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ABSTRACT

By use of low energy theorems, which follow
from gauge invariance and analitidty assumptions,
we determine the nature of the single particle
singularity of ameson propagator in the presence
of the known massless bosons : photons and gra-
vitons., In addition to regaining the well-~known
results for covariant gauges in elecirodynamics,
we present new results for covariant gauges in
gravity theory, and for radiation gauges in both
electrodynamics and gravity theory. The gauges
in which no infra-red singularities are present
are found : for covariant electrodynamics it is
of course the Yennie gauges for covariant gra—
vity theory a gimilar gauge is given. In radia—
tion gauges it is shown that Schwinger's new
gauge has this desirable property <for photons,
and an analogous gauge is constructed for gravi-
tons., It is established that in these gauges
the single particle singularity of the meson pro—
pagator becomes a simple pole.
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1. INTRODUCTION

Althqugh for simplicity one--particle singularities in n point
functions are usually taken to be simple poles, it is clear that due to
the interaction of massless bosons with all particles, the precise
singularity may not be of this form. For charged particles, the‘emission
of photons, and for all particles, the emission of gravitons ensures
that in general the singularity lies at the beginning of a cut. For a
Green's function G, +the modification of the single-particle singularity
due to electromagnetic interactions has been studied extensively by
me thods Whiéh rely heavily of field theoretic or diagrammatic models
describing these interactions 1>¢ Recently, however, one of us (L.8.)
has shown that this limit of G can be determined in a model independent
fashion, by use of a dispersion theoretic representation for G and low

energy theorems to evaluate the soft photon contribution to ImG 2).

For gravitational interactions, a complete field theoretic
description is absent, but model independent low energy theorems have
been established 3)° Thus the derivation of the structure of G near
its single particle singularity as affected by gravity interactions can

be given in a fashion paraliel to tnat for electromagnetic interactions.

The purpose of this paper is to present a unified treatment of
this problem taking into account the effects of the known massless bosons :
photons and gravitons. We make 1little reference to field theory, as our
results follow from gauge invariance and analyticity assumptions. In
Section 2 we set the notation, define the relevant dispersive represen-
tation for G, and determine the matrix elements which are to be
evaluated in the soft photon and soft graviton limit. We discuss care-
fully our approach to the problem of infra-red divergences which bedevil

any calculation of G.

Section 3 is devoted to the electromagnetic calculation. The
treatment parallels that of Ref. 2)° In addition to obtaining the
well~known previous results about the properties of G in covariant

gauges, we discuss the behaviour of G in radiation gauges and show
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that it is free from infra—red singularities to all orders in the
electromagnetic interaction when Schwinger's new radiation gauge is
used 4), In Section 4, an analogous calculation is performed for
gravitational and gravitational and electromagnetic interactions
combined, in covariant and radiation gauges. The gauges that are free

from infra-red divergences are identified.
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2. THB GREEN'S FUNCTION

Our object of study is

G (p) = (A e PX AT IMGTo) R en

The fleld g) is renormallzed and for simplicity is taken to be a spin-

less scalar meson with mass m. We assume that G(p )
dispersive representation of the form

G-(p)

‘satisfies a

Mﬂl
(7 e e T
ml_,? Pe— r* +io

(2.2)
P <<mz
/

" where E(pz) is regular near p2:=m2, Bquation (2.2) follows from the
conventional spectral representation (with arbitrary Subtféctlons) but
obv1ously requlres weaker assumptions than thc representatlon over an

infinite range The spectral function g (p ) is given by

O\(P) (2r' Z§”(p JN) &(@JN}@/[?’"/Q)

The total four momentum of the state IN:> is pgbf Since p? = p§
5‘ 2 Q-{ 2m., the only intermediate states N which contribute to

(T”(pQ) are those containing one meson and an arbitrary number of mass—
less particles. Setting

IND =175 B, ks

where r

(2.4)

is the momentum of the meson r2

2
=m
momentum of the ith

gy and ki is the
soft particle, we have
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2y [ g = .
wp)—j_c«,u: D L (10 guysie Z

> O h-o n, | (2im)3 (2.5) /n
% & (p-+ z b ) <RI G v by b, 0Cr e, e |10

The notation

(fled)g =1,
(%U@}w:.lf4¢@¢ (2.6)

has been introduced. The internal sum over & is a sum over the polari-

zations of the massless particle.

In offering the expansion (2,5)9 we sum over intermediate states
each containing a definite number of massless particles, a procedure
fraught with well-known difficulties. Our point of view is that we
presume (2.3) to be a well-defined expression, but that (2.5) is an

awkward representation of

§7N7<w!.

2 me

Since the latter quantity, considered as an over-all sum, is presumed 1o

be well defined (even though each term in the sum is not), we may evaluate
it by using the representation (2.5) with an infra-red cut-off, for example
by ascribing a mass /LL to the massless particles whenever necessary to
render an integral finite. This mass is to be put to zero at the end of
the calculation. (Thus all quantities which are not identically zero
should be kept finite. They can tend to zero after the limit /}iwé 0 has
been taken.) We shall find, of course, that in general the limit /Q,re 0

cannot be taken, even at the end of the calculation, since an infra-red

68/324/5



singularity persists in matrix elements with definite number of

external massless particles, and in particular in G. (The 1limit can

be taken only in physically observable quantities, like cross~sections
describing an infinite number of soft particlesa) We interpret, there-
fore, this remaining infra-red divergence as a consequence of the lack
of existence of the external number states. However, the nature of the
single particle singularity can be determined and only its strength
depends onIAA. . Moreover, in special gauges, the infra-red singularity

disappears: viz., the limit /M, — 0 exists. Then the single particle

singularity becomes a pole.

Let us remark that our use of renormalized states with finite
number of soft particles implies that the external lines of Feynman
diagrams are renormalized in the usual way. This means that we have to
define G(m2)S—1(m2) =1:=S(m2)G—1(m2), where S(pz) is the free
Green's function with a pole at m2, This definition is relevant only
for external lines and says nothing about the behaviour of G(pz) in
the neighbourhood of p2:=m29 which is our subject of interest. Indeed,
we shall find that in the vicinity of p2:=m2, kaQ) is a generalized
function, and at the point p2:=m2 is not defined in the usual functional
sense. That is why we need the above-mentioned definition for the

external lines.

Returning to (2.5), it is seen that our problem reduces to an

evaluation of < ,§%xwkﬁ,“c,k%:>, Since we must have

(vr (ZV?C)Z*—'— Me 2+ Dk, f(ka)z’s Mt
~, Zlé; - ?f’%'fs " fm (2.7)

o~

(A~
Cammn
4

we may use low energy theorems to evaluate the matrix element. We shall
be able to determine, in the electrodynamical treatment, the first two
terms in the expansion of the matrix element in the soft photon momenta.
This will permit the evaluation of all the singular terms in G(pg) near

p2:=m2, For gravitational interactions, only the first term in the
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expansion of the matrix element can be given. However, we shall argue,
by analogy with electrodynamics, that the entire singular behaviour of
G(pz) near p2==m? can still be determined. The matrix elements are
singular in the soft particle momenta, so that the integrals over k

in (2.5) are infra-red divergent. As discussed above, we shall regulate

them by a small mass for the soft particle.
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ELECTROMAGNETIC INTERACTIONS

A. To evaluate the contribution of the soft phoions, we consider
at the outset the situation when only the nth photon is soft. We

define

To (55 dee, o) = <211, iy ks

We want to consider Tn for ki;éo, hence we continue off the photon

mass shell by an LSZ formula :

*T;q = ?‘t: ‘r;&wq (3.1b)
At A3 ‘
T o= fcwx o' (T @0 by, byt

(3.1¢)

In offering (3.1c), the assumption is made that the renormalized photon
field Apb(x), and its time derivative, commute at equal times with §§>°

This permits the following manipulation, used above
OT PAYx) =T ¢ DA“x) =T *x)

(3.2)

From its definition (3.1c), Tébbris seen to satisfy the following Ward

identity
JQPMVV\T:A\J: - TM'I (Yj /%1..)..'} )’r’nv:) (3.3)

where e ig the physical charge carried by the meson.
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Tn containg terms which are singular in kno These arise for

example from Feynman diagrams in which the soft photon line with momentum

kﬁb and the incoming meson line can be separated from the remainder of
the diagram by cutting a single meson line (see Pig. 1)° Call this
contribution to T, given in Fig. 1, Tbb(pole)' We assume that all
o / A(n ole) A (pole)
contributions to Tgﬁ additional to \p T viZ., Tn—-Tn P 9
are 1ess singular in kn than Tﬁi(p01e . (The precise singularity

u (pole)

assumption will be given below. ) T of course does not satisfy

(3.3). However, we may oonstruct eXpllClth a term T‘t’L , less singular
in k;, so that T}A(pOle)

Mo mopole)  —al! O M
—I—V\ - Tm 66 t l T '?V\ (3.4a)

b

! Mo 94%
/A.V»FT‘Va =& _77%"' B /Qati\PT’vw ‘f )

satisfies (3.3). We therefore have

(3.4b)

me R&’:<Q

(3.4c)

Mon

K = —kyy, GNG | (3.5)
(75'£$AAVN V

The regularity assumptlon that we need is that Rb/ is sufficiently well

The last equation above is differentiated by k to yield

behaved so that ki (0 R‘/ngk ) vanishes as k‘, goes to zeros
viz., that R vanishes., The above regularlty assumption is weaker

ia
than the usual one which requires that T (pole)

be the fotal 31ngular
contribution. to T;t so that Rn is analytlc at k 0 and therefore,
according to (3.5)5 of order kno Th;s weaker assumptlon allows us to
establish the low energy theorem to all orders in e, rather than just

to lowest order. We return to this point below.
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A
No information about R, other than (3.4¢) and (3.5), is

available from the present treatment. Making the above-mentioned

regularity assumption concerning R;ﬁ we conclude that the portion of
Tﬁg which can be given explicitly; viz., T;%(pOIG)-+T$%,,
TS‘ up to terms which vanish as kn goes to mero. Therefore to the

determines

same degree of accuracy we need to give Tg’(p01e)-kT;L' only up to
terms which vanish with knc In the following, we shall frequently use
the symbol Ri, i=15.00.9yn 1o signify a remainder term which vanishes
as ki goes to zero. Repeated use of the same symbol does not imply
that the remainders are equal. Occaslonally we shall encounter ambiguous
quantities of the form (ki/(erkn+ki))o We shall lump these in R ,
because they go to zero when kn goes 10 zero simultaneously in all

its components, which is the only sense relevant for our purposes.

TéL(P01e) is given, according to Fig. 1, by

e (pols
TP = T (b ) Sttt ot B,

M

(3.6)

Here,/\ n—1(r;k1’°°°’kn—1) does not contain any one-meson line with
momentum r+k ~ and coincides with Tn-1(rgk1’°'°9kn—1> continued off

the r2 mass shell (by an ISZ formula for example)

—[—;ﬂ:*( /\6\; /él/‘- ) '{)éﬂ—'l): /1 n-i (/W) /@L,--y kh-t)

e
I‘L(r;kn)S[Zr+kn)%] is exactly T, (r;kn), the one-photon matrix

2. 2

Y=W"

element (3.1). The function IAA(r;kn) is written in the form

—:Z: " (¥f} i%?vﬂ ) = (ZZ"T"% k?} | (H”E; W & (*‘%'kl}l 4%«%)
/ " (3.7a)

+/&M/3, /YZ:}’VI; .[‘5‘#%}2} ,éa) .
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10.

I coincides with the electromagnetic vertex function, when the meson

y [}
momenta are on the mass shell : 1°=m°s (r+k)¢::m25 [This may be

verified, for example, by comparing the diagrammatic expansionsg of T1

and IM';] Therefore it is true that
L2 > 3)
ig( (3.7b)

(3970)

From the Ward identity for Tp, (304b), we have for the case n=1

§E>( [ k*%WN:& ) l@ ””"AA'(¢~ fe ):: e {R Ifja ¥ V-5

(3.8a)

hence (3.7a) and (3.8a) imply

floe (ereie €)= e k= gfus o= 4%

e
2k + e (3.80)

Therefore

5 ([ k:’f”f} 2“):[’“'(\,\_/‘ j?{) _ 24y @eu _

N

P -
Y-k vk 2y kT

X gl rreers k?

Since the last term in the above vanishes as k-0 in all its components,
M (pole)

the final result for T
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11,

Mypﬁﬁ ﬂﬂ2v“+kk
“—(_Vq - &

. M
Next we determine Tn . According to (3,4b), (3,6) and (3.8a), it

iz sufficient +o take any Tﬁb' which satisfies
m' T
/&)&V\ n (T,"p‘-)ﬂ_/.u}%m): e Lﬁq(ﬁ%,/m)l@m—l)
| (3.10)
—_— //\ n-| (’Y’+~t€»m)' iéi4-~-} g& "1 >;:J

By use of the intermediate value theorem, /\ n~1(r+kn;k1 yooe ’kn—-1)’

igs represented in the form

AW“ (T+(@“j QQL)- J &’m—-!) :W" (q{,’ /?ei/»--} /%m-!)
e ' (3.11)
+ /&L\f\ ngjléﬂt) /‘h*l [T%le&’l/' ’&’IIN) ’bm-l} Je :/L\'}k’

Here k¥ is an intermediate point for k. From (3.10) we see that it
is sufficient to take '

—_—

_ . To
"o QL@-@n/\wﬂ(ka)ki)“‘)k“")

(3.12a)

‘Jew’:&?:
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12.

We recognize that

@% Am»: (,T*' J';Qn' Qn

M

% (3.12b)
- ‘(:i" /\V\~1 (\{J}' ‘&’ /&’uq)/
“0 T

’J_ill‘, _x/"
{

Therefore inserting (3.11) into (3.9), and adding this tc (3.12a), gives

oy ! ek
“7r‘/@tl{f9 — 27T d—i%bq “7" +
ol e o ki

T””%V Q
=9 A

(3.12¢)

[

Nk
s 2
Y =mTyrs

The function /& .y ig a function of the invariants
2 1 i -
/Y~' %lld‘ [ Y’l /&" < L;'. ! '— -
) : ) & ) ; ,kb ) €€, f ¢ J= (.. h-1,

The derivative with respect to rl/ can be written as a derivative

with respect to the invariants

v b sy

N

0

- =2
@~ =1y Loy ie* c T o T el
i o~ (3.132)
2, 9 /\
Q' L P
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13.

We now let k* go to zero, except in the last term in (3.13%2), we keep
r'2 = r2+<f = m2+§', s0 as to avolid an infra-red divergerice° Thus we

replace (3013a) by

2,2 A, 2w, 9

c @€ C TZmr Gy N7

T om?rs

(3.13b)
= oy T )
%g:; ¢, o {vw-x + 2, = /«
cY.C Ch> h-1

- z
= W +E

The second term does not contribute to (3.12¢). Thus the final result

To= A+ 2B )T + R

An= e [2rrfo ) e,

oYk, + kf’ o G.14)
. ‘
NS e 3
“ (pole)

M
We have derived this result under the assumption that Tn—-Tn

ig sufficiently regular so that Rn goes to zero when kn does, This

assumption is justified by considering the diagrams that contribute to

A 5)

Tn. Moreover it is known that to all orders in e H

T = e LEn T+ ’
Al = ny TO(1) (3.15)
ko ST, o

t Gﬂeh f/@j g?h ,
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14"

Comparing (3.15) with (3.14) and recalling that R~ 1is assumed not to
contain () (1), we find

D ~ f
hh = L \/\ [,Q %V) . (3.162)

If we were working toc lowest order in e we would expect Bn to be of

order kno Hence we may rewrite (3.16a)

O€[€V\+ (D) e {&”}97/ (3.16D)

In the above we have kept terms of the form é;nnk that is for

n?
the sake of generality, we do not impose the transversality condition
2,nokn==o, The reason for this is that we shall want to discuss covariant
gauges which necessitate the presence of fictitious timelike and longi-

tudinal photons.

Formula (3.15) was derived by use of the condition kn <L ki,r;

i=15.0.9n~-1. Tet us now expand T under the restriction that

n-1
k (Kk,_4 k;yr3 1=1,...,n-2. We use (3.14) again and after some
manipulation we get an expression in kn and kn—1 which is symmetric
in these two variables except for a term of the form

% n- | ?vﬁ-l /
<BM ’ T Bn j A N —1 e (3.17)

However, this term can be easily symmetrized by replacing the quantity
rokn_1 oceurring in (3.17) by r°<kn+kn—1) which is legitimate since
kn<< 1%%4" The resulting expansion for Tn ls now symmetric in kn
and kh?1 and is therefore valid for kn9 kn—1 <L kigr; i=150..,4n—2z

irrespective of the relative magnitude of kn and k

1 Repeating the

argument for all the photons yields finally

[A], | 1+

(3.18a)

< A A
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15,

EM - - e /&m¢f; si o TE
¢ _ A R | B Rtk I
] "f-(lw-!-?)-\, LA Tl ),

(3.18h)

The first term in (3a18a)9 (a) is the well-known factorized contri-
-

bution of soft photons in any process . This expression arises from

diagrams where the soft photons are attached to exterral lines. The

7)

Bremsstrahlung low energy theorem. It shall be seen that this term

second term is analogous to the Cj) (1) term given by Low in his

is irrelevant for ocur result, and that the modification of the single
particle singularity is determined only by the first term (which
containg a portion which is of the same order of magnitude in the ki‘s

as the second term.)

B. We are now in a position to evaluate (205)5 For this purpose

we shall need ITHIZ which is of the form

_ . > Y Dy ‘T”«% 2 |
- (Az)m 114’ Lim T O-Z k"/ﬁfé—)i

¢ J
— (T, — A
() (2%, 1) AN, O(k¢;) (5.190)
- ¢ o, (fsj
a = e cY- ¢ ) 2k ¢
2role v fp* / = € ok r kL (3.19¢)
- ' : - .
TV\/ = (ﬂsz\ifZ—gf >3 B (5. 198
| L e 5«4) @}‘“C‘J' T
+ 2 0k, .
C N
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16,

Therefore, from (205), we have

TpT) = Uilpr) ¢ () (5. 208)

pv . e
Ul{p2) =] <x e“P*“’«- 1YY |
P g S = p Z_VT
y ;% ki (3.20b)
X g 'k ¢ " ) i) Z)
[aiT)u ¢ n
X (a? dr
Jn [ 1+ ?’ ou]
AP L prpr (e e S5 L
J(am)¥ J 2y° P 2l (3.20¢c)
1k (kv AN
: (gfa;je sieren’s 3 ),
a2 & a‘i‘f‘ F 2R gl ]

We have used +he 1ntegral represbntatlon for the delta function appearing
in (2.5). ©Next the polarization sums are performed by defining the
polarization tensor 7T‘Mt/

(%.21)

(3.22a)

(gl on( (£ ev52)o g0,
g Ome €18 e ),
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17.

G () [d5, op (e 3

(G”\\”u 21‘0 w N
}j( '3/f£1 27 (1 @(b)g(kg 1
! ‘ (5\77) 1
. o n-2
e (&’ﬁ}3 M"'J&ﬁ
(3.22b)
g(e)=e> T, T 0] .,

”"““..r\ /-~ ’ 27_.-—

f“l

S N OV

! r-C \J ‘
%[k) ,,; /‘m ‘ i/ ?FMJ///)
vk ;zwé?»j 2
%¥ :""QY' JV@(%W@l Yt 2 g ‘ 6
Kl PG Oy
| X el o e
: 33\: ‘ . ? - 47 T (Q% f.éy j
R ﬁgfbg“'k} "
,<fng \jw)/%?L _ )ﬁ/ %\
for

68/324/5 (3.22¢)

(3.223)
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18.

H’Z"“jdke“w @/?/Z%é) »

Xk

The sum over n can be performed by noting that

(§M% %{)ngJWWﬂW>:Gwm

n
{:‘ — g CQ”‘Q Q\“@) J/(&}@(bv)@’(?)‘(ma)
| [2T7)> .

We also define

FZ Soﬂ"fg !‘WJ )é//a/ V’rlf//”'/g.j

(AT)S (27 k HGJZ(B 24)

Then (3.22) becomes

A ic/\&. -1P ¥ éﬁfiu (R o -
U‘—(‘Dz) /37‘:)7{z ‘O 27° € e LHE’J(B-Z%)

FZ(FL) i V()( e“f d*@lﬁ( '"[# %2%)

/a7r/Y
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19.

To the same degree of accuracy, we can exponentiate F2° We rewrite
F1+F2 in the following form, which differs from the previous expressions
by irrelevant terms

F= Fr -, f_c_Lr. 9“”5(;98) 0(k°)

(27)3

_ _ (7;26)
J. e?. ]:21"4—‘(’]“ L?Y‘*'k’]vﬂ‘MV 7 °
- L2v -k + b?]°
Accordingly, (7—} becomes
[T] = f J S ‘F‘* 0} ~— {,lT“% e Fd
(am )M ) 5o (3.26D)

It is recognized that the quantity in parentheses in (3.26a) is just

(_.—v- . . . : 3 ‘.
b Age That 5, 1s unimportant will emerge below. The significance

N

J% F is clear ¢ it is

S x| Pl >l kI QFIR D
@WVJ\«%M
where the matrix element has been evaluated in the soft photon limit.

Equation (3,26b) is yet another example of the exponentiation of soft
photons.

cC. To proceed, we must give a form to ~YT“AV . We discuss first
explicitly covariant gauges, and we denote these with the subscript c.
When the quantization is carried out in an explicitly covariant fashion,
as in Gupta—~Bleuler formalism, one must introduce fictitious timelike
longitudinal photons to define the complete set of photon states, with
the special Gupta-Bleuler metric. Therefore the polarization sum (3.21)

has. the explicit form
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me Z@ EX g (327

2 : . .2
(?/\: -1 when g} = 1, @) = 1 when 5> = -1).

As we are unwilling to introduce any external vectors, we must

M= = (qmr o b et k) 4
] phad

/qz" (3.28)

[in the above formula we ignore the fact that k2==09 we shall give

meaning to terms involving ]z«:"2 presently;]
reflects the

The function d(kz)

q number gauge invariance of the theory under the trans-
formation .

ATV = A%(y) VALY

(3.29a)

It can be shown that d 1is given by

2 f/;ﬁ/&”—ﬂ(x} /l/O)/of?) (3.29b)

where /\ is the q +valued gauge function with transforms AM from

' the Landau gauge (defined by Q&i AM' = 0) 8), It is also true that

d must be constant, independent of k2,
04 = j/LL’, as in (3.2).

to

if it is required that

The photon polarizations transform according
$T—= ML (VT -1) sl b
“@1 (%.29c)
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21.

and the free photon propagator has the form

DAoL [ghr M o//{e*/(a”éj

0 b1t

(3.294)

It is seen that (3.28) is the most general, properly normalized,
second rank tensor consistent with Lorentz 1nvar1ance, depending only
on ,k. Therefore we may consider (3928) as the definition of 4,
avoiding expllclt reference to gauge transformations of the photon

field.

Collecting (3.26b) and (3.28), we get

F oo {de k% g0
¢ it 6(k°)
(3.30a)

(2*1-’(’ JL___) + (O{WZJ")_‘{(_EJ
(24 +R¥)* le ™

We must now give a definition of the terms involving K2, It is seen
that they always appear in the comblnatlon J (kz)/kz, therefore it

is natural to set thls quantlty equal to »—é’ (kz) The correctness of
this prescription can be verified in the follow1ng fashion. Calculate
the lowest order meson self-energy diagram, where the photon propagator
is gauged as in (3.28), and take the imaginary part. This expression

is the same as the one given above with the interpretation ¢ (kz)/k2 =
= - 5}(k2). Pinally we must introduce a small photon mass in (3.30a) to

avoid infra-red divergences. Therefore (3.30a) becomes
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22.

“@lfcl 4 @((a’§ tho % T(@g«/wa)[ﬁ +~__L}
('QW)3 ~ W)I' - I
- lgl et Cp %. @;,(&3 Pl‘W‘L T b%» K S

o (2 - vkl T
— & ez (ol fu?)- o’”f’ N kx
@/uw. ( (u?) l) J{mg 6(b )P k ‘(k?, 3J (3.50D)
—_ — d !@ o «
= ¢ Ly yﬂ
j(;ﬁ?’ @(k ) ( /"’} Py -F_L )Lp//&/)Z
— e[ d(e) ‘/ fcj‘% @ k,o flox Son?
( @/M S (k) o' ®* /M}

It is clear that d'(0) is not important compared to the other terms
in the brackets of the last equation in (3.30b). Hence the final

expression for Fc that we need consider is
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F=~ej [ Gk prRX S MZ%( o
- (.zu) >p 5 7 ) (v e} v [(3.31)
._.ez (d(l’/}") :@"Zfduégg[.k%) e!‘b)ﬁd“{k,?_/ue)l

It is understood that all terms which vanish with M 2, 0 are ignored.

The evaluation of the integrals to determine U 5 is described

in Appendix A. The result is that (7 , 1s negligible and

i (gl
B ~ !"'(ﬁ) (3.32)
¥ L"'(é‘*%)* +ox'%,w/xj

—
Here X = e2/47}', @ = (a(0)-3)/27, C is Buler's constant, | = is
2 -2 h3

the gamma function, x=p m -1, and X, is the generalized function

defined for example by

: 00 ‘ %
ol 1 (Tdeent¥s oy
QT oo (XHOJ}/ [-,/a,) | (3.33)

Tnserting (3.32) in (2.2) yields

G(? - 7 T, pEm | ot
| ()) (lf)?‘«)mz)‘uﬁ [l (2, 'S’} ‘ + O W/éj

£ o= pPeF T (p),
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In this formula we must have B-( 1, otherwise the term proportional
to (pz—mz)P =1 becomes of order consgtant and such terms are not

significant. The term proportional to (pg—mZ)? may be kept only
when (%< C.

In connection with the above formula for G(pz), we wish to make
the following observations. The first term in G(p2)9 i.e., the most
singular, arises from the most singular term in T : viz., the term
that goes as 1/’1{1,“0?1{1@° The next term in G(p°) involves contri-

butions from the next term in Tn: viz., the term that goes as

/ /
7 oo F
éz“‘ /?-"’ é—”—#S-*'kw éi /Pwl

However, a portion of this less singular part of Tn does not contribute

to G in our limit. Specifically it is seen that that part which leads
to H1,

terms Bij in (3019a) are not important. The entire singular portion

(3.22e), is irrelevant., Tracing this back, it is seen that the

of Gy, 1i.e., the portion given above in (3.34), is determined just by

An’ viz., by the approximation

[y = € (D+k ) ¢
2¥ e Fk® /n

(3.35)

This is the contribution of photons emitted from external lines.

For d(O)::S, we regain the result that the propagator has no
infra-red divergences. In that case 1t is seen also that the single
particle singularity becomes a simple pole. If we take d=3, we have

the Yennie gauge in which the free photon propagator has the form

f

My T v
Dy | = = | g2kl

ol 3 ’/e?w‘-fé ot ¢« (3.36a)

4]
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This rather arbitrary value for d takes on a special significance in

position space. The Fourier transform of (3,36a) is

~—

‘ (am) - d\g - Yp® x-ro L XL_/

(3.36b)

%k o D - g ]

Therefore the photon propagator is transverse in position space, in the

Yennie gauge.

In conclusion, we wish to point out that covariant gauges require
unphysical intermediate photons. It is well known of course that the
Feynman gauge requires timelike and longitudinal photons which, however,
remain on their mass shell. The present investigation shows that other
covariant gauges (d(0)#1) require timelike and longitudinal photons
which are slightly off their mass shell, so that a differentiation with

respect to their mass can be performed.

D. We now repeat the calculation in the special radiative gauge,
recently used by Schwinger 4>; The covariant calculation forced us to
introduce fictitious timelike and longitudinal photons. ILet us now
insist that the intermediate state photons are physical. Therefore
they are described by two polarization vectors ?”ﬁ 5 ;% =.1,2

>

which are constrained by

Moo o
/&M,?}wo L= ©

/
(3.37)

. v /
(?Mv ?¢'5>,= *C§}>

The polarization tensor, which we now write with the subscript R,

satisfies, by virtue of (3.37)
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p
[/ o D sl
[3 - N o
P~ (3.38)
7’/‘/‘/3\/ - -l//m__
R | /7-/%.
(3.%9a)

k‘ T/\A v’ _ O

pat

7MW ' v v (3.39b)
4 /R }7;; wo T 77;2;
M ‘
77}% W= T < (3.390)

—

_v(3_.39d)

7’/‘4 v _ )
It is easy to see that /R cannot be a function only of k. We

therefore must abandon explicit Torentz covariance by introducing another

v
vector M on which J R

k#£0 if (3039) is to De satisfied. The most general form consistent
with (3.39) is

may depend. One can verify that

77%K:¥~3MV'f, ﬁMPV* @tbﬁ;— ?z v

9.k @‘_’E)z ~ (3.40)

[4

explicit rotaticnal invariance, /? M must be timelike, and without

loss of generality, we may take ? 2 = 1,

>So far 7 M is arbitrary as long as # »k;./_o. However, 1f we impose
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Combining (3.40) with (3.26a), we get for Fp

r 4 ey ? mv
R (QIT f{e«@ (l(e) E% Yv T * (3.41)
(v e)?

—_—M
With the general form (3.40) for A/ p» Fp and hence G are infra-
red divergent. Wg do not examine the general case here, but further
restrict é)ﬁh' by an argument which leads to Schwinger's form for
mv
VRS
/ad

Recall that /é arises from a summation over the intermediate
states which contain one boson with momentum 1, r2==m ; and one o
photon with momentum k, k2=:0. It is natural to require that / R

depend only on the momenta already present in the problem. Therefore

we must have

?7’“ = ol S é7 é}AL
| /76‘/“(“# br )= G

where a and b are arbitrary constants.

1) M
Schwinger's form for is

Tty = =374 B2 8747
Chwinger e (3. 43)

where

— o
Aﬂ = /"k“/ @) (3.44)
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This is seen to be just (3040)9 when use 1s made of the formula
ToM M
k™= k- 20 (k) |
- (3.45)

. M
in the p rest frame. If we work in the = rest frame, we may

set zZ‘L’ = rﬁymo This makes (3.43) equivalent to (3.40) if b is

chosen to be zero in (3.42)0

ffﬁA1V/
With the choice (%.42) for ;?I‘L v Y Ty // g =0, hence
FR==OO Therefore from (3.26a) /LL
U-/P?) = cf//ﬂ*mz) (3.46a)
and

G(/ﬂz/ = 4 . (5. 46D)

/0 ?_ﬂ__ mw 2 # ,"0

Therefore we have established that in the radiation gauge, with e

chosen as above, all infra-red divergences vanish. Also the single
particle singularity of G _ becomes an isolated pole. This state of
affairs has been remarked upon by Schwinger 4>, however, only to lowest

. 2
order in e .
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GRAVITATIONAL INTERACTIONS

A. ~In the present Section we discuss gravitational interactions and
gravitational and electromagnetic interactions combined. The treatment
follows closely that of Section 3. Hence we only outline it here,

emphagizing the differences.

The low energy theorem evaluation of Tn’ when gravitational
interactions are taken into account, follows that of Section 3. However,
we are now unable to give Tn to the same degree of accuracy as in
electrodynamics. Recall that in that instance Tn involves terms of
order k;q, co?stant and knloglgﬁ and that it is possible to give
exactly the kn and the constant terms. In order to do this, it is
necessary to separate the singular contribution to Tnn In the electro-
dynamical case this singular contribution is easily determined as it
involves for all n only the one term summarized by PFig. 1. In the
gravitational instance, however, at every n}} 2, there are additional
graphs arising from graviton exchange which contribute a (j) constant
term (see Fig. 2)° These graphs are necessary 1o preserve gauge
invariance; they reflect the non-Abelian nature of the gravitational
gauge group. We are unable to give a closed expression for these graphs

for arbitréry N

Therefore the only term in TP which we can give precisely is
the most singular. The determination of this can be accomplished in the
same fashion as in the electrodynamical case, exploiting gravitational

Ward identitics 2/

. An alternate and simpler way to give the most
singular terms in Tn is to recall that this contribution arises from
the diagrams in which the gravitons. are emitted from external lines.

3)

This'expréssion'hag been evaluated by Weinberg and is given by

. _(A)h—r— Luns cinganlos= fermm
A

(4.1a)

o | .
- @r6 )% (armeerireg,
2 S P A R °
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Here G 1is Newbton's constant and ngV is the graviton polarization
tensor. Since we have given the most singular term exactly, we can again
give the most singular contribution to G<p2>lp2mm2° Only a part of the
next, less singular contribution to T ~ has been given in (4.1): +the

part involving

M
2\’”/‘@\/ T k

2v W+ k=

However, we recall from the electrodynamical investigation that the
second term in the expansion of G(pz) near the position of its one-
particle singularity is determined just by this contribution from the
Tno We therefore make the assumption that this state of affairs
persists in gravity theory, i.e., we assume that A is sufficient to

o
determine the second term in the expansion of G(p“).

The argument now proceeds as before to the conclusion that the
contribution to the spectral function from soft graviton is just the

exponentiation of the lowest order result.

Go(p2) = I e TP (P 1K F

(&) | 270 (4-22)

T (dlk ) ote) o
(377 )3
AT G (2% oY) (24 e )oree oo P r i)
(2 -k + k®)*

\n—/\;\// Xp — Z Spv 5%/3 (4.2¢)

X

4.2b)

Thyag
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B. ~ If we perform covariant quantization, the most general form for

71/]\/ S |
T [y gy -9 g ]
%‘J[ﬂ““ 3 gugee]
(w ] e £4tgr] e
f 0(3(@? [!?% V/a_f %j/“'li[ﬂ%ﬁ V“L/é f /f]

o = @ = |
- 7" i /@ é} v é o A,ﬁ

£3)*

C In: offerlng (4. B)X;e have “imposed only symmetry under lnterchange/ﬂ =14
el () {g /4(/4)0({3 The d; s, ‘are related to the q number gauge

transfor‘matlons of the theory, l'owever we do not pursue ‘this' conne/cg:btlog?
Y A a% =l
but- merely use (4.3) to defire the d tg, With this value for // [

P becomes

=76 | J%VQﬂn)Jé/F/@X

Jrar)s

[():Zw’k(ej (i*d [k?ﬂ)'f (ZTHQ (d} k*) +o(3(kl)3

(2 ktk*)? (4.42)

| + Zoéq(éa) [zf.(ﬂf/bé)j, ,_
TR R
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The singular expressions é; (kz)/k2 and ij(kZ)/(k2)2 are inter-—

preted as before by

Iler) _ _ 5()
le'?,.. )

) _ 1 gb) .
() <
A graviton mass />\ is introduced to remove infra-red divergences in
(4.4a). As before, it is found that derivatives with respect to the

argument of the di's do not contribute. Hence the expression to be

evaluated is

F =4 Gn (ke o) )( "k 6k)d1-5)e ~\a><LMe zJ

)2 Tk

)
. %’ m ///o)fcﬂ/o/)% f(i% g{/o")or/b%})e'“(if

F UrGi*dyfo) ©° J% Bk Sl ety (T

@) | ) "

+ 87 G dly/o) @ [k el ke
(D/\ /27 )

(4.5)

The evaluation of integrals proceeds as in the electromagnetic

calculation, and is described in Appendix B. The result for ¥ 1 is
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‘ | . / Q{-’_—C !x(s/—‘f ) /j
Tl e VL]
O('—; - GML£/ Fol) _“‘77/ O/)L’J  (4.6b)
@/ —: flﬁ—z [/f“of,*O/a ,_0’3 ,oﬂy (4.6¢)
s z

The Green's function »G(pz) becomes

G l - ~m2
[(0 ) (p° /MHO> ﬁoéle.é (L’](Ma)

Z )\ @ ﬁ F[!‘“’(‘;) (4.7b)

— !
We recall that the term of order (p2~m2)' 1+e is obtained
- t
without any assumptions, while the term of order (pz—mz)e requires
the assumption that the situation here is as in .electrodynamics, viz.,

that no contributions to T other than (A)n are important.

- 1
*For the (pz—-mz) 1+P to be significant, we must have /:7;' <1
!
while for the (pz—-mz) F term to be significant we must have (3' C 0.

It is seen that the analogue of the Yennie gauge here is

F)':O or
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J = HY+9d, - 24, -?J o (4. 22)

TMVO{F Lawﬁwﬁ j%“j"/‘*j”j/"(*
— 5 bR )
gyt greg e, i B

| %-({d;l Wév(go((g L/é.%e/é)?“)

RS (g e e)]

Fos ds [W" [y P AEEYE)
E (9B 14 e )
, 7‘@"“ (77 - v ekH)
PR (G- vete TR

In this gauge, infra-red divergences vanish, and the single-particle
gingularity is a simple pole.
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C. Next, we perform the calculation in the radiation gauge. We
require the gravitons to be physical. This means that we describe

them by complex polarization tensors of the form

s = gug¥

go((g — (9¥°(g\€é (4.9a)
M= O
é{"\g v, (4.9v)
£ b= b
“ 2
7/’#‘//"@3 Z s M sV Eo(;c—;{g% (4.9¢)
N R S S\

(4.10)

Al
The conditions (4.9) imply that / 5 satisfies

MV AL _ M4, MY, B T74R, v |
7/’7/6 (£* 7/’/2 /j):: 7//3 ﬁ: ///gi/&m (4.11a)

" v a
é’q 77/2/ ﬂ = 0 } (4.11b)

A XB
Wﬁn =0

(4.11¢)
77441() e - —7'/‘44'4—
K v < (4.114)
A 7»(5 7—; '(4,11e)
7]—/’“’} -')—/“’“((S,zra’: 7)-/‘4%*0/\
R e TR
(4.11F)
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7

In the above, the two index object /!, is defined in (3.38) and
fal

(3‘40)u Conditions (4,11) imply the following most general form for.
the polarization ftensor

TR =g [mymEmemt-Teme )

Inserting (4.12) in (4.2b) gives

f-

F% - O“é ©(@)Jﬂ? )e e %)’6’ (fr TW/HV(A, 13)
(v w)*

Hence with the choice (3.42) for ﬁjvﬁk , we get Fp=0 and

Q“’[Pz) - C/_\/f) 2 _m ?/ (4.14a)
ﬁ (;;/}o‘i) - / o ~ (4.140)

f)?——vWJ?;‘—/O

This establishes the result that in Schwinger's radiation gauge (genera-
1ized to spin two massless bosons) the infra-red divergence is absent

and the single—-particle singularity becomes an isolated pole.

D. In conclusion, we consider electromagnetic and gravitational
interactions combined. The most singular contribution to G(pz)' can
be readily evaluated. To obtain the next term, it is again necessary
to make the assumption that the situation is the same as in electro—
dynamics, viz., that the entire contribution comes from the photons and

gravitons attached only to extermal lines. Making this assumption, we

obtain for covariant gauges
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7p) = /—V—;—)fg S ’J )]

of = o o fo) (4.158)

(3”‘ :_Y'F,L(jl

Clpy)-_2 L, o
7~ o 2/—/&)/%4,
i + O comstarnt

and

It is clear that in Schwinger's radiation gauge we have as before

T pe) = I e ) .
G?(faj.: / °

P=mirro
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CONCLUSION

We have shown that gauge invariance and analyticity assumptions,
inasmuch as they give low energy theorems, are sufficient to determine
single-particle singularity of a propagator on the presence of massless

pérticles° In select gauges, this singularity becomes a simple pole.

This treatment can be easily generalized to the case of non-
zero spin particle propagators, as well as to the case of a single

particle singularity of scattering matrix elements.

The latter objects are of course gauge independent, hence an

infra-red singularity is always present,
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APPENDTIZX A

We evaluate the integrals (3.31), (3‘25a)’_ and (3.25b). Although
much of the integration can be performed exactly, we shall frequently

approximete, keeping only terms which are relevant for the final result.

We seek
( ?) = | d'y Al kcj)gﬂr* v O
U B a7 e
{ f) (.317)\’ 2"{_0 d; (A.,'l).
where

e P (14, +HL)

We evaliate the above in the p rest frame, by writing the integral in

the form
(7((3?,) & ,cV% o PR j 093 Qi"-"_"ff‘*ﬁ“
(;.uT) N [27—)3
ew{'o)(l’) g} ‘ | o
2Y° {

(j\ 5 is a function of x, I and XO. We expand

Yo %O ; ' | .
Z'TO d.\ o o

in powers of P keeping only the first three terms in & " and only

the first term in T .3

X the remalndep“belng irrelevant for our purposes.



40. .

21—0 ¢ > m

5 (e 0\ T
T — ([Y “";)cl—"

Zm

All quantit:‘ées are taken at r=0 after differentiation. It turns out
o~

that the third term in the brackets and the second term in the paren—

theses are unimportant. Hence, performing the ,5 integrals gives

“*PVX I
R
‘[ | (4. 4a)
X[d\ d[ﬁ()*‘" 9 J/K)'a g-ckvd/%)gl

3 XY ok L 2

Cr?(fa)':z

—ou (.w

—oy (xT)

VD/((Oa)x @J& g("" (C&s g:J/X) e

The x integral now yields

G RN e

~ou (A7) T 3 m Qe
— g_‘é_aj \7: EH/ (4.5)
Zim X=0=x

KB(fW==CDg&i.ef”“F”” 82}
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To evaluate (A°5), we need the formula for FC° This is given by the
observation that from its definition P is
c

, 0 '
Fe= et [ nds DT (g, )
—¢* Jzﬁc?oa D*—(H"(“"J }*2)

mierldier] B Dt 4)

(4.6)

where D+(x,)k2) is defined by

. + . } \1 e ! )

D*(x, 1) = | db () IIEw) 2 “r

= L s Ie) - p (1) [}\/ e (4.7)
7 o (ulR)

SN )] T AL ) K fn
o | 2/-n2 . '

In the above, & (x°) = x°/|x] and J,y N, K, are Bessel functions.

In (A.6) only terms which do not vanish with /42 are kept. The

evaluation of (A.6) proceeds by exploiting the explicit form for D+o
We find

FR/7324/5
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g wz[g ”Wﬁ el *‘QC']
e ")e(m =)

?.’ )(L

(e ) el -)

1+ C-—l—:—zf_'i} G (x?) &(x°)

(4.8)
z(i"‘ )—-—-—-—-——' 5
s "3 M/‘)Wﬁ ug If—{;-xy

2.

—

é?mm l/—;»[(} IFEEECER)
-6(T-y) |

(-\_J -
With this value for F s we determine é;:f 1 and <}~ o°
bution to U"’Q from H1

The contri-
vanishes by parity while the contribution
from H, is of .order [p —ml quog]p —m[, (@E (e2/8172)(d—3)),
hence it is negligible. Inserting (4.8) into (A.4b) yields a one-
dimensional integral which can be evaluated with the help of the

integral given in (3.33). The result them is (3.32).
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APPENDIX B

We;need‘to’perform'a calculation, analogous to that of;ApbendiX A,
in order to evaluate (4.2a) ahd (4o4a)° The approximate evaliation of
(T} proceeds by the same device of expanding in a power series, as in
(4.2) to (A.5) above. The evaluation of F, involves, in addition to

the three integrals discussed in (A.6), integrals of the form

T O (L% oe)s(esr)ee o,

(3T )

op\% @({Qo) (b >\2)v;(l@ )4[ k)

[’W) (3.2)

These may be recast in the form

I = B__ (Q,.. D+ +of ¥ *
L o« PN (X ’ » ) (B.3)

T = -0 . Nt .
- 2 R— C :
Caduon (xete, 3

(B.4)

where only terms which do not wvanish when o and >\ go to zero are
kept.
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We find

(B.6)

with the results FC and (7 ) can be evaluated as before.
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FPIGURE CAPTIONS

Figure 1 : Tn (pole) in electrodynamics.

Pigure 2 : Contribution of graviton exchange to T2°
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