant constraints on the subleading

parameters ∆ǫq and ǫ̃q, which describe the deviations from the exact U(2)q limit in the Z ′

and G′ left-handed couplings, arise from the CP-violating observable ǫK ∝ Im[M(K0 →
K̄0)], that can be decomposed as

ǫK ≈ ǫSMK −
√
2 ǫ

SM, (tt)
K sin(2αd)

[

s2b + 2 sb Re(ǫ̃q e
−iφb) + ∆ǫq

]2 c4d F0

|Vts|4
, (4.4)

where ǫ
SM, (tt)
K corresponds to the top-mediated SM contribution. The NP contribution to

ǫK vanishes for αd → 0. Setting ∆ǫq = ǫ̃q = 0, and choosing the other parameters in their

natural range, we find that ǫK is well within its current bound, irrespective of the value of

αd. Allowing for ∆ǫq, ǫ̃q 6= 0, imposing modifications in |ǫK | of up to O(15%), and barring

accidental cancellations with generic values of αd, we find

|∆ǫq| . 0.1 |Vts|2 , |ǫ̃q| . 0.3 |Vts| . (4.5)

Similar limits, although slightly less stringent, are obtained from Bs,d − B̄s,d and D − D̄
mixing. Despite being stringent, these limits are below the natural size of these subleading

breaking terms inferred in table 2 (setting |ǫU | ≤ 10−2). This result implies that: i) it is

perfectly consistent to focus on the scenario ∆ǫq = ǫ̃q = 0; ii) once the symmetry breaking

terms assume their natural size, no fine-tuning on the CP-violating phases is necessary in

order to satisfy the ǫK constraint.

∆B = 2 observables. Setting ∆ǫq = ǫ̃q = 0, the physical observables sensitive to

∆B = 2 amplitudes, namely the mass differences (∆Mq) and the CP violating asymmetries

SψKS
and Sψφ can be expressed as

CBd
≡ ∆Md

∆MSM
d

≈
∣

∣

∣

∣

∣

1 +
c2d s

2
b e

−2i(φb+∆αd)

|Vts|2
F0

∣

∣

∣

∣

∣

,

CBs ≡
∆Ms

∆MSM
s

≈
∣

∣

∣

∣

1 +
c2d s

2
b e

−2iφb

|Vts|2
F0

(

1 + f(θRbs)
)

∣

∣

∣

∣

,

(4.6)

and

SψKs = sin (2β +ΦBd
) , ΦBd

≈ Arg

(

1 +
c2d s

2
b e

−2i(φb+∆αd)

|Vts|2
F0

)

,

Sψφ = sin (2|βs| − ΦBs) , ΦBs ≈ Arg

(

1 +
c2d s

2
b e

−2iφb

|Vts|2
F0

(

1 + f(θRbs)
)

)

.

(4.7)

Current lattice data [42] point to a deficit in the experimental values of ∆Md,s with respect

to the SM prediction (or equivalently to values of CBs,d
smaller than one). As show in

figure 1, the presence of the free phase φb allows the model to accommodate this deficit,

even for small departures from φb = π/2, while satisfying the bounds from CP violation

(see ref. [43] for a similar discussion). The mixing angle sb is constrained to be up to 0.2

|Vts| (depending on φb), indicating a mild alignment of the leading U(2)q breaking spurion

in the down sector. As we discuss in section 4.4, in our framework the vector leptoquark
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Figure 1. NP effects in Bs,d − B̄s,d mixing as function of the phase φb for ∆αd = 0, π (left) and

αd = 0, π (right). The blue and orange bands correspond to the 95% CL experimental bounds for

Bs and Bd mixing, respectively. We use the following inputs: sb = 0.10 |Vts| (solid), sb = 0.15 |Vts|
(dashed), ǫdR = 0, g4 = 3.0, MZ′ = 1.75TeV, and MG′ = 2.5TeV.

provides a good fit of the semileptonic anomalies irrespective of the value of φb (contrary to

the case discussed in ref. [43]). We thus conclude that the model leads to a good description

of ∆B = 2 observables, possibly improved compared to the SM case. We also note that

using previous lattice determinations of the SM prediction for ∆Md,s, consistent with the

experimental value but with larger errors (see e.g. [43–45]), does not affect the results of

our phenomenological analysis.

CP violation in D mixing. Last but not least, we analyze the bounds from ∆C = 2

amplitudes. Following the analysis from UTfit [46–49], the constraint obtained from the

non-observation of CP-violation in the D − D̄ transition can be expressed as

Im(CD1 ) =
4GF√

2
Im
([

CV,LLuu

]

2121
(µt)

)

= (−0.03± 0.46)× 10−14 GeV−2 . (4.8)
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Taking into account also the subleading breaking terms, we find the following simplified

expression for this Wilson coefficient:

Im
(

CD1
)

≈ 4GF√
2

Im

{

(V ∗
ubVcb)

2

[(

1+cd (sb e
−iφb+ǫ̃∗q )

Vtb
|Vts|

Λ∗
u

)(

1+cd (sb e
iφb+ǫ̃q))

V ∗
tb

|Vts|
Λc

)

+∆ǫq c
2
d

|Vtb|2
|Vts|2

Λ∗
uΛc

]2
}

(

CZ′+
CG′

3

)

=
4GF√

2

(

CZ′+
CG′

3

)

Im
{

(V ∗
ubVcb)

2 [1+O(sb, ǫ̃q,∆ǫq)]
}

, (4.9)

where we have defined

Λi =
Vis|Vts| − Vid |Vtd| eiαd

VibV
∗
tb

=

{

1 +O(λ2) (i = c)

1− VudV
∗
td

Vub

[

1− ei∆αd
]

+O(λ2) (i = u)
, (4.10)

which in the limit ∆αd → 0 reduces to the U(2) symmetric result Λc = Λu = 1. Contrary

to down-type observables, in this case non-vanishing NP contributions are generated also

in the sb → 0 limit.

Setting to zero the subleading breaking terms (∆ǫq = ǫ̃q = 0), we find that the experi-

mental bound is satisfied over a wide range of {sb, φb} values compatible with the ∆B = 2

constraints. Note in particular that in the limit where ∆αd = π, we have Λu = 1.1− 4.6 i.

In this case the large imaginary piece of Λu, together with the values of sb and φb intro-

duced to explain the deficit in ∆B = 2 transitions, yields a partial cancellation in CD1 ,

both in the real and in the imaginary part. This is shown in figure 2 where we plot the

Z ′ and G′ mediated tree-level contributions to the imaginary part of CD1 together with the

current bound from UTfit. A similar behaviour is also obtained when αd = π, in which

case Λu = 0.2− 4.4 i.

4.2 LFU tests in charged lepton decays

Beside ∆F = 2 observables, another very relevant set of constraints on the model is posed

by LFU tests in charged-lepton decays. These provide an important bound on the overall

strength of leptoquark interactions, yielding an upper limit on the possible NP contribution

to RD(∗) . Such tests are constructed by performing ratios of the partial widths of a lepton

decaying to lighter leptons or hadrons (see appendix D.2). In our model, both the µ vs e

and the τ vs µ ratios are modified: the former is dominated by the tree-level exchange of a

Z ′, the latter by a leptoquark loop. Setting MU = 2TeV to evaluate the leptoquark loop

we find5
(

gµ
ge

)

ℓ

≈ 1 + 9CZ′ s2τ , (4.11)

(

gτ
gµ

)

ℓ,π,K

≈ 1− 0.063CU . (4.12)

5In the τ vs µ ratio we include the full RG running from MU to mt using DsixTools [38]. Because of

the large running effects in the top Yukawa coupling, we find differences of O(20%) in the NP contribution

when comparing the full RG result to the non-RG improved one-loop expression. We also include the

non-logarithmic terms computed in [1].
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Figure 2. Model contributions to Im(CD
1 ) as function of φb. We use the following inputs:

sb = 0.10 |Vts|, g4 = 3.0, MZ′ = 1.75TeV, and MG′ = 2.5TeV. The dark- and light-blue bands

correspond to the 68% and 95% CL bound from UTfit [49], respectively.

The high-precision measurements of these effective couplings only allow for per mille mod-

ifications of the ratios. This in turn implies a strong bound on the possible value of CU .

Taking the HFLAV average in the τ vs µ ratio [50]
(

gτ
gµ

)

ℓ+π+K

= 1.0000± 0.0014 . (4.13)

we find the following limit on CU at 95% CL:

CU . 0.04
MU=2 TeV

=⇒ g4 . 3.2 . (4.14)

This bound is shown in figure 3 together with the NP enhancement in b → c(u)ℓν tran-

sitions. On the other hand, we find that possible modifications in the µ vs e ratio are of

O(10−4) and thus do not yield any relevant constraint. We also find that tests of LFU from

precision Z- and W -pole measurements at LEP do not lead to stringent bounds. In partic-

ular we note that the Z ′ tree-level contribution to Z anomalous couplings, given in terms

of the ψ2φ2D SMEFT operators in table 4, is found to be well below the present limits.

4.3 b → c(u)τν

The violation of LFU in b → cℓν transitions, measured via the ratios RD and RD∗ , sets

the scale of NP (or the preferred value of CU ). In the PS3 model NP effects in b→ c(u)τν

transitions are described by the following effective operators

L(b→ uiτ ν̄) = −
4GF√

2

(

[

CV,LLνedu

]∗

333i
(τLγ

µνL3)(u
i
LγµbL) +

[

CS,RL
νedu

]∗

333i
(τR νL3)(u

i
LbR)

)

,

(4.15)

where i = 1(2) for up (charm) quarks. At Λ = MU we have to a good approximation

[

CS,RL
νedu (MU )

]

333i
= 2

[

CV,LLνedu (MU )
]

333i
≈ 2CU V

∗
ib . (4.16)

– 15 –



J
H
E
P
1
0
(
2
0
1
8
)
1
4
8

Figure 3. NP enhancements in B(B → τν), RD and RD∗ as function of MU/gU . We use the

following inputs: sb = 0.15 |Vts| (left), sb = 0.10 |Vts| (right), φb = π/2. The red and orange bands

correspond, respectively, to the 95% CL exclusion limits from LFU tests in τ decays and from

B(B → τν).

The RG running (due to QCD) introduces an important correction to the scalar operator

contributions. To account for these effects we define the following RG factor

[

CS,RL
νedu (mb)

]

333i
= ηS

[

CS,RL
νedu (MU )

]

333i
. (4.17)

Using DsixTools [38] (see also [51, 52]) we find ηS ≈ 1.8 for MU = 2TeV. On the other

hand, the running of the vector operator (which is a conserved current as far as QCD is

concerned) is very small and will be neglected in the following discussion.

Due to the presence of a scalar operator, we predict departures from a pure V − A
structure, hence different NP contributions to RD and RD∗ . We define the relative NP

contribution to these observables as

∆RD(∗) =
RD(∗)

RSM
D(∗)

− 1 . (4.18)

Using the results in [53] for the scalar form factors, we find the following simplified

expressions

∆RD ≈ 2CU × (1 + 1.5 ηS) ,

∆RD∗ ≈ 2CU × (1 + 0.12 ηS) ,
(4.19)

which imply a 30% (10%) NP effect in RD (RD∗) for CU ≈ 0.04, i.e. a value around the

upper bound of the LFU constraint in eq. (4.14).

The (non-standard) contributions to B (Bc → τν) induced by the scalar operator is

chirally enhanced, yielding an enhancement of O(100%) compared to the SM prediction.

However, given the low experimental accuracy in this observable, this does not pose any

significant bound on the model. Similarly, the modification of the Bc lifetime, which has

– 16 –



J
H
E
P
1
0
(
2
0
1
8
)
1
4
8

been shown to introduce important constraints on explanations of the b → cτν anomalies

based on pure scalar operators [54], is well below the experimental limit.

Given the approximate U(2)q symmetry, similar NP effects are also expected in b →
uℓν. So far, the most relevant measurement involving these transition is B (B → τν). In

analogy to the case R(D(∗)) case, we define

∆B (B → τν) =
B (B → τν)

B (B → τν)SM
− 1 . (4.20)

Using the current experimental value [55] and the result from UTfit [48] for the SM pre-

diction, we find

∆B (B → τν) = 0.35± 0.31 . (4.21)

In our model, we obtain

∆B (B → τν) ≈
∣

∣

∣

∣

1 + CU

[

1 + cd sb e
iφb

V ∗
tb

|Vts|
Λu

](

1 + ηS
2m2

B

mτ (mb +mu)

)∣

∣

∣

∣

2

− 1 . (4.22)

Also in this case scalar contributions are chirally enhanced and we typically expect large NP

effects. However, similarly to D-D̄ mixing, in the limit where ∆αd → π (and analogously

for αd → π) the large phase in Λu, together with the values of sb and φb required to explain

the deficit in ∆B = 2 transitions, yields a significant attenuation of the NP enhancement.

The possible range of deviations from the SM is illustrated in figure 3.

Contrary to B decays, LFU breaking effects in charged-current K and D decays are

strongly CKM suppressed (relative to the corresponding SM amplitudes) and do not lead

to significant constraints.

4.4 b → sℓℓ and b → sνν

The violation of LFU in b → sℓℓ transitions, measured via the ratios RK and RK∗ , sets

the amount of U(2)5 breaking in the model which is not directly related to the Yukawa

couplings. After imposing the constraints from ∆F = 2 observables, the Z ′-mediated

contributions to b → sℓℓ amplitudes turn out to be well below those mediated by the

vector leptoquark. This is because the ∆F = 2 constraints require the effective bsZ ′

coupling to be either very small in size or almost purely imaginary (hence with a tiny

interference with the SM contribution). As a result, the following approximate relations

hold (assuming φτ = 0 and ǫU real):

Re (∆Cµµ9 ) ≈ −Re (∆Cµµ10 ) ≈ −
2π

αem

sτ ǫU
|Vts|

CU ,

Re (∆Cττ9 ) ≈ −Re (∆Cττ10 ) ≈
2π

αem

sτ ǫU
|Vts|

CU ,

(4.23)

where ∆Cααi = Cααi − CSMi , and ∆Cee9 ≈ ∆Cee10 ≈ 0. Hence, the deviations from unity in the

LFU ratios RK and RK∗ can be expressed as [56, 57]

∆RK = 1− RK |[1, 6] GeV2 ≈ 0.23∆Cµµ9 − 0.23∆Cµµ10 ≈ 0.46∆Cµµ9 ,

∆RK∗ = 1− RK∗ |[1.1, 6] GeV2 ≈ 0.20∆Cµµ9 − 0.27∆Cµµ10 ≈ 0.47∆Cµµ9 .
(4.24)
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Contrary to other models aiming at a combined explanation of the anomalies, we predict

Re (∆Cµµ9,10) and Re (∆Cττ9,10) to be of similar size. This is a consequence of the different

U(2)5 breaking structure discussed in section 2.2.

Another key difference with respect to the existing literature is the presence of right-

handed leptoquark currents. These generate the following scalar and pseudo-scalar

contributions:6

CµµS = −CµµP ≈
4π

αemVtbV
∗
ts

CU ηS ǫU θ
R
τµ ,

CττS = −CττP ≈ −
4π

αemVtbV
∗
ts

CU ηS

[

ǫU sτ e
iφτ + sb e

iφb
]

.

(4.25)

While the effect of these operators is negligible in chirally-allowed transitions, this is not

the case for P → ℓℓ decays (see appendix D). In particular, the enhancement of scalar

amplitudes is enough to overcome the mass suppression of the right-handed rotation angle

θRτµ in CµµS,P . Setting ∆Cµµ9 = −0.6, as required by the central value of the RK and RK∗

anomalies, and using the latest LHCb measurement of B(Bs → µµ) = 3.02(65)×10−9 [64],

we find the following bounds at 95% CL on the right-handed mixing in the lepton sector:

∣

∣θRτµ/sτ
∣

∣ ≤ 0.013 , 0.04 ≤ θRτµ/sτ ≤ 0.07 . (4.26)

The second solution corresponds to a destructive interference between a large NP amplitude

and the SM, yielding B(Bs → µµ) close to the SM expectation. As we discuss in the

following section, this accidental cancellation is disfavored by LFV constraints. Therefore,

we focus on the first solution, which requires the µ-τ right-handed mixing angle to be

slightly smaller than what we expect in absence of dimension-7 operators (|θRτµ/sτ | =
mµ/mτ = 0.06), but it is still natural.

We also expect relatively large NP enhancement in B(Bs → ττ), dominated by the

chirally-enhanced scalar contributions in (4.25). Setting ∆Cµµ9 = −0.6 and CU = 0.04, and

assuming φb ≈ π/2 and φτ ≈ 0 we find

B(Bs → ττ)

B(Bs → ττ)SM
≈ 5 + 45

(

sb
0.1 |Vts|

)2

, (4.27)

where B(Bs → ττ)SM = (7.73± 0.49)×10−7 [65]. We stress the strong correlation between

the possible NP contribution to ∆B = 2 amplitudes discussed in section 4.1 (controlled by

|sb|) and a large enhancement in B(Bs → ττ).

Finally, we mention that b→ sνν transitions do not get significantly modified in this

framework. On the one hand, due to its coupling structure, the vector leptoquark does

not contribute at tree-level to such transitions. On the other hand, the Z ′ contribution

is negligible because of the constraints on the bsZ ′ coupling, as already discussed in the

b→ sℓℓ case.

6Given that the leading RG effects for the scalar operators are dominated by QCD, the RG running

factor for CS,P and C
S,RL
νedu remains the same to a very good approximation.

– 18 –



J
H
E
P
1
0
(
2
0
1
8
)
1
4
8

4.5 LFV processes

We finally turn to LFV processes. Given the unambiguous prediction of a large τ → µ

effective coupling, they represent a striking signature of the model.

In b → sℓℓ′ transitions the dominant contribution is mediated by the leptoquark,

leading to

Re(Cτµ9 ) ≈ −Re(Cτµ10 ) ≈ −
Re (∆Cµµ9 )

sτ
, Re(CτµS ) = −Re(CτµP ) ≈ −2 ηS Re (∆Cµµ9 )

sτ
.

(4.28)

Due to the s−1
τ enhancement, large NP contributions in B(Bs → τµ) and in B(B → Kτµ)

are expected. In the former case the effect is further reinforced by the chiral-enhancement

of scalar amplitudes, leading to

B(Bs → τ+µ−) ≈ 2× 10−4

(

∆RK
0.3

)2(0.1

sτ

)2

,

B(B → K∗τ+µ−) ≈ 1.5× 10−6

(

∆RK
0.3

)2(0.1

sτ

)2

,

B(B+ → K+τ+µ−) ≈ 2× 10−5

(

∆RK
0.3

)2(0.1

sτ

)2

,

(4.29)

with B(B−→K−τ−µ+)=B(B+→K+τ+µ−) and B(B+→K+τ−µ+)≈B(Bs→τ−µ+) ≈ 0,

and similarly for the K∗ channel. NP effects in the latter are predicted to be smaller be-

cause, contrary to theK channel, the scalar contributions are suppressed in this case. While

there are no experimental constraints in Bs → τµ so far, the model prediction for B+ →
K+τ+µ− lies close to the current experimental limit by BaBar: B(B+ → K+τ+µ−) < 2.8×
10−5 (90% CL) [66]. In figure 4 (right) we show the predicted values of B(B+ → K+τ+µ−)

as a function of the NP shift in RK and for different benchmark values of sτ . We also note

that, contrary to other proposed solutions to the anomalies, in our model the sτU coupling

is very small, resulting in a negligible contribution to the τ → φµ decay rate.

In purely leptonic decays the most interesting observable is τ → µγ. Radiative LFV

decays are generated at the one loop level, both by Z ′ and U loops. The leptoquark yields

the largest contribution due to its larger couplings and the mb-enhancement of the loop

function. From the explicit one-loop calculation (see appendix D.1), we find

which is just below the current experimental limit set by Babar: B(τ → µγ) < 4.4 ×
10−8 (90%CL) [67]. In figure 4 (left) we show the prediction for B (τ → µγ) as a function

of the NP contribution to RK for different values of ǫU . The model also predicts a sizable

NP contribution to τ → 3µ, mediated by a tree-level Z ′ exchange. We obtain the following

approximate expression

B (τ → 3µ) ≈ C2
Z′ s2τ

[

28 (s2τ + ǫℓ)
2 − 38

(

g1
g4

)2
(

s2τ + ǫℓ − 2

(

g1
g4

)2
)]

. (4.30)

For typical values of the model parameters, this contribution lies about one order of magni-

tude below the current experimental limit by Belle: B (τ → 3µ) < 1.1×10−8 (90%CL) [68].

However, this conclusion is strongly dependent on the precise value of sτ .
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Figure 4. Left: B(τ → µγ) as function of the NP shift in RK for different values of ǫU . Right:

B(B+ → K+τ+µ−) as function of the NP shift in RK for different values of sτ .

Purely leptonic LFV transitions of the type µ→ e are controlled by the mixing angle

se in eq. (A.20). We find that the most stringent constraint on this angle is obtained,

at present, by the experimental bound on µ → 3e set by the Sindrum Collaboration:

B (µ→ 3e) < 1.0 × 10−13 (90%CL) [69]. Similarly to τ → 3µ, also µ → 3e is dominated

by the tree-level exchange of the Z ′, which yields

B (µ→ 3e) ≈ 420C2
Z′

(

g1
g4

)4

s2e
(

ǫl + s2τ
)2

≈ (1− 10)× 10−14
( se
0.01

)2
(

ǫl + s2τ
0.02

)2

.

(4.31)

where the range in the second numerical expression reflects the uncertainty on the Z ′ mass

and couplings. Assuming ǫl ∼ ǫU ∼ O(10−2), and taking natural values for the other

parameters, we find

se . 10−2 , (4.32)

consistently with the EFT estimate derived in [14].7 Another important constraint on se,

which however depends also on θRτµ, is provided by µ→ eγ. As in τ → µγ, contributions to

this observable appear in our model at one loop, with the dominant effect being mediated

by the leptoquark. We find

B(µ→ eγ) ≈ 6× 10−13

(

∆RK
0.3

)2(0.01

ǫU

)2
( se
0.01

)2
(
∣

∣θRτµ
∣

∣

0.01

)2

, (4.33)

to be compared with the bound by the MEG Collaboration: B(µ→ eγ) < 4.2×10−13 (90%

CL) [70]. Other limits on this angle are significantly weaker. In particular, from the Z ′

7Despite stringent, the bound on se in (4.32) is not unnatural. The benchmark for subleading U(2)ℓ
breaking terms not aligned to the second generation is provided by (me/mµ)

1/2 ≈ 7× 10−2.
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contribution to µ̄ed̄d effective operators, which are constrained by µ→ e conversion [71, 72],

we get se . 10−1.

On the other hand, the leading contribution to µ̄ed̄d(′) effective operators is due to the

leptoquark exchange, and the dominant constraint is set by KL → µe [72]. In this case

the amplitude is (formally) independent from se, but it depends on the subleading U(2)ℓ
breaking parameter ∆ǫU , defined in eq. (2.22):

B(KL → µ±e∓) ≈ 0.8× 10−5 (∆ǫU )
2

(

∆RK
0.3

)2(0.1

sτ

)2

. (4.34)

Using the current experimental bound by the BNL Collaboration, B(KL → µ±e∓) =

0.47× 10−11 (90%CL) [73], we find

∆ǫU . 6× 10−4 . (4.35)

This bound is consistent with the naive estimate of this parameter, ∆ǫU = O(ǫUsesd),
provided se satisfies the bound in eq. (4.32).

5 Low-energy fit and discussion

In order to precisely quantify the quality of the proposed model in the description of the

anomalies, we perform a fit to low-energy data. We work in the minimal breaking scenario

presented in section 2.2 and set ∆αd = π to minimize undesired NP contributions in

B(B → τν) and ∆F = 2 transitions, as discussed in section 4. We also restrict ourselves

to the case se = 0, hence to vanishing LFV in µ→ e transitions, given that this parameter

has no impact on the description of the anomalies. Under these assumptions, the following

model parameters have a relevant impact at low energies: ω1, ω3, sτ , ǫ
e
R, sb, φb, ǫU .

8 The

first two are related to the NP scale while, the other five control the breaking of the U(2)5

symmetry. We perform a Bayesian estimation for these parameters using the log-likelihood

logL = −1

2

∑

i∈obs

(

xPS
3

i − xexpi

σi

)2

, (5.1)

constructed from the observables listed in tables 7, 9, 10 and 12 and using the expressions

in appendix D for the model predictions. For the CKM matrix elements we take the values

reported in the NP fit from UTFit and for the remaining input parameters we use PDG

values [55]. For the Bayesian analysis we use the nested sampling algorithm implemented

in the public package MultiNest [74–76]. The resulting posterior probabilities are analysed

using the Markov Chain sample analysis tool GetDist [77]. In the analysis we consider flat

8In order to remove marginally relevant parameters we fix ǫq = ǫℓ = ǫU . We have checked explicitly

that departing from this restriction, while keeping ǫq and ǫℓ within their expected range, has no effect on

fit results. We also set φτ to zero and treat ǫU and ǫeR as a real parameters, since these extra phases do

not introduce any interesting features. Finally, we conservatively assume ǫdR = 0; a non-zero value for this

parameter would slightly improve the agreement with ∆F = 2 data.
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Figure 5. 68% (dark blue) and 95% (light blue) posterior probabilities of φb and sb (left), ǫU and

sτ (mid), and of ǫeR and sτ (right).

priors in all the parameters for the following ranges9

ω1 ∈ [0.3, 1.5] TeV, ω3 ∈ [0.3, 1.5] TeV, sτ ∈ [0, 0.15] ,

sb ∈ [−0.1, 0.1] , φb ∈ [0, π] , ǫeR ∈ [−0.01, 0.01] ,
ǫU ∈ [0, 0.02] .

(5.2)

We obtain the following 68% probability ranges for the model parameters extracted from

the marginalized posterior probabilities

ω1 = 1.0± 0.3 TeV, ω3 = 1.2± 0.2 TeV, sτ = 0.11± 0.03,

sb = (0.09± 0.06) |Vts|, φb = (0.55± 0.15)π, ǫeR = (0.11± 0.03)
mµ

mτ
,

ǫU = (1.2± 0.3)× 10−2 . (5.3)

In figure 5, we show the 68% and 95% two-dimensional posterior probabilities for sb and

φb, ǫU and sτ , and for ǫeR and sτ . As can be seen, there is a clear correlation between the

phase φb and the maximum allowed value for sb. We also find that positive values of sb are

preferred. This behaviour is expected from the discussion in the previous section: while

the size of sb and preferred value for φb are connected to the (negative) NP contribution

to ∆F = 2, the preference for a positive sb is related to the partial cancellations in D− D̄
mixing and B(B → τν). On the other hand, the anti-correlation between ǫU and sτ can

be easily understood from the fact that the NP contribution in b → sℓℓ transitions is

proportional to the product of these two parameters, i.e. Re (∆Cµµ9 ) ≈ −Re (∆Cµµ10 ) ∝
CU sτ ǫU . Finally, we find a significant correlation between ǫeR and sτ . As shown in the

previous section, a mild cancellation (at the level of 20%) among these two parameters

is required to ensure a sufficiently small θRτµ, as indicated by B(Bs → µµ) and B(µ →
eγ). Note that, beside the smallness of sb compared to |Vts|, the other three mixing

9Since the observables considered in the fit are not sensitive to the individual signs of ǫU and sτ but

only to their product, there is a double degeneracy in the fit. We remove this degeneracy by considering

both ǫU and sτ to be positve.
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Figure 6. 68% (dark blue) and 95% (light blue) posterior probabilities of the NP shifts in RD∗ vs.

∆RK . The experimental values at 1σ (2σ) are indicated by the dark (light) coloured bands.

parameters (ǫU , sτ , and ǫeR) turn out to have magnitudes in good agreement with their

natural parametric size.

Concerning low energy observables, we reach similar conclusions to those already dis-

cussed in section 4 in terms of simplified analytical expressions. In figure 6 we show the

68% and 95% posterior probabilities for ∆RD(∗) and ∆RK . As can be seen, the model can

fully accommodate the anomalies in b → sℓℓ. However, as anticipated in section 4.3, the

complete explanation of the RD(∗) anomalies within this framework is limited by LFU tests

in τ decays. From the fit we obtain a NP enhancement of around 7%–8% for RD∗ and

18%–22% for RD.

As already emphasized in section 4.5, in our setup the explanation of the anomalies

implies large LFV effects in τ → µ transitions, in particular in τ → µγ, τ → 3µ, B → Kτµ,

and Bs → τµ. Interestingly, we find that the NP effects in τ → µγ are anti-correlated to

those in Bs → τµ (and B → Kτµ), allowing us to directly connect the product of these

LFV rates to the NP enhancement in RD(∗) and b → sℓℓ. More precisely, we find the

following relations among NP observables

(

∆RD
0.2

)2(∆RK
0.3

)2

≈ 3

[B(B → Kτ+µ−)

3× 10−5

] [B(τ → µγ)

5× 10−8

]

≈
[B(Bs → τ+µ−)

1× 10−4

] [B(τ → µγ)

5× 10−8

]

,

(5.4)

which hold almost independently from any model parameter. This is illustrated in figure 7

(left) where we show the 68% and 95% posterior probabilities for B(τ → µγ) and B(B →
Kτµ). We see that the model predictions for these two observables are close to their

experimental bounds shown in the red bands, as implied by the expressions in (5.4). A

partial anti-correlation is present also between τ → 3µ and LFV in B decays, as illustrated
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Figure 7. Left: 68% (dark blue) and 95% (light blue) posterior probabilities of B(τ → µγ) and

B(B+ → K+τ+µ−) from the global fit. The black lines denote the 95% posterior probabilities

fixing ∆RK = −0.3 (solid) and ∆RK = −0.2 (dashed). The red bands show the 90% CL exclusion

limits for these observables. Right: 68% (dark blue) and 95% (light blue) posterior probabilities of

B(τ → 3µ) and B(Bs → τ+µ−) from the global fit.

in figure 7 (right). However, in this case the effect is diluted by the uncertainty on Z ′ mass

and couplings, which are not strongly constrained by other observables.

As a final comment, it is worth stressing that this low-energy fit does not pose stringent

constraints on the masses of the heavy vector bosons. The low-energy observables constrain

only the effective Fermi couplings in eq. (2.23), or ω1,3. Still, we can derive a well-defined

range for vector boson masses taking into account that gU ≫ gc: setting 2.5 ≤ gU ≤ 3.0,

the masses of Z ′, U , and G′ range between 2 and 3TeV.

6 Conclusions

The main idea behind the PS3 model is that the flavor universality of strong, weak, and

electromagnetic interactions observed at low energies is only a low-energy property: the

ultraviolet completion of the SM is a theory where gauge interactions are completely flavor

non-universal, with each fermion family being charged under its own gauge group. The

motivation for this hypothesis, and the explicit construction of the PS3 model presented

in ref. [1] is twofold: it explains the pattern of anomalies recently observed in B meson

decays and, at the same time, the well-known hierarchical structure of quark and lepton

mass matrices. These two phenomena turn out to be closely connected: they both follow

from the dynamical breaking of the flavor non-universal gauge structure holding at high

energies down to the SM.

On general grounds, low-energy observables put very stringent constraints on flavor

non-universal interactions mediated by TeV-scale bosons, as expected in the PS3 model.

In this paper we have presented a comprehensive analysis of such constrains, and the cor-

responding implications for future low-energy measurements. As far as the constraints are
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concerned, we confirm the main conclusions of ref. [1]: i) the model is in very good agree-

ment with all existing bounds, without significant tuning of its free parameters; ii) the

model could account for the B anomalies, reaching the 1σ range of all the present measure-

ments with the exception of RD∗ , where the maximal allowed deviation from the SM does

not exceed the 10% level. In addition, we have shown that the model can slightly improve

the description of ∆F = 2 observables with respect to the SM.

The most interesting aspect of this analysis is related to the possible implications of the

PS3 model in view of future low-energy measurements. We have shown that a remarkable

feature is the prediction of sizeable rates for LFV processes of the type τ → µ, both in B

decays (such as B → Kτµ and Bs → τµ) as well as in τ decays (most notably τ → µγ

and τ → 3µ). The fact that the B anomalies could naturally imply large LFV effects in

B decays was first pointed out in ref. [78], on the basis of general considerations. The PS3

model provides an explicit realization of this mechanism, predicting in addition a strict

anti-correlation between τ → µγ and b → sτµ transitions, illustrated in figure 7, that

can be viewed as a distinctive signature. As we have shown in section 4.5, also µ → 3e,

µ→ eγ, and KL → µe decays could be close to their present exclusion limits; however, this

conclusion is less strict given the uncertainty on the µ→ e mixing, which is not constrained

by the anomalies.

Besides LFV processes, we have shown that the model predicts interesting non-

standard effects in ∆F = 1 and ∆F = 2 observables, with non-trivial correlations. Partic-

ularly relevant and distinctive are the predictions for the violations of LFU in charged cur-

rents illustrated in figure 3: the presence of right-handed currents implies ∆RD ≈ 2.6∆RD∗

and a possible large enhancement of B(B → τν) ranging from 30% up to 100% of the SM

prediction.

Most of the predictions for low-energy observables presented in this work differ with

respect to what is expected in other models proposed for a combined explanation of the B

anomalies. The corresponding measurements would therefore be of great value in shedding

light on the dynamics behind the anomalies, if unambiguously confirmed as due to physics

beyond the SM, and clarify their possible link to the origin of quark and lepton masses.
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A Structure of the SM Yukawa couplings in PS3

Within our model the complete set of Yukawa couplings, i.e. the couplings of the chiral

fermions to the scalar field responsible for the breaking of the electroweak symmetry, is

generated only after the SM1+2 × PS3 → SM symmetry breaking. Below such scale,

adopting the SM notation, we define the couplings as

L = q̄iL(Yd)ijd
i
R φ+ q̄iL(Yu)iju

i
R φ

c + ēiL(Ye)ije
j
R φ + h.c. , (A.1)
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where i, j = 1, 2, 3 and φ is the effective SM Higgs field (normalized such that 〈φ†φ〉 = v2/2,

with v = 246GeV).

As discussed in section 2.2, we can decompose each Yukawa coupling as follows

Yf = yf3

(

ǫfLRXLR ǫfL VL

ǫfR V
⊺
R 1

)

, (A.2)

where VL and VR are unit vectors in the U(2)q+ℓ and U(2)u+d+e space, and XLR is a

2 × 2 non-hermitian matrix satisfying Tr(XLRX
†
LR) = 1. Since non-vanishing ǫfL, ǫ

f
LR,

ǫfR, are induced by operators with d = 5, 6, 7, respectively, on general grounds we expect

|ǫfR| ≪ |ǫ
f
LR| ≪ |ǫ

f
L| ≪ 1 .

Without loss of generality, we can work in the flavor basis where

VL → n̂2 =

(

0

1

)

, (A.3)

i.e. in the basis where the left-handed second generation is defined by the orientation in

flavor space of the link fields Ω3 and Ω1. This is what we conventionally define as the

interaction basis for the left-handed doublets. We can use the freedom on the right-handed

sector to set XLR in the form U × diag (0, 1), where U is a unitary matrix. The null

eigenvalue of XLR, corresponding to the limit of massless first generation, can be lifted

by introducing additional link fields, with subleading VEVs. The inclusion of such terms

effectively amount to change XLR into a Yukawa-dependent term ∆f of the form

XLR → U †
f ∆f , ∆f = diag

(

m1
f

m2
f

, 1

)

, (A.4)

where Uf is a (complex) unitary matrix. In the limit where the U(2)5 breaking in the

right-handed sector is induced by a single field (ΦR in the minimal set-up), then d = 6

and d = 7 terms are aligned in the right-handed sector. This implies VR → n̂2 in the basis

defined by eq. (A.4).

In such basis, the quark Yukawa matrices assume the explicit form

Yu = yt

(

ǫuLR U
†
u∆u ǫ

u
L n̂2

ǫuR n̂
⊺
2 1

)

, Yd = yb

(

ǫdLR U
†
d ∆d ǫ

d
L n̂2

ǫdR n̂
⊺
2 1

)

. (A.5)

Following the discussion of CP phases in ref. [9], without loss of generality we can set ǫfLR
to be real (contrary to ǫfL and ǫfR) and decompose the 2× 2 matrix Uf as

Uf =

(

cf sf e
iαf

−sf e−iαf cf

)

. (A.6)

In the following we assume that sf ≪ 1, as naturally implied by the absence of fine-tuning

in deriving the CKM matrix.
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In the phenomenological analysis we employ the down-type quark and the charged-

lepton mass-eigenstate basis for the SM fermions, where the SU(2)L structure of the left-

handed doublets is given by

qiL =

(

V ∗
ki uk
di

)

, ℓiL =

(

νi
ei

)

, (A.7)

with Vki being the elements of CKM matrix. We move from the interaction basis to this

basis by performing the rotation

qL|int = Ld × qL|d−basis , ℓL|int = Le × ℓL|e−basis . (A.8)

More generally, we denote by Xa (with X = L,R and a = u, d, e) the unitary matrices that

bring the Yukawa couplings in diagonal form (starting from the interaction basis),

L†
uYuRu = diag(yu, yc, yt) , L†

dYdRd = diag(yd, ys, yb) , L†
eYeRe = diag(ye, yµ, yτ ) ,

(A.9)

where the yi are real and positive and VCKM = L†
uLd.

The Xa have non-trival flavor-blind phases [det(Xa) = eiφ
X
a ]. The electroweak symme-

try implies φLd = φLu , and three relative phases corresponding to unbroken global symme-

tries (hypercharge, lepton number, baryon number) are unobservable. Of the two remaining

phases one combination affects the relative phase between the leptoquark couplings βq and

βd, and is potentially observable. Following ref. [1], we fix this phase by the condition

(βq)33 = −(βd)33 which allows us to maximize the contribution to ∆RD. Having fixed this

phase, in the following we set det(Xa) = 1.

Left-handed rotations in the quark sector. To a very good approximation, the left-

handed diagonalization matrices have the form

L†
d = R12(sd;αd)×R23(sb;φb) , L†

u = R12(su;αu)×R23(st;φt) , (A.10)

where

R12(sd;αd) =

(

Ud 0

0 1

)

, R23(sb;φb) =







1 0 0

0 cb sb e
iφb

0 −sb e−iφb cb






, (A.11)

with sb/cb = |ǫdL| and φb = arg(ǫdL), and similarly for the up sector. As we discuss next,

three out of the four real mixing parameters (sb, sd, st, su) appearing in these matrices can

be expressed in terms of CKM elements. Concerning the four phases (φb, αd, φt, αu), one

is unphysical and one can be expressed in terms of the CKM phase γ.

The CKM matrix is VCKM = L†
uLd, implying

VCKM =

(

Uu 0

0 1

)

×R23(s; ξ)×
(

U †
d 0

0 1

)

(A.12)

where (s/c)eiξ = sb e
−iφb − st e

−iφt . To match this structure with the standard CKM

parametrization, we rephase it by imposing real Vud, Vus, Vcb, Vtb, and Vcs (which is real
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at the level of approximation we are working, namely up to corrections of O(λ2) relative

to the leading term for each of CKM entry), obtaining

VCKM =







1− λ2/2 λ su s e
−iδ

−λ 1− λ2/2 cu s

−sd s ei(δ+αu−αd) −s cd 1






, (A.13)

where the phase δ and the real and positive parameter λ, are defined by

λ eiδ = su cd − cu sd e−i(αu−αd) . (A.14)

Hence it follows that the three mixing angles su, sd, and s can be determined completely

in terms of three independent CKM elements:

s = |st − sbei(φt−φb)| = |Vcb| ,
su
cu

=
|Vub|
|Vcb|

,
sd
cd

= −|Vtd||Vts|
. (A.15)

As far as the phases are concerned, we find

δ = −arg(Vub) ≡ γ , αu − αd = arg(Vtd) + arg(Vub) ≈ −π/2 , (A.16)

where the last relation follows, to a very good accuracy, from the numerical values of the

CKM inputs.

Flavor mixing in the left-handed sector is therefore controlled by the matrix Ld that

contains only three free parameters (the real mixing angle sb and the unconstrained phases

φb and αd):

Ld = R23(−sb;φb)R12(−sd;αd) =







cd −sd eiαd 0

sd e
−iαd cd −sb eiφb

sd sb e
−i(αd+φb) sb cd e

−iφb 1






, (A.17)

where sd is fixed by eq. (A.15) and, consistently with the approximations so far performed,

we have set cb = 1.

Right-handed rotations in the quark sector. The structure of the right-handed

rotation matrices is simpler, being confined to the 2-3 sector in the limit where we neglect

tiny terms of O(m1
f/m

3
f , (ǫ

f
LR)

2). We find

Rd =







1 0 0

0 1 ǫdR + ms
mb
sb e

iφb

0 −(ǫdR)∗ − ms
mb
sb e

−iφb 1






≡







1 0 0

0 1 θRbs
0 −(θRbs)∗ 1






, (A.18)

Ru =







1 0 0

0 1 ǫuR + mc
mt
st e

iφt

0 −(ǫuR)∗ − mc
mt
st e

−iφt 1






≡







1 0 0

0 1 θRtc
0 −(θRtc)∗ 1






. (A.19)

Note that if we neglect the effect of d=7 effective operators (i.e. for ǫu,dR → 0), these matrices

do not contain additional free parameters (i.e. they are completely determined in terms of

angles and phases appearing already in the left-handed sector).
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Rotations in the lepton sector. Given the model-dependence on the neutrino mass

matrix, in the left-handed sector we cannot eliminate parameters in terms of known mixing

angles; moreover, the strong constraints on the µ→ e transitions imply that the 1-2 mixing

terms are very small. Proceeding as above, and neglecting higher-order terms in the 1-2

mixing, we thus decompose the left-handed rotation mixing matrix as

Le =







1 se e
iαe 0

−se e−iαe 1 sτ e
iφτ

sesτ e
−i(αe+φτ ) −sτ e−iφτ 1






. (A.20)

In the right-handed sector, proceeding in full analogy with the quark case we get

Re =







1 0 0

0 1 ǫeR −
mµ

mτ
sτ e

iφτ

0 −(ǫeR)∗ +
mµ

mτ
sτ e

−iφτ 1






≡







1 0 0

0 1 θRτµ
0 −(θRτµ)∗ 1






. (A.21)

B Generation of the U(2)5-breaking effective operators

An example of dynamical generation of the U(2)5-breaking effective operators appearing

in Ld=5
Ω and Ld=6

Ω , defined in eqs. (2.7) and (2.10), is obtained by introducing a pair of

vector-like fermions, χiL/R ∼ (4,2,1)3, i = 1, 2, coupled to the SM leptons and quarks via

−Lχ⊃Mχ χ̄
i
Lχ

i
R+λ1 ℓ̄

2
LΩ1χ

2
R+λ3 q̄

i
LΩ3χ

i
R+λH χ̄

2
LH1Ψ

3
R+λ

′
H χ̄

2
LH

c
1Ψ

3
R+h.c. , (B.1)

where Ψ3
R denotes the complete right-handed multiplet charged under PS3. Assuming

the vector-like fermions to be heavy, we can integrate them out obtaining the following

tree-level expressions for the coefficients of the Ld=5
Ω operators:

yq3
Λ23

=
λ3λH
Mχ

,
yℓ3
Λ23

=
λ1λH
Mχ

,
y′q3
Λ23

=
λ3λ

′
H

Mχ
,

y′ℓ3
Λ23

=
λ1λ

′
H

Mχ
. (B.2)

Similarly, in the case of the Ld=6
Ω operators we get

ǫU = cqℓ
ω1ω3

2Λ2
23

=
λ∗1λ3 ω1ω3

2M2
χ

, ǫℓ = cℓℓ
ω2
1

2Λ2
23

=
|λ1|2 ω2

1

2M2
χ

, ǫq = cqq
ω2
3

2Λ2
23

=
|λ3|2 ω2

3

2M2
χ

.

(B.3)

If the vector-like mass is of O(Λ23), namely Mχ = few × 10 TeV, then the λi should

assume O(1) values to recover numerically correct entries for the Yukawa couplings. In

this case the ǫi turn out to be of O(10−3). Alternatively, lowering the vector-like mass

to Mχ = O(1 TeV), which is still compatible with high-energy phenomenology,10 the λi
turn out to be of O(10−1) and the ǫi can rise up to O(10−2). We thus conclude that the

natural range for the parameters controlling the U(2)5 breaking of the TeV-scale vectors

is 10−3 <
∼ |ǫℓ,q,U | <∼ 10−2.

10As suggested in [22], this option has the advantage of increasing the width of the TeV-scale vectors,

hence alleviating the bounds from direct searches on these particles.
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[Qνν ]αβγδ = (ναRγµν
β
R)(ν

γ
Rγ

µνδR) [Qνe]αβγδ = (ναRγµν
β
R)(e

γ
Rγ

µeδR)

[Qνu]αβij = (ναRγµν
β
R)(u

i
Rγ

µujR) [Qνd]αβij = (ναRγµν
β
R)(d

i
Rγ

µdjR)

[Qℓνuq]αβij = (ℓ
α
Lν

β
R)(u

i
Rq

j
L) [Qeνud]αβij = (eαRγµν

β
R)(u

i
Rγµd

j
R)

[Qℓν ]αβγδ = (ℓ
α
Lγµℓ

β
L)(ν

γ
Rγ

µνδR) [Qqν ]ijαβ = (qiLγµq
j
L)(ν

α
Rγ

µνβR)

[Qφν ]αβ = (φ† i
←→
Dµ φ)(ν

α
Rγ

µνβR)

Table 3. Dimension-six operators containing right-handed

neutrinos.

In the limit λi → 0, the inclusion of the vector-like fermions enlarges the flavor sym-

metry of the model to U(2)5 × U(2)χ. The minimal breaking structure for the spurions

discussed in section 2.2 is achieved by choosing the coupling λ3 to leave the subgroup

U(2)q+χ unbroken.11 This subgroup is however broken in other sectors, in particular by

the couplings of the vector-like fermions to the Higgs. As a result, the minimal breaking

structure receives subleading corrections when considering products of more spurions, see

sections 2.2.1 and 2.3 for a more detailed discussion.

C Wilson coefficients of the SMEFT

In tables 4, 6 and 5 we provide the matching conditions of the Z ′, G′ and U to the SMEFT,

following the prescriptions described in section 3.1. We list the operators including right-

handed neutrinos in table 3, while for the other operators we use the same basis as in [33].

D Low energy observables and NP contributions

In this section we list all the low-energy observables considered in the phenomenological

analysis together with their theory expressions and experimental values. The expressions

for the low-energy observables are parametrised in terms of the WCs of the LEFT, for

which we use the operator basis introduced in ref. [37]. The matching conditions between

the SMEFT WCs and those of the LEFT can be found in appendix C of ref. [37].

D.1 LFV observables

The full list of experimental values for the LFV observables included in the fit is provided

in table 7. In what follows we describe the corresponding theory expressions.

11While Xqℓ 6= 0 necessarily implies a breaking of U(2)5, more precisely a breaking of U(2)q ×U(2)ℓ, this

is not the case for Xℓℓ and Xqq: the latter break U(2)5 only if they are not proportional to the identity

matrix.
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X3 φ6 and φ4D2 ψ2φ3

QG – Qφ – [Qeφ]αβ –

Q
G̃

– Qφ� Ξφ� = 4
(

g1
g4

)4
[Quφ]ij –

QW – QφD ΞφD = 16
(

g1
g4

)4
[Qdφ]ij –

Q
W̃

–

X2φ2 ψ2Xφ ψ2φ2D

QφG – QeW –
[

Q
(1)
φℓ

]

αβ

[

Ξ
(1)
φℓ

]

αβ
= 12

(

g1
g4

)2
ξαβℓ

Q
φG̃

– QeB –
[

Q
(3)
φℓ

]

αβ
–

QφW – QuG – [Qφe]αβ
[

Ξφe
]

αβ
= 12

(

g1
g4

)2
ξαβe

Q
φW̃

– QuW –
[

Q
(1)
φq

]

ij

[

Ξ
(1)
φq

]

ij
= −4

(

g1
g4

)2
ξijq

QφB – QuB –
[

Q
(3)
φq

]

ij
-

Q
φB̃

– QdG – [Qφu]ij
[

Ξφu
]

ij
= −4

(

g1
g4

)2
ξiju

QφWB – QdW – [Qφd]ij
[

Ξφd
]

ij
= −4

(

g1
g4

)2
ξijd

Q
φW̃B

– QdB – [Qφud]ij –

Table 4. Wilson coefficients of operators other than four-fermion ones.

(R̄R)(R̄R) (L̄R)(R̄L) and (L̄R)(L̄R)

[Qνν ]αβγδ
[

Ξνν
]

αβγδ
= 9 ξαβν ξγδν [Qℓνuq]αβij [*]

[

Bℓνuq
]

αβij
= −2βiβu (β jαq )∗

[Qνe]αβγδ
[

Ξνe
]

αβγδ
= 18 ξαβν ξγδe (L̄L)(R̄R)

[Qνu]αβij
[

Bνu
]

αβij
= βiβu (β jαu )∗ [Qℓν ]αβγδ

[

Ξℓν
]

αβγδ
= 18 ξαβℓ ξγδν

[

Ξνu
]

αβij
= −6 ξαβν ξiju [Qqν ]ijαβ

[

Ξqν
]

ijαβ
= −6 ξijq ξαβν

[Qνd]αβγδ
[

Ξνd
]

αβij
= −6 ξαβν ξijd φ2ψ2

[Qeνud]αβij [*]
[

Beνud
]

αβij
= βiβu (β jαd )∗ [Qqν ]αβ

[

Ξφν
]

αβ
= 12 (gY /g4)

2 ξαβν

Table 5. Wilson coefficients of four-fermion operators involving right-handed neutrinos. For the

operators denoted with a [*], the hermitian conjugate has to be considered as well.
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(L̄L)(L̄L) (L̄R)(R̄L) and (L̄R)(L̄R)

[Qℓℓ]αβγδ
[

Ξℓℓ
]

αβγδ
= 9 ξαβℓ ξγδℓ [Qℓedq]αβij [*]

[

Bℓedq
]

αβij
= −2βiβd (β jαq )∗

[

Q
(1)
qq

]

ijkl

[

K
(1)
qq

]

ijkl
= 1

4 κ
il
q κ

kj
q − 1

6 κ
ij
q κklq

[

Q
(1)
quqd

]

ijkl
-

[

Ξ
(1)
qq

]

ijkl
= ξijq ξklq

[

Q
(8)
quqd

]

ijkl
-

[

Q
(3)
qq

]

ijkl

[

K
(3)
qq

]

ijkl
= 1

4 κ
il
q κ

kj
q

[

Q
(1)
ℓequ

]

αβij
-

[

Q
(1)
ℓq

]

αβij

[

B
(1)
ℓq

]

αβij
= 1

2 β
iβ
q (β jαq )∗

[

Q
(3)
ℓequ

]

αβij
-

[

Ξ
(1)
ℓq

]

αβij
= −6 ξαβℓ ξijq

[

Q
(3)
ℓq

]

αβij

[

B
(3)
ℓq

]

αβij
=
[

B
(1)
ℓq

]

αβij

(R̄R)(R̄R) (L̄L)(R̄R)

[Qee]αβγδ
[

Ξee
]

αβγδ
= 9 ξαβe ξγδe [Qℓe]αβγδ

[

Ξℓe
]

αβγδ
= 18 ξαβℓ ξγδe

[Quu]ijkl
[

Kuu

]

ijkl
= 1

2κ
il
uκ

kj
u − 1

6κ
ij
u κklu [Qℓu]αβij

[

Ξℓu
]

αβij
= −6 ξαβℓ ξiju

[

Ξuu
]

ijkl
= ξiju ξklu [Qℓd]αβij

[

Ξℓd
]

αβij
= −6 ξαβℓ ξijd

[Qdd]ijkl
[

Kdd

]

ijkl
= 1

2κ
il
dκ

kj
d − 1

6κ
ij
d κ

kl
d [Qqe]ijαβ

[

Ξqe
]

ijαβ
= −6 ξijq ξαβe

[

Ξdd
]

ijkl
= ξijd ξ

kl
d

[

Q
(1)
qu

]

ijkl

[

Ξqu
]

ijkl
= 2 ξijq ξklu

[Qeu]αβij
[

Ξeu
]

αβij
= −6 ξαβe ξiju

[

Q
(8)
qu

]

ijkl

[

K
(8)
qu

]

ijkl
= 2κijq κklu

[Qed]αβij
[

Bed
]

αβij
= βiβd (β jαd )∗

[

Q
(1)
qd

]

ijkl

[

Ξqd
]

ijkl
= 2 ξijq ξkld

[

Ξed
]

αβij
= −6 ξαβe ξijd

[

Q
(8)
qd

]

ijkl

[

K
(8)
qu

]

ijkl
= 2κijq κkld

[

Q
(1)
ud

]

ijkl

[

Ξ
(1)
ud

]

ijkl
= 2 ξiju ξkld

[

Q
(8)
ud

]

ijkl

[

K
(8)
ud

]

ijkl
= 2κiju κkld

Table 6. Wilson coefficients of four-fermion operators. For the operators denoted with a [*], the

hermitian conjugate has to be considered as well.

ℓα → ℓβℓγ ℓ̄γ . LFV decays of the type ℓα → ℓβℓγ ℓ̄γ are described in our model by the

effective Lagrangian

L(ℓα→ ℓβℓγ ℓ̄γ)=−
4GF√

2

(

[

CV,LLee

]

βαγγ
(ℓ̄βLγµℓ

α
L)(ℓ̄

γ
Lγ

µℓγL)+
[

CV,RR
ee

]

βαγγ
(ℓ̄βRγµℓ

α
R)(ℓ̄

γ
Rγ

µℓγR)

+
[

CV,LRee

]

γγβα
(ℓ̄βRγµℓ

α
R)(ℓ̄

γ
Lγ

µℓγL)+
[

CV,LRee

]

βαγγ
(ℓ̄βLγµℓ

α
L)(ℓ̄

γ
Rγ

µℓγR)
)

.

(D.1)
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Purely leptonic LFV transitions

Observable Experiment EFT

B(τ → 3µ) 0(7) · 10−9 [50] (D.2)

B(µ→ 3e) 0(5) · 10−13 [69] (D.2)

B(τ → µγ) 0(3) · 10−8 [50] (D.3)

B(µ→ eγ) 0(6) · 10−14 [70] (D.3)

Semileptonic LFV transitions

Observable Experiment EFT

B(B → τ±e∓) 0.0(1.7) · 10−5 [81] (D.7)

B(B → µ±e∓) 0.0(1.5) · 10−9 [82] (D.7)

B(KL → µ±e∓) 0.0(2.9) · 10−12 [73] (D.7)

B(B+ → K+τ+µ−) 0.0(1.7) · 10−5 [66] (D.8)

Table 7. List of observables involving LFV transitions.

Using the expressions in [79, 80], we find the following result for the branching ratio for

ℓα → ℓβℓβ ℓ̄β :

B(ℓα → ℓβℓβ ℓ̄β)

B(ℓβ → ℓβνβνα)SM

=

(

2
∣

∣

∣

[

CV,LLee

]

βαββ

∣

∣

∣

2
+ 2

∣

∣

∣

[

CV,RR
ee

]

βαββ

∣

∣

∣

2
+
∣

∣

∣

[

CV,LRee

]

βββα

∣

∣

∣

2
+
∣

∣

∣

[

CV,LRee

]

βαββ

∣

∣

∣

2
)

.

(D.2)

ℓα → ℓβγ. In our model these processes receive the dominant contributions from one-

loop amplitudes mediated by the leptoquark and the b quark. In spite of the loop sup-

pression, the presence of both left- and right-handed leptoquark couplings gives rise to

contributions that are mb-enhanced. Considering only the enhanced contributions we find

B(τ → µγ) ≈ 1

Γτ

α

256π4
m3
τ m

2
b

v4
C2
U s

2
τ ,

B(µ→ eγ) ≈ 1

Γµ

α

256π4
m3
µm

2
b

v4
C2
U s

2
τ s

2
e |θRτµ|2 .

(D.3)

On the other hand, we have that B(τ → eγ) is parametrically suppressed with respect to

B(τ → µγ) and thus does not give any relevant constraint.

P → ℓℓ′ and B → K(∗)τµ. The leptoquark generally yields large contributions to

leptonic and semileptonic LFV meson decays. To describe these processes it is useful

to match the Wilson coefficients of the LEFT into the commonly used weak effective

Hamiltonian

HWET ⊃ −
4GF√

2

e2

16π2
VtiV

∗
tj

∑

i

[

CiOi + h.c.
]

, (D.4)
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where the operators are defined as

Oij,αβ9 =
(

d̄jγµPL di
)

(eαγ
µeβ) , Oij,αβ9′ =

(

d̄jγµPR di
)

(eαγ
µeβ) ,

Oij,αβ10 =
(

d̄jγµPL di
)

(eαγ
µγ5eβ) , Oij,αβ10′ =

(

d̄jγµPR di
)

(eαγ
µγ5eβ) ,

Oij,αβS = (d̄jPR di)(ēαeβ) , Oij,αβS′ = (d̄jPLdi)(ēαeβ) ,

Oij,αβP = (d̄jPR di)(ēαγ5eβ) , Oij,αβP ′ = (d̄jPLdi)(ēαγ5eβ) ,

Oij,αβν =
(

d̄jγµPLdi
)

(ναγ
µ(1− γ5)νβ) , Oij,αβν′ =

(

d̄jγµPR di
)

(ναγ
µ(1− γ5)νβ) ,

(D.5)

with PL,R = 1/2(1∓ γ5). We have

Cij,αβ9 =− 2π

αVtiV ∗
tj

(

[

CV,LL
ed

]

αβji
+
[

CV,LR
de

]

jiαβ

)

+CSM9 δαβ ,

Cij,αβ10 =
2π

αVtiV ∗
tj

(

[

CV,LL
ed

]

αβji
−
[

CV,LR
de

]

jiαβ

)

+CSM10 δαβ ,

Cij,αβ9′ =− 2π

αVtiV ∗
tj

(

[

CV,LR
ed

]

αβji
+
[

CV,RR
ed

]

αβji

)

Cij,αβ10′ =
2π

αVtiV ∗
tj

(

[

CV,LR
ed

]

αβji
−
[

CV,RR
ed

]

αβji

)

,

Cij,αβS =− 2π

αVtiV ∗
tj

[

CS,RL
ed

]∗

βαij
, Cij,αβS′ =− 2π

αVtiV ∗
tj

[

CS,RL
ed

]

αβji
,

Cij,αβP =
2π

αVtiV ∗
tj

[

CS,RL
ed

]∗

βαij
, Cij,αβP ′ =− 2π

αVtiV ∗
tj

[

CS,RL
ed

]

αβji
,

Cij,αβν =− 2π

αVtiV ∗
tj

[

CV,LL
νd

]

αβji
+CSMν δαβ , Cij,αβν′ =− 2π

αVtiV ∗
tj

[

CV,LR
νd

]

αβji
. (D.6)

with the SMEFT Wilson coefficients evaluated at the low-energy scale. Throughout the

paper we will omit the quark indices whenever they refer to b → s transitions, i.e. when

ij = bs. Using this effective Hamiltonian, we can write the branching fraction for the LFV

leptonic decay of a neutral pseudo-scalar meson with valence quarks i and j, Pij , as

B(Pij→ ℓ−α ℓ
+
β )=

τP
64π3

α2G2
F

m3
P

f2P |VtiV ∗
tj |2λ1/2(m2

P ,m
2
ℓα ,m

2
ℓβ
)

×
{

[m2
P−(mℓα−mℓβ )

2]

∣

∣

∣

∣

∣

(mℓα+mℓβ )(C
ij,αβ
10 −Cij,αβ10′ )+

m2
P

mi+mj
(Cij,αβP −Cij,αβP ′ )

∣

∣

∣

∣

∣

2

+[m2
P−(mℓα+mℓβ )

2]

∣

∣

∣

∣

∣

(mℓα−mℓβ )(C
ij,αβ
9 −Cij,αβ9′ )+

m2
P

mi+mj
(Cij,αβS −Cij,αβS′ )

∣

∣

∣

∣

∣

2}

,

(D.7)

where the P decay constant is defined as 〈0| q̄i γµγ5 qj |P (p)〉 = ipµ fP . For the branching

fraction of the LFV semileptonic decay B → K(∗)τµ we have:

B(B→K(∗)τ+µ−)= 10−9
(

c9+
K(∗)

∣

∣Cτµ9 +Cτµ9′
∣

∣

2
+c10+

K(∗)

∣

∣Cτµ10 +C
τµ
10′

∣

∣

2
+c9−

K(∗)

∣

∣Cτµ9 −C
τµ
9′

∣

∣

2

+c10−
K(∗)

∣

∣Cτµ10 −C
τµ
10′

∣

∣

2
+cS

K(∗)

∣

∣CτµS +CτµS′

∣

∣

2
+cP

K(∗)

∣

∣CτµP +CτµP ′

∣

∣

2

+ aS9
K(∗) Re[(CτµS +CτµS′ )

∗(Cτµ9 −C
τµ
9′ )]+c

P10
K(∗) Re[(CτµP +CτµP ′ )

∗(Cτµ10 −C
τµ
10′)]

)

.

(D.8)
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c9+
K(∗) c10+

K(∗) c9−
K(∗) c10−

K(∗) cS
K(∗) cP

K(∗) cS9
K(∗) cP10

K(∗)

K 9.6± 1.0 10.0± 1.3 0 0 13.6± 0.9 14.6± 1.0 12.4± 0.9 15.2± 1.2

K∗ 3.0± 0.8 2.7± 0.7 16.4± 2.1 15.4± 1.9 - - - -

Table 8. Hadronic coefficients for the B → K(∗)τµ decay.

The ai
K(∗) coefficients are given table 8. They have been computed using the lattice inputs

in [83], and have been cross checked against [84] for those involving the C9(10) operators

only. Note that for the K∗ channel the scalar contributions are expected to be negligible

and hence we do not provide them.

D.2 LFU tests in charged lepton decays and at LEP

Strong tests of LFU can be derived from the precise measurements of purely leptonic and

semi-hadronic τ decays. Here we use the results from the HFLAV [50]

Leptonic decays. Stringent tests of LFU can be obtained from ratios of leptonic lepton

decays such as

(

gτ
gµ

)

ℓ

=

[B(τ → e νν̄)exp/B(τ → e νν̄)SM
B(µ→ e νν̄)exp/B(µ→ e νν̄)SM

] 1
2

, (D.9)

and analogously for the other leptons. These ratios can be written in terms of the effective

Lagrangian:

L(ℓ→ ℓ′νν̄)=− 4GF√
2

(

[

CV,LLνe

]

ρσαβ
(νρLγ

µνσL)(ℓ
α
Lγ

µℓβL)+
[

CV,LRνe

]

ρσαβ
(νρLγ

µνσL)(ℓ
α
Rγ

µℓβR)
)

,

(D.10)

yielding the following expressions:

(

gτ
gµ

)

ℓ

=





∑

ρσ

(

|δρ3δσ1 +
[

CV,LLνe

]

ρσ13
|2 + |

[

CV,LRνe

]

ρσ13
|2
)

∑

ρσ

(

|δρ2δσ1 +
[

CV,LLνe

]

ρσ12
|2 + |

[

CV,LRνe

]

ρσ12
|2
)





1
2

,

(

gτ
ge

)

ℓ

=





∑

ρσ

(

|δρ3δσ2 +
[

CV,LLνe

]

ρσ23
|2 + |

[

CV,LRνe

]

ρσ23
|2
)

∑

ρσ

(

|δρ2δσ1 +
[

CV,LLνe

]

ρσ12
|2 + |

[

CV,LRνe

]

ρσ12
|2
)





1
2

,

(

gµ
ge

)

ℓ

=





∑

ρσ

(

|δρ3δσ2 +
[

CV,LLνe

]

ρσ23
|2 + |

[

CV,LRνe

]

ρσ23
|2
)

∑

ρσ

(

|δρ3δσ1 +
[

CV,LLνe

]

ρσ13
|2 + |

[

CV,LRνe

]

ρσ13
|2
)





1
2

.

(D.11)

Hadronic decays. LFU violation in hadronic τ decays can be tested by ratios such as

(

gτ
gµ

)

h

=





B(τ → hν)

B(h→ µν)

2mhm
2
µτh

(1 + δRτ/h)m3
τττ

(

1−m2
µ/m

2
h

1−m2
h/m

2
τ

)2




1
2

. (D.12)
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The decay τ− → h−ν, with h− = diuj , is described by the Lagrangian

L(τ → hν) (D.13)

= −4GF√
2

∑

ρ

(

δρ3V
∗
ji +

[

CV,LLνedu

]

ρ3ij

)

(ν ρLγ
µτL)(d

i
Lγµu

j
L) +

[

CS,RL
νedu

]

ρ3ij
(ν ρLτR)(d

i
Ru

j
L) ,

where we included also the SM contribution. The branching ratio for the process reads

B(τ → hν) (D.14)

=
1

16π2
G2
F τhf

2
hm

3
τ

(

1− m2
h

m2
τ

)2 ∣
∣

∣

∣

δρ3V
∗
ji +

[

CV,LLνedu

]

ρ3ij
+

m2
h

mτ (mdi +muj )

[

CS,RL
νedu

]

ρ3ij

∣

∣

∣

∣

2

,

and analogously for B(h → µν). Thus we find the following theoretical predictions for

(gτ/gµ)π and (gτ/gµ)K

(

gτ
gµ

)

π

=







∑

ρ

∣

∣

∣δρ3V
∗
ud +

[

CV,LLνedu

]

ρ311
+ m2

π
mτ (md+mu)

[

CS,RL
νedu

]

ρ311

∣

∣

∣

2

∑

ρ

∣

∣

∣
δρ2Vud +

[

CV,LLνedu

]∗

ρ211
+ m2

π
mµ(md+mu)

[

CS,RL
νedu

]∗

ρ211

∣

∣

∣

2







1
2

,

(

gτ
gµ

)

K

=







∑

ρ

∣

∣

∣
δρ3V

∗
us +

[

CV,LLνedu

]

ρ321
+

m2
K

mτ (ms+mu)

[

CS,RL
νedu

]

ρ321

∣

∣

∣

2

∑

ρ

∣

∣

∣
δρ2Vus +

[

CV,LLνedu

]∗

ρ221
+

m2
K

mµ(ms+mu)

[

CS,RL
νedu

]∗

ρ221

∣

∣

∣

2







1
2

.

(D.15)

Due to the flavor structure of the model, tree-level leptoquark contributions in the hadronic

τ vs µ ratios are found to be much smaller than those induced by the mt-enhanced lepto-

quark loop. As a consequence, we find (gτ/gµ)ℓ ≈ (gτ/gµ)π ≈ (gτ/gµ)K to a good extent.

Similar tests with hadronic τ vs e ratios can also we performed. These are less precise and

do not yield relevant constraints.

We also use the results of the fit in [85] to account for the bounds on precision Z- and

W -pole measurements at LEP. The experimental measurements we use in the fit for the

LFU tests described in this section are summarized in table 9.

D.3 ∆F = 1 semi-leptonic processes

b → s transitions. We describe the NP contributions to b→ sℓℓ̄ and b→ sνν̄ transitions

in terms of the effective operators in (D.5). The model predicts Re (Cαα9 ) ≈ −Re (Cαα10 ) to
a very good approximation so we use fit results in [57] (see also [58–63]) for this NP

hypothesis. In order to analyse possible departures given by the scalar operators we also

consider the Bq → ℓℓ (q = s, d) channels separately. We have

B(Bq → ℓ−ℓ+) = B(Bq → ℓ−ℓ+)
∣

∣

SM

{∣

∣

∣

∣

∣

Cbq,ℓℓ10 − Cbq,ℓℓ10′

CSM10
+

m2
Bq

2mℓ(mb +mq)

Cbq,ℓℓP − Cbq,ℓℓP ′

CSM10

∣

∣

∣

∣

∣

2

+
m2
Bq
− 4m2

ℓ

m2
Bq

∣

∣

∣

∣

∣

m2
Bq

2mℓ(mb +mq)

Cbq,ℓℓS − Cbq,ℓℓS′

CSM10

∣

∣

∣

∣

∣

2}

. (D.16)
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LFU tests in lepton decays

Observable Experiment [50] Correlation SM EFT
(

gτ
gµ

)

ℓ
1.0010(15)































· · · · ·

0.53 · · · ·

−0.49 0.48 · · ·

0.24 0.26 0.02 · ·

0.11 0.10 −0.01 0.06 ·































1.

(

gτ
ge

)

ℓ
1.0029(15) 1. (D.11)

(

gµ
ge

)

ℓ
1.0019(14) 1.

(

gτ
gµ

)

π
0.9961(27) 1.

(D.15)
(

gτ
gµ

)

K
0.9860(70) 1.

Z/W coupling modifications

We use the results of the fit in [85]

Table 9. List of observables involving LFV transitions and LFU tests.

with the experimental and SM values listed in table 10. The branching fraction of the

B → K(∗)νν̄ decays are given by

B(B → K(∗)νν̄)
∣

∣

∣

exp
SM

=

∑

αβ

∣

∣

∣Cαβν + Cαβν′
∣

∣

∣

2

3 |CSMν |2
, (D.17)

with the SM Wilson coefficient CSMν ≈ −6.35 [86, 87].

s → d transitions. Here we focus only in s→ dνν̄ decays. Since right-handed rotations

involving the light families are negligible, the NP Lagrangian relevant for the s → dνν̄

transition reads

L(s→ dνν̄) = −4GF√
2

[

CV,LLνd

]

αβ21
(ν βLγ

µναL)(sLγµdL) . (D.18)

Constraints on the Wilson coefficients above can be obtained from the measurements of

B(K+ → π+νν̄) and B(KL → π0νν̄), whose experimental values (with symmetrized errors)

and SM predictions are collected in table 10. The NP predictions in terms of the EFT

(assuming NP only in ντ ) can be extracted from [88] and read

B(K+ → π+νν̄) = B(K+ → π+νν̄)
∣

∣

SM





2

3
+

1

3

∣

∣

∣

∣

∣

1−
2
[

CV,LLνd

]

3321

(α/π)V ∗
tsVtdC

SM,eff
sd,τ

∣

∣

∣

∣

∣

2


 ,

B(KL → π0νν̄) = B(KL → π0νν̄)
∣

∣

SM





2

3
+

1

3

∣

∣

∣

∣

∣

1 +
2
[

CV,LLνd

]

3321

(α/π)V ∗
tsVtd (Xt/s2W )

∣

∣

∣

∣

∣

2


 ,

(D.19)

where CSM,eff
sd,τ ≈ −8.5 e0.11i (including the long-distance contributions), and Xt/s

2
W ≈ 6.4.

Given that the bounds from KL decays are way less stringent than those from the K+, we

implement only the latter in the fit.
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b → c (u) transitions. In our setup, these transitions are described by the following

effective operators:

L(b→ uiℓν̄) = −
4GF√

2

(

[

CV,LLνedu

]∗

αβ3i
(ℓ
β
Lγ

µναL)(u
i
LγµbL) +

[

CS,RL
νedu

]∗

αβ3i
(ℓ
β
R ν

α
L)(u

i
LbR)

)

,

(D.20)

where i = 1, 2 for a u or a c quark respectively. We define the LFU ratios Rℓℓ
′

D(∗) as

Rℓℓ
′

D(∗) =
B(B → D(∗)ℓν)

B(B → D(∗)ℓ′ν)
, (D.21)

for which we find the following expression in terms of the EFT Wilson coefficients

R
ℓαℓβ
D∗ = R

ℓαℓβ
D∗

∣

∣

∣

SM

[

1 + 2Re

{
[

CV,LLνedu

]∗

αα32

Vcb

}

+ fSD∗(ℓα)Re

{
[

CS,RL
νedu

]∗

αα32

Vcb

}

− (α→ β)

]

,

R
ℓαℓβ
D = R

ℓαℓβ
D

∣

∣

∣

SM

[

1 + 2Re

{
[

CV,LLνedu

]∗

αα32

Vcb

}

+ fSD(ℓα)Re

{
[

CS,RL
νedu

]∗

αα32

Vcb

}

− (α→ β)

]

.

(D.22)

The hadronic information on the scalar contributions is encoded in fD
(∗)

S (ℓα). In our model,

scalar contributions with taus are sizeable while those involving light leptons are negligible.

For the tau channel we have [53]

fSD∗(τ) = 0.12 , fSD(τ) = 1.5 . (D.23)

In order to constrain e − µ universality in B → Dℓν and B → D∗ℓν we use the Vcb
determinations in [95] instead of Rµe

D(∗) . The former also include the information on the

differential distributions and therefore lead to stronger constraints than the ones on the

branching ratios alone. We construct the following universality ratios, analogous to Rµe
D(∗) ,

V µe

D(∗) =
V B→D(∗)µν
cb

V B→D(∗)eν
cb

. (D.24)

Since we expect scalar contributions involving light leptons to be suppressed, we find

V µe
D = V µe

D∗ ≈ 1 + 2Re

{
[

CV,LLνedu

]∗

2232

Vcb

}

− 2Re

{
[

CV,LLνedu

]∗

1132

Vcb

}

. (D.25)

Finally, defining the ratio of inclusive B decays into charm states as

RτℓXc
=
B(B → Xcτν)

B(B → Xcℓν)
, (D.26)

and neglecting the light-lepton scalar contribution, we have

RτℓXc
= RτℓXc

∣

∣

∣

SM

[

1+2Re

{
[

CV,LLνedu

]∗

3332

Vcb

}

+0.427 Re

{
[

CS,RL
νedu

]∗

3332

Vcb

}

−2Re
{
[

CV,LLνedu

]∗

ℓℓ32

Vcb

}]

,

(D.27)
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b → s transitions

Cµµ9 = −Cµµ10 −0.62(13) [57] (D.6)

Observable Experiment SM EFT

B(Bs → µ−µ+) 3.02(65)× 10−9 [64] 3.65(23)× 10−9 [65]
(D.16)

B(B → µ−µ+) 1.6(1.1)× 10−10 [64] 1.06(9)× 10−10 [65]

B(Bs → τ−τ+) 0.0(3.4)× 10−3 [90] 7.73(49)× 10−7 [65]
(D.16)

B(B → τ−τ+) 0.0(1.1)× 10−3 [90] 2.22(19)× 10−8 [65]

B(B → K(∗)νν̄)
∣

∣

exp
SM

0.0(2.2) [87, 91] 1. (D.17)

Coefficient Fit SM EFT

s → d transitions

Observable Experiment SM EFT

B(K+ → π+νν̄)× 1011 17.8(11.0) [92] 8.4(1.0) [94] (D.19)

B(KL → π0νν̄)× 1011 < 2.6× 103 (90% CL) [93] 3.4(0.6) [94] (D.19)

b → c transitions

Observable Experiment Correlation SM EFT

V µe
cb

∣

∣

D
1.004(42) [95] 1.

(D.25)
V µe
cb

∣

∣

D∗ 0.97(4) [95] 1.

RτℓD 0.407(46) [50]
−0.20

0.299(3) [96]
(D.22)

RτℓD∗ 0.304(15) [50] 0.260(8) [97]

RτℓXc
0.228(30) [98, 99] 0.212(3) [100] (D.27)

b → u transitions

Observable Experiment SM EFT

B(B → τ ν̄) 1.09(24)× 10−4 [55] 0.807(61)× 10−4 [48] (D.28)

Table 10. List of observables involving semileptonic transitions.

with RτℓXc

∣

∣

SM
= 0.212 ± 0.003 and where we used the results in [89] for the scalar

contributions.

The only important constraint in b→ uℓν transitions is given by the B → τ ν̄τ branch-

ing fraction. For Bq → τ ν̄τ (q = u, c), we have

B(Bq → τ ν̄) = B(Bq → τ ν̄τ )|SM
∑

ρ

∣

∣

∣

∣

∣

δρ3 +

[

CV,LLνedu

]∗

ρ33q

Vqb
+

m2
Bq

(mb +mq)mτ

[

CS,RL
νedu

]∗

ρ33q

Vqb

∣

∣

∣

∣

∣

2

.

(D.28)

In the fit we use B(B → τ ν̄τ )|SM = 0.807(61) [48] for the SM value.
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D.4 ∆F = 1 non-leptonic processes

A relevant constraint is obtained by time-dependent CP-violating asymmetries probing the

weak phases of non-leptonic b→ s amplitudes. The relevant effective Lagrangian reads

L(bL→sL)
∆F=2 = −4GF√

2

∑

a

CaOa = −
4GF√

2

[

[

CV,LLdd

]

bsii
(bLγ

µsL)(d
i
Lγµd

i
L)

+
[

CV1,LL
du

]

bsii
(bLγ

µsL)(u
i
Lγµu

i
L) +

[

CV8,LL
du

]

bsii
(bLγ

µ T a sL)(u
i
LγµT

a uiL)

+
[

CV1,LR
dd

]

bsii
(bLγ

µsL)(d
i
Rγµd

i
R) +

[

CV8,LR
dd

]

bsii
(bLγ

µ T a sL)(d
i
RγµT

a diR)

+
[

CV1,LR
du

]

bsii
(bLγ

µsL)(u
i
Rγµu

i
R) +

[

CV8,LR
du

]

bsii
(bLγ

µ T a sL)(u
i
RγµT

a uiR)

]

.

(D.29)

For a given exclusive transition of the type Bs,d → F we can write

A(Bq → F ) ≈ A(Bq → F )SMe
i∆φ

[F ]
q , ∆φ[F ]

q =
∑

a

(b[F ]
q )Ca × Im

[ Ca
VtsVtb∗

]

, (D.30)

where the (b
[F ]
q )Ca are real parameters encoding the RG evolution from the weak scale down

to mb and the hadronix matrix elements of various four-quark operators.

The phase shift ∆φ
[F ]
q is directly constrained by the CP-violating asymmetries. In

particular, in the clean case of Bd → ψK one finds

∣

∣

∣∆φ
[φK]
d

∣

∣

∣

exp
=

∣

∣

∣

∣

sin(2β)φK − sin(2β)ψK
sin(2β)ψK

∣

∣

∣

∣

= 0.07± 0.15 . (D.31)

Following the analysis of ref. [101], in this case the dominant non-vanishing coefficients are

(

b[φK]
q

)

[

CV,LL
dd

]

bsss

≈
(

b[φK]
q

)

[

CV1,LR
dd

]

bsss

≈ −45 ,
(

b[φK]
q

)

[

CV8,LL
dd

]

bsss

≈ −4 . (D.32)

D.5 ∆F = 2 transitions

The Lagrangian that contributes to ∆F = 2 in the down sector is given by

L∆F=2 = −
4GF√

2

[

[

CV,LLdd

]

ijij
(d

i
Lγ

µdjL)(d
i
Lγµd

j
L) +

[

CV,RR
dd

]

ijij
(d

i
Rγ

µdjR)(d
i
Rγµd

j
R)

+
[

CV1,LR
dd

]

ijij
(d

i
Lγ

µdjL)(d
i
Rγµd

j
R) +

[

CV8,LR
dd

]

ijij
(d

i
Lγ

µ T a djL)(d
i
RγµT

a djR)

]

,

(D.33)

where T a are the generators of SU(3)c. In order to study neutral meson mixing it is

convenient to reexpress this operators in terms of the basis used in [102]. After fierzing the

operator OV 8,LR
dd we find

L∆F=2 = −
4GF√

2

[

[

CV,LLdd

]

ijij

[

QVLL
1

]

ijij
+
[

CV,RR
dd

]

ijij

[

QVRR
1

]

ijij

+
(

[

CV1,LR
dd

]

ijij
− 1

6

[

CV8,LR
dd

]

ijij

)

[

QLR
1

]

ijij
−
[

CV8,LR
dd

]

ijij

[

QLR
2

]

ijij

]

.

(D.34)
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(MS–BMU, mb)

BLR1
d /BVLL

d BLR2
d /BVLL

d

1.06(11) 1.14(10)

BLR1
s /BVLL

s BLR2
s /BVLL

s

0.990(75) 1.073(68)

Table 11. Bag parameters taken from [42] [Fermilab/MILC Collaboration, 2016] and adjusted to

Buras et al. operator basis.

Bs,d-B̄s,d mixing. The hadronic matrix elements for the operators relevant to Bq-B̄q
mixing (q = d, s) are conventionally decomposed as follows

〈B̄0
q |QVLL

1 (µ)|B0
q 〉 =

1

3
mBqf

2
Bq
BVLL
q (µ) ,

〈B̄0
q |QLR

1 (µ)|B0
q 〉 =−

1

6
R1
q(µ)mBqf

2
Bq
BLR1
q (µ) ,

〈B̄0
q |QLR

2 (µ)|B0
q 〉 =

1

4
R2
q(µ)mBqf

2
Bq
BLR2
q (µ) .

(D.35)

Here the so-called bag parameters Ba
i (µ), which are expected to be one in the vacuum sat-

uration approximation, can be calculated in lattice QCD. The latest lattice determinations

can be found in [42] and are shown in table 11.12 The chirality factors Ri(µ) are defined

as [103]

R1
q(µ) =

[

mBq

mb(µ) +mq(µ)

]2

+
3

2
, R2

q(µ) =

[

mBq

mb(µ) +mq(µ)

]2

+
1

6
, (D.36)

with µ denoting the low-energy scale.

In the SM only the operator QVLL
1 (µ) contributes to the M(Bq → B̄q) ≡ M12(Bq)

amplitude. We normalize it such that the meson-antimeson mass splitting and the CP-

violating phase of mixing amplitude are defined by

∆Mq = 2|M12(Bq)| , φBq = arg [M12(Bq)] . (D.37)

The explicit expression in the SM reads

M12(Bq)
SM =

G2
FM

2
WMBq

12π2
S0(xt)(VtbV

∗
tq)

2f2Bq
η̂B B

VLL
q , (D.38)

with S0(xt) ≈ 2.36853 being the Inami-Lim function [104], and η̂B ≈ 0.842 [102] accounting

for the QCD running of the effective operator from the mt to the mb scale. In the presence

12We stress that even though [42] and [102] adopt different conventions for the definition of the hadronic

matrix elements, the matching between the different definitions of bag factors is consistent and unambiguous.

In particular, the bag factors in table 11 have a one to one matching with the ones used in eqs. (7.28)–(7.30)

of [102].
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of NP, the expression of M12(Bq) is modified; factorizing the SM contribution, we can

generally decompose it as

M12(Bq) =M12(Bq)
SM

[

1 +
M12(Bq)

NP

M12(Bq)SM

]

. (D.39)

The NP modifications can be written in terms of the Wilson coefficients in (D.33) as follows

M12(Bq)
NP

M12(Bq)SM
=

1

(V ∗
tbVtq)

2Rloop
SM

[

(

[

CV,LLdd (µt)
]

3q3q
+
[

CV,RR
dd (µt)

]

3q3q

)

+
PLR1
q (µb)

PVLL
q (µb)

(

[

CV1,LR
dd (µt)

]

3q3q
− 1

6

[

CV8,LR
dd (µt)

]

3q3q

)

−
PLR2
q (µb)

PVLL
q (µb)

[

CV8,LR
dd (µt)

]

3q3q

]

,

(D.40)

where the SM factor reads

Rloop
SM =

√
2GFM

2
W S0(xt)

16π2
= 1.5987× 10−3 , (D.41)

and where the P ai coefficients contain the NNLO QCD corrections, computed in [102], and

the bag factors. These are given by13

PVLL
q (µb) = 0.842BVLL

q (µb) ,

PLR1
q (µb) = −0.663BLR1

q (µb)− 0.956BLR2
q (µb) ,

PLR2
q (µb) = 0.030BLR1

q (µb) + 2.434BLR2
q (µb) ,

(D.42)

Using the results in table 11 for the bag factors we find

PLR1
d (µb)

PVLL
q (µb)

= −2.13(14) , PLR2
d (µb)

PVLL
q (µb)

= 3.33(29) ,

PLR1
s (µb)

PVLL
q (µb)

= −2.00(10) , PLR2
s (µb)

PVLL
q (µb)

= 3.14(20) .

(D.43)

In table 12 we provide the latest SM determinations and experimental values for mass

differences and CP violating phases.

CP violation in K − K̄ and D − D̄ mixing. The formalism for K − K̄ mixing is

identical to that for Bq-B̄q mixing but for trivial modfications. The key difference is that

in this case the magnitude of the amplitude is dominated by long-distance contributions.

Concerning the clean CP-violating observable ǫK , we can write

Re(ǫK) =
1

2∆M exp
K

Im [M12(K)] = Re(ǫK)SM +
1

2∆M exp
K

Im
[

M12(K)NP
]

. (D.44)

Since right-handed rotations involving the first family are negligible, the NP correction

assume the simple form

|ǫK |exp = |ǫK |SM +
2

3
CKP

VLL
1 (µK) Im

(

[

CV,LLdd

]

2121
(µt)

)

, (D.45)

13Here we use the results from [102]. In particular, tables 1 and 2 [with α
(5)
s (MZ) = 0.118], eqs. (7.28)–

(7.30) and eq. (7.34) [with mb(µb) +md(µb) = µb = 4.4GeV and mB = 5.28GeV].
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∆F = 2 transitions

Observable Experiment SM LEFT

∆Md 0.5065(19) ps−1 [50] 0.630(69) ps−1 [42] (D.39)–(D.43)

∆Ms 17.757(21) ps−1 [50] 19.6(1.6) ps−1 [42] (D.39)–(D.43)

sin(φBs) −0.021± 0.031 [50] −0.036± 0.001 [48] (D.39)–(D.43)

sin(φBd
) −0.680± 0.023 [50] −0.724± 0.028 [48] (D.39)–(D.43)

103 × |ǫK | 2.228± 0.011 [50] 2.03± 0.18 [48] (D.45)

1014 × Im(CD1 ) −0.03(46) GeV−2 [46, 47] 0. (D.48)

Table 12. List of observables involving hadronic transitions.

where we have used Re(ǫK) = |ǫK |/
√
2, we have defined

CK =
GFMKf

2
K

∆M exp
K

= 4.23× 107 , (D.46)

and we have introduced the factor PVLL
1 (µK) = 0.48 [102] that encodes QCD corrections

and the bag parameter. As far as the magnitude of the amplitude is concerned, we can

limit ourselves to impose the weaker constraint
∣

∣

∣

∣

∆MNP
K

∆M exp
K

∣

∣

∣

∣

=
8

3
√
2
CKP

VLL
1 (µK)

∣

∣

∣

[

CV,LLdd

]

2121
(µt)

∣

∣

∣ < 1 . (D.47)

In the case of D − D̄ mixing we can also neglect right-handed rotations and corre-

sponding right-handed operators. Following the analysis of refs. [46, 47], the constraint

following from the non-observation of CP-violation in this system can be expressed as

Im(CD1 ) =
4GF√

2
Im
([

CV,LLuu

]

2121
(µt)

)

= (−0.03± 0.46)× 10−14 GeV−2 . (D.48)
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