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Low-energy spectrum of iron-sulfur clusters directly from many-particle quantum

mechanics

Sandeep Sharma and Garnet Kin-Lic Chan∗

Department of Chemistry, Frick Laboratory, Princeton University, NJ 08544

Kantharuban Sivalingam and Frank Neese
Max Planck Institute for Chemical Energy Conversion, Muelheim, Germany

FeS clusters are a universal biological motif. They carry out electron transfer, redox chemistry, and
even oxygen sensing, in diverse processes including nitrogen fixation, respiration, and photosynthesis.
The low-lying electronic states are key to their remarkable reactivity, but cannot be directly observed.
Here we present the first ever quantum calculation of the electronic levels of [2Fe-2S] and [4Fe-
4S] clusters free from any model assumptions. Our results highlight limitations of long-standing
models of their electronic structure. In particular, we demonstrate that the widely used Heisenberg-
Double-Exchange model underestimates the number of states by 1-2 orders of magnitude, which
can conclusively be traced to the absence of Fe d→d excitations, thought to be important in these
clusters. Further, the electronic energy levels of even the same spin are dense on the scale of
vibrational fluctuations, and this provides a natural explanation for the ubiquity of these clusters
in nature for catalyzing reactions.

Metals in enzymes perform remarkable chemistry under ambient pressures and temperatures. Among the most
important cofactors are the iron-sulfur (FeS) clusters, comprising one to eight Fe atoms bridged by S ligands. In central
processes of life ranging from nitrogen fixation to photosynthesis and respiration[1], these clusters perform diverse
functions: redox chemistry, electron transfer, and even oxygen sensing. Their electronic structure, with multiple low-
lying states with differing electronic and magnetic character, holds the key to this rich chemistry. However, uncovering
the electronic structure has been highly non-trivial. Direct experimental assignment of these electronic levels in larger
clusters has been impossible, since they lie at low energies and can be embedded within the vibrational modes of the
clusters[2, 3].

Nonetheless, through intense collaboration in the last decades between experiment and theory, a consensus descrip-
tion of FeS cluster electronic states has emerged. This is based on the Heisenberg-Double-Exchange (HDE) model,
combining Heisenberg exchange between Fe spins with a simplified version of Anderson’s double-exchange[4, 5] for
mixed valence delocalization. The HDE model was first proposed by Girerd[6] and Noodleman et al.[7, 8] for [2Fe-2S]
dimers, and generalized to [3Fe-4S] and [4Fe-4S] clusters by Girerd, Münck and co-workers[9, 10] with further exten-
sions in recent years[11, 12]. The HDE model has yielded many important insights. For example, the observed EPR
g < 2 in reduced [2Fe-2S] dimers was puzzling until it was recognized that the ground-state contains antiferromagnetic
coupling of the FeII and FeIII centers [13, 14]. Similarly, in [3Fe-4S] and [4Fe-4S] clusters, HDE model mixed valence
eigenstates provided the basis to interpret the distinctive Mössbauer, NMR, and ENDOR spectra[15–20].

Despite the many successes of this phenomenological model, its limitations are also well-known. The HDE model
posits couplings a priori, which must be fitted before making predictions. In basic versions, couplings consist of
Heisenberg exchange J ’s and double-exchange B’s; extended versions include anisotropy, zero-field splitting, and
further contributions[21]. An unambiguous determination of all parameters from experiment is clearly difficult, if
not impossible. For example, in one famous case of a [4Fe-4S] cluster[1], the experimentally fitted B’s range from
≈ 10 cm−1 to ≈ 600 cm−1, over two orders of magnitude! Further, FeS couplings obtained from broken-symmetry
density functional theory (BS-DFT) computations (e.g. in pioneering work by Noodleman and others[8, 22–27]) are
not clearly more reliable. This is because BS-DFT only describes a weighted average over the (multiplet) states,
and individual parameters must once again be obtained through fitting; further they depend strongly on the density
functional approximation used[28]. Beyond the above issues, a deeper criticism of the phenomenological models is
that they make a priori choices about relevant chemical processes: a pure Heisenberg model will completely omit
charge transfer phenomena. Without a reliable route to obtain model parameters, we cannot verify their validity,
which raises the troubling question: how can we be sure that the current models are even qualitatively correct?

In principle, it should be possible to compute the states of the FeS clusters directly, without assuming an intermediate
model. After all, the long-standing premise of ab-initio computation is that any molecule’s electronic structure
is obtainable, without assumptions, from the many-electron Schrödinger equation. Clearly, this has not yet been
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FIG. 1: Model clusters and many-electron wavefunctions used in this work. (A) [2Fe-2S] and (B) [4Fe-4S] clusters in this work,
where the white circles denote H atoms. (Labels correspond to coordinates in Supplementary Tables 1, 2 and 11). (C) The
area-law entanglement of the physical states can be used to reduce the complexity of quantum calculations. (D) Wavefunctions
with area-law entanglement can compactly be written as a tensor network where each tensor (represented here by a circle)
denotes an active space orbital and the bonds between adjacent orbitals introduce local entanglement between them. The
network shown here is the linear network used by the density matrix renormalization group, which removes the need to model
unphysical entanglement between widely separated sites on the chain.
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achieved for FeS clusters! Quantum mechanical computation is exponentially harder than classical simulation, because
it supports superposition and non-local correlations known as entanglement. To avoid this complexity, practical
simulations - for example those using DFT - rely on a mean-field approximation, which treats only classical-like
quantum states without entanglement. This approximation completely fails in FeS clusters, however, due to the Fe
d-shells, which are near-degenerate on the Coulomb interaction scale (so-called strongly interacting), rendering the
molecular orbital picture and concept of a single mean-field electronic configuration invalid. This is why BS-DFT
calculations, the standard computational method applied to FeS clusters , only provide an energetic average over the
spectrum, and do not allow us to directly obtain the individual electronic states.

Strongly interacting electronic structure fundamentally involves entangled superpositions of many valence configu-
rations. Malrieu and co-workers[29–32] showed that the main classes of configurations for metal centers include the
configurations involving metal d electrons (a complete active space or CAS), augmented with excitations of bridging
ligand orbitals, or by including ligand orbitals in the active space. However, even with these restrictions, the number
of configurations grows exponentially with the number of atoms, and quickly becomes intractable. Early attempts to
model these superpositions in the [2Fe-2S] dimer had to make further drastic approximations, completely removing
non-bridging atoms, and including only d electrons in the active space [33]. In a [4Fe-4S] cluster, the minimal CAS
comprises all Fe 3d and S 3p valence shells, a distribution of 54 electrons in 36 spatial orbitals, or 1016 configurations,
unmanageable on any computer!

Recent advances from quantum information and condensed matter theory demonstrate, however, that physical

quantum states - the quantum states seen in Nature - are special and contain a hidden structure to their wavefunctions.
In particular, the low energy states possess area-law entanglement[34], reflecting the locality present in all physical
systems regardless of interaction strength (Figure 1, panel C). This structure implies that the coefficients of the
valence configurations in the FeS clusters are related in a special way, and the information compressed. To encode
this relationship, we write the wavefunction as a tensor network[35], of which the density matrix renormalization
group (DMRG) of White[36], a linear tensor network, is the most widely used example. A tensor in a tensor network
represents a local variational degree of freedom: in a molecule, a tensor might represent an atom or an orbital; and
contraction of the tensors creates the local entanglement, similar to a bond (Figure 1, panel D). The area-law implies
that if we restrict ourselves to the physically relevant sector of quantum states the tensors used to describe physical
states can be of low-rank. Working with low-rank tensor networks, we can elevate quantum simulations from the
mean-field level to the level of the entangled quantum mechanics necessary to describe FeS clusters, while significantly
ameliorating or in some cases completely bypassing the exponential complexity of the general quantum mechanical
formulation.

Starting with the work of White and Martin[37], our group and others have been developing tensor networks and
the DMRG in the context of quantum chemistry[38–46]. Here, we show that using our ab-initio DMRG methodology,
we can now numerically solve the valence many-particle quantum mechanical equations for FeS clusters to chemical
precision. This allows us, for the first time, to directly compute and probe the individual states and spectra in
FeS clusters as large as the [2Fe-2S] and [4Fe-4S] clusters. This direct computation unshackles the discussion of
FeS electronic structure from any earlier model assumptions. As we shall see, our calculations enable us to review,
revisit and ultimately substantially revise, the historical models that have so far been the only basis for understanding
electronic structure in these clusters, opening up the possibility to unlock the secrets of the chemistry of these clusters
from direct simulation.

I. RESULTS AND DISCUSSION

A. [2Fe-2S] dimers.

We first begin with [2Fe-2S] dimers. We consider the synthetic [Fe2S2(SCH3)4]
2−/3− complexes[47] that mimic the

dimers prominently found in ferredoxins[48, 49] (Figure 1, panel A).
In canonical understanding based on the HDE model, the Fe atoms are placed in definite valence states. For the

oxidized [2Fe-2S]2− dimer, both Fe atoms are assumed high-spin FeIII (S1,2=5/2), while for the reduced [2Fe-2S]3−

dimer, one is high-spin FeII (S1=2) and the other, high-spin FeIII (S2=5/2). In the oxidized dimer there is assumed
to be no double-exchange, and the HDE model reduces to the simpler Heisenberg form,

H = 2JS1 · S2 (1)

with levels E(S) = JS(S + 1) (S is total dimer spin, and J is exchange coupling). In [2Fe-2S] dimers, J > 0, thus
the ground-state is low-spin with maximal antiferromagnetic alignment.

In the canonical picture of the reduced dimer, the additional electron can delocalize between the two Fe centers.
(This is influenced by geometry and solvation, see e.g. Section 1.3 of the supplementary information, and Refs.[10, 50]).
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FIG. 2: Ab-initio levels of [Fe2S2(SCH3)4]
2− and corresponding model fits. (Dashed line) Fit to Heisenberg model. (Solid line)

Fit to Heisenberg plus quadratic couplings, capturing charge fluctuation effects. Top: Expectation value of the spin-correlation,
〈S1 · S2〉, for increasing dimer spin, showing progression from antiferromagnetic to ferromagnetic ordering.

In the HDE model[51, 52], this electron is placed in either a single bonding-type or antibonding-type orbital between
the centers, splitting each Heisenberg level by a double-exchange contribution B(S + 1/2), and giving levels of the
form

E(S) = JS(S + 1)±B(S + 1/2). (2)

As discussed by Noodleman and Baerends[7], double-exchange stabilizes high-spin states.
We now examine the accuracy of these existing pictures by comparing against the electronic levels that can now

be directly calculated using the ab-initio DMRG (details in Sections 1.1 and 1.2 of the supplementary information
and methods section). Figure 2 shows the computed levels of the oxidized [2Fe-2S]2− complex as compared to
the predictions of the Heisenberg model, Eq. (1). The exact DMRG levels qualitatively form a spin ladder from
S=0–5, in general agreement with the Heisenberg model. As S increases, the spin-spin correlation 〈S1 ·S2〉 increases,
transitioning from antiferromagnetic to ferromagnetic alignment. Fitting to Eq. (1) yields J ≈ 236 cm−1, which
compares reasonably well to fits from magnetic susceptibility measurements on a similar synthetic dimer (J ≈ 148±16
cm−1 [51]) and computed BS-DFT estimates (J ≈ 310 cm−1 [52]). However, our ab-initio levels also show significant
deviations from the level structure assumed by the traditional Heisenberg model. For example, the Heisenberg model
overestimates the lower spin state energies, while underestimating those of the higher spin states. Measuring the local
spin on the Fe atoms in our calculations we find 〈S2

1〉 ranges from 5.47–5.74 (for the S=0, S=5 states respectively),
as compared with 〈S2

1〉=8.75 for the pure FeIII (S=5/2) ion assumed in the model. This deviation from a pure S=5/2
ion illustrates the Heisenberg model’s limits, which does not allow for additional spin or charge configuration mixing.
In fact, charge fluctuations are responsible for the important spin delocalization onto the S orbitals, as previously
observed by Noodleman[52]. Guihery and coworkers have derived the form of the corrections to the Heisenberg model
that arise from quantum charge fluctuations[12]. In dimers, this yields a quadratic spin coupling 4JQ(S1 ·S2)

2; fitting
to the ab-initio DMRG levels gives J ≈ 98 cm−1 and JQ ≈ 6 cm−1. As demonstrated in Figure 2, the quadratic
coupling greatly improves the agreement, showing the importance of these corrections.
We now turn to the reduced [2Fe-2S]3− dimer. Whereas the disagreement between the standard HDE model, and

the directly computed ab-initio spectrum for the oxidized dimer, was primarily quantitative, for the reduced dimer
the discrepancies are more severe. The HDE model predicts the splitting of the two lowest levels to increase with total
spin, 2B(S + 1/2). However, in the ab-initio spectrum (Figure 3, panel A, red-curves) the splitting decreases with
dimer spin from S=1/2–3/2. Clearly, this cannot be reproduced by any HDE model parameters, since the splitting
is always proportional to S. (This remains after geometry relaxation, which introduces trapping (see Section 1.3 of
the supplementary information)).

That the earlier model description breaks down for highly excited states is natural, but that it fails already for the
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FIG. 3: Ab-initio levels of [Fe2S2(SCH3)4]
3− and corresponding model fits. The multi-orbital Anderson model proposed here

produces an excellent fit to all the levels, capturing the essential physics of the low energy states, while the single-pair and
multi-pair HDE models do not. (A) Ab-initio levels of [Fe2S2(SCH3)4]

3− for each dimer spin S. (Inset: Fit of lowest two
levels (red) to the HDE model). The level separation does not increase monotonically as required in the HDE model, and
the separation between the lowest two and higher levels is small (especially for S=1/2, 3/2, 5/2) indicating that the HDE
model assumptions break down and multi-orbital double-exchange is important. (B) Fits (S=1/2, 3/2, 5/2) to a multi-pair
HDE model. Pairs of corresponding bonding and anti-bonding states are represented by the same color. (C) Fits (S=1/2, 3/2,
5/2) to a multi-orbital Anderson model. (B) and (C) use the same number of parameters, but (C) is much better than (B),
demonstrating that multi-orbital double-exchange is not a sum of single exchange processes, as required by the multi-pair HDE
model.

2B(S + 1/2)

∆

A!

B!

FIG. 4: Origin of the dense manifold in the reduced dimer. Although the HDE model predicts two low-lying states in the
reduced dimer, the observed dense manifold can result from a ligand field splitting that is energetically comparable to the
hopping energy. (A) The HDE model assumes a single electron hops between a pair of d orbitals on the Fe ions. This is valid
if ∆ is sufficiently large that other d orbitals are well separated. (B) In FeS systems, ∆ is comparable to the hopping energy,
giving a whole manifold of low-lying states at each dimer spin.
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lowest two states is surprising. As explained further below, this reflects the complicated nature of double-exchange
in nearly orbitally degenerate metal ions. The HDE model assumes that the additional hopping electron is held in
a single pair of prescribed bonding and antibonding orbitals bridging the the sulfur ligands. This is appropriate if
ligand-field splitting places other bonding and antibonding orbitals at higher energies (panel A of Figure 4), but is
not in fact the case for tetrahedrally coordinated FeIII ions where both orbitals of e-parentage (in Td symmetry) are
near-degenerate, and weak ligand-field splitting by π-donor ligands leads to higher-lying orbitals of t2-parentage also
being accessible for double-exchange (panel B of Figure 4).

The multi-orbital nature of Fe double-exchange is immediately seen in the level spectrum at each dimer spin S
(Figure 3). Especially for S=1/2, 3/2, 5/2, the separation between the first two states and the higher states is small,
rendering the single pair HDE model completely invalid. Instead, the lowest 10 levels constitute a dense manifold of
related states, where the hopping electron occupies any one of 10 available d orbitals on the Fe atoms.

Multi-orbital double-exchange explains many of the earlier difficulties in determining consistent double-exchange
parameters from experiment. Simply put, a well-defined global B does not exist. Fitting the two lowest curves to the
HDE model yields J ≈ 67 cm−1, and B ≈ 63 cm−1, while fitting the lowest and highest curves in the manifold, yields
J ≈ 311 cm−1 and B ≈ 1052 cm−1. This wide range in B values is consistent with earlier experimental fits, which
also yield B couplings varying by a factor of 50 or more [1]. (For a careful analysis of experimental variation in B,
see Ref. [50]).

A naive way to extend the canonical HDE model to include multi-orbital exchange is to assume that the HDE
energy levels in Eq. (2) simply generalize from 1 to 5 hopping pairs and 5 sets of Ji and Bi, i = 1 . . . 5 couplings,
with ligand-field splittings ∆i, i = 1 . . . 4. (Multi-pair HDE models have been considered for [4Fe-4S] clusters in the
context of σ versus δ delocalization pathways [22, 52]). This gives levels of the form

Ei(S) = ∆i + 2JiS1 · S2 ±Bi(Si + 1/2) (3)

where i labels the orbital pair associated with the hopping. Fits to this multi-pair form are shown in Figure 3 (panel
B). The multi-pair HDE model does capture the low-lying spectrum better, since it has more parameters, but it still
cannot reproduce the non-monotonic behaviour in pairs of energy levels, such as the decreasing gap between the first
two levels. This shows that multi-orbital exchange cannot be considered a simple pairwise process.

The correct qualitative picture for multi-orbital exchange requires a return to Anderson’s original Hamiltonian
for double-exchange. For this system it takes the form (detailed derivation in Section 1.4 of the supplementary
information)

H =
∑

i

Jis1i · s2i +
∑

iσ

[

βi(c
†
1iσc2iσ + c†2iσc1iσ) + ∆i(c

†
1iσc1iσ + c†2iσc2iσ)

]

(4)

(i labels d orbitals, s1i, s2i are electron spins, and c
(†)
1i , c

(†)
2i create and destroy electrons). Note that this Anderson

Hamiltonian has the same number of parameters as a multi-pair HDE model (Eq. 3), but the fit (Figure 3, panel C)
is much improved and now obtains the correct non-monotonic features. Further, the fit is stable, near unique, and
yields reasonable parameters: ligand field splittings are approximately 4000-5000 cm−1, consistent with spectroscopic
estimates for tetrahedral Fe (see Supplementary Table 10). Thus all qualitative features of our ab-initio spectrum can
be understood by treating multi-orbital exchange in this more complete way.

In summary, our directly computed levels show that the low-lying spectrum of [2Fe-2S] dimers is much richer and
denser than the simple pair-splitting long assumed within the canonical HDE picture; the level spectrum is generated
by a complex multi-orbital exchange process, and this process cannot be viewed as a simple “sum” over single orbital
double-exchange pathways.

B. [4Fe-4S] clusters.

We now turn from FeS dimers to the more complicated [4Fe-4S] clusters. As a representative of Nature’s cubanes we
consider the [Fe4S4(SCH3)4)]

2− cluster, derived from the synthetic cluster studied by Holm and coworkers [53]. The
deduction of the cubane ground-state from experimental measurements is an early triumph of inorganic spectroscopy
[19]. It is conventionally believed that the ground-state consists of two coupled iron dimers, located on opposite faces
of the cube. The dimers are thought of as mixed-valence Fe2.5+, Fe2.5+ pairs coupled to a high-spin S=9/2 state,
which further recouple in the ground-state to form an overall singlet.
Since we can compute the electronic structure of the [4Fe-4S] cluster directly (see Methods) we can now test

the long-standing hypothesis for the ground-state. In our computed singlet ground-state, the spin density is zero
everywhere (since our wavefunction is a true spin singlet), but the nature of the couplings can be established from
spin correlation functions 〈Si · Sj〉 (Figure 5). These indicate ferromagnetic coupling along the top and bottom faces
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FIG. 5: Spin pairings in the [4Fe-4S] cluster. Unlike in a perfectly cubic cluster, where 3 equivalent pairings of Fe’s exist,
the geometry-optimized cluster breaks this symmetry and favors one pairing over the other two. The dimer pairs, and their
relative spin orientations, can be detected through the spin correlation functions. (A) 3 equivalent pairings of Fe’s into dimers
in a perfect [4Fe-4S] cubane. Red-red: Ferromagnetic coupling, red-blue: Antiferromagnetic coupling. (B) Spin correlation
functions (〈Si · Sj〉) for lowest singlet (left) and triplet (right) states of the [Fe4S4(SCH3)4]

2− cluster.

with antiferromagnetic coupling between the faces, corresponding precisely to the experimental picture of two high-
spin Fe2.5+, Fe2.5+ dimers recoupled into a singlet, thus confirming the long-standing interpretation. We can further
extend our calculations to the lowest triplet state: this lies 351 cm−1 above the singlet state. From its spin correlation
functions, we see that the triplet corresponds to a spin-canted state: the S=9/2 dimer spins are tilted relative to their
ground-state orientation.

What about the complete [4Fe-4S] spectrum? From the complexity of the [2Fe-2S] spectrum, we expect this will be
a formidable beast. While the complete spectrum is too expensive, we can calculate some of the lower-lying states.
The 10 lowest singlet S=0 and high-spin S=9 states are shown in Figure 6, as well as the lowest triplet, and a (more
qualitative) spectrum for the 150 lowest S=9 states. In a perfect cubane we expect three degenerate singlet ground-
states, from the three possible spin couplings in Figure 5. However, vibronic coupling distorts the ground-state of
the [4Fe-4S] cluster, opening a gap between the ground- and higher-lying states. Neverthless, even in the distorted
[4Fe-4S] cluster, the manifold of low-lying states remains accessible and dense on the 10-20 kcal/mol scale of biological
FeS reorganization energies [54]. A detailed analysis of the [4Fe-4S] excited states and their coupling to distortions
is presented in Section 2.4 of the supplementary information. Further, the structure of the low-lying spectrum, for
any cluster spin S, is very different to the isolated 4 low-lying levels predicted by canonical HDE models for each S.
This is expected as the model fails already in the [2Fe-2S] dimers, due to neglect of multi-orbital double exchange
discussed above. Appropriate model Hamiltonians for the [4Fe-4S] clusters are analysed in detail in Section 2.4 of the
supplementary information.

The high density of states (and their sensitivity to geometry via the vibronic coupling) provides an intriguing
hypothesis behind the unusual chemical flexibility and ubiquity of the [4Fe-4S] clusters. Conventionally, molecular
reactivity proceeds via well-defined potential energy surfaces. However, in [4Fe-4S] clusters, a large number of states
of the same (and different) spin are energetically accessible during reorganization dynamics. This suggests that [4Fe-
4S] clusters can non-adiabatically switch between many different frontier electronic states in a reaction, in essence a
generalization of two-state reactivity already postulated in single-Fe porphyrins[55] but without slow spin-forbidden
state crossings. Coupling between the spectrum and geometry allows for “fine-tuning” of reactivity by the environment.
[4Fe-4S] clusters thus appear to provide a conceptual bridge between molecular and surface catalytic reactivity. In the
latter case, non-adiabatic processes on many potential energy surface are common, and greatly modify the timescales
of electron and energy transfer[56].
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FIG. 6: Energy levels of the [4Fe-4S] cluster. The low-lying spectrum of the [4Fe-4S] cluster is unusually dense and is starkly
different from the predictions of the simple HDE model. (A) Isolated 4 low-lying states predicted (for each S) from the HDE
model, compared to the qualitative ab-initio density of states (shown for S=9), (B) Lowest lying 10 singlet (S=0) and high
spin (S=9) states), as well as ground-state triplet S=1 state, showing the small energy scales and detailed structure of the
spectrum.

II. CONCLUSIONS

To summarize, using simplifying entanglement structure of physical many-particle quantum states, we have com-
puted the individual ground and excited state energy levels of [2Fe-2S] and [4Fe-4S] clusters without model assump-
tions. Direct access to these energy levels has not previously been possible either through experiment or theory. Our
calculations have allowed us to critically examine the validity of the consensus phenomenological models that have
so far been the only way to understand FeS chemistry. In both the [2Fe-2S] dimer and the [4Fe-4S] cluster, we find
that earlier understanding based on the canonical Heisenberg-Double-Exchange model underestimates the number of
low-lying states by 1-2 orders of magnitude. These low-lying states arise from multi-orbital double-exchange processes.
The new level spectrum we reveal has important implications for reactivity, as the density and accessibility of the
low-lying states argues for the importance of multiple electronic states and non-adiabaticity in reactions. The theo-
retical techniques described here are potentially applicable to biological systems of even greater complexity, including
the M- and P-clusters of nitrogenase [57, 58]. More broadly, our work demonstrates new possibilities of realising
spectroscopy in complex systems, by directly computing entangled electronic structure from many-particle quantum
mechanics, without the need for a priori model assumptions.
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III. METHODS

All our density matrix renormalization group (DMRG) calculations employed the Block code. Density functional
calculations to obtain the initial geometries were carried out using the ORCA package. For DMRG calculations on
the [2Fe-2S] clusters, we employed a full valence complete active space (all Fe 3d and S 3p orbitals), and further
include the Fe 4s and 4d shells to account for additional dynamic correlation effects. In the oxidized cluster, this
corresponds to a 30 electron, 32 orbital active space. Even though the formal Hilbert space dimension is greater
than 1017, our calculations are enabled by the presence of some special entanglement structure in the states. In the
[2Fe-2S] clusters, we estimate that the electronic relative energies are converged to better than 0.1 kcal/mol (≈ 35
cm−1) of the exact active space results. For the [4Fe-4S] clusters we employed an active space with all Fe 3d and S
3p orbitals. These calculations were more expensive than the dimer calculations, thus the DMRG energy differences
between the singlet and triplet states are converged to only about 0.5-1 kcal/mol. These estimated errors refer to the
errors from the corresponding complete active space result. Dynamical correlation may lead to further small changes,
as discussed in the Section 1.2 of supplementary information. The higher singlet and high-spin states in Figure 6 were
calculated to lower accuracy than the ground singlet and triplet states, but are qualitatively correct. The multiplet
states are computed explicitly without assuming any mutual inter-relationship, in contrast to BS-DFT techniques,
which only obtain the high-spin state and a weighted average of the multiplet energies, relying on model assumptions
to deduce the individual levels [28]. All our computed wavefunctions exactly preserve spin (S2) symmetry, due to the
use of an SU(2) invariant DMRG code developed in our lab[40]. A full discussion of all the active spaces, geometry,
and examination of the DMRG convergence, is presented in the Sections 1.1, 1.2, 2.1 and 2.2 of the supplementary
information. For the spin correlation functions, S1 and S2 are defined from local Fe spin operators, and 〈S1 · S2〉 is
the ab-initio expectation value. These operators are defined in Equations 1 and 2 of the supplementary information.
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[20] Kappl, R., Ebelshäuser, M., Hannemann, F., Bernhardt, R. & Hüttermann, J. Probing electronic and structural properties
of the reduced [2Fe–2S] cluster by orientation-selective 1H ENDOR spectroscopy: Adrenodoxin versus Rieske iron-sulfur
protein. Applied Magnetic Resonance 30, 427–459 (2006).

[21] Maurice, R., Guihery, N., Bastardis, R. & de Graaf, C. Rigorous extraction of the anisotropic multispin hamiltonian
in bimetallic complexes from the exact electronic Hamiltonian. Journal of Chemical Theory and Computation 6, 55–65
(2009).

[22] Noodleman, L., Norman, J. G., Osborne, J. H., Aizman, A. & Case, D. A. Models for ferredoxins: electronic structures of
iron-sulfur clusters with one, two, and four iron atoms. Journal of the American Chemical Society 107, 3418–3426 (1985).

[23] Mouesca, J.-M., Chen, J. L., Noodleman, L., Bashford, D. & Case, D. A. Density functional/poisson-boltzmann calculations
of redox potentials for iron-sulfur clusters. Journal of the American Chemical Society 116, 11898–11914 (1994).

[24] Shoji, M. et al. Theory of chemical bonds in metalloenzymes III: Full geometry optimization and vibration analysis of
ferredoxin-type [2Fe–2S] cluster. International Journal of Quantum Chemistry 107, 116–133 (2007).

[25] Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers. The Journal of Chemical

Physics 74, 5737–5743 (1981).
[26] Yamaguchi, K., Fueno, T., Ueyama, N., Akira, N. & Masaaki, O. Antiferromagnetic spin couplings between iron ions in

ironsulfur clusters. a localized picture by the spin vector model. Chemical Physics Letters 164, 210 – 216 (1989).
[27] Yamaguchi, K., Fueno, T., Ozaki, M., Ueyama, N. & Nakamura, A. A general spin-orbital (gso) description of antiferro-

magnetic spin couplings between four irons in iron-sulfur clusters. Chemical Physics Letters 168, 56 – 62 (1990).
[28] Neese, F. Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental

theory to exchange-coupling. Coordination Chemistry Reviews 253, 526–563 (2009).
[29] Miralles, J., Daudey, J.-P. & Caballol, R. Variational calculation of small energy differences. The singlet-triplet gap in

[Cu2Cl6]2. Chemical Physics Letters 198, 555–562 (1992).
[30] Miralles, J., Castell, O., Caballol, R. & Malrieu, J.-P. Specific CI calculation of energy differences: Transition energies and

bond energies. Chemical Physics 172, 33–43 (1993).
[31] Castell, O. & Caballol, R. Ab-initio configuration interaction calculation of the exchange coupling constant in hydroxo

doubly bridged Cr(III) dimers. Inorganic Chemistry 38, 668–673 (1999).
[32] Cabrero, J., Ben Amor, N., de Graaf, C., Illas, F. & Caballol, R. Ab-initio study of the exchange coupling in oxalato-bridged

Cu(II) dinuclear complexes. The Journal of Physical Chemistry A 104, 9983–9989 (2000).
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Supplementary Figure 1: Orbitals in the active space of the [2Fe-2S] dimers.
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I. [2FE-2S] COMPLEXES

A. Geometry and orbitals

We used a [2Fe-2S] dimer obtained from the complex of Mayerle et al [1] by substituting the four terminal

toluene groups with methyl groups. For the [Fe2S2(SCH3)4]2− complex, the geometry was derived from the exper-

imental structure reported in [1], as shown in Supplementary Table 1. For the [Fe2S2(SCH3)4]3− complex, we con-

sidered two geometries: (i) the geometry in Supplementary Table 1 (the same geometry as the [Fe2S2(SCH3)4]2−

complex), and (ii) a relaxed geometry, shown in Supplementary Table 2. The relaxed geometry was obtained from

a broken-symmetry DFT calculation on the Sz=1/2 state, using the BP86 functional and a split-valence with polar-

ization (SVP) basis set [2] (denoted BP86/SVP) as implemented in Orca[3]. As seen from the table, in the relaxed

geometry the dimer becomes slightly asymmetric, with the bridging S atoms attracted towards one of the Fe atoms.

To generate the active space for the DMRG calculations, we performed an unrestricted DFT BP86/SVP calcu-

lation for the high spin (Sz=5) state. The alpha occupied and unoccupied orbitals were then separately localized

(“split-localized”) [4] using the Pipek-Mezey algorithm [5]. From the localized orbitals, iron 3d, 4s, 4d and sulfur

3p orbitals were identified by visual inspection. Some of these orbitals are shown in Supplementary Figure 1.
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Supplementary Table 1: Coordinates (in Å) of the [Fe2S2(SCH3)4]2− and unrelaxed [Fe2S2(SCH3)4]3− model complexes.

x y z

1 Fe 5.22 1.05 -7.95

2 S 3.86 -0.28 -9.06

3 S 5.00 0.95 -5.66

4 S 4.77 3.18 -8.74

5 S 7.23 0.28 -8.38

6 Fe 5.88 -1.05 -9.49

7 S 6.10 -0.95 -11.79

8 S 6.33 -3.18 -8.71

9 C 6.00 4.34 -8.17

10 H 6.46 4.81 -9.01

11 H 5.53 5.08 -7.55

12 H 6.74 3.82 -7.60

13 C 3.33 1.31 -5.18

14 H 2.71 0.46 -5.37

15 H 3.30 1.54 -4.13

16 H 2.97 2.15 -5.73

17 C 5.10 -4.34 -9.28

18 H 5.56 -5.05 -9.93

19 H 4.67 -4.84 -8.44

20 H 4.34 -3.81 -9.81

21 C 7.77 -1.31 -12.27

22 H 7.84 -1.35 -13.34

23 H 8.42 -0.54 -11.90

24 H 8.06 -2.25 -11.86

B. DMRG calculations

1. Active spaces

Four types of active space DMRG calculations (labelled (1)-(4)) were performed on the [Fe2S2(SCH3)4]2−

complex to assess the effect of active space choice. For the [Fe2S2(SCH3)4]3− complex, we used only active

spaces (1) and (2), following the analysis in section I B 3.

All DMRG calculations were spin-adapted, using the BLOCK code as described in Ref. [6]. Thus all states

obtained are eigenfunctions of Sz and S2, and M refers to the number of spin-adapted renormalized states (the

tensor link dimension in the one-dimensional tensor network underlying the DMRG) which corresponds to effec-
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Supplementary Table 2: Coordinates (in Å) of the relaxed [Fe2S2(SCH3)4]3− model complex.

x y z

1 Fe 5.48 1.15 -8.03

2 S 4.05 -0.61 -8.75

3 S 5.47 1.25 -5.58

4 S 4.63 3.28 -8.77

5 S 7.49 0.42 -9.04

6 Fe 6.04 -1.22 -9.63

7 S 5.75 -1.50 -12.05

8 S 6.86 -3.41 -8.86

9 C 5.51 4.45 -7.51

10 H 6.49 4.83 -7.92

11 H 4.87 5.33 -7.25

12 H 5.72 3.84 -6.59

13 C 3.60 1.70 -5.54

14 H 3.01 0.80 -5.82

15 H 3.28 2.06 -4.52

16 H 3.42 2.48 -6.31

17 C 5.21 -4.22 -9.46

18 H 5.10 -4.01 -10.55

19 H 5.21 -5.32 -9.26

20 H 4.37 -3.72 -8.93

21 C 7.63 -1.85 -12.24

22 H 7.90 -2.06 -13.31

23 H 8.20 -0.96 -11.86

24 H 7.89 -2.72 -11.59

tively twice the number of non-spin-adapted renormalized states in a standard DMRG calculation [6]. The 4 types

of DMRG calculations were:

1. DMRG-CI on a (30e, 20o) active space, with a maximum of M=3500 renormalized states. The 20 orbitals

included Fe 3d, bridging S 3p, and one 3p orbital per terminal ligand S atom. This corresponds to a minimal

full valence active space. For rapid convergence of the DMRG energy, the orbitals were ordered as follows:

S4(3p), S3(3p), Fe1(3d), Fe1(3d), Fe1(3d), Fe1(3d), Fe1(3d), S2(3p1), S5(3p1), S2(3p0), S5(3p0), S2(3p6),

S5(3p6), Fe6(3d), Fe6(3d), Fe6(3d), Fe6(3d), Fe6(3d), S7(3p), S8(3p), where the atom labels correspond to

the labels in Supplementary Tables 1 and 2, and Figure ??, and the subscript on S 3p orbitals is the index of

the atom they are pointing towards, with the exception that the subscript 0 means that it is pointing in the
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up-down direction as shown in Figure 1.

2. DMRG-CI on a (30e, 32o) active space, with a maximum of M=4500 renormalized states. The 30 orbitals

include Fe 4d and Fe 4s orbitals in addition to the 20 described in active space (1). The Fe 4d and 4s orbitals

are expected to account for the principal dynamic and orbital relaxation contributions to the energy (i.e.

double-shell correlation [7]). The orbitals were ordered as for the 20 orbital active space, with additional Fe

4s and Fe 4d orbitals placed in that order immediately following the 3d orbitals of the same Fe atom.

3. DMRG-SCF on the (30e, 20o) active space (cf. active space(1)). The active space orbitals were optimized

using a self-consistent cycle. The DMRG calculations in the SCF optimization used M=2500 states. Sub-

sequently a final calculation with M=3500 states, using the fixed optimized orbitals, was performed. The

same ordering as in active space (1) was used.

4. DMRG-SCF on the (30e, 32o) active space (cf. active space (2)). Again, the DMRG calculations in the SCF

optimization were performed with M=2500. Subsequently a final calculation with M=4500 states, using

the fixed optimized orbitals, was performed. The same ordering as in active space (2) was used.

2. Energy convergence

The DMRG energies and discarded weights at different values of M can be used to extrapolate the energy to

the M = ∞ (FCI) result, which corresponds to zero discarded weight. This also provides error estimates for

the DMRG energy [8]. Extrapolations for state-specific DMRG-CI (active space 2) calculations are shown in

Supplementary Table 3 and Supplementary Figure 2. We find that the extrapolated (30e, 32o) singlet and triplet

relative energies are converged to within 0.1 mEh of the FCI energy.

For the [2Fe-2S] spectrum calculations, we computed the lowest 10 states in each spin-sector using a state-

averaged DMRG calculation. Although the energies are not as well converged as for the state-specific calculations,

the residual errors do not qualitatively affect the spectrum or the conclusions of our analysis.
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Supplementary Table 3: DMRG energy in Eh versus the discarded weight of the singlet and triplet states of the

[Fe2S2(SCH3)4]−2 cluster (active space (2), (30e, 32o)).

Singlet Triplet

M Discarded weight Energy Discarded weight Energy

1500 2.45×10−5 -5,104.138933 2.54×10−5 -5,104.135801

2500 1.14×10−5 -5,104.139978 1.23×10−5 -5,104.137651

3500 5.63×10−6 -5,104.140297 8.54×10−6 -5,104.138315

4500 3.60×10−6 -5,104.140426 6.03×10−6 -5,104.138616

∞ -5,104.140718 -5,104.139510

extrapolated energies

-0.140

-0.138
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Supplementary Figure 2: DMRG energy (E+5104.0) in Eh of the singlet and triplet states versus the discarded weight of the

[Fe2S2(SCH3)4]−2 cluster (active space (2), (30e, 32o). The black crosses and the blue dots are respectively the DMRG singlet

and triplet state energies and the corresponding lines are the best fit straight lines which are extrapolated to zero discarded

weight to obtain an estimated FCI energy.

3. Assessment of active space

From the singlet-triplet gap in the active spaces (1)-(4), shown in Supplementary Table 4, we can assess the effect

of the active space choice on the computed energy levels. We first observe that all 4 active spaces agree closely;

even the minimal valence active space yields a reasonable gap. This is because the principle exchange pathway

leading to the singlet-triplet gap is via the bridging S 3p ligand orbitals, which are included in the minimal active

space. The effect of double-shell correlation in the larger active spaces is to increase the gap by less than 1.0mEh,
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Supplementary Table 4: The singlet-triplet gap of the [Fe2S2(SCH3)4]2− complex obtained in active spaces (1)-(4).

Method Active Space Gap/mEh

DMRG-CI (30e, 20o) 1.5

DMRG-CI (30e, 32o) 2.1

DMRG-SCF (30e, 20o) 1.2

DMRG-SCF (30e, 32o) 2.0

while the effect of orbital optimization is very small (0.1mEh in the larger active space). We take active space (2)

(double shell correlation but no orbital optimization) as a practical compromise between accuracy and efficiency.

C. Local charge and spin

To identify the distribution of electrons, we have computed local populations on the atoms. For atom A, the

local population NA is

NA =
∑

i∈A

ni (1)

where ni is the number operator of localized orbital i on the A.

Further, since our states are eigenstates of S2, there is no spin-density in the singlet states. Thus, we have

computed local spins and spin-correlation functions to characterize the electronic structure. The spin-correlation

function between atoms A and B, 〈SA · SB〉, is defined as [9–11]

SA · SB =
∑

α

Sα
AS

α
B

Sα
A =

∑

i∈A

sαi (2)

where α ∈ {x, y, z}. The local total spin on atom A is defined as 〈SA · SA〉.

Supplementary Tables 6-9 show the relative energies, local populations, spins, and spin-correlation functions

for the [2Fe-2S] complexes. All the relative energies reported in the tables are calculated using active space (2).

For both geometries state averaged DMRG calculations are performed for the first 10 states with a largest M of

4500. In the case of unrelaxed geometries three sweeps with M=4500 were performed and then its value was
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Supplementary Table 5: The local population, total spin, and spin-correlation functions in the lowest spin states of the

[Fe2S2(SCH3)4]2− complex, using active space (2). Note 〈N2〉 = 〈N1〉 and 〈S2
2〉 = 〈S2

1〉. One orbitals of the Fe

Dimer S 〈N1〉 〈S2
1〉 〈S1 · S2〉

0 6.18 5.47 -4.92

1 6.17 5.47 -4.22

2 6.17 5.49 -2.84

3 6.17 5.51 -0.79

4 6.16 5.54 1.84

5 6.13 5.74 3.74

reduced in steps of 1000 down to M=1500 to generate reliable extrapolated energies. We find that even though the

extrapolation process improves the absolute energies, the energy differences reported in the tables are relatively

unchanged. We expect to see the same trend for the relaxed geometries and thus forego the expensive extrapolation

step to report the relative DMRG energies calculated with M=4500.

In Supplementary Table 6 and Supplementary Table 8 only the 3d, 4s and 4d orbitals of a Fe atom are included

in the summations in Equations 1 and 2 to calculate the local electron density and electron spin; whereas in

Supplementary Table 7 and Supplementary Table 9 the first 16 orbitals and second 16 orbitals (see orbital ordering

in previous section for the orbitals) are included in the summations for first and the second Fe atoms respectively.

The ideal FeII and FeIII populations are 6 and 5 respectively, while the ideal S=2 and S=5/2 total spins are 6 and

8.75 respectively. We see that the observed local populations and total spins are increased and reduced respectively

in the complexes due to the effect of quantum fluctuations, such as delocalization onto adjacent sulfur orbitals. We

also see from the spin-correlation functions that the spins progressively move from being anti-aligned to aligned

as the the total dimer spin is increased.

1. Asymmetry in the [Fe2S2(SCH3)4]3− complex

The relaxed geometry of the [Fe2S2(SCH3)4]3− complex is slightly asymmetric. The local populations and

spins in Supplementary Table 8 and 9 show the effect of this asymmetry on the electronic structure. As observed

in Supplementary Table 8 the asymmetry in the Fe atoms appears rather small, amounting to up to 0.05 electron
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units in the population, and 0.2 spin units in the local spin. But when we compare the local spins shown in

Supplementary Table 9, the asymmetry is much larger with differences between the local spins as large as 2.4 in

some cases. The difference in asymmetry between the two tables points to the fact that the asymmetry is largely

due to the difference in the S 3p orbitals.

D. Model Hamiltonian for the [Fe2S2(SCH3)4]3− dimer

The energy levels of the HDE model for the [Fe2S2(SCH3)4]3− mixed valence complex, as derived by Noodle-

man and Baerends, are given by

E(S) = 2JS1 · S2 ±B(S + 1/2) (3)

As demonstrated in the main text, the HDE energy levels do not fit the ab-initio DMRG spectrum well because of

the assumptions used to derive Eq. (3). Before deriving a more complete model that is compatible with the ab-initio

spectrum, we briefly recall how Eq. (3) is obtained from Anderson’s analysis of double exchange [12–14].

We first consider an oxidized complex with two ferric ions (with spins S1 = 5/2, S2 = 5/2) as a “base” system.

The extra electron in the reduced dimer is added to this base system, where it hops between a pair of local orbitals

on each of the ions. Denoting the creation (annihilation) operators for the local orbitals on the first (second) ions

by c
(†)
1 , c

(†)
2 respectively, and the spin of the electron as s1, s2 respectively, Anderson’s analysis[12] leads to a

Hamiltonian of the form

H = J(S1 · S2 + S1 · s2 + S2 · s1) +
∑

σ=↑,↓

β(c†1σc2σ + c†2σc1σ) (4)

where the Hamiltonian is to be solved in the Hilbert space where the hopping electron is always anti-aligned with

the spin of the ferric ion on which it is currently residing. The terms in H have the following meaning:

1. The first corresponds to Heisenberg exchange coupling between spins on the two ions (the “base” ferric

spins and the extra spin of the hopping electron).
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2. The second describes the effective hopping of the electron between the two ferric ions (the sum over σ is a

summation over electron spin).

The eigenvalues of the Anderson Hamiltonian may be determined analytically to be the HDE energy levels in Eq.

(3), where B = β/(2S + 1), S = S1 = S2.

As argued in the main text, the most commonly used version of the HDE model breaks down in the

[Fe2S2(SCH3)4]3− dimer because it assumes that there is a single pair of d orbitals on the ferric ions that par-

ticipates in the hopping process. This assumption is valid if the double exchange splitting B(S + 1/2) is much

smaller than the ligand-field splitting ∆. However, this is clearly not the case for Fe ions with tetrahedral coor-

dination which is typically associated with weak ligand fields. Instead, all 5 pairs of d orbitals participate in the

hopping at low energies.

We can extend Anderson’s double exchange Hamiltonian to multi-orbital double exchange. We label each of the

5 local d orbitals by index i. This gives

H =
∑

ij

Jijs1i · s2j +
∑

iσ

[

βi(c
†
1iσc2iσ + c†2iσc1iσ) + ∆i(c

†
1iσc1iσ + c†2iσc2iσ)

]

(5)

where we once again restrict ourselves to states where the hopping electron is strictly antiferromagnetically aligned

to the base spins (the base spins are all ferromagnetically aligned). The additional ∆i term gives the ligand field

splitting of the orbitals. The above form has a very large number of parameters from the general exchange couplings

Jij . However, in the limiting case where all spins are aligned on each Fe atom (e.g. as in the oxidized dimer),

then it is sufficient to consider an exchange term of the form
∑

i J
′
is1i · s2i since the interaction of any spin on a

given Fe atom, with any spin on the other Fe atom is the same, i.e. s11 · s21 = s1i · s21 for all i, and Ji =
∑

j Jij .

Keeping this form for the reduced dimer, we arrive at an Anderson Hamiltonian

H =
∑

i

Jis1i · s2i +
∑

iσ

[

βi(c
†
1iσc2iσ + c†2iσc1iσ) + ∆i(c

†
1iσc1iσ + c†2iσc2iσ)

]

(6)

which is the one used in the main text. Note that when solving for the eigenvalues of the Hamiltonian, we restrict

each ion to have at most one additional electron (i.e. the lowest oxidation state is ferrous).
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Supplementary Figure 3: Fit of first 10 states each with spins from S=1/2 to 5/2 using the multi-orbital Anderson model (see

Equation 6).

The above multi-orbital Hamiltonian does not admit an analytic solution. However, we can solve for its eigen-

values and eigenvectors numerically. We have written a code to do this which works with an arbitrary number of

base spins and hopping electrons and which we use also with the [4Fe-4S] Hamiltonian discussed later. The code

is made efficient by working in the basis where the hopping electron is strictly anti-ferromagnetically aligned to

the base spins. The hopping matrix elements in this basis can be calculated using Clebsch-Gordan coefficients,

similar to Anderson’s original work [12]. The code can be downloaded with this paper.
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A direct fit of the multi-orbital Hamiltonian to the DMRG ab-initio levels yields the parameters in Supplemen-

tary Table 10 and the levels in Supplementary Figure 3. As we can see the fit is very good; the r.m.s. error is

only about 60 cm−1. Further it is very robust: out of 12 random initial starting fits, all fits either converged to the

same physical solution shown (to within the standard deviation in the parameters), or attempted to find unphysical

solutions with negative parameters. Overall, this demonstrates that the multi-orbital Hamiltonian indeed captures

the essential low-energy physics of the [Fe2S2(SCH3)4]3− complex. Note that the plots in Fig. 3 are for dimer

spins S=1/2, 3/2, 5/2 only. This is because for the higher dimer spins, some of the excited states appear to have

acquire d-d transition character, i.e. the Fe ions are not truly high spin. This can be seen, for example in states 8

and 10 for S=7/2 in Supplementary Table 6. Such states probably exist in the weak-shoulder region below 10000

cm−1 in the low-temperature absorption spectrum of ferredoxins [15], and cannot be described with the model

Hamiltonians we are using.

As emphasized in the text, the multi-orbital Hamiltonian is not equivalent to the simple multi-pair generalization

of the HDE model. This would correspond to extending the HDE energy levels in Eq. (3) to 5 separate pairs of

levels arising from each of the pair of d orbitals,

Ei(S) = ∆i + 2JiS1 · S2 ±Bi(Si + 1/2) (7)

where the subscript i denotes the pair involved in the hopping. This multi-pair HDE model in fact has the same

number of parameters as the multi-orbital Hamiltonian (6) itself. However, as seen in the Supplementary Figure

?? in the main text, the naive form does not fit the ab-initio DMRG results. Multi-orbital double exchange cannot

generally be viewed simply as the sum of individual orbital double-exchange processes. In particular, this means

that to be precise we should not characterize double exchange by an effective B parameter as in the HDE model,

but rather by hopping integrals, β.

Further support for the multi-orbital nature of the double exchange is obtained from density difference plots,

shown in Supplementary Figure 5. These plots are obtained as the difference density between different singlet

states. If a single well-defined d orbital pair were to give rise to a pair of states, then we would expect the density

difference to resemble a density associated with a particular d pair. However, we find that, aside from the lowest two
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Supplementary Figure 4: The computed DMRG energy levels at the relaxed [Fe2S2(SCH3)4]3− dimer geometry.

pair of states (which appear to have some eg parentage), the remaining density differences involve contributions

from all sets of d orbital densities.

We now briefly discuss the effect of geometry relaxation on the [Fe2S2(SCH3)4]3− dimer energy levels. At

the relaxed geometry, some localization of the charge occurs. The computed DMRG energy levels at the relaxed

geometry are shown in Fig. 4. We find that our main observations are unchanged: there is little separation

between the lowest two and higher energy levels, and the gap between the lowest two levels does not monotonically
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ρ1 − ρ2 ρ3 − ρ4

ρ5 − ρ6 ρ5 − ρ7 ρ5 − ρ8

ρ5 − ρ 9 ρ6 − ρ7ρ5 − ρ10

ρ6 − ρ8 ρ6 − ρ 9 ρ6 − ρ10

ρ7 − ρ8 ρ7 − ρ 9 ρ7 − ρ10

ρ8 − ρ 9 ρ8 − ρ10 ρ 9 − ρ10

Supplementary Figure 5: Density differences between sets of doublet states in the [Fe2S2(SCH3)4]3− complex. We notice that

besides the lowest two pairs of states, the density difference involves contributions from many d orbitals.

increase as required by the HDE model. We have not computed further relaxation effects from solvent and vibronic

coupling, but it is clear from the above that our conclusions about the multi-orbital nature of double exchange and

the need for the multi-orbital Anderson model hold quite generally.
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S1(3p5) S4(3p5) Fe5(3d)

Fe5(3d) S10(3p5) S3(3p5)

Supplementary Figure 6: Orbitals in the active space of the [Fe4S4(SCH3)4]2− cluster.

II. 4FE-4S CLUSTER

A. Geometry and orbitals

For the [4Fe-4S] cluster, we computed an optimized BS-DFT geometry using the BP86 functional and a triple

zeta valence basis (TZV) basis set [16]. The optimized geometry is shown in Supplementary Table 11.

The active space orbitals are chosen in the same way as in the case of the [2Fe-2S] dimer. An unrestricted DFT

BP86/SVP calculation was performed at the optimized geometry for the neutral [4Fe-4S] (all ferric) cluster in the

high spin (Sz=10) state. The occupied and unoccupied alpha orbitals were then separately localized using the

Pipek-Mezey localization technique. The 20 Fe 3d orbitals, 12 bridging S 3p orbitals, as well as 4 terminal ligand

S 3p orbitals that point towards the Fe atoms, were identified by visual inspection. The occupancy of these orbitals

in the [Fe4S4(SCH3)4]2− cluster gives an active space of (54e, 36o). Some representative orbitals in the active

space are shown in Supplementary Figure 6.
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B. DMRG calculations

1. Active spaces

The DMRG-CI calculation with an active space of (54e, 36o) is performed with a maximum of M=7500 spin-

adapted renormalized states. The 36 orbitals include 20 Fe 3d orbitals, 12 bridging S 3p orbitals, as well as 4

terminal ligand S 3p orbitals that point towards the Fe atoms. For rapid convergence of DMRG energy these

orbitals were were ordered as follows: S4(3p5), S10(3p5), Fe5(3d), Fe5(3d), Fe5(3d), Fe5(3d), Fe5(3d), S3(3p5),

S1(3p5), S1(3p6), S4(3p6), Fe6(3d), Fe6(3d), Fe6(3d), Fe6(3d), Fe6(3d), S11(3p6), S2(3p6), S4(3p7), S2(3p7),

Fe7(3d), Fe7(3d), Fe7(3d), Fe7(3d), Fe7(3d), S3(3p7), S9(3p7), S3(3p8), S1(3p8), Fe8(3d), Fe8(3d), Fe8(3d),

Fe8(3d), Fe8(3d), S2(3p8), S12(3p8), where the atom labels correspond to the labels in Supplementary Tables 11,

and Supplementary Figure ??, and the subscript on S 3p orbitals is the index of the atom they are pointing towards.

2. Energy convergence

As mentioned in the main text of the article (see panel A of Supplementary Figure ??), in a perfect cubane

cluster there are three equivalent pairings of the spins of the four Fe atoms to form a singlet ground state. In

practice, structural distortion lifts this degeneracy, but the electronic distortion energy is quite small (associated

with an energy scale of less than 8mEh as seen in 7). This small energy difference can make robust convergence

of the DMRG wave function to the true ground state difficult because the wavefunction optimization can get stuck

early on in the “wrong” pairing. To expedite the convergence of the wave function towards the correct ground

state the Hamiltonian is artificially perturbed so that atoms pairs (Fe5, Fe6) and (Fe7, Fe8) gain a strong tendency

to ferromagnetically align. This is done by artificially increasing the exchange integrals between the 3d orbitals

of the paired up Fe atoms by 0.01 Eh until the number of renormalized states M=1600 is reached. Subsequently

this perturbation in the Hamiltonian is decreased to zero over the next few sweeps, and the rest of the DMRG

calculation (up to M=7500) is performed on the unperturbed Hamiltonian.

In fact, the above method of perturbing the Hamiltonian can be used to “converge” the DMRG wavefunction
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towards any of the three pairings shown in Supplementary Figure ??. The ground-state pairing is identified as

the one with the lowest energy. The other pairings do not necessarily approximate exact eigenstates of the full

Hamiltonian, but rather, are local minima in the parameter space of DMRG. They are a form of “broken-symmetry”

DMRG solution, and can be thought of as the best DMRG states that can be obtained with a maximum M=7500,

when the spin couplings of the various Fe centers is constrained to be non-optimal. The energy differences between

these different solutions can be used to estimate the difference in the exchange coupling coefficients of the HDE

model hamiltonian (see Section II D).

The DMRG energies and discarded weights at different values of M are used to extrapolate to zero discarded

weight, which also gives us the estimated energy errors. This is shown in Supplementary Figure 7. Our estimated

error in the total energies is less than 1 mEh.

C. Local charge and spin

Local populations and spin correlation functions between different Fe atoms 1-4 can be calculated using the

equations 1 and 2 and are given in Supplementary Table 12.

D. Model Hamiltonian for pairing and unequal exchange in the [4Fe-4S] cluster

1. Single orbital Anderson model

The direct extrapolation of the simple (single orbital per Fe) Anderson model described in Eq. (4) to the case of

[4Fe-4S] cluster takes the form

H =
∑

ij

Jij(Si · Sj + Si · sj + Sj · si) +
∑

σ=↑,↓

βij(c
†
iσcjσ + c†jσciσ) (8)

with 6 Heisenberg coupling coefficients Jij and 6 hopping integrals βij . We assume that there are two hopping

electrons, and that the two electrons cannot be on the same Fe atom due to on-site repulsion.

We solve the above Hamiltonian numerically in the space where the spins si and Si = 5/2 are anti-

ferromagnetically aligned. The nature of the states changes as the ratio of the exchange coupling coefficients

changes. In Supplementary Figure 8 we take B = 2J ′ and J12, J34 = J ′, J13, J14, J23, J24 = J . For J/J ′ > 1.2,
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Supplementary Figure 7: DMRG energy (E+8471.0) in Eh of the ground-state singlet (Singlet-I) and triplet (Triplet-I) states

versus the discarded weight of the [Fe4S4(SCH3)4]−2 cluster. In addition, the energies of Singlet-II and Singlet-III correspond

to the states where the spin pairing is constrained be non-optimal (see text). The best fit straight lines are extrapolated to zero

discarded weight, with the shown error bars, to obtain an estimated FCI energy.

we recover a single pairing picture for the S12=9/2 dimer states that is assumed in the generalized HDE model of

Noodleman et al. [17–21].

The difference in the Jij parameters can be estimated from energy differences between the ground state singlet

and triplet states and the difference between the ground state singlet state (Singlet-I) and artificially paired singlet

(Singlet-II). The energy difference between the singlet and the triplet state is given by

E(S)− E(T ) = J − 0.08|B| (9)
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Supplementary Figure 8: Simplified Anderson model energy levels for the [4Fe-4S] cluster, as a function of anisotropic ex-

change J ′ 6= J . As the anisotropy increases, we recover the fixed-pairing picture assumed by the HDE model.

and the energy difference between Singlet-I and Singlet-II states is given by

E(SI)− E(SII) = 22.5(J − J ′) (10)

In Eq. 9 we assume B = J so that the singlet-triplet gap is 0.92J . In Eq. 10 we have assumed that difference in

the value of B for different couplings is relatively small. Using the converged DMRG energies we obtain J = 382

cm−1 and J − J ′ = 84 cm−1, from which we conclude that J/J ′ ≈ 1.28 and the [4Fe-4S] low-lying states with

high effective dimer spin can be described by the single pairing picture, although they appear to lie close to the

border of validity of that description.
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2. Multi-orbital Anderson model

To check that the above analysis holds in the more complex case of multi-orbital double exchange, we have also

analyzed some multi-orbital (per Fe) Anderson models for the [4Fe-4S] cluster. These take the form

H =
∑

iAB

JiABsiA · siB +
∑

iABσ

βiAB(c
†
iAσciBσ + c†iBσciAσ) +

∑

iAσ

∆iAc
†
iAσciAσ (11)

where A and B now range over the 4 Fe atoms. The index i ranges over the number of d orbitals on each Fe atom.

This would be 5 orbitals in the real cubans, but solving the Hamiltonian for all its levels would be prohibitively

expensive. We have therefore considered simpler versions (which illustrate the appropriate trends) where each

model Fe atom has respectively only 1 or 2 orbitals. Note that in the 1 orbital case, the maximum spin on each Fe

is then only 1/2, and the maximum dimer spin is also 1/2, while in the 2 orbital case, the maximum spin on each Fe

is 1 and the maximum dimer spin is 3/2. (The 1 orbital model is related to the Hubbard model on a tetrahedron as

discussed in Refs. [22]). In Supplementary Figures 9 and 10 we plot the effective dimer spins of the energy levels

as a function of the exchange couping ratio (inequivalent J’s), for βiAB = 2J ′ and ∆iA = 0 (for all i, A). We see

the same general trends as in the simple Anderson model above. Note that Jc shifts to lower values as the number

of orbitals on each Fe increases.



21

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2  4  6  8  10  12

S
1
2

J / J’

4 states

Supplementary Figure 9: Effective dimer spins of the energy levels as a function of exchange coupling ratio for the [4Fe-

4S] multi-orbital Anderson model with 1 orbital per model Fe atom. Note that since the “Fe” atom has only one orbital, the

maximum spin per atom is 1/2, and the maximum dimer spin is 1/2.

-0.5

 0

 0.5

 1

 1.5

 2

 0  2  4  6  8  10  12

S
1
2

J / J’

16 states

8 states

In
s
u

ffi
c
ie

n
t

A
n

is
o

tro
p

y
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Supplementary Table 6: Unrelaxed geometry [Fe2S2(SCH3)4]3− energy (cm−1), local population, total spin and spin-

correlation functions for the lowest ten levels in each dimer total spin state, using active space (2).

State 1 2 3 4 5 6 7 8 9 10

S=1/2

E 0 325 1132 2642 4264 4989 4905 5313 6448 7049

〈N1〉 6.23 6.25 6.24 6.23 6.22 6.21 6.22 6.21 6.21 6.21

〈N2〉 6.24 6.23 6.24 6.23 6.22 6.22 6.21 6.21 6.21 6.21

〈S1〉 5.39 5.31 5.34 5.35 5.39 5.40 5.36 5.43 5.40 5.42

〈S2〉 5.32 5.36 5.34 5.35 5.36 5.37 5.43 5.42 5.41 5.42

〈S1 · S2〉 -4.74 -4.77 -4.81 -4.62 -4.84 -4.72 -4.83 -4.89 -4.78 -4.77

S=3/2

E 136 527 1710 4264 4451 5030 5131 6073 7870 8581

〈N1〉 6.22 6.24 6.24 6.22 6.21 6.21 6.21 6.22 6.21 6.20

〈N2〉 6.23 6.24 6.23 6.22 6.22 6.21 6.21 6.21 6.21 6.20

〈S1〉 5.42 5.35 5.34 5.37 5.40 5.42 5.43 5.38 5.42 5.43

〈S2〉 5.39 5.36 5.36 5.37 5.40 5.42 5.43 5.41 5.42 5.43

〈S1 · S2〉 -3.66 -3.77 -3.64 -3.38 -3.68 -3.79 -3.78 -3.47 -3.61 -3.59

S=5/2

E 336 643 2871 4668 5300 5678 6248 7580 9459 10260

〈N1〉 6.21 6.23 6.23 6.20 6.21 6.20 6.22 6.21 6.20 6.20

〈N2〉 6.22 6.24 6.23 6.21 6.21 6.21 6.22 6.20 6.20 6.20

〈S1〉 5.50 5.38 5.37 5.45 5.44 5.46 5.38 5.41 5.44 5.43

〈S2〉 5.45 5.37 5.38 5.43 5.44 5.44 5.39 5.45 5.45 5.44

〈S1 · S2〉 -1.89 -1.96 -1.77 -1.81 -1.91 -1.95 -1.33 -1.51 -1.68 -1.67

S=7/2

E 669 1330 4675 5441 6358 7049 8989 9589 9913 10115

〈N1〉 6.19 6.22 6.22 6.19 6.19 6.20 6.20 6.25 6.22 6.28

〈N2〉 6.20 6.23 6.22 6.19 6.21 6.19 6.21 6.27 6.24 6.30

〈S1〉 5.56 5.43 5.43 5.50 5.51 5.50 5.45 5.02 5.29 4.76

〈S2〉 5.55 5.42 5.44 5.51 5.46 5.54 5.40 5.00 5.25 4.76

〈S1 · S2〉 0.55 0.60 0.78 0.78 0.67 0.61 1.38 2.16 1.72 2.49

S=9/2

E 1071 2943 7357 7403 8496 9209 13263 13699 14803 15073

〈N1〉 6.18 6.21 6.16 6.20 6.19 6.17 6.17 6.17 6.17 6.22

〈N2〉 6.19 6.21 6.16 6.20 6.18 6.17 6.17 6.17 6.17 6.22

〈S1〉 5.63 5.57 5.68 5.59 5.60 5.64 5.65 5.65 5.64 5.53

〈S2〉 5.62 5.56 5.67 5.58 5.62 5.65 5.66 5.65 5.64 5.53

〈S1 · S2〉 3.62 3.58 3.67 3.60 3.62 3.65 3.66 3.65 3.65 3.56
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Supplementary Table 7: Unrelaxed geometry [Fe2S2(SCH3)4]3− energy (cm−1), local population, total spin and spin-

correlation functions for the lowest ten levels in each dimer total spin state, using active space (2). The orbitals taken to

State 1 2 3 4 5 6 7 8 9 10

S=1/2

E 0 325 1132 2642 4264 4989 4905 5313 6448 7049

〈N1〉 15.48 15.50 15.49 15.49 15.49 15.48 15.52 15.49 15.50 15.49

〈N2〉 15.52 15.50 15.51 15.51 15.51 15.52 15.48 15.51 15.50 15.51

〈S1〉 5.87 5.63 5.77 5.64 5.84 5.78 5.62 5.84 5.74 5.76

〈S2〉 5.61 5.84 5.76 5.68 5.63 5.59 5.95 5.83 5.79 5.78

〈S1 · S2〉 -5.37 -5.36 -5.39 -5.28 -5.36 -5.31 -5.41 -5.46 -5.39 -5.40

S=3/2

E 136 527 1710 4264 4451 5030 5131 6073 7870 8581

〈N1〉 15.49 15.50 15.50 15.49 15.50 15.49 15.49 15.50 15.50 15.49

〈N2〉 15.51 15.50 15.50 15.51 15.50 15.51 15.51 15.50 15.50 15.51

〈S1〉 6.00 5.95 5.85 5.76 5.93 6.00 5.99 5.74 5.89 5.90

〈S2〉 5.89 5.98 5.92 5.78 5.86 5.95 5.98 5.84 5.91 5.88

〈S1 · S2〉 -4.07 -4.09 -4.01 -3.90 -4.02 -4.10 -4.11 -3.91 -4.03 -4.01

S=5/2

E 336 643 2871 4668 5300 5678 6248 7580 9459 10260

〈N1〉 15.49 15.49 15.50 15.50 15.49 15.49 15.49 15.50 15.50 15.49

〈N2〉 15.51 15.51 15.50 15.50 15.51 15.51 15.51 15.50 15.50 15.51

〈S1〉 6.35 6.27 6.13 6.24 6.24 6.32 5.91 5.95 6.11 6.12

〈S2〉 6.22 6.25 6.17 6.18 6.26 6.16 5.94 6.10 6.16 6.13

〈S1 · S2〉 -1.91 -1.89 -1.78 -1.84 -1.87 -1.87 -1.55 -1.65 -1.76 -1.75

S=7/2

E 669 1330 4675 5441 6358 7049 8989 9589 9913 10115

〈N1〉 15.49 15.49 15.50 15.50 15.48 15.50 15.48 15.46 15.46 15.54

〈N2〉 15.51 15.51 15.50 15.50 15.52 15.50 15.52 15.54 15.54 15.46

〈S1〉 6.76 6.67 6.55 6.56 6.70 6.62 6.31 5.59 5.98 5.46

〈S2〉 6.78 6.69 6.61 6.67 6.62 6.76 6.19 5.65 5.97 5.21

〈S1 · S2〉 1.10 1.19 1.30 1.26 1.22 1.19 1.63 2.26 1.90 2.54

S=9/2

E 1071 2943 7357 7403 8496 9209 13263 13699 14803 15073

〈N1〉 15.49 15.49 15.50 15.49 15.50 15.49 15.48 15.51 15.49 15.50

〈N2〉 15.51 15.51 15.50 15.51 15.50 15.51 15.52 15.49 15.51 15.50

〈S1〉 7.44 7.43 7.41 7.45 7.42 7.44 7.46 7.39 7.44 7.42

〈S2〉 7.40 7.40 7.40 7.38 7.41 7.39 7.37 7.44 7.38 7.40

〈S1 · S2〉 4.95 4.96 4.97 4.96 4.96 4.96 4.96 4.96 4.96 4.96
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Supplementary Table 8: Relaxed geometry [Fe2S2(SCH3)4]3− energy (cm−1), local population, total spin and spin-correlation

functions for the lowest ten levels in each dimer total spin state, using active space (2).

State 1 2 3 4 5 6 7 8 9 10

S=1/2

E 0 1218 2079 3790 4070 4314 4885 5731 6975 7644

〈N1〉 6.26 6.24 6.16 6.18 6.21 6.21 6.20 6.17 6.17 6.17

〈N2〉 6.14 6.16 6.28 6.25 6.16 6.16 6.16 6.23 6.22 6.22

〈S1〉 5.32 5.37 5.67 5.63 5.45 5.42 5.48 5.62 5.65 5.64

〈S2〉 5.73 5.67 5.18 5.26 5.68 5.67 5.65 5.33 5.34 5.31

〈S1 · S2〉 -4.96 -5.01 -4.85 -4.78 -5.03 -5.04 -5.02 -4.86 -4.90 -4.89

S=3/2

E 266 1211 2374 4197 4493 4694 4925 6460 7693 8342

〈N1〉 6.24 6.23 6.17 6.20 6.19 6.18 6.19 6.17 6.17 6.24

〈N2〉 6.15 6.17 6.26 6.18 6.19 6.21 6.16 6.22 6.21 6.28

〈S1〉 5.37 5.42 5.64 5.50 5.53 5.57 5.49 5.61 5.63 5.37

〈S2〉 5.72 5.63 5.28 5.61 5.51 5.44 5.67 5.39 5.39 4.93

〈S1 · S2〉 -3.86 -3.97 -3.75 -3.90 -3.74 -3.67 -3.89 -3.61 -3.72 -2.71

S=5/2

E 623 1323 2848 4619 4913 5200 5943 7536 8374 8715

〈N1〉 6.23 6.22 6.18 6.18 6.18 6.19 6.18 6.17 6.24 6.18

〈N2〉 6.15 6.18 6.22 6.20 6.17 6.16 6.23 6.21 6.28 6.21

〈S1〉 5.44 5.47 5.59 5.57 5.55 5.52 5.60 5.62 5.34 5.61

〈S2〉 5.70 5.62 5.44 5.52 5.61 5.67 5.38 5.43 4.98 5.41

〈S1 · S2〉 -2.03 -2.16 -1.96 -1.98 -2.04 -2.03 -1.43 -1.59 -0.24 -1.76

S=7/2

E 786 1405 3375 5173 5368 5696 7528 8254 8863 9149

〈N1〉 6.21 6.21 6.20 6.17 6.17 6.18 6.17 6.24 6.17 6.24

〈N2〉 6.15 6.18 6.18 6.17 6.21 6.16 6.22 6.27 6.20 6.27

〈S1〉 5.52 5.51 5.55 5.60 5.63 5.57 5.61 5.33 5.62 5.33

〈S2〉 5.70 5.62 5.61 5.62 5.52 5.67 5.42 5.03 5.47 5.06

〈S1 · S2〉 0.50 0.39 0.53 0.60 0.60 0.52 1.33 3.07 1.18 2.98

S=9/2

E 984 1839 4254 5941 6458 6873 10136 11196 11377 12487

〈N1〉 6.19 6.20 6.20 6.16 6.17 6.15 6.15 6.15 6.18 6.16

〈N2〉 6.16 6.18 6.15 6.14 6.17 6.21 6.20 6.19 6.21 6.19

〈S1〉 5.60 5.57 5.56 5.68 5.66 5.71 5.70 5.70 5.64 5.69

〈S2〉 5.72 5.66 5.73 5.74 5.67 5.55 5.58 5.60 5.56 5.59

〈S1 · S2〉 3.66 3.63 3.66 3.71 3.68 3.65 3.66 3.67 3.63 3.66



26

Supplementary Table 9: Relaxed geometry [Fe2S2(SCH3)4]3− energy (cm−1), local population, total spin and spin-correlation

functions for the lowest ten levels in each dimer total spin state, using active space (2).

State 1 2 3 4 5 6 7 8 9 10

S=1/2

E 0 1218 2079 3790 4070 4314 4885 5731 6975 7644

〈N1〉 15.62 15.59 15.37 15.39 15.61 15.61 15.58 15.41 15.37 15.38

〈N2〉 15.38 15.41 15.63 15.61 15.39 15.39 15.42 15.59 15.63 15.62

〈S1〉 5.05 5.20 7.31 7.11 5.24 5.26 5.30 6.89 7.28 7.23

〈S2〉 7.42 7.25 5.04 5.13 7.30 7.27 7.02 5.31 5.11 5.02

〈S1 · S2〉 -5.86 -5.85 -5.80 -5.74 -5.89 -5.89 -5.79 -5.72 -5.82 -5.75

S=3/2

E 266 1211 2374 4197 4493 4694 4925 6460 7693 8342

〈N1〉 15.61 15.56 15.40 15.57 15.53 15.46 15.58 15.43 15.40 15.30

〈N2〉 15.39 15.44 15.60 15.43 15.47 15.54 15.42 15.57 15.60 15.70

〈S1〉 5.38 5.70 7.11 5.79 5.95 6.57 5.55 6.80 7.09 6.21

〈S2〉 7.38 7.10 5.51 6.96 6.43 6.05 7.07 5.53 5.47 5.11

〈S1 · S2〉 -4.51 -4.53 -4.43 -4.50 -4.32 -4.43 -4.44 -4.29 -4.41 -3.78

S=5/2

E 623 1323 2848 4619 4913 5200 5943 7536 8374 8715

〈N1〉 15.60 15.55 15.45 15.51 15.54 15.59 15.42 15.43 15.29 15.41

〈N2〉 15.40 15.45 15.55 15.49 15.46 15.41 15.58 15.57 15.71 15.59

〈S1〉 5.90 6.19 6.83 6.45 6.15 5.85 6.72 6.88 5.55 7.01

〈S2〉 7.33 7.10 6.25 6.65 6.91 7.19 5.79 5.71 5.27 5.83

〈S1 · S2〉 -2.24 -2.27 -2.16 -2.18 -2.16 -2.15 -1.88 -1.92 -1.03 -2.05

S=7/2

E 786 1405 3375 5173 5368 5696 7528 8254 8863 9149

〈N1〉 15.58 15.54 15.51 15.53 15.48 15.57 15.43 15.28 15.42 15.39

〈N2〉 15.42 15.46 15.49 15.47 15.52 15.43 15.57 15.72 15.58 15.61

〈S1〉 6.53 6.69 6.76 6.68 6.92 6.50 6.66 5.01 7.10 5.29

〈S2〉 7.37 7.23 7.00 7.06 6.69 7.26 6.17 5.46 5.90 5.23

〈S1 · S2〉 0.92 0.92 0.99 1.00 1.07 1.00 1.46 2.64 1.38 2.61

S=9/2

E 984 1839 4254 5941 6458 6873 10136 11196 11377 12487

〈N1〉 15.56 15.54 15.57 15.55 15.54 15.42 15.48 15.29 15.37 15.44

〈N2〉 15.44 15.46 15.43 15.45 15.46 15.58 15.52 15.71 15.63 15.56

〈S1〉 7.23 7.28 7.20 7.25 7.27 7.60 7.45 7.95 7.74 7.56

〈S2〉 7.55 7.50 7.57 7.53 7.51 7.18 7.33 6.83 7.03 7.21

〈S1 · S2〉 4.98 4.99 4.99 4.98 4.99 4.98 4.99 4.98 4.99 4.99
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Supplementary Table 10: The best-fit parameters (cm−1) of the extended Anderson’s double exchange Hamiltonian given in

Equation 6 used to fit the low-lying energy levels of the [Fe2S2(SCH3)4]3− dimer. Note that Ji and βi do not correspond to the

exchange and double exchange parameters in the standard HDE model and cannot be directly compared. Standard deviations

(as estimated from the covariance matrix of the fit) given in brackets.

Ji βi ∆i

1 2656 (±513) 3512 (±280)

2 2743 (±682) 9679 (±294) 1536 (±271)

3 2151 (±518) 4653 (±296) 4433 (±196)

4 1756 (±675) 8472 (±294) 6167 (±268)

5 395 (±695) 6562 (±296) 6167 (±284)

Supplementary Table 11: Coordinates (in Å) of the [Fe4S4(SCH3)4]2− model complex.

x y z

1 S 0.04 -1.78 -1.29

2 S -0.04 1.78 -1.29

3 S 1.78 -0.04 1.29

4 S -1.78 0.04 1.29

5 Fe 0.05 -1.37 1.01

6 Fe -1.38 0.05 -1.00

7 Fe -0.05 1.38 1.00

8 Fe 1.37 -0.05 -1.01

9 S 0.24 3.30 2.14

10 S -0.24 -3.29 2.14

11 S -3.29 -0.24 -2.14

12 S 3.29 0.24 -2.14

13 C -3.80 -1.84 -1.38

14 H -3.91 -1.71 -0.29

15 H -4.76 -2.17 -1.81

16 H -3.03 -2.60 -1.56

17 C 3.80 1.83 -1.38

18 H 3.91 1.71 -0.29

19 H 4.76 2.16 -1.81

20 H 3.03 2.59 -1.55

21 C -1.83 -3.80 1.38

22 H -2.16 -4.76 1.81

23 H -2.59 -3.03 1.55

24 H -1.70 -3.91 0.29

25 C 1.84 3.80 1.38

26 H 2.17 4.76 1.81

27 H 2.60 3.03 1.56

28 H 1.71 3.91 0.29
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Supplementary Table 12: Local population and spin correlation function for the four Fe atoms in the calculated DMRG states

of the [Fe4S4(SCH3)4]−2 cluster.

Fe atom 〈Ni〉
〈Si · Sj〉

Fe1 Fe2 Fe3 Fe4

Singlet-I

Fe1 6.27 5.27 3.24 -4.05 -4.05

Fe2 6.27 3.24 5.26 -4.05 -4.04

Fe3 6.27 -4.05 -4.05 5.27 3.24

Fe4 6.27 -4.05 -4.04 3.24 5.27

Singlet-II

Fe1 6.25 5.32 -4.03 3.30 -4.18

Fe2 6.26 -4.03 5.32 -4.18 3.30

Fe3 6.26 3.30 -4.18 5.32 -4.03

Fe4 6.25 -4.18 3.30 -4.03 5.32

Singlet-III

Fe1 6.25 5.32 -4.06 -4.18 3.31

Fe2 6.25 -4.06 5.33 3.32 -4.17

Fe3 6.25 -4.18 3.32 5.33 -4.06

Fe4 6.25 3.31 -4.17 -4.06 5.32

Triplet

Fe1 6.26 5.29 3.22 -3.77 -3.77

Fe2 6.26 3.22 5.27 -3.95 -3.95

Fe3 6.26 -3.77 -3.95 5.28 3.26

Fe4 6.26 -3.77 -3.95 3.26 5.28




