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Abstract Prepotential formulation of gauge theories on

honeycomb lattice yields local loop states, which are exact

and orthonormal being free from any spurious loop degrees

of freedom. We illustrate that, the dynamics of orthonormal

loop states are exactly same in both the square and honey-

comb lattices. We further extend this construction to arbi-

trary dimensions. Utilizing this result, we make a mean field

ansatz for loop configurations for SU(2) lattice gauge theory

in 2 + 1 dimension contributing to the low energy sector of

the spectrum. Using variational analysis, we show that, this

type of mean loop configurations has two distinct phases in

the strong and weak coupling regime and shows a first order

transition at g = 1. We also propose a reduced Hamilto-

nian to describe the dynamics of the theory within the mean

field ansatz. We further work with the mean loop configura-

tion obtained towards the weak coupling limit and analyti-

cally calculate the spectrum of the reduced Hamiltonian. The

spectrum matches with that of the existing literature in this

regime, establishing our ansatz to be a valid alternate one

which is far more easier to handle for computation.

1 Introduction

Understanding the low energy behaviour of gauge theories is

one of the most important problem of particle physics. For-

mulation of gauge theories on discrete lattice [1] has shown

many major investigations in this direction over past few

decades. Using Monte Carlo method, many important phys-

ical quantities can be computed numerically [2,3]. However,

understanding the vacuum as well as excited states in this

sector is still open for investigation. Hence, there should

always be attempts to make analytic approximations. This

present work proposes such an approximation for SU(2) lat-

tice gauge theories in 2+1 dimensions, which can as well be

generalized to higher dimensions and higher gauge groups.

a e-mail: tpir@iacs.res.in

We work within the Hamiltonian formulation of lattice

gauge theory [4] and use prepotential [5–9] framework,

which gives an useful reformulation in terms of gauge invari-

ant loops. Loop formulation of gauge theories is always

desired by theorists [10–18] as one can get rid of spurious

gauge degrees of freedom. However, working with loop does

not guarantee to work with only physical degrees of free-

dom as the loop space itself is highly over-complete [19–

21]. Working in terms of gauge invariant loops in the weak

coupling regime is again particularly difficult, as all possible

loops of all shapes and sizes do contribute to the low energy

spectrum of weakly coupled gauge field theories. In this sce-

nario, the prepotential formulation [5–9] gives a great advan-

tage over the standard Wilson loop approach as it is possible

to extract only physically relevant loop degrees of freedom

and study the dynamics of those.

In prepotenntial formulation of lattice gauge theory [5–

9], one constructs gauge invariant loop variables, locally at

each site. This particular feature is extremely useful for ana-

lytic calculations [22–27] and also for the recent progress

in quantum simulating lattice gauge theory [28,29]. How-

ever, the original motivation for formulating prepotential

approach was to make better understanding at the weak cou-

pling regime of the theory. Towards this direction, a very

important step is to construct the exact and orthonormal

loop Hilbert space, containing only physical degrees of free-

dom. In this work, (also in another parallel recent work by

Anishetty et al. [27]), we have proposed a general technique

of constructing explicit orthonormal loop states for SU(2)

lattice gauge theory in any arbitrary dimension. This is done

even without going into the complicated Clebsch-Gordon

coeffiecients specific to SU(2) and hence is generalizable to

SU(3) in a straightforward way.

The prepotential formulation on square lattice reveals that

the physically relevant loops are the non-intersecting ones

[22,23]. We propose that, if one virtually splits each site of

the lattice into two virtual ones following Fig. 8, the resulting
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lattice is an hexagonal one in two dimension. It has also been

demonstrated that the dynamics of orthogonal loop states

on square lattice is exactly equivalent to that of all possi-

ble loops on hexagonal one. The prepotential formulation

on hexagonal lattice keeps all the important features of this

particular formulation intact, such as local loop description

by constructing intertwiners and Abelian weaving of those

intertwiners leads to standard Wilson loops of the theory [5–

9]. Moreover, the extra advantage on hexagonal lattice is,

that the local loop space constructed at each site is exact and

orthonormal. This is a tremendous advantage for the purpose

of any computation be it analytic or numerical as one needs

to work within a really small Hilbert space without bother-

ing about complicated Mandelstam constraint. In [27], it has

also been shown that there exists, more than one way to split

each point, and the resulting lattices turn out to be of different

types (i.e hexagon,octagon, square etc) as well as of different

translational symmetries. It has also been argued in [27] that,

dynamics on these virtual lattices are exactly equivalent to

that of the original lattice by gauge fixing on the virtual links

connecting splitted lattice sites. One can choose any splitting

scheme as per the calculational convenience. For the purpose

of present work we fix the splitting scheme given in Fig. 8

at each site, and get a hexagonal lattice to work with. We

establish its equivalence with the original lattice by comput-

ing the dynamics explicitly for random loop configurations

generated on both square and hexagonal lattice.

Within this framework, we propose a mean field config-

uration describing the low energy spectrum of the theory.

It is true, that the mean field analysis cannot take us to the

continuum limit, but is worth studying as it provides an excel-

lent analytical tool to understand the vacuum structure of the

for g < 1 and to study the low energy dynamics in this

regime. In this work, we start from prepotential formulation

of pure SU(2) gauge theory on square lattice. Then using

the virtual point splitting technique of [27], we move to the

virtual hexagonal lattice. On this particular lattice, we make

a mean field ansatz that only an average loop configuration

contribute to the low energy spectrum of SU(2) lattice gauge

theory. We also show that this average loop configuration has

two distinct phases at the weak and strong coupling regime

of the theory and shows a first order phase transition at g = 1

denoting two distinct vacuum at two regimes of the theory.

We also construct a reduced Hamiltonian, starting from the

Kogut-Susskind Hamiltonian, which keeps the dynamics of

the theory within the mean field ansatz. We further perform a

variational calculation, to fix the mean field configuration at

different values of coupling. This analysis confirms that the

average fluxes flowing across each site shows a distinct jump

as one moves from strong to weak coupling regime at g = 1.

We are however interested in the the loop configuration at

small values of g. This analysis reveals that large fluxes con-

tribute to the low energy spectrum at weak coupling regime as

b

e a

d

c

f

12

3

Fig. 1 A plaquette (surrounded by six vertices a, b, c, d, e, f ) on

hexagonal lattice. From each vertex, links emerge in directions 1, 2, 3.

The orientation denoted in this figure defines the convention to construct

the local loop operators and states in (7)

opposed to the zero flux at strong coupling regime. For the

original Kogut-Susskind Hamiltonian, largest contribution

should come from large loops carrying large fluxes. Work-

ing with prepotentials makes us free from considering large

loops at all, as all loops are now local [5–9,22,23,27]. Hence,

our ansatz of the vacuum in weak coupling regime, consists

of only large fluxes flowing across the sites. We finally com-

pute the lower lying spectrum of that reduced Hamiltonian

at weak coupling regime and show that we get reasonably

acceptable results within this approximation.

The organization of the paper is as follows: in Sect. 2 we

briefly discuss the loop formulation of SU(2) gauge theory

on hexagonal lattice and compare its dynamics with that of

the square lattice. In Sect. 3, we illustrate the the origin of

hexagonal lattice from square lattice by virtual point split-

ting in arbitrary dimension. In Sect. 4, we discuss the average

loop configuration for prepotential formulation of SU(2) the-

ory in 2+1 dimentions on virtual hexagonal lattice. In Sect. 5,

we propose a reduced Hamiltonian and discuss its dynamics

within the mean field ansatz and finally compute low energy

spectrum within this ansatz. Finally we summarize and dis-

cuss future aspects of this study in Sect. 6.

2 Loop formulation of SU(2) gauge theory on hexagonal

lattice

Let us consider SU(2) pure gauge theory, formulated on 2

dimensional spatial lattice consisting of hexagonal plaquettes

as shown in Fig. 1. As in the Kogut-Susskind Hamiltonian

formulation [4], each of the links (n, i) originating from site
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Fig. 2 Link operators consisting of two parts in prepotential, one

of which increases flux along that link by one unit and another one

decreases

n along direction i 1 carries a link variables U (n, i) and there

are SU(2) generators Ea(n, i), a = 1, 2, 3 present at each

end of the links. The Hamiltonian, in terms of these canoni-

cally conjugate variables reads as:

HK S = g2
∑

links

E2
links + 1

g2

∑

plaquette

(

4 − Tr Uplaquette

−Tr U
†
plaquette

)

= HE + HB (1)

Within prepotential framework [5–9], we attach e set of pre-

potential doublet (as we are working with SU(2)) a†
α(L)&a†

α

(R) at left and right end of each link (n, i) with α = 1, 2 and

i = 1, 2, 3. In terms of preotentials [5–9], the electric field

is given by,

Ea
L/R = a†

α(L/R)

(
σ a

2

)α

β

aβ(L/R) (2)

satisfying the SU(2) algebra at each end. The link variable at

site n along the direction i takes the form given by:

Uα
β(n, i) = 1

√

N̂i + 1

(

ã†α(L) a
†
β(R)

+ aα(L) ãβ(R)
) 1
√

N̂i + 1

(3)

where, Ni = a†(L) ·a(L) = a†(R) ·a(R) counts the number

of prepotentials along direction i . From (3), we find that, the

link operator is a sum of a creation part, which increases the

flux by one unit and another annihilation part, where flux is

decreased by same. Hence, pictorially we can think of the

link as shown in Fig. 2. For hexagonal plaquette this decom-

position yields 26 plaquette terms (as opposed to 24 terms in

the case of square plaquette). Likewise on square lattice, the

prepotential formulation on hexagonal lattice, yields a local

loop description of the theory which we will show to be free

from any loop redundancy. Each of the plaquette operators

basically consists of six local loop operators glued together

following Abelian Gauss law. Let us first concentrate on the

local loop operators and loop states constructed on at each

site of the hexagonal plaquette.

At each site of the hexagonal lattice, links emerge in three

directions, labelled as 1, 2, 3. Each link is associated with a

prepotential creation and annihilation operators

1 On hexagonal lattice, i=1,2,3 as denoted in Fig. 1, although the phys-

ical dimension of lattice is only two.

Fig. 3 pictorial representation of all possible local loop operators at

each site of hexagonal lattice. A solid dot on solid line denotes the cre-

ation operator along that link and on the dashed line denotes annihilation

operator. For hexagonal lattice i, j = 1, 2, 3

l12

l31l23

Fig. 4 A general loop state at a site of hexagonal lattice

{aα(n, i), a†
α(n, i)}

for i = 1, 2, 3 and α = 1, 2. The gauge invariant operator

constructed out of these are:

O
++
i j ≡ ǫαβa†

α(n, i)a
†
β(n, j) (4)

O
−−
i j ≡ ǫαβaα(n, i)aβ(n, j) (5)

O
+−
i j ≡ a†

α(n, i)aα(n, j) (6)

where, i, j are the direction indices with i �= j . These local

loop operators on the hexagonal lattice are represented pic-

torially in Fig. 3. It is clear from the above set of equations

that, acting on strong coupling vacuum only the first operator,

i.e the one given in (6) will give non-zero contribution and

will build up the local loop Hilbert space. For two dimen-

sional hexagonal lattice, we characterize the local loop space

by three independent linking numbers li j denoting the flux

flowing along three (i j) directions, namely (12), (23) and

(31) as shown in Fig. 4.

Hence, the most general loop state at each site is given by:

|l12, l23, l31〉x = N

∏

i �= j |x

(

O
++
i j

)li j |0〉x (7)

where, N is the normalization factor. Note that, on hexag-

onal lattice, only three linking numbers are present at each

characterizing a complete basis. The local and orthonormal

loop states at each site is explicitly obtained as,

|l12, l23, l31〉 =
(

O
++
12

)l12
(

O
++
23

)l23
(

O
++
31

)l31

(l12 + l23 + l31)!(l12)!(l23)!(l31)!
|0〉 (8)
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The |li j 〉 basis on hexagonal lattice is exactly equivalent to

the number operator basis, where three number operators

n1, n2, n3 counts the number of prepotentials along each

direction. These two basis are related as:

n1 = l12 + l31 , n2 = l12 + l23 , n3 = l23 + l31 (9)

or equivalently, l12 = 1

2
(n1 + n2 − n3) ,

l23 = 1

2
(n2 + n3 − n1) ,

l31 = 1

2
(n1 + n3 − n2) (10)

From the above set of equations, note that, the li j variables

are truly independent positive integers ranging from zero to

infinity, whereas the transformed ni variables not truly inde-

pendent but derived from li j basis following (9). Unlike li j

variables, the ranges of ni ’s are restricted to satisfy the trian-

gle inequalities given in (10) keeping the li j ’s positive semi-

definite. In this regard, working with the li j basis is more

convenient as it involve no further constraint unlike the ni

basis, however one can always move from one to another fol-

lowing (9) or (10). Next is to find out the action of the local

loop operators (4,5,6) on orthonormal local loop states (8).

These actions are far more simple than that in case of square

lattice, derived in [22,23]. The first and simplest operator (6)

involves no annihilation operator, and hence simply gives:

O
++
i j |li j 〉 =

√

(li j + 1)(l12 + l23 + l31 + 2)|li j + 1〉 (11)

Note that, the coefficient is obtained to create another nor-

malized state from the one on which it acts. This loop action

is pictorially represented in Fig. 5a showing that the resultant

flux along i j direction increases by one unit.

The next loop operator in (6) involves only annihilation

operator and its action on a general loop state is:

O
−−
i j |li j 〉 =

√

li j (l12 + l23 + l31 + 1)|li j − 1〉 (12)

The right hand side of (13) is obtained by shifting both the

annihilation operators of O
−−
i j to the right using commutation

relations and adjusting the normalization factor as given in

(8).

Another loop operator (6) involves one creation as well as

one annihilation operator and in the very same way its action

on arbitrary loop state is obtained as:

O
+−
i j |li j 〉 = −

√

(lik + 1)l jk |l jk − 1, lik + 1〉 (13)

Note that, as there are only three links emerging from each

site, for a given operator O
+−
i j , the direction k, on which

there will be change in flux configuration, but no change in

net flux is always fixed, and hence there is no summation

over index k, in the right hand side of (13). The last two loop

actions (12,13) are also represented pictorially in Fig. 5b, c

respectively.

Let us now concentrate to the complete plaquette, around

which the Hamiltonian dynamics evolves. As stated earlier,

plaquettes are the smallest Wilson loops and the basic gauge

invariant variables to appear in the Kogut-Susskind Hamilto-

nian. But in terms of prepotentials, it is not the fundamental

one but consists of six vertices as shown in Fig. 1 each con-

sisting of the full set of loop operators and states. All possible

loop operators at each vertex which are given in Fig. 6, which

are of type listed in (4–6). Their action on loop state as derived

above is listed in detail in Table 1 for convenience.

One important thing to note here is that, as per our con-

vention of defining loop operators and loop states, some of

the loop actions bring −ve sign in the coefficient as shown

in Table 2. But this happens only for the mixed operators (i.e

type O+−) which involves one creation and one annihilation

operator. But when we consider a closed loop such as a pla-

quette, we see that these type of mixed vertices always appear

in pairs. Moreover note that, for the full plaquette operator

(or any closed loop), the mixed terms can only appear in

pairs and hence, the plauette operators (or any closed loop

operators) are always positive by our convention.

Further note that, the action of loop operators on any loop

state consists of two parts, one contains a numerical coeffi-

cient or number operators and another is some shift opera-

tors for the linking numbers. The coefficient that appears in

Table 1 are calculated follows from the convention that, the

shift operators are always at right most position and coeffi-

cients (function of number operators) are at left.

Having set the action of the loop operators on arbitrary

loop states, one can easily compute the matrix element of

the magnetic part of the Hamiltonian (1) within orthonormal

loop basis, characterized by l12, l23, l31(or, n1, n2, n3) basis.

The magnetic Hamiltonian consists of 26 = 64 terms, each

of which is a set of six local loop operator at each of the six

vertices of the hexagon, the action of which on respective

local loop states are computed following the Table 2.

2.1 Dynamics on hexagonal lattice vs. dynamics on square

lattice

At this point we compare the Hamiltonian dynamics on

hexagonal lattice with that on the square lattice numerically.

For this purpose, we generate an arbitrary but valid loop con-

figuration around one particular hexagonal plaquette of the

lattice. This is done by specifying a set of three positive semi-

definite integers denoting n1, n2, n3 at each of the alternate

site (say at site a, c and e of the plaquette in Fig. 1). We denote

these alternate sites as the even sites of the lattice. The set of

three integers when satisfy triangle inequalities

ni + n j ≥ nk ∀i �= j �= k (14)

are accepted as a valid loop configuration. For the neigh-

bouring odd sites, i.e for sites b,d and f, two numbers are

123



Eur. Phys. J. C (2019) 79 :235 Page 5 of 17 235

Fig. 5 pictorial representation of the action of local loop operators on

local loop states of hexagonal lattice. In each of these actions, the left

hand side denotes the operator (denoted by dot on solid or dashed line)

acting on a state |l12, l23, l31〉 and the right hand side denotes the resul-

tant state produced where the particular fluxes along a particular direc-

tion is either increased (denoted by solid line) or decreased (denoted by

dshed line)

At vertex ‘a b c d e’ At vertex ‘ ’ At vertex ‘ ’ At vertex ‘ ’ At vertex ‘ ’ At vertex ‘ f ’

O
++
31

O
−+
31

O
+−
31

O
−−
31

O
++
23

O
−+
23

O
+−
23

O
−−
23

O
++
12

O
−+
12

O
+−
12

O
−−
12

O
++
31

O
−+
31

O
+−
31

O
−−
31

O
++
23

O
−+
23

O
+−
23

O
−−
23

O
++
12

O
−+
12

O
+−
12

O
−−
12

Fig. 6 Pictorial representation of all possible loop actions around a plaquette ‘abcde f ’ given in Fig. 1

fixed by even sites a, c, e, and the third one is generated

randomly satisfying triangle inequalities. The prefixed ones

are:

n1(b) = n1(a) , n3(b) = n3(c)

n2(d) = n2(c) , n1(d) = n1(e)

n3( f ) = n3(e) , n2( f ) = n2(a) (15)

and randomly generate n2(b), n3(d) & n1( f ) satisfying tri-

angle inequalities at b,d and f sites as well. 2 Having gener-

2 Fixing the loop quantum numbers n1, n2, n3 at all the even sites

throughout the lattice, automatically fixes the configurations at all of the

odd sites. A valid loop configuration is obtained if triangle inequality is

valid at each and every sites. However, for that case generating linking

numbers throughout the lattice and picking valid configurations when
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Table 1 Loop actions around the hexagonal plaquette, given in Fig. 6. The coefficients in the loop action are given in the last column

Sl no. At vertices Action on |l12, l23, l31〉 Coefficient

1. c and f O
++
12 |l12, l23, l31〉 = C1|l12 + 1〉 C1 =

√

(
l12+1)(l12+l23+l31+1)
(l12+l31+2)(l12+l23+1)

2. c and f O
−+
12 |l12, l23, l31〉 = −C2|l23 + 1, l31 − 1〉 C2 =

√
l31(l23+1)

(l12+l31+2)(l12+l23+1)

3. c and f O
+−
12 |l12, l23, l31〉 = −C3|l23 − 1, l31 + 1〉 C3 =

√
l23(l31+1)

(l12+l31+1)(l12+l23+2)

4. c and f O
−−
12 |l12, l23, l31〉 = C4|l12 − 1〉 C4 =

√
l12(l12+l23+l31+1)

(l12+l31+1)(l12+l23+2)

5. a and d O
++
31 |l12, l23, l31〉 = C5|l31 + 1〉 C5 =

√
(l31+1)(l12+l23+l31+2)
(l23+l31+1)(l12+l31+2)

6. a and d O
−+
31 |l12, l23, l31〉 = −C6|l12 + 1, l23 − 1〉 C6 =

√
l23(l12+1)

(l23+l31+2)(l12+l31+1)

7. a and d O
+−
31 |l12, l23, l31〉 = −C7|l12 − 1, l23 + 1〉 C7 =

√
l12(l23+1)

(l23+l31+1)(l12+l31+2)

8. a and d O
−−
31 |l12, l23, l31〉 = C8|l31 − 1〉 C8 =

√
l31(l12+l23+l31+1)

(l23+l31+1)(l12+l31+2)

9. b and e O
++
23 |l12, l23, l31〉 = C9|l23 + 1〉 C9 =

√
(l23+1)(l12+l23+l31+2)
(l23+l12+1)(l23+l31+2)

10. b and e O
−+
23 |l12, l23, l31〉 = −C10|l31 + 1, l12 − 1〉 C10 =

√
l31(l12+1)

(l23+l31+2)(l23+l12+1)

11. b and e O
+−
23 |l12, l23, l31〉 = −C11|l31 − 1, l12 + 1〉 C11 =

√
l12(l31+1)

(l23+l31+1)(l23+l12+2)

12. b and e O
−−
23 |l12, l23, l31〉 = C12|l23 − 1〉 C12 =

√
l23(l12+l23+l31+1)

(l23+l12+1)(l23+l31+2)

Table 2 Few sample results for the comparison between dynamics

around square plaquette and hexagonal plaquette. The first and sec-

ond and column denotes two loop states around a hexagonal plaquette

between which there exist a non zero matrix element for plaquette term

Tr Uplaquette of (1). These configuration has been translated to a valid

orthonormal loop configuration around a square plaquette using the pre-

scription given in this section and the matrix element Ms is calculated

following Appendix A. The same Mh is also calculated for hexago-

nal plaquette following (16). Results are shown upto 8 decimal places

upto which these two matches exactly. Note, these are only few sample

results from numerical simulation

Initial state Final state Square plaquette Hexagonal plaquette

|2 jh
1 , 2 jh

2 , 2 jh
3 , 2 jh

4 , 2 jh
5 , 2 jh

6 〉 {2 j̄h
1 , 2 j̄h

2 , 2 j̄h
3 , 2 j̄h

4 , 2 j̄h
5 , 2 j̄h

6 } Ms Mh

|8, 15, 13, 9, 5, 11〉 |9, 16, 14, 10, 6, 12〉 3.682168E−002 3.682168E−002

|9, 7, 13, 17, 14, 6〉 |10, 6, 14, 18, 15, 7〉 1.097742E−002 1.097742E−002

|9, 16, 12, 14, 14, 7〉 |8, 17, 13, 13, 15, 8〉 1.350154E−002 1.350154E−002

|12, 9, 2, 9, 10, 7〉 |11, 8, 3, 10, 9, 8〉 8.383834E−002 8.383834E−002

|7, 10, 6, 10, 10, 16〉 |8, 9, 5, 11, 9, 15〉 4.790649E−002 4.790649E−002

|13, 6, 7, 14, 6, 7〉 |12, 5, 6, 13, 5, 8〉 1.420527E−002 1.420527E−002

ated a loop configuration denoted by n1, n2, n3 at each of the

six sites around the plaquette, we readily compute the cor-

responding l12, l23, l31 at each of them following (10). All

possible loop operators residing at each of the six vertices

around the hexagonal plaquette, changes the loop configura-

tions following a coefficient listed in Table 2. The dynamics

of an arbitrary hexagonal plaquette in compact form is given

below:

Footnote 2 continued

Abelian Gauss law (21) is satisfied is another option. It requires a detail

study to find out which one is the most efficient one. Here, as we are

only interested in dynamics around a chosen plaquette, we do not bother

to generate loop configurations throughout the lattice.

g2〈 j̄h
1 , j̄h

2 , j̄h
3 , j̄h

4 , j̄h
5 , j̄h

6 |HB | jh
1 , jh

2 , jh
3 , jh

4 , jh
5 , jh

6 〉

=
(

C
+
1 δ j̄h

1 , jh
1 + 1

2
+ C

−
1 δ j̄h

1 , jh
1 − 1

2

) (

C
+
2 δ j̄h

2 , jh
2 + 1

2
+ C

−
2 δ j̄h

2 , jh
2 − 1

2

)

×
(

C
+
3 δ j̄h

3 , jh
3 + 1

2
+ C

−
3 δ j̄h

3 , jh
3 − 1

2

) (

C
+
4 δ j̄h

4 , jh
4 + 1

2
+ C

−
4 δ j̄h

4 , jh
4 − 1

2

)

×
(

C
+
5 δ j̄h

5 , jh
5 + 1

2
+ C

−
5 δ j̄h

5 , jh
5 − 1

2

) (

C
+
6 δ j̄h

6 , jh
6 + 1

2
+ C

−
6 δ j̄h

6 , jh
6 − 1

2

)

(16)

where, C
±
i for i = 1, 2, ..., 6 ’s are some algebraic coeffi-

cients which are functions of number operators. In the full

plaquette operator, they always come in pairs as in the six

vertices of the plaquette. Product of two such C
±
i s are the

vertex coefficient C j for j = 1, 2, .., 12 listed in Table 2. We

compute those coefficeints for our configuration to find out
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jh1jh6j2j3

jh3jh4j1j4

jh2jh5jb12jd12

(a) (b)

Fig. 7 a Orthonormal fluxes, that change around a square plaquette as

given in (A.6); b fluxes around an hexagonal plaquette. Both in a and

b, the fluxes on the external links has not been written explicitly as they

remain same in the particular plaquette interaction, as evident in (A.6)

and (16) respectively

the matrix element (Mh) of magnetic Hamiltonian between

a randomly selected initial and final states, few of which are

listed in Table 2.

Having calculated numerical values of the matrix elements

of the magnetic Hamiltonian for hexagonal plaquette, we will

now compare those matrix elements with that for a square

plaquette (Matrix elements of magnetic Hamiltonian on a

square lattice is given in Appendix A).

An important point to note at this point is, even for a square

plaquette, the loop configuration actually changes over a vir-

tual hexagonal plaquette consisting of four real fluxes flowing

around a plaquette together with two internal fluxes (coupled

angular momenta, see Appendix A for detail). We provide

the dictionary of identifying square plaquette to hexagonal

plaquette in Fig. 7.

The dictionary for shifting between square (given in

Appendix A) and hexagonal plaquette (given in Sect. 2) is as

follows:

– Each site (s ≡ a, b, c, d) on the square lattice has the

following orthonormal angular momentum to have net

angular momentum zero at site x :

j x
1 , j x

2 , j x

1̄
, j x

2̄
, j x

12 = j s

1̄2̄

– Identify the flux around a square plaquette abcd as:

ja
1 = jb

1̄
≡ j1 jb

2 = jc

2̄
≡ j2

jc

1̄
= jd

1 ≡ j1̄ jd

2̄
= ja

2 ≡ j2̄

– At each site (s ≡ a, b, c, d, e, f ) of the hexagonal

plaquette, the orthonormal states are characterized by

lx
12, lx

23, lx
31 or equivalently by

nx
1 ≡ 2 jh

1 |x , nx
2 ≡ 2 jh

2 |x , nx
3 ≡ 2 jh

3 |x

following (9).3

– Identify the flux (marked with ‘h’) around the hexagonal

plaquette ‘abcdef’ as:

jh
1 = na

1

2
= n

f
1

2
, jh

2 = na
3

2
= nb

3

2
, jh

3 = nb
2

2
= nc

2

2
,

jh
4 = nc

1

2
= nd

1

2
, jh

5 = nd
3

2
= ne

3

2
, jh

6 = ne
2

2
= n

f
2

2
.

(17)

– Now, the same flux around the hexagonal plaquette, can

be identified as the dynamic flux around square plaquette

‘abcd’ in the following way:

jh
1 = j2, jh

2 = jb
12, jh

3 = j1

jh
4 = j4, jh

5 = jd
12, jh

6 = j3 (18)

– Moreover, the external links of plaquettes ‘abcd’ and

‘abcdef’ can also be identified, but we are not writing

them explicitly as we find them to remain unchanged in

this particular plaquette dynamics.

Having established the connection between the particular

square and hexagonal plaquette of interest we can now com-

pute the matrix elements for magnetic Hamiltonian for both

the cases.

We now compare the above calculated dynamics around

an hexagonal plaquette with that of the square plaquette given

in (A.6). For this purpose we identify the fluxes around the

hexagonal plaquette with those around a square plaquette as

given in Fig. 7. To compare the dynamics on square lattice

and that on the hexagonal lattice, we simulate a random loop

configuration on hexagonal lattice and compute the matrix

element of the magnetic Hamiltonian as discussed above.

Next we identify the same loop configuration on square lat-

tice following prescription listed above, and compute the

matrix element of Magnetic Hamiltonian on square lattice

for this state following (A.6). In this comparison it is easy to

observe that the nontrivial delta functions in (16) are exactly

same as those arising in evaluating the 6j symbols in (A.6).

More importantly, our numerical calculation using random

loop configuration reveals that the numerical value of the

non-zero matrix elements for each and every cases matches

exactly (upto a sign) with each other for the calculations done

on square lattice and hexagonal lattice. The discrepancy in

3 Note that, the hexagonal lattice contains alternate odd (b,d,f) and even

(a,c,e) sites. The links emerge emerge in the direction 1, 2, 3 from even

sites and in 1̄, 2̄, 3̄ from odd sites. However, for most of the purposes,

we will not differentiate even and odd sites in general and will consider

links to emerge from all sites in direction 1, 2, 3.
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sign arises as for the particular convention of defining the

loop states on square plaquette, that we have chosen, each

and every term becomes positive. We repeat this compari-

son for 1000 random loop configurations and find this exact

matching for each and every case. For the purpose of illustra-

tion, we only quote a few sample results in Table 2. Hence,

this numerical study proves that the dynamics of loop states

on a square plaquette is identical to that on an hexagonal pla-

quette as long as one is interested only in orthonormal loop

states, which are actually relevant for exact physical degrees

of freedom.

3 Point Splitting and virtual hexagonal lattice

In the last section, we have established the equivalence in

dynamics of orthonormal loop configurations in a square and

hexagonal lattice. In this section, we prescribe a virtual point

splitting technique, which translates any square lattice to its

hexagonal counter part. As a result of this transition, we gain

a theory formulated in terms of only explicitly orthonormal

loop degrees of freedom at each site, and pay the price of

an extra Abelian Gauss law constraint. This price is actually

negligible as the square lattice already had the Abelian con-

straints to solve and the extra one in hexagonal lattice is on

very same footing as those.

The two dimensional hexagonal lattice, that we demon-

strated here, is obtained by virtually splitting of each lattice

site of a two dimensional square lattice. Elaborating a bit,

consider a lattice site ‘x’ as shown in Fig. 8. From this site

on a 2d lattice, clearly 4 links emerge in 1, 2, 1̄, 2̄ directions

each carrying ni , (i = 1, 2, 1̄, 2̄) number of prepotentials

(or angular momentum fluxes). We split this site ‘x’ into two

sites ‘xe & xo’. Links from direction 1 & 2 meet at site xe,

where as links from direction 1̄ & 2̄ meet at xo. The splitted

sites x1-x2 are connected by a virtual link along direction 3.

This same splitting done at each and every sites on the square

lattice lifts the lattice to an hexagonal structure as shown in

Fig. 12.

Now, prepotential formulation on this hexagonal lattice

yields a local loop formulation of lattice gauge theory, exactly

eqiuivalent to the original square lattice, but contains only

orthonormal and physical loop degrees of freedom as this is

free from complicated Mandelstam constraints. This makes

the analysis on hexagonal lattice simpler for practical purpose

of analytical as well as numerical computation.

At this point we must explicitly match the degrees of free-

dom of these two systems as well. For the site x on the square

lattice, there is six linking numbers or six loop degrees of free-

dom as earlier. Moreover, there was two Abelian Gauss law

along two directions of the lattice (21) and one Mandelstam

constraint (implying only non-intersecting loops contribute

to physical degrees of freedom). Resulting only three phys-

Fig. 8 One site ‘x’ on a square lattice is virtually splitted into two sites

‘xe & xo’ connected by a third virtual direction 3 − 3̄

ical degrees of freedom. Now, coming back to hexagonal

lattice, two sites, say x1 & x2 corresponds to actual site x on

the square lattice and together should have only three degrees

of freedom. Each site of the hexagonal lattice contains three

linking numbers or three loop degrees of freedom, hence

total six loop degrees of freedom matches with that of the

square plaquette case. Unlike square plaquette, here there is

no Mandelstam constraint at all to solve as there is no concept

of intersecting loops. Together with the two Abelian Gauss

law constraints along directions 1 and 2 (same as square pla-

quette), there exists one more Abelian Gauss law constraint

on the link connecting two splitted site (along direction 3) and

hence yielding exact degrees of freedom as square plaquette.

Hence, counting of degrees of freedom goes as:

d.o. f = 3S − d − dv (19)

where, S is the splitting index, which denotes each site has

been splitted into S virtual sites; d is the dimension of the

lattice, and dv is the number of virtual links connecting the

splitted site, which is dv = S−1. It is straightforward to show

that this analysis smoothly extends to any higher dimension

as well. i.e for d dimensional spatial lattice, where 2d links

meet at a site x , one can split the site into S number of 3

point vertices. Obviously this splitting will results into S − 1

number of intermediate links. However, the physical degrees

of freedom for the site x should still be 3(d−1). Equating both

the sides of (19) yields S = 2(d − 1). Hence, this splitting

of each site depends on the dimension we are working on.

As we have already seen, for two dimension each lattice site

splits into two virtual lattice sites, and for three dimensional

case, it splits into 4 sites. However, in each case one can just

work with three orthogonal loop state at each site and impose

Abelian Gauss law on all of the links present. This simple

analysis would result working with orthonormal loop basis

for SU(2) lattice gauge theory in any arbitrary dimensions
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without getting involved with complicated Clebsch Gordon

coefficients.

4 The Hamiltonian and Average loop configurations

In this work, we consider pure SU(2) gauge theory defined

on a square lattice. The system is described by the Kogut-

Susskind Hamiltonian,

HK S = HE + HB (20)

The virtual point splitting, discussed in last section now

enables us to define the theory on hexagonal lattice.

On hexagonal lattice, the hexagonal plaquettes are sur-

rounded by six links, out of which four are links of the origi-

nal square lattice along directions 1 & 2, and remaining two

are virtual links, resulted from point splitting along direction

3. The electric fields are defined at each end of the links of the

original square lattice. Hence even for hexagonal lattice, only

the electric fields for links along directions 1 & 2 contribute

to the Hamiltonian given in (20). In prepotential formulation,

this electric part of Hamiltonian HE counts the fluxes which

are actually related to number of prepotentials sitting at each

end of the links of the original lattice [5–9].

The magnetic part of the Hamiltonian HB is anyway more

complicated to analyse. Clearly, at weak coupling regime,

this part contributes most, and hence it is essential to simplify

it as much as possible to make analytic calculations feasible.

The part however is altered from the square lattice, as it must

contain trace of the product of link operators along the full

hexagonal plaquette to make the smallest closed loop.

The magnetic Hamiltonian on hexagonal lattice contains

26 different gauge invariant plaquette terms for prepotential

formulation of SU(2) gauge theory on hexagonal lattice. Pic-

torially, these plaquette terms contain nd number of dotted

link and 6 − nd number of solid links around a plaquette,

for nd = 1, 2, .., 6. These solid and dashed line comes in

different combination yielding all of the 64 plaquette terms

as illustrated in Fig. 11.

Let us now, concentrate on the loop configurations of the

system and proceed towards a mean field ansatz (i.e average

loop configuration) for low energy limit of the theory.

We have already characterized the local loop states at a

particular site x of a hexagonal lattice in terms of linking

numbers as |l12, l23, l31〉x in (7) and also discussed how these

linking numbers are related to the occupational number basis

in (9). The original Wilson loops, which are non-local are

obtained by weaving these local loops at neighbouring sites

along the three directions, using an extra Abelian Gauss law

[5–9] constraint at each link direction as given below:

ni (x) = ni (x + ei ) for i = 1, 2, 3. (21)

4.1 Mean Field Ansatz

In this sub-section, we make an ansatz for the vacuum loop

configuration of the SU(2) lattice gauge theory. Strong cou-

pling vacuum of the system is well-known and consists of 0

flux state. Whereas, in the naive continuum limit, as g → 0,

all the loop configurations contribute to the low energy spec-

trum. However, the maximum contribution is expected to

come from large loops carrying large fluxes. In prepotential

formulation, the size of the loop is not relevant, as all the

loops has been made local. Abelian weaving along the links

give rise to the standard Wilson loops.

In this context, let us make a general ansatz for the vacuum

loop configuration of the system irrespective of the coupling

regime. Let us assume that the low energy loop configurations

are given by same amount of fluxes flowing across each site.

Note that, we are working on a virtual hexagonal lattice in two

dimensions as discussed before. Note that, on these lattices,

there exists two different types of flux, flowing across each

site. The standard flux flowing along the direction of original

links, i.e between {12} direction is the real flux. Moreover,

there exist the fluxes, which flows from a real direction to

a virtual direction, namely {23} and {31}. We consider this,

and make an ansatz that,

l12(x) = L; l23(x) = M; l31(x) = M ∀x (22)

where, li j (x)’s are the linking quantum number (measur-

ing fluxes flowing across {i j} directions) specifying the loop

states in (7) at a site x . The electric part of the Hamiltonian

(20) in Prepotential formulation reads as:

HE = g2
∑

links

E2
links = g2

∑

x

[
n1(x)

2

(
n1(x)

2
+ 1

)

+n2(x)

2

(
n2(x)

2
+ 1

)]

(23)

where, n1 and n2 counts the number of prepotentials residing

on links along 1&2 directions respectively. This occupation

numbers are related to the linking numbers at each site x and

hence with mean values L&M as,

n1 = l12 + l31 = L + M (24)

n2 = l12 + l23 = L + M using (22) (25)

Implying,

HE = g2
∑

x

1

2
(L + M)(L + M + 2). (26)

Next we concentrate on the magnetic part of the Hamiltonian

within this mean field approximation. The magnetic Hamil-

tonian contains 64 plaquette operators given in Fig. 11. Each

of these 64 plaquette terms consists of 6 local loop opera-

tors given in Fig. 6, which comes with a coefficients listed in

Table 1 which are functions of number operators (i.e linking
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Fig. 9 The hexagonal plaquette consisting of six links each of which

can be either a solid line or a dashed line within prepotential framework.

Hence all possible plaquette operators contributing to the magnetic part

of the Hamiltonian consists of 26 = 64 plaquette diagrams with a

combination of solid and dashed lines around each links

10
4

0.01 1 100

10
9

10
6

0.001

1

1000

L|Hmin

g

Fig. 10 The numerical value of the mean field variable L (M) for which

the Hamiltonian function reaches a minima , i.e L|Hmin
is plotted against

the coupling g. The curve shows a clear jump in the average loop con-

figuration, moving from strong to weak coupling regime of the theory

numbers or occupation numbers). However, within the mean

field ansatz they can be regarded as C-numbers (i.e functions

of constants L and M) as listed in 3. Combining these coef-

ficients we get 26 coefficients seating in front of each of the

Magnetic term given in Fig. 9, which we call as Ci , for i = 1

to 64.

Now, in order to fix the numerical values of L and M , in our

analysis, we calculate the Hamiltonian for the limiting case,

when the all the plaquette operators (except the coefficients)

becomes 1. Now, the Hamiltonian function for each plaquette

reads as:

H(g, L , M) = g2 1

2
(L + M)(L + M + 2)

+ 1

g2

(

4 −
64
∑

i=1

Ci

)

(27)

We now minimize this function for different values of the

coupling g. This minimization yields a set of L and M values

at different couplings, for which the Hamiltonian function

reaches a minima. We plot this set of L values at Hmin in

Fig. 10 to get a clear notion of phase transition between the

mean field phases at weak and strong coupling regime occur-

ring exactly at g = 1. A very similar curve is obtained for M

as well, which shows the exact same nature except the fact

that for each values of g, the numerical value of M is much

less than the corresponding L in weak coupling regime, i.e

L >> M >> 0. This same result will be again obtained in

a more precise calculation for the proposed reduced Hamil-

tonian in the next section.

Finding the spectrum for the full Kogut-Susskind Hamil-

tonian even in the mean field approximation is still a chal-

lenge at this stage. In the next section we construct a reduced

Hamiltonian which describes the dynamics within the Hilbert

space of the above mentioned average loop configurations.

5 The reduced Hamiltonian and its spectrum

In the last section we have made a mean field ansatz, in which

an arbitrary loop state defined at each site of the virtual hexag-

onal lattice is given by the average value for the linking num-

ber variables is given by:

|L , M, M〉x ∀x (28)

In this section, we will reduce the full Kogut-Susskind

Hamiltonian to a sub Hamiltonian, which describes the

dynamics within this mean field ansatz. With this reduced

system, one can get reasonable physical results with mini-

mal calculational effort and hence establishes this as a valid

toy system to understand weak coupling regime of the gauge

theory analytically, numerically as well as by quantum sim-

ulating the system.

5.1 The Sub-Hamiltonian

As we have already explained in the last section, the electric

part of the Kogut-Susskind Hamiltonian in the mean field

approximation reads as:

HE ≡ g2 E2 = g2
∑

x

1

2
(L + M)(L + M + 2). (29)

Next we concentrate on the magnetic part of the Hamil-

tonian within this mean field approximation. The magnetic

Hamiltonian contains 64 plaquette operators, each of which
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Table 3 List of coefficients under the mean field ansatz

Loop action Explicit action on |L,M〉

√

(M+1)(L+2M+2)
(2M+1)(L+M+2) |M+1〉

−
√

(L+1)M
(2M+2)(L+M+1) |L+1,M−1〉

−
√

L(M+1)
(2M+1)(L+M+2) |L−1,M+1〉

√

M(L+2M+1)
(2M+1)(L+M+2) |M−1〉

√

(M+1)(L+2M+2)
(2M+2)(L+M+1) |M+1〉

−
√

L(M+1)
(2M+1)(L+M+2) |L−1,M+1〉

−
√

(L+1)M
(2M+2)(L+M+1) |L+1,M−1〉

√

M(L+2M+1)
(2M+2)(L+M+1) |M−1〉

√

(L+1)(L+2M+2)
(L+M+2)(L+M+1) |L+1〉

−
√

(M+1)M
(L+M+2)(L+M+1) |L,M〉

−
√

(M+1)M
(L+M+2)(L+M+1) |L,M〉

√

L(L+2M+1)
(L+M+2)(L+M+1) |L−1〉

is a combination of six local vertex operators listed in Table 3

within the mean field ansatz. Let us now analyze each and

every plaquette term illustrated in Fig. 11:

(1) This term together with its Hermitian conjugate pair (2

terms) creates or annihilates flux around a full plaquette. (2)

This term along with its rotationally symmetric (6 terms)

and hermitian conjugate pairs (6 more terms) increases or

decreases the length of the Wilson loops by 5 units. (3) Same

as (2), total 12 terms, changes length by 4 units. (4), (5), (6)

and the rotationally symmetric 9 terms ( 9 more hermitian

conjugate terms) merge (separate) two loops and construct

Fig. 11 Pictorial representation of plaquette operators appearing in the

magnetic Hamiltonian on hexagonal lattice. All of these terms along

with their rotationally symmetric and hermitian conjugate pairs consti-

tute the 64 plaquette terms

one (two) bigger (smaller) loop(s) of their combined length

+(−) 4 units of length. (7) and its hermitian conjugate term

(total 2 terms) are rotationally symmetric and merges three

loops to construct e bigger loop of their combined length. (8),

(9) and their rotationally symmetric 6 terms for each consti-

tute a hermitian conjugate set of 12 terms, each of which

merges two loops and construct a bigger one of the same

length. Finally (10) and its 6 rotationally symmetric terms are

hermitian conjugate set and changes shape of a loop without

changing its length.

Let us now make the following observations:

Among the 64 plaquette terms given in figure , there are

certain terms which create or annihilate net fluxes around

a plaquette. These plaquette terms can indeed build up the

complete loop space, starting from strong coupling vacuum.

However, we are interested in a particular state of the system,

where each of the loops takes an average value throughout

the lattice, hence there really exists no scope for creating

or annihilating any net flux around any of the plaquettes.

Hence, we choose only a subset of these 64 plaquette terms
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which keeps the dynamics within the mean field ansatz. More

specifically, we choose a sub-magnetic Hamiltonian, which

does not create or annihilate any net flux around a plaque-

tte, but rearranges the internal loop configurations. Note that,

(vii),(viii),(ix) and (x) type terms in Fig. 11 are loop operators

that do not change any net flux flowing across the lattice, but

just rearranges the intertwiners across different sites. These

plaquette operators form a rotationally symmetric hermitian

operatorThose are the terms which has equal number of cre-

ation and annihilation of links around a plaquette, pictorially

represented by a plaquette with 3 solid link and 3 dotted link.

These special terms are explicitly given as below:

1. Plaquette consisting of alternate solid and dashed line.

There are only two options for this, which constitutes

the rotationally symmetric and Hermitian operator. We

denote this operator by

Hpmpmpm + rotation (30)

2. Plaquette consisting of three consecutive solid and

dashed lines. There are six options for this, which consti-

tutes the rotationally symmetric and Hermitian operator.

We denote this operator by

Hpppmmm + rotations (31)

3. Plaquette consisting of two consecutive solid line, two

consecutive dashed line and then a single solid and dashed

line along with their Hermitian conjugate plaquette terms.

We denote this type of operator by

Hppmmpm + Hmmppmp + rotations (32)

Each of these two types of plaquette terms has 6 rotation-

ally symmetric contribution. Hence this particular type of

rotational symmetric Hermitian operator contains total of

12 individual plaquette operators.

Combining the above three, we find that the magnetic part of

the reduced Hamiltonian contains 2 + 6 + 12 = 20 plaque-

tte operators and is completely rotationally symmetric and

Hermitian.

Let us now construct a particular basis consisting of the

state |L , M〉 and the twenty plaquette operators listed above,

acting on it. Hence we have a 21 dimensional basis vectors

listed as below:

|L , M〉; {Hpmpmpm|L , M〉}; {Hpppmmm|L , M〉};
{Hppmmpm|L , M〉} (33)

where, the braces in the last three states denote the sets con-

sisting of rotationally symmetric and Hermitian conjugate

states. Each of these states consists of one of those three types

of vertices at each site. We first calculate the local action of

E2 on each vertex, depending on whether it is a junction

of two solid line (pp-vertex ≡ |pp〉), two dashed line (mm-

vertex ≡ |mm〉) and of one solid and one dashed line (pm

vertex ≡ |pp〉). Using the 12 vertices described in Table 3,

the action of E2 within mean field approach is given by:

E2|pp〉 = 1

2
(L + M + 1)(L + M + 3)|pp〉 ≡ vp|pp〉

E2|mm〉 = 1

2
(L + M − 1)(L + M + 1)|mm〉 ≡ vm |mm〉

(34)

E2|pm〉 = 1

2
(L + M)(L + M + 2)|pm〉 ≡ v|pm〉 (35)

However, our basis now consists of 21 states given in (33),

each having six of the above vertices. The action of E2 on

these states are given as below:

E2|L , M〉 = 6v|L , M〉, E2
[

Hpmpmpm|L , M〉
]

= 6v
[

Hpmpmpm|L , M〉
]

,

E2
[

Hpppmmm|L , M〉
]

= (2v + 2vp

+2vm)
[

Hpppmmm|L , M〉
]

,

E2
[

Hppmmpm|L , M〉
]

= (4v + vp

+vm)
[

Hpppmmm|L , M〉
]

. (36)

At this point, we import another notation for the basis. Let the

basis be denoted as |i〉, f ori = 0, .., 20, with |0〉 = |L , M〉,
and |i〉 = Hi |0〉 for i = 1, 2, .., 20, where Hi denotes the 20

plaquette operators described before (given as Hpmpmpm,

Hpppmmm, Hppmmpm). Hence, the reduced Hamiltonian

takes the form:

Hreduced =
∑

plaquettes

[

g2 E2 + 1

g2

(

1 −
20
∑

i=1

Hi

)]

(37)

The electric part of the Hamiltonian acting on a state of this

basis gives:

g2 E2|i〉 = Ei |i〉, i = 0, 1, .., 21 (38)

and the magnetic part gives:

1

g2

(

1 −
20
∑

i=1

Hi

)

|i〉 = 1

g2
|i〉 −

20
∑

i=1

Ci

g2
|0〉 (39)

In this particular basis, the Hamiltonian matrix Ĥreduced for

each plaquette takes the form given below:
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g2 E0 + 1/g2 −C 1

g2 −C 2

g2 . . . −C 20

g2

−C 1

g2 g2 E1 + 1/g2 0 0 0

−C 2

g2 0 g2 E2 + 1/g2 0 0

...
...

...
. . .

...

−C 20

g2 0 0 0 g2 E20 + 1/g2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

Ĥreduced

Note that, the diagonals have contribution from the electric

term as well from the constant term in magnetic Hamilto-

nian. Other than the diagonal entries, other non zero matrix

elements of the Hamiltonian lies along the first row and first

column of the matrix, and those are basically given by the

coefficients sitting in front of the 20 plaquette terms discussed

above. We label these coefficients as Ci , for i = 1, .., 20. The

advantage of working with such a basis is that the Hamilto-

nian matrix takes a very special form, namely form of an

arrowhead matrix which in turn enables us to solve for the

eigenvalues analytically.

Let us assume the Hamiltonian matrix to satisfy the fol-

lowing eigenvalue equation:

Ĥreduced

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0

a1

a2

...

a20

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= λ

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a0

a1

a2

...

a20

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(40)

This matrix equation is equivalent to the set of eigenvalue

equations mentioned below:
(

g2 E0 + 1

g2

)

a0 − 1

g2

∑

i

Ci ai = λa0 (41)

−Ci

g2
a0 +

(

g2 Ei + 1

g2

)

ai = λai (42)

Now, from (42),
(

g2 Ei + 1

g2
− λ

)

ai = Ci

g2
a0

⇒ ai = Ci a0

1 − g2λ + g4 Ei

(43)

Putting (43) back in (41), we get,

(

g4 E0 + 1
)

a0 −
∑

i

C 2
i a0

1 − g2λ + g4 Ei

= g2λa0

⇒
(

g4 E0 + 1
)

a0 −
∑

i

C 2
i a0

1 − g2λ + g4 Ei

= g2λa0

⇒ λ̃ =
∑

i

C2
i

λ̃ − g4(E0 − Ei )
, (44)

where, λ̃ = 1 − g2λ+ g4 Ei . Solving (44) would yield the λ̃,

which in tern gives all the eigenvalues of the 21×21 Hamilto-

nian matrix. To simplify (44), we further make the following

observation. Note that, the diagonal elements g2 Ei + 1/g2

are highly degenerate, as one finds in (36) that, Ei ’s can take

only three possible values, namely 6v, (2v + 2vp + 2vm)

and (4v + vp + vm). Hence, the sum in (44) reduces to the

following sum of three terms:

λ̃ = C̃1

λ̃ + 2g4
+ C̃2

λ̃ + g4
+ C̃3

λ̃
(45)

where, C̃1, C̃2, C̃3 are combinations of the coefficients Ci

taking into account of the degeneracy. (45) is a transcendental

equation and can be solved graphically, however approaching

a rough solution is quite easy. We plot the right hand side of

this equation and get divergences at three poles precisely at

λ̃ = 0, g4, 2g4 respectively. The plot of left hand side, i.e

straight line y = x cuts the right hand side curve very close

to the position of the poles. The exact value of λ̃ yields the

value of the eigenvalues as:

λ = (1 − λ̃ + g4 × E0)

g2
(46)

Note that, the smallest eigenvalue λ, actually corresponds to

the highest λ̃ from (46). To get the exact numerical value

of the solution one needs to consider the coefficients C̃i ’s

appearing in right hand side of (45). Note that, the coeffi-

cients C̃i ’s are functions of the mean fields L&M . Hence, it

is necassary to calculate the exact value of these mean fields.

For this purpose, we take the following approach.

– For some fixed g, we numerically calculate (using Math-

ematica) the value of L and M , for which lowest eigen-

value of the Hamiltonian matrix reaches a minima. In the

strong coupling regime, i.e for g ≥ 1, that minima is

always at L = M = 0. However, for smaller and smaller

values of g, the minima is at larger and larger values of

L&M , as listed in Table 4. This calculation establishes

the naive analysis done in Sect. 4 of this paper which

shows the existence of two different mean field phases

of the system in strong and weak coupling regimes. Note

that, we are interested in the weak coupling regime of

the theory as the continuum limit lies there. Up to this

point of this work, we have not used any assumption for

weak coupling limit, except taking a mean field ansatz.

We now fix the mean field configuration in a way, such

that we are in the weak coupling regime of the theory.

From the variational study discussed above, we see, that

the ground state energy shows a perfect first order phase

transition at coupling g = 1, above which the vacuum

is the strong coupling vacuum, which in the mean field

ansatz gives |L = 0, M = 0〉. However, as g → 0,

the lowest energy mean field state turns out to be a state

comprising of large average flux at each site, implying
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Table 4 The smallest

eigenvalue of the Hamiltonian

matrix reaches its minima for

these values of L , M , at the

particular g mentioned in the

first column

g L|λmin
M |λmin

10 0 0

1 0 0

0.1 10 3

0.01 374 32

0.001 11,620 320

the weak coupling vacuum to be consisted of loops car-

rying large fluxes, throughout the lattice. As g → 0,

L >> M >> 0. The coefficients, listed in Table 3 also

changes to particular limiting values as g → 0.

– We now consider a particlular value of g, in the weak

coupling regime, and the corresponding mean field con-

figuration. For each configuration, we exactly diagonal-

ize the Hamiltonian matrix, and calculate the eigenval-

ues. We list the spacings between the lowest one and first

excited one as Δλ1 and similarly between the first and

second excited one as Δλ2. We list these two gaps and

their ratios at different values of the coupling constant

g → 0 in Table 5. It is very much clear from Table 5,

that the gaps are scaling as ∼ g2 and the ratio of lowest

two energy gaps converges to the numerical value of 1.

Note that, the absolute value of masses are subjected to

be renormalized. However, the ratio of the two consecu-

tive mass-gaps are always physical. In our study we have

shown it to converge to numerical value of 1, for g → 0

for arbitrarily large lattices, as all the computation was

done locally at each site.

The scaling of mass-gaps ∼ g2 is consistent with both the

weak coupling perturbation expansion in [30]4, variational

analysis [31,32]5, using cluster algorithm [34]6 for SU(2)

gauge theory on 2 + 1 dimensional lattice as well as with

Monte Carlo study on 3dimensional Euclidean lattice [33].7

On a further note, the analytically calculated value of

the ratio of energy differences for the reduced Hamilto-

nian within the mean field ansatz, matches with previous

calculations at weak coupling limit for finite lattices. For

example, the mass spectrum of 0++ sector for SU(2) lat-

tice gauge theory in 2 + 1 dimensions is obtained in [31] as

follows:

m1a = (2.0560.00l)g2, m2a = (3.640.03)g2

m3a = (5.150.10)g2

4 ΔE = 0.2637g2.

5 ΔE ≈ 2g2.

6 ΔE ≈ 2.2g2.

7 ΔE ≈ 2.1g2.

⇒ Δλ1 ≈ 1.58g2&Δλ2 ≈ 1.51g2

⇒ Δλ1

Δλ2
= 1.046 (47)

This result is obtained with a lattice consisting of 25 pla-

quettes and in the weak coupling region 1.8 < 1/g2 < 3.6.

Note that, the results obtained in [31] are consistent with

the results obtained with Monte Carlo calculations within

Euclidean formalism as well.

(47) establishes the validity of our much simplified system

to extract out weak coupling results for practical purposes,

which can be exploited to address various problems in future

researches.

6 Summary and future directions

In this work we have proposed and justified an effective mean

field description for the low energy spectrum of SU(2) lattice

gauge theory in 2 + 1 dimension and have analytically cal-

culated the spectrum at the weak coupling regime. Starting

from prepotential formulation on the spatial 2D square lat-

tice, we perform virtual splitting of each lattice site into two

and end up with a virtual hexagonal lattice. On this hexag-

onal lattice, all of the local loop states in prepotential for-

mulations constitutes an exact and orthonormal loop basis,

with no further Mandelstam constraints. We have proposed a

mean value ansatz for the loop configurations throughout the

lattice contributing to the low energy spectrum of the theory.

We have shown that such average loop configurations have

two distinct phases at the strong and weak coupling regime.

Next, we have chosen a reduced Hamiltonian, from the full

Kogut-Susskind Hamiltonian, which keeps the dynamics of

the loops confined into our ansatz. Variational study shows

that this reduced system with mean value-loop configura-

tion shows a clear jump between the weak and strong cou-

pling vacuum. As we are interested to explore weak cou-

pling regime of the theory, we choose the relevant average

loop configuration in that regime and calculate the spectrum

for the reduced Hamiltonian we choose. In this spectrum

we find ΔE ∼ g2 which is the expected weak coupling

behaviour for mass gap of the theory. The spacings of the

spectrum obtained in this work is as well consistent with
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Table 5 The gaps between

three consecutive energy levels,

and their ratios are listed for

different values of coupling g in

weak coupling regime

g Δλ1 Δλ2
Δλ1
Δλ2

0.1 0.00998711 0.00916295 1.08994

0.01 0.0000999971 0.0000989114 1.01098

0.001 0.00000099896 0.000000998378 1.00058

the available literature at weak coupling regime of 2 + 1

dimensional SU(2) lattice gauge theory. We have discussed

in detail, how the point splitting lattices are constructed in

higher dimensions, which can as well be exploited to extend

this work beyond 2 + 1 dimensions in a straight forward

way.

In a recent and parallel work [27], the point splitting lat-

tice is constructed and utilized to analytically study the weak

coupling limit of SU(2) lattice gauge theory in 2 + 1 dimen-

sion as well. In that work, they have used the path integral

representation of the phase space to analytically compute the

dispersion relation at the lowest order in weak coupling per-

turbation expansion.

However, the particular study demonstrated in this paper

shows that the physical results at the weak coupling regime

of SU(2) gauge theory can be extracted from a much sim-

pler mean field approximation made within prepotential for-

mulation of the theory. Being completely gauge invariant,

and formulated only in terms of relevant physical degrees of

freedom, this technique is suited for both analytic calcula-

tions and numerical simulations. From analytic perspective,

this study gives a clear notion of the weak coupling vac-

uum for pure gauge theory and its dynamics. From numer-

ical perspective, this particular formulation is most suited

for quantum Monte-Carlo simulation of Hamiltonian lattice

gauge theory using a complete gauge invariant basis charac-

terized by only integers. Till date, this aspect has not been

studied extensively, but worth investigating in near future.

That study will lead to explore some of the very impor-

tant physics such as calculation of the entanglement entropy

of lattice gauge theory. Last but not the least, there is a

tremendous progress going on, in the recently developed

research interests for quantum simulating gauge theories

using both analog [28,29,35–38] and digital quantum sim-

ulators [39–43]. The prepotential formulation has already

been explored to propose quantum simulator for gauge the-

ories [28,29] and is a promising framework to define a

whole new prepotential paradigm in quantum simulating

QCD [43]. This present work, shows the way to construct

quantum simuator to simulate the loop dynamics of non-

Abelian lattice gauge theory beyond strong coupling limit.

The work in this direction is in progress and will be reported

shortly.
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Appendix A: Orthonormal loop basis and its dynamics

on square lattice

Within prepotential framework of the theory one is equipped

with a set of orthonormal basis states, defined at each lat-

tice site [5–9,22,23]. For SU(2) lattice gauge theory on 2

dimensional spatial lattice, such an orthonormal basis can be

easily obtained in terms of angular momentum fluxes. In this

section, we briefly quote the result of plaquette (the smallest

closed loop) dynamics from [5–9] which we have used to

compare with the dynamics of hexagonal plaquette.

At each site of a two dimensional square lattice, four links

are attatched in directions 1, 2, 1̄ & 2̄ carrying the angular

momentum fluxes j1, j2, j1̄ & j2̄ respectively ( ji = ni/2).

The gauge invariant state at a site x must have the net angu-

lar momentum, i.e the sum of the four angular momentums

along the four directions zero. One can add these four angular

momentum according to the following scheme:

| j1, j2, j12, j1̄, j2̄, j1̄2̄ = j12, j121̄2̄ = 0〉x (A.1)

As, the abelian Gauss law implies j1̄|x = j1|x−e1 and j2̄|x =
j2|x−e2 following (21). Hence, each site, one choice of such

orthonormal basis at each site x is [5–9]

| j1, j2, j12〉x (A.2)
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Fig. 12 Dynamics of loops on

a square plaquette: orthonormal

loop states are actually around

the hexagon which fluctuate in

plaquette dynamics. The

hexagon arises as point splitting

at each vertices, i.e

a → a1, a2, b → b1, b2, c →
c1, c2, & d → d1, d2,

where, j1, j2 are the fluxes along 1 & 2 directions and j12

is their added flux according to angular momentum addition

scheme. Let us now characterize the state around a plaquette

‘abcd’ as

| jabcd〉 ≡ | ja
1 , ja

2 , ja

1̄
, ja

2̄
, ja

12〉 × | jb
1 , jb

2 , jb

1̄
, jb

2̄
, jb

12〉
×| jc

1 , jc
2 , jc

1̄
, jc

2̄
, jc

12〉 × | jd
1 , jd

2 , jd

1̄
, jd

2̄
, jd

12〉
(A.3)

We further identify

ja
1 = jb

1̄
≡ j1 jb

2 = jc

2̄
≡ j2 (A.4)

jc

1̄
= jd

1 ≡ j1̄ jd

2̄
= ja

2 ≡ j2̄ (A.5)

The dynamics of such states under the plaquette action are

obtained as [5–9]

〈 j̄abcd |TrUabcd | jabcd〉=Mabcd

{

j1 j̄1
1
2

j̄2̄ j2̄ ja
12

}{

jb
12 j̄b

12
1
2

j̄1 j1 jb

2̄

}

{

jb
12 j̄b

12
1
2

j̄2 j2 jb
1

}{

j1̄ j̄1̄
1
2

j̄2 j2 jc
12

}{

jd
12 j̄d

12
1
2

j̄1̄ j1̄ jd
2

}{

jd
12 j̄d

12
1
2

j̄2̄ j2̄ jd

1̄

}

.

(A.6)

In (A.6), Mabcd ≡ Dabcd Nabcd Pabcd factors are given by:

Dabcd = δ ja

1̄
, j̄a

1̄

δ ja

2̄
, j̄a

2̄

δ ja
12, j̄a

12
δ jb

1 , j̄b
1
δ jb

2̄
, j̄b

2̄

δ jc
1 , j̄c

1

δ jc
2 , j̄c

2
δ jc

12, j̄c
12

δ jd
2 , j̄d

2
δ jd

1̄
, j̄d

1̄

,

Nabcd = Π

(

j1, j̄1, j2, j̄2, j3, j̄1̄, j2̄, j̄2̄, jb
12, j̄b

12, jd
12, j̄d

12

)

Pabcd = −(−1)
j1+ j2+ jb

1 + jb

2̄ (−1)
j1̄+ j2̄+ jd

1̄
+ jd

2 △( j̄1, j̄2̄, ja
12)

△( j̄2, j̄1̄, jc
12)△

(

j̄b
12, jb

12,
1

2

)

△
(

j̄d
12, jd

12,
1

2

)

.

(A.7)

Note that, in (A.7), Dabcd describes the trivial δ func-

tions over the angular momenta which do not change

under the action of the plaquette operator, Nabcd and Pabcd

give the corresponding numerical and the phase factors

respectively. The multiplicity factors are: Π(x, y, ...) ≡√
(2x + 1)(2y + 1)... and △(x, y, z) represent the phase fac-

tors given by: △(x, y, z) ≡ (−1)x+y+z . The 6 j symbols in

(A.6) yields [44] a set of non-trivial delta functions given by:

δ j1, j̄1± 1
2
δ j2, j̄2± 1

2
δ j1̄, j̄1̄± 1

2
δ j2̄, j̄2̄± 1

2
δ jb

12, j̄b
12±

1
2
δ jd

12, j̄d
12±

1
2

Now, looking at the expression for the dynamics of the theory

we readily observe that, the four fluxes j1, j2, j1̄, j2̄ flowing

along the four sides of the plaquette do fluctuate by ± 1
2

units.

Moreover, the plaquette action again changes two interme-

diate fluxes, namely, jb
12 and jd

12 in the same way as the four

sides. We illustrate this fact in Fig. 12. At this point we get

the motivation for formulating the gauge theory on hexagonal

lattice and calculating the plaquette dynamics.

Appendix A.1: Evaluating 6 j symbols

The 6j symbols in (A.6) are of a special type, which contain-

ing one variable equal to 1/2. There exists a simple prescrip-

tion as given below, where one can convert these particular

6 j symbols to those with one variable equal to 0 as given

below [44]:

f1

{

a b 1
2

d e f

}

= f2

{

a − 1
2

b 0

d − 1
2

e f − 1
2

}

+ f3

{

a − 1
2

b 0

d − 1
2

e f + 1
2

}

+ f4

{

a − 1
2

b 0

d + 1
2

e f − 1
2

}

+ f5

{

a − 1
2

b 0

d + 1
2

e f + 1
2

}

(A.8)

with
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f1 = (2d + 1)(2 f + 1)

√

(a + b + 3

2
)(a − b + 1

2
)

f2 = −
√

(a + e + f + 1)(a − e + f )(b + d + f + 1)(−b + d + f )(d + e + 3

2
)(

1

2
+ d − e)

f3 = −
√

(−a + e + f + 1)(a + e − f )(b − d + f + 1)(b + d − f )(d + e + 3

2
)(

1

2
+ d − e)

f4 = −
√

(a + e + f + 1)(a − e + f )(b + d − f + 1)(b − d + f )(d + e + 1

2
)(

1

2
− d + e)

f5 = −
√

(−a + e + f + 1)(a + e − f )(b + d + f + 2)(−b + d + f )(d + e + 1

2
)(

1

2
− d + e)

The resulting 6 j symbols are easy to compute by the formula:
{

ã b̃ 0

d̃ ẽ f̃

}

= (−1)ã+ẽ+ f̃
δ

ã,b̃
δ

d̃,ẽ
√

(2ã + 1)(2d̃ + 1)

(A.9)
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