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ABSTRACT

The low energy theorems for
the scattering of massless bosons are dis~
cussed. Photon and graviton scattering
are examined in detail, using techniques
which make no high-energy assumptions. It
ig shown that the low energy form for.the
amplitude is given by the dispersion theo-
retic Born approximation, and that the
energy dependence of the neglected terms
is determined by the spin of the scattered
boson. It is demonstrated that Schwinger
terms and sea~-gull terms do not cancel in

gravity theory.
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I. - INTRODUCTION

Recently some attention has reverted to the exact low energy
theorems for the scattering of massless bosons'off messive particles.
These theorems were first proved by Low 1) and Gell-Mann and Goldberger 2)
for the case of massless spin 1 particles scattering off spin % systems,

3)

vizZz., Compton scattering. Pais and Singh
' 4)

have extended Low'!'s consi~
derations to higher energies and Beli> has shown that Low'!s approach
does not contain any high—energy eesumptions. Abarbanel and Geldberger 5)
have given a derivation;of the Compton scattering low energy theorem from
an. 8 matrix point of fiew, using the techniques of dispersien theory.

Gross and the present aﬁthor 6> used the methed of Lbarbarcl and

- Goldberger to give a low energy theorem for massless spin 2 particles

scattering off spin 0 systems, viz., graviton scatteringe.

The purpose of the present paper is to re~establish the
graviton scattering low energy theorem by a method which minimizes the
assumptions of the derivation. Specifically we show that this theorem

follows, in a model independent fashion, from gaugevinvariance and from

- assumptions about the'analyticity structure of the scattering amplitude
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at low energies. The present argument differs from the methods previously

used to establish the low-energy theorems in that the dispersion theoretic

'5),6)

to illustrate it in a simple application, we first use it in Section II to

results are established without use of dispersion theory. In order
study the case of photon scattering. Then in Section III, we give the low
energy theorem for gravitons. In Section IV we discuss the divergence
conditions in gravity theory, and show that Schwinger terms do not cancel

sea~gull terms in this theory.
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IT. - SPIN 1 SCATTERING, THE PHOTON CASE

We examine briefly some aspects of the usual derivations of

5)6)

feature of using only physically measurable quantities since one works

the low energy theorems. The dispersive approach has the attractive
with helicity amplitudes. However, a "no subtraction" hypothesis secems
to be required, since one writes unsubtracted dispersion relations for
the helicity amplitudes with their kinematical zeros divided out. This
state of affairs should be circumvented; as one believes that low energy
behaviour is independent of subtractions. Moreover, the dispersive
approach, as applied to graviton scattering, suffers from furiher short-
comings. PFirstly the study of kinematic zeros requires a partial wave
expansion which fails to exist dus to the long range force between matter
and gravity, which arises from graviton exchange and which leads to a
pole in the forward direction. Secondly the dispersive approach does not
yield the optimal estimate for the energy dependence of the neglected
terms. Specifically the result obtained is that the neglected terms are
quadratic in the graviton energy ; yet an independent argument can be
given to show that they are in fact quartic 6). A final technical short-
coming of the dispersive method is that a separate argument is given for
different spins of the target partiole. As the result can be stated in

a fashion which makes no reference to the target spin, a more unified

treatment is preferable.

The method of Low 1), in its original form, concentrates on
the evaluation of the time-time component of the scattering amplitude
tensor. Evidently a specific theoretical framework, such as the L.S.Z.
formalism, is required to give a definite expression for this objebt.

In addition to the general assumptions inherent in this formalism,
specific assumptions about sea-gull terms and Schwinger terms are made
to arrive at the desired fact that the time-~time component is given by
the time-~ordered product of charge densities. Although such assumptions
can be Jjustified in definite models of electrodynamics, the situation in
gravitation theory seems to be more obscure. Bell's modification 4)

focuses attention on the energy dependence of the single particle contri-

bution ; a program we are unable to carry out for gravitation theory.
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The derivation by Gell-Mann and Goldberger, as discussed by
Kazes 7), exploits generalized Ward identities for the scattering ampli-
tude continued off the mass shell in all the variables. These Ward iden-
tities require specific assumptions about the current commutators, the
Schwinger terms in these commutators, and the sea~gull terms in the scat-
tering amplitude. Alternatively one may assume invariance of the under-
lying theory under gauge transformations of the second kind, which then
is sufficient to determine divergence conditions (viz., Ward identities)
for the four=-point function. Such assumptions can be readily made and
justified for electrodynamics. For gravitation theory, however, we are
unable to gi%é the‘complete equal time commufator of the "currents',
which are the'Sburces of the gravity field. Thus we prefer a different
'éﬁprbach which does not make usé‘of Ward identities,; so that no commu-

tators are required.

OQur approach then is the following. Consider the scattering
of photons, with initial (final) four-momentum and polarization Kk,
*
EX O&',ﬁ, V) respectively, off a target of arbitrary spin and initial

(final) four-momentum p (p'). The scattering amplitude 4 is given by

k= lk'c= O | (11.1)

where Tpuv ig the scattering amplitude tensor, with photon momenta
continued off their mass shell, but target momenta retaining their

mass shell value. The polarization vectors satisfy k}bEL“* = kiv e*V=o0.
Energy conservation is imposed so that k+p = k' +p'. T/AV’ gsatisfies

a crossing relation

JAV (e, k') = _T:ku, f*leh - k )

) (11.2)

~which reflects the fact that, to every Feynman diagram contributing to

T there corresponds a crossed diagram. Gauge invariance requires

gy’

67/1437/5
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that ©)

(11.3)

Our first assumption is that the contribution to T}LV

which is singular in %k and k! (in the precise sense to be given
below) can be identified and explicitly scparated from T”A/ « Call

this singular part Tigie. It will not in general satisfy the gauge

condition (II.3). However, we may add to Tf&i?
in k and k', TLKV s such that T,A“/ summed with T

. pole '
(I1.3). We call the quantity T v -FT’M

a second term, regular

pole satisfies

v the gauge invarient pole

term, and we have

AV PV (11.42)
AL F@’Q f
/Q (7;;\/ + iy )" O A (I1.40)
/é%:t/ (',7- Fole I ) _
AV + 7/;\/ O (11..4c)
/@u //\J/u\/ = 0
, (11.44)
Ny
/@ MV = O .
(11.4¢)



It is assumed that ?ifi?a-T;kv and R 4 separately satisfy the
crossing relation (II.2). Thus (II.4e) is derivaeble from (II.4d) and
similarly (II.4c) from (II.4b). (We construct TPole | gt explicitly

MV v
belcw.) The precise meaning of this regularity assumption may now be

given : we wish to conclude that the relations (11.4d4) and (IL.4e)
require that R/AV be quadratic in the photon momenta, or identically

ZCT0

To see that this is true for regular R/AV , we proceed as
follows. Considering Byxv as a function of p, p! and k, the last

being arbitrary, we differentiate (II.4d) by k* to get

MV oV
R™= ke, 2 R*”
Ok (11.5)

Thus if the limit

«Q-"‘)O 2—~ Rﬁ(\/

Qlo,,

exists, vize., if R™Y  ig differentiable by k at the origin, then
(II.5) indicates that R}AV ig indeed linear in k or identically
zero. The crossing relation or the gauge condition (II.4e) forces RMVY
to be linear in k! or identically zero. Thus it is seen that the di-
vergence conditions (II.44) and (II.4e) trivially enforce R“*Y  to be
of order k and of order k'!'. We show in Appendix A that in fact
R “V is quadratic in the photon momenta. (Since k and k' are not
independent, this is not an obvious consequence of the fact that RMU
is of order k and of order k'!'.) When k and k! are restricted to
their mass shell values, this term is quadratic in the photon frequencye.
Since no information is available about RAY 5 wi conclude that the
ole

- . . - Q . s p ' ]
terms whose form we can give explicitly, viz., QAw/ +?A&V , yield a

result accurate up to terms quadratic in the photon frequency.

67/1437/5



It is seen that the result that the unknown, neglected term
R‘“/ is quadratic in the photon frequenéy follows essentially from
the fact that there are two gauge conditions (II.4d4) and (II.4e) (or
alternatively one gauge condition and one crossing condition). When  the
scattered massless boson carries spin s, there will be 2s gauge condi-
tion 8)'(or s gauge conditions and one crossing condition). Thus we
expect that for boson spins higher than 1, the low energy theorem will

be valid up to terms of order boson frequency to the power 2Zs.

Returning to our discussion of the photon low-energy
theorems, we discuss the calculation of the gauge invariant pole contri-

bution :ﬁﬁ}el+ Ty -
take for Taﬂ/e the expression given by the single particle intermediate
state Feynman diagrams which arise in the covariant Feynman-~-Dyson per-—

One method of doing this is the following. We

turbation theory. The vertices and propagators in these diagrams are
the complete, physical, renormalized quantities. The appropriate
expression is summarized by Fig. 1. Then we explicitly construct

T;“/ s S0 that the sum TBS&F + Tzuv, is gauge invariant. This pro-
cedure, which is carried out in Appendix C, is rather complicated and
uses the Ward identity for the vertex operator, which is a consequence
of gauge invariance but does not require current commutators, only
current field commutators. However, we assert here that this explicit

calculation is irrelevant because our second method, which we now

. s . . o]
. describe, immediately g;ves TiA%? +'T}AV . In the above; we have

37/1437/5

argued that once a gauge invariant pole term has been separated

from the scattering amplitude, the remainder is neéessarily quadratic

in the photon‘frequency. But we can obtain this gauge invariant pole
contribution by simply calculating the Born approximation for the scat-
tering 6f light off a‘Syétem whose single photon emission amplitude is
gbverned by the appropriate form factors, all evaluated at zero argu-
ment, viz., total:charge for spin zerd targets, charge and magnetic
moment fdr‘spin %-targets, etc. That this expression is gauge invariant
is assured by the underlyihg formalism. That this is the entire pole
contribution is assured by the fact that the emission of physical

photons is governed by form factors at zero argument.
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To make the above considerations explicit, we formalize the
pole
MV
Peynman diasgrams of Fig. 1. 7This is certainly the entire pole contribu-~

tion, but it is not gauge invariant. Thus

—— Pele " v
Tow = T (pprle) Dprie )T [prie,p)
P (pp-) D (pe b)) P (p-telpr).

‘argument as follows. Start with T as given by the single particle

(11.62)

Here lﬂ - ig the complete vertex operator, D 1s the complete propaga-
tqr,;_ﬂo.commitment about the degrees of freedom of target is made and it

is understood that (II.6a) is restricted to the p and p' mass shells.
Many form factors contribute to (II1.6a) since the vertex operators appearing
there always have ohe leg off the mass shelly c.g., fﬁM(p,p+k) with
I(p+k)2;ém2. We now note that an expression which is simpler than (11.6a),
but has the same poles and residues as' (II.6a), hence can serve just as

well for Tgfae, is obbvaincd from (II.6a) by replacing the propagator D

by Dgs the bare propagator with a pole at the physical mass. Further

the form factors with one leg off the mass shell may be replaced by form
factors with both legs on the mass shell. Hence we use for Tpoie

A
instead of (II.6a) the formula

Peole . |
T = B0 ) Dy (pre) Y [prte, )

4 v "0 ! : Ny { f
' P‘D (l'P-w)DO(\DJ@)!DM('P'(/&/JD}' (I1.6D)

9

r’t’ contains the subscript to remind of the fact that any form factors
appearing in a covariant expansion of 11;L, have both legs on the n
mass shell. These form factors are functions of the photon momenta

!
k2, k 2, which we do not as yet take to be on their mass shell. The
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expression (II.6b) is not in general gauge invariant ; so we must still
construct T'y,, . When 2= k'?::oy (I1.6b) is simply the gauge non~inva-
riant pole term of the Feynman-Dyson Born approximation to the scattering
amplitude for light off matter, where the electromagnetic interaction is
given by l~7ﬁ(p,p+k)lk2=o, (¢ceg., total charge, magnetic moment, etc.).
But we know how to calculate the additional terms which are required to
make such pole terms gauge invariant simply calculate the lowest order
scattering amplitude in a gauge invariant theory where the interaction is
given by (in momentum space) r’gb(p,p+k)|k2=0. Thus we can certainly

12 . Now proceeding to the physical amplitude, we have

o1 1
give T‘AV ’k2=k -0

T e o = [ o ( pik)D, (ple ) (v )
L0, e, )]
JTRY, k=

L Lt Ows

ol o'

;_(l

(11.7)

(Here (W is the initial photon frequency.) This is the desired result.
The scattering amplitude, up to terms guadratic in the photon momerita, is
glven by what is seen to be the Born approximation in the dispersion
theoretic sense. The explicit calculation in Appendix B serves to

9).

confirm the above result We point out that the above holds for

arbitrary target spins.
As a concrete example of the above, we work out the standard

result for spin O and spin %~targets. For spin gzero targets, (II.6a)

FM(PPF%LS): (2'31*&)}1. (nwz,(\bﬂe)j 49?)
M .
1/1437/5 t /QO Sf(""' (prie)” /@))‘{

(11. 8)



We have decomposed the vertex operator into the invariant form factors

f and g. Recall that total physical charge e enters through

: { [w? ' o) - e

/
(11.9a)
and that charge conservation requires that
< ———
(3(4‘/“(.\/“?’! /ge )-—O‘
v : (11.9%)

' Instead of the pole term (II.6a), we may consider the pole term (II.6D)
which differs from (II.6a) by non-pole terms. Therefore we use (II.6b)
with

Fau(Fq\Ork)? (2p+k)" (WE"”? @a)
Do (p) = (prwt)Th

(11~ 10)
When k2==k‘2==o, (I1.6b) has the form
o o Lo
._T.,HU. | o 62' (2‘0&4&)%(@ + )v+ Qz (Z?”“’l}v(lr"f‘(ﬁ)ﬂ
MR, (e e (p-&') %=
(II.11a}

This is Just the pole term of the Born approximation to the scattering
amplitude of light off scalar particles of charge e. In a well-known
fashion, to make this expression gauge invariant, it is hecessary to

add a sea-gull term -2e2 & v + Hence

67/1437/5
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!

T

/AV = -;ZfizjjﬁA\/)

k= k*=0
(1I.11b)

and

— 2 P )" (= ‘+(g'jv
e = el( P i
ek 0 | Zf’-k

T

__2.(2'_«‘// - M
e p- k'] (2p Ae) _ 2?{3z:3yuvip(i> o

2P k'

= (11.12)

This is the theorem for spin zero target.

For spin & targets, we use (II,6D) with
T (pp ek )= 8 Flns e &
v f’ P + = F:1(VW ,VW / )
—{ R, T G (m® m‘/’%"‘)

| (1T.13)

. B 2 -1
DG(F)-(/F/ m)T T,
The total charge e and anomalous maghetié moment ﬁb‘are defined through
Fj( 2 mt O ) .
me m® =@

G(m®w 0) =,

(11 .14)

1
When ko=k 2::0, (I1.6b) has the form

37/1437/6
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1.

(I7.15)

It is seen that this is just the pole terms of the Born approximation 1o
the scattering.amplitude of light from a spin %'particle of total charge
e and anomalous magnetic moment/ALf, No further terms are necessary 1o
meke this gauge invariant, since (II.15) already possesses his proparty,
as can be verified directly. Hence (II,TS) is the total scattering cor-

plitude up to quadratic rhoton frequency terms. This is the theorenm for

spin + targets.
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ITI. - SPIN 2 SCATTERING, THE GRAVITON CASE

We now discuss the low energy theorem for spin 2 massless
particles, i.e., graviton scattering ; closely following the previous
analysis of photon scattefing. The kinematics are as before, except
that the initial and final polarizations are now described by two com-

ponent tensors, which may be taken to be of the form

E,Mv = S.&y
She = O

(I11.7)

/

- and similarly for the final polarization tensor & * Q’fg . The scattering

amplitude A is given by

— ZMMH.*QP.fq | H ' ‘
A & //“,/ D(F !leL: e O') o (111.2)

where T nv, 0(@ is symmetric in MV and in O(ﬁ s and satisfies

the crossing relation

7‘//“5 (/@’,E’J) = P/;-/;!/qv(“@:’[e).

(111.3)
The polarization tensors are transverse fﬂ'k&= E*{ k' = O+ The
gauge condition requires that 8)
=
" Tayus= T O
MV,O(@ ' MY, B v (1I1.4)

T/1437/5
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JOLe
We now assume D555 4R 5 Ll.e., that the contribution to
PW SSEMES S uy 7vq/ ] 9

T/;LV (B which is singular in k and k', .can be isolated, and
9
that a regular expression T!: . can be given so that - Tpole PR
: MMV D(B : ? Q‘IIB
+ 7o is gauge invariant. Thus we have a
MV 0[@

: f@ﬁQ ~7 / ¢
~7 a
Tavae= Tanep ¥ Tageat R ap

ViKp &t (111.52)
Havap + MY, o |
. (ZI11-5b)
/ifb( ( }’rﬁa 7—,( \
) M\/t((fx /A{/qu>:0
(I11.5¢°
' O
R =
- M%dﬁ
(III.54)
£'F
g g = O .
o Y @
(TII-52)
It is assumed that TMV',O((S, »T',uv' | g and R 4 , AP sep?rgtely
possess vth:e samg symmetries as ‘_ ,uv , '(B’ and‘ thazl R,uw , X @ is
regular in k and k'. Further dlvergences of Ti‘ ./e qlﬁ + TMV C/,B P
d R h b g f th t d
an /4\/90(]3’ vanls yv:Lrueo e symme ry :m/“/ an c(/3

67/1437/5
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14,

The divergence conditions on R/AV Q(@ sy the regularity
H

assumption, as well as the symmetries, set restrictions on the k and

k' dependence of R/M/ 0(@ o As in the photon case, part of the res-
9 ‘
triction is obtained trivially by differentiation. We have from

k’u’RMV ,0&@ = 0 the result that

RM\/,(J(@: #%N 0 r\'»\)v!o((i

’

Q,»

(111.6a)

Now differentiate k, k, R™Y "%P_ 0 with respect to k ,oend ko0
to give * Y

AR"A Lo RYMAB,L ok RUv/ Af
Bk, @fe

pm’

Z
@MVJ’O’(‘B: O (II1.6D)
’ % %V Qk 2k, |

The symmetry of R MV’ 0((5 has been used in (III.6b). Then (III.6a)

'?:;r

RUE 2 kb,

le€ay R MY O(P is quadratic in k. Crossing or (III.S5e) gives the
result that R “Y 1 £

?/MVO(/S
C\Aav )

(I1I.6c)

is also quadratic in k'. Hence R MYy XA

is guadratic in k and k'. 1In Appendix B, we show how to give a

closer estimate for RMY? 0‘(5 . The procedure, analogous to that of the
photon case, is very involved due to proliferation of indices. We
therefore show only that R’L“/ » XB is cubic in the graviton frequen-
cies, and indicafe how the proof proceeds‘to the end that R MV O(F

is quartic in the graviton frequencies. For the simpler problem, where
MY O(F arises from a spin zero target, the result that RMV '’ TP

is quartic in the graviton frequencies has been proven explicitly

6)

elsewhere °
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To complebe the discussion of graviton scattering, we need
pole

to give the gauge invariant poie contribution /LV 0{(5 MV p "
The pole terms include, in addition to the single partlcle 1ntermed1ate
states, a term which has a pole in the crossed channel, and which arises
from the exchange of a massless boson between matter and gravity. All
the pole terms are summarized in Fig., 2. The graviton exchange pole is
of the form (for physical gravitons) O\ /k-k'. Tor Tfixed energy in

the forward direction this diverges. However, for fixed angle there is
no divergence with vanishing energy of the graviton. The reason for this
is that the residue CA also vanishes as energy decreases to zero, which
reflects the fact that gravitons interact with energy. It is seen thus
that at fixed angle not in the forward direction, a low energy theorem

can be given.

As in the photon case two methodé are presented to calculate
the gauge invariant pole contribution. One method is to take for Tiiiﬁ,ﬂﬁ
the expression summarized by Fig. 2, and to calculate Tu4v , W explicit~
ly. This is done in Appendix D, where the Ward identity for the gravita-~
tional vertex is derived. The second method is the assertion that the
gauge invariant pole contribvtion is siﬁply obtained by calculating the
Born approximation 40 the scattering amplitude of gravitons off a system
whose emission amplitude for physical gravitons is governed by appropriate
form factors at zero argument. The reasoning which establishes this
result is the same as in the photon argument. We do not repeat it now,

but merely illustrate it in the case of a spin zero target.

The pole contribution of Pig. 2 has the form
Ty r@ €

,M\/ ‘*F /W ?DPHe)DU)He) (;(wrkz’/gs’)
+ E; f,?-kql)(P~@7 GL/(F’QZPJ

F Uy (k) 4 o0y oy
[le-t")

(p.0),

(111.7)
67/1437/5
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k & uy kMk\/ or k' ga(@ - kl( k‘?) Such terms do not contribute
to the final scattering amplitude. Thus the form for ?ﬁi}e “wg which
?

we use 1is

Fole, -2 ‘
T;A\{ 4 - I%" Fy (W; 'y ) b, (W}Wi Qé’?’) %

Dy lpr @2, R, )2pe ke Jlepr k) [ pir i)

F Dy (p-)(2pe & 312\% plepk bt

’ILQA\/,M(@‘M\: M) l (k’«ie)
' (k-k')™

(Fff (i)
(111.10)

To calculate we note that

!
41/, lk_k “=0’

pole
wv ,dl% kg_k'2 0 is exactly the pole contribution to the Born

approx1matlon for the scattering of gravitons off spinless matter of

T

mass m. Such a pole contribution is not gauge invariant. The
sdditional term needed is a sea-gull, which is given in Fig. 3. The
explicit form of thig is calculable from the Feynman rules. Therefore
can be evaluated. Thus the scattering amplitude

}4V s B ‘k _K _O
up to terms quartic in the graviton frequency is given by .the Born

approximation 10), Note that only one form factor (at Zero momentum
transfer) confributes, which is a surprising result ; iegey F2 plays
no role in graviton scattering to this order.

The explicit calculation from the Feynman rules of the sea-
gull term and of the entire Born term has been presented elsewhere 6).
We record here the final result for the total ecross-section for unpola-

rized gravitons, in the matter rest frame and zero graviton energy.

67/1437/5
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9.

. 1 |
9&—: g‘_'_/'/f\_t 1+ buw'e +ien 6

(1- cos®)* )

(171.11)

where © is the scattering angle. The calculation in Appendix D serves

"to0 confirm this result.

This completes our discussion of the low energy theorem of
graviton scattering. We repeat that it has been unnecessary to. appeal
to anything beyond gauge invariance of the scattering amplitude and the

identification of the gauge invariant pole contribution.
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Iv. - DIVERGENCE CONDITION IN GRAVITY THEORY

T+ has been possible to give the low energy theorem for
photons and gravitouns, without reference to current commutators or

divergence conditions. For gravitons these commutators are not known.

In the present section, we shall show that the derivation of divergence

37/1437/5

conditions in gravitation theory camnot proceed in the same heuristic
fashion as in electrodynamics ; that is Schwinger terms (terms propor-

tional to divergences of delta functions) do not cancel sea-gull terms.

Let us first recall the situation in electrodynamics.
Consider the scattering amplitude tensor M‘AV , Off the mass shell in

7)

all the variables. Then the divergence condition is

B, 1= 7 () D) T (k)
= V(¢ Pk ) Diprke) Do) arn

On the mass shell this vanishes as it nmust by gauge inva-
riance. This divergence condition is obtained either by exploiting
gauge invariance of the second kind of the underlying theory, or by
explicit calculation using an expression for the scattering amplitude,
given by the L.S.Z. formalism. The second method requires the knowledge
of current comnutators. Experience in electrodynamics shows that for
purposes of calculating this divergence, one can pretend that Mﬁplv
is given by a time ordered product of currents and that the commutator
of the currents doecs not contain Schwinger terms. (The true state of
affairs of course is that U mv containg, in addition to the time
ordered product of currents, sea-gull terms whose divergence just can-

cels the Schwinger term in the commutator.)

One might hope that a similar state of affairs obtains in

gravity theory. However, we shall show that this is not the case.
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21.

In order to begin the derivation of the analogue of (IV.1T)
for gravity theory, we consider a four-point function consisting of the
time ordered product of two spin zerc matter fields and two currents -
sources of the gravity field. The complete source is the energy-momentum
tensor of matter and of the gravity field. However, since we have no
information here about the gravity field energy-momentum tensor, we shall
assume that we may take the source to be given just by the encrgy-momentum
tensor of matter. The effective content of this assumption in the present
context is that the commutation relations of the complete currents with
themselves are the same as those of the matter energy-momentum tensor.
Having made this assumption, it is straightforward to calculate the

divergence condition. The result is

£, M. &) D (P p) T Bl p)

— (F&k)v(ﬁd(j(()i\ww) D/ka) D‘(P) + (1V.2a)
u (B0 ] T 8 ()
| VKA g e
P (Y 0k P ok )
* (‘404?})(2/—7,,1 V/[", P*kfy/)//ﬁfﬁ') D7)+ (pt-p)F F’V/f:f,)'(lv. 2b)

Equation (IV.2b) follows from (IV.2a) by crossing symmetry.

MHPEE (p.p' # ') = (Y (Fff()"'k}i’%):(xvﬁ)

Schwinger terms have been ignored in the derivation of (IV.Z). The first
two terms in (IV.2a) and (IV.2b) represent the commutator of the source
with the field, while the last term arises from the source-source commu-

tator.
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22,

There are two things wrong with (IV.2) as a candidate for
the divergence condition for the off mass shell scattering amplitude.
First, the gauge 1nvar1anca condition is not regained on the mass shell,
since the term (p-p!') T7q€5(p t,p) does not venish. Second (IV.2) is
not crossing symnmetric. By this we mean that if we subtract k%i_ times
the first equation, (IV.2a), from k. times the second equation, (1v.2Db),
the result is not zero. Thus the point of view familiar from electro-
dynamics, wherc cne ignores Schwinger terms and sea-gull terms, is not

effective in gravity thcory.

We now eénguire if we might modify the divergence condition

(IV.2) in a simple .fashion to overcome its defects. In deriving (IV.2),
wc have ignored the Schwinger terms in the equal time commutator of
HOVY  with ZHD(P (H "V  is the matter energy-momentum tensor.)
However, it is well known 1) that this commutator does in fact contain
terms proportional to derivatives of the delta function., If We céncen—
trate on the first derivative of the delta function, then it can be
verified by model calculations that the proportionality factors arc

1), 12)

lincar combinations of energy-momentun tensor components Thus

if single derivative Schwinger terms are included, (IV.2a) is replaced

R 128 = o) 0l )
. Dlprie) D7(p)

+ ﬁ;;;tfg('v{a{@ qu(F( }3) L (1Iv.4)

The last, non-covariant term in (IV.4) is the efiect of Schwinger terms..

iviag
] N is a numerlcdl tensor, generating the anear combinations of
the vertex functlon f"bojp It is seen therefore thau even if the

relation (IV.4) is extended 1nto sone 1nvar1ant form, for example by

. Vyol
replacing the last term by %ﬁt ﬁ!y>/3'(p )’ so that the entire

equation also is crossing symmetric, such an expression cannot be the



divergence condition, since the first of the above defects persists,

vize it does not vanish on the mass shell. Therefore the divergence

condition on the amplitude cannot be obtained by this cavalier elimi--
nation of séa—gull and Schwinger terms, which is wvelid in elecirodyaa-
mics. To obtain the divergence condition,; one mﬁst carefully account
for these singulaf objects. Alternatively, one might study the gaivge
'invariance of the underlying Lagrangian. We do noi pursue these con--

slderations any further.

67/1437/5
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Ve - CONCIUSION

We have given a general derivation of low energy theorems
for the scattering of massless bosons of spin 1 and 2, using a technique
which does not use any high-energy assuaptions, nor does it commit one
to any model for the exact scattering amplitude. We have shown that the
dispersion theoretic Born épproximation gives the scattering amplitude
up to terms in the boson frequency whose order is determined by the spin
of the boson. We do not discuss spins greater than 2, since it can be
shown that such massless bosons do not couple at low cnergy 8). We do
not have a theorem for spin zero bosons, The reason for this 1s that
the main ingredient of low energy theorems is the limitation that mass-
lessness, viz., gauge invariance, places on the anmplitude., These limi-
tations are consequences of the fact that a massless particle can exist
in, at most, two spin states. But a spin zero object has only one spin
state available, so that masslessness does not place any further res-
trictions. The physically uninteresting, but conceptually intriguing
case of graviton scattering - with its attendant peculiarities - is
thus seen to be completely tractable within conventional techniques.
However, it is seen that divergence condition in gravity theory cannot
be given in the same simple fashion as in electrodynamics, since the

Schwinger terms and sea-gull terms do not cancel.
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APPENDIX A

We show that RV (p,p!,k,k!') which satisfies

Rw(ﬁ();k%} = /?V/%ﬁpj—/ff«/e) (a.1)

/€ DMV
‘ " fﬁ AR (iqj (a.2)

must be quadratic in the photon momenta (under the usual regulafity
2
assumptions). According to (II.5) we have the fact that ! is

linear in Xk

RM\/: %«x RMVO((F*')D!' /@)} (2.3)

where we have eliminated k' by the energy conservation relation.

Crossing, viz., (A.1), now gives

RMV: - /Q;( RMMD{(%/’J/’/ k)//' (4. 4)

\ZS

We expand R

RW\N((}' o “k): RO/M"/Q’F ]\Bf qﬁ(ﬁf’/ k)

(A.5)

in powers of k

VA, 8
(Ae5) is exact by definition, when ROA“ R\JAL

fore from (A.4)

i

(py;p'yp'-p). There-

’R/A‘V: - [Qlo( RDOVMO(% /%;( /%(3 Elﬂvzg(@(ﬁ }9,( k))(Aﬁ)
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and from (4.1)

RMV: Q) T\MVN-L kj* l VMW?(F ’0/ l”l). "

It is to be remembered that k! in the above is not an independent

variable, but only short for p + k - p'.

We almogt have the desired result. It remaing to show that

the first term on the right-hand side of (4.6) and (A.7) is in fact qua-

RAuvok

dratic in the photon momenta, viz., that is linear in

(pt=p) = (k-k'). To do this, we combine (A.6) and (A.7)

by /%)O/AVO(+ b @@’ @VMW%} p- k;)

j

_ ) pVma ( Suvids ;o
= —by £, + b @/S/?i | /ﬂp}@j (2.6)
We equate terms independent of k and linecar in k, . to get
Vm o |
(F'FL<ROM = O (4.9)
MV Vi N uv o
R+ Ro = tp- ¢ R (ppt0)
— | P"))(E RIM ¢ (F! P P"}D)- (4.10)

Next we impose (4.2) on (A.7) and equate to zero terms quadratic in k

kkam[j §Vd*"(P‘948];ZMJ¥@/ﬁPSPtloi}:'Cz

67/1437/5
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To show that RO'“"Vd , is proportional to ©p'-p, we assume the
contrary and prove it to be zero. Assunming RO’u v depends on

P = p+p', but not on Q = p'-p, we have from (A.9), (A.10) and (A.11)
the fact that ROMVO\ is antisymmetric in all its indices and trans-

verse to Q. Since RO"‘V°‘~ is independent of Q, the only way
MV

QL Ro can vanish is if Ro"‘v‘* is proportional to P*, since
P.Q = 0. But ROMV‘* is transverse to Q when contracted with any
index ; thus Ra"‘w\ is proportional to P*PYP™, which violates

v o

0 , and proves the desired result.

the antisymmetric nature of R
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APPEDNDIX B

We give a calculation for gravitons analogous to that given
g

above for photons. The problem is almost intractable due to the proli-

feration of indices. We therefore simplify it by showing that R’“V ’0{36

is cubic rather than gquartic in the graviton momenta. We consider

R/MV ’ KF to be a function of p,p' and k. We then have

g, RAUVEE _ 5

R P b ) R o -8).

/
wMPA B 15 symetric in oV end in okr’. We have from (III.6) the
fact that '

MV KB XA W
R o b, //\M;uf op k)
‘:éw,g/ - 'u//ﬁ-*é)

(Ba1)

(B.2)

(Ba3)

RD(F ’/t“/’ Wy nay be chosen symmetric in lu%‘ . Bxpanding

¢ ; 3 NI e
g) ﬁﬁv‘vy/% . k/) / /1Vm/g (PWﬁ.,a%

o Nl k)

|

KB, MV w o U0 v W
[W)D R f/f’«'/’f % C/d/.'

(Bo4)
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we have

MV, )( PRV il 5
F? # éqﬁ/ é W ﬁ v, j27 k\ & /fa P 4)
— (A1 T,
&) & R Mt f«%ﬁ k&h . :;';/ﬁ 42

(R-))

Equating terms independent of k and linear in k, 1in the above yields

X B, M, Wy
(MJMW‘ =0

Rt vy Wy gy

- = Cp-thaltr)y Ky (o p

e C)) (B.6)

Pinally, imposing (B.1) on the second cquation in (B.5) and
equating terms cubic in k gives

~ AV KB WY SR
/?m, é%u /?Ljﬂ [RO ’ j* /!”’f”/y» ]\\1,/%!)? ”d)} Q"”

is cubic in the photon momenta, it is sufficient

VY {g proportional to (p.p')= (k'-k). TWe
assume the contrary, and obtain from (B.6) and (B.7)

@wCl ﬁxﬁmeﬁ_‘O

(; ,F: XA My Wk (:)
X g =
AAL'fX B -
é}u l{ o Lﬁkf ﬁ?(} [ = () .
Q= P- P o

Accordlng to the first two equations above and the symmetry in %if

' To prove that RMV ’ 0</8
to show that R0 XE

have that

;M v . b XA MY
7%) O<fVJW Vi b Y B f) % fJ Y /j ,,,,, qﬁ

O e i O (1309)
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The last equation in (B.8) shows that 1<:/MROO((3 s MV 0, which forces
o
RO?’MV to vanish, and establishes the theorem.

The proof to terms quartic in the graviton momenta makes use
of further constraints analogous to (B.6) and (B.7), which may be derived
from (B.5). It is also necessary to remember that R MV 0(@ may be
chosen to be traceless in /MV and p( . We do not pursue this proof
any further here, but note that the simpler problem where R MY s 0(@
arises from a spin zero target (or is spin averaged for higher spin tar-
gets) has been solved explicitly elsewhere 6 , where it is shown that

R MV D(? is quartic in the graviton momenta.
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APPENDIX C

We give an explicit calculation of the gauge invariant pole

§ ~bole 1 " o . s N pole .
term T,MV' + T,Mv , starting from an expression for T/AV , gliven by
Fig. 1. We then ocxplicitly construct Tijw,c This approach is tedious,

and has the additional disadvantage that it requires the Ward identity

for the vertex function. The analytic form of Tpole

/M\/

is, according to
Fig. 1,

P0‘€~ =~ ~N o
T Rl )5 ) o
+ O :

L ot ) D) T ek )

No specific commitment about the spin or the other degrees of freedom of
the target particle is made. It is understood that appropriate wave-
functions sandwich (C.1) if necessary, and that p2=p‘2=m2. The tilda

in (C.1) serves to remind of this fact.
Next we exploit the Ward identity for the vertex operator,

which, it is remembered, is also a consequence of gauge invariance and

requires no current commutators for its derivation.

g

Therefore

/&P

M(P\P#lﬁ) = Dwi(‘{H[Q ) - DM ( \3) . (c.2)
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“he second equation in (C¢.3) differs from the first by terms which vanigh
on the mass shell. According to (C.3) and (II.4b) we must have

w7
R T =

N N

ek ) O (p=te p).

(C 5 4.9.)

Since the only condition that T'! needs to fulfil is given by (C.4a),

Y
we may impose a further requirement, consistent with (C.4a), and that is

that (C.4a) is valid also off the mass shell, viz.

|

M T l —_— ) i . 1
v = L e T (ke )
* 2 \
T,uv — TMV . (C.4b)

T"AAV is taken to satisfy the same symmetry as T, -

Once we have arrived at (C.4b), we have made contact with
the method of Gell-Mann and Goldberger 2) and Kazes 7). Accordingly,
we may take over their result, which ie that (C.4b) and (II.2) are suf-
ficient to determine T"MJ/ up to terms quadratic in the photon momenta.

The form for: T%M\/ is

I
I B ) o |
‘rjﬁ v C}}ékk l\/ ((}{(}> - 44 6%%5\/ rjuylx (-P, > >
' o ) | |
T k™ ;qw Fow (80)
1 _ 9 — - |
’MM (Y’i'\l) = Qp' \/u((’g-. Pf> ?'»J (6.5b)

(c.5a)

g )

- The expression for the scattering amplitude tensor may be taken to be

67/1437/5
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B0, p-R ) D (p-w) MY (- V i
_ Iﬁ; e, ) - (éd_f,. PM&M?.P)*’ A (F.P)
e PM ot P\/ (‘( PM.
b (c.6)
v >y :
T gy, Oz (6.7)

The term in s ™Y, independent of the photon variables, can be simplified,

using the differential form of the Ward identity :

= D'[») D e DR

Pinally we note that any -oontrlbutlon to gMVv

e

, proportional to p

or p‘/, may be ignored, since in the end p is taken in its rest frame,

and the polarization vectors f’“ and & ¥ v may be taken to have

zero bime component.
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APPENDIX D

We give an explicit calculation of the gauge invariant pole
term Tfﬁ%ﬁy o + TLHV L& B in graviton scattering, analogous to the
above derivation in photon scattering. For simplicity, we restrict
ourselves to spin zero targets. The pole terms arc given, in addition
to terms analogous to those of Fig. 1, by a term which arises from gra-
viton exchange. Thus we take T%ﬁ%? o B to be given by terms whose

b t
diagramatic representation is as in Fig. 2, and whose analytic form is

Fe’é C"lv N -
Tavas = lap p' Pt k) D(prie) Do (prk, ¢)
o) Bl )

Y(;}/ £ <:P(

P leelreir) : k‘:"jgi) UE%?,W«/@(?JL’)"

=]

Herc ﬁ; is the gravity vertex operator, D 1is the matter pro-
' %0,
pagator, 4 XJ?éJKk)/k2 is the graviton propagator and U . 4 _
2?’ Jl’!\/‘g:\/‘;’s

is the three~graviton vertex. The tildc reminds that the target ig on
the mass shell. Since we are performing the calculation %o lowest order
in Gz, we may_take the lowest order perturbation expression for
dxg(g‘:P k=k') U,

4 (2 ) E¢ 5, MV, B

i ) 2 6 . .
expression for this has been given elsewhere . We do not offier the

(k,k!'). The explicit, complicated,

details herc, as the énly property we shall need is that, on the p

and p! mass shell.

T REAY : ,
k r;’ci (P"F’) d Y[‘ﬂk ) Ufzgﬁ’{/u/,o./{f» //* ©) =

o~

{ ~ w ~ Wi T
(Rl Do (g ) = k% Lo p) 9 K0

i
“(p.2)
This follows from the explicit form of the lowest order graviton propa-

gator and the three-graviton vertex. (It may also be truc more generally. )

67/1431/5
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Next we shall need a Ward identity for r;(} (p'yp). To
derive such an identity in the usual fashion, it i1s nccessary to know
the commutator of the matter field, with the time component of the cur-
rent, viz., with thc time éomponent of the source of the gravity field.
The source of the gravity ficld is the total, symmetric energy-momentum
tensor density, which is the sum of the matter energy-momentum tensor
density and the gravitational field encrgy momentum tensor density.
However, the gravity‘tensor, as 1t does not involve any matter variables,
commutes at equal times with the matter field operator. The zero compo-
nent of the matter tensor is just the four-momentum density. When the
usual assumption, that the density of the generator of an invariance group
does not contain Schwinger terms in its.equal—fimo commutation relation
with the fields, is made, then the relevant commutator for the present
problem is determined to be proportional to the derivative of the field
operator. PFinally since the field operators themselves commute at
equal times, we have for the Ward identity of gravitation theory for

scalar particles the following expression

N )= D (pri) -t D7 fy).

(D.3)

This Ward identity plays a role analogous to that of the Ward identity of
electrodynamics. Thus one derives inm the usual fashion the (weak) equi-
valence principle from (D.3). Using (D.1), (D.2) and (D.3) we can give

. . . - : - 1
the divergence condition which determines T j*V9‘Xﬁ

M“r Pole fing ,
_k /“/0(/5 /uw/&:/ﬁ, /cv_ /fﬁP*k‘)

TPy F/s, (p-k'p) = (k- ), q[g// P)

| M f:ﬁ A ,qd
+/k ow<~ )jwmk%w ua(f )C (D:4)

\’D;( ’
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i ) S c ansatz - f"\' NH vhere
Finally we set the ansatz that /M\/ q’é e 0(&, where

{ r""lll (
|

R /"‘V/"(F Pv O(P (P)[”+ ) f\/ 0([5( ';i)
+ (k- L‘*')v L g /( ;"/ — k" /mu_ (',g“. f’) 3vﬁ

~ R () e

187 i 1 & > ame - 4 g
and rl/MV , X B satisfies the same symmetries as T,cu/ , YA " */{/H/ q/g
may be determined from this equation. The complete calculfatlon tmough

(D.5)

terms cubic in the graviton momenta is very involved. We do not give it
here, but merely verify that the present considerations give the correct
zero encrgy form. T”,(AV «p to zero order in, graviton frcquency,

follows from (D.5), and is given by

o AN
/UV'OI\[@ /DVP({D/ ::1/ F) Z//"‘L({t/‘(/‘i[,’{))

WCFV/Q ,MO{(// ;qu J/S jo))
£ Gt Falp) £ Qe G () on

" The total, zmeroth order, scattering amplitude is

1) D) /m,(f DT () D) T

\

(L‘{’ I

\:U\
<
=
\m .

{
—Ca_
=
-~
S
T

S d -
= FVJ%“WH Pu:g e lrp)

1 o~ ) - '
a jlx’ﬁ (/Vai(fP) - —2(‘ Fj‘/ﬁt /;1[: /‘ff‘ )

(D.7)
67/1437/5
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(In offering expressions (D.6) and (D.7), we have suppressed terms which

do not contribute to the final result ; viZe, expressions proportional %o

gMV or g&g , and terms antisymmetric in /L{ and l/ y or K and Ry
!

or /LH/ and VL@ 2)

Examining (D.7) we sece that S,y gf is given by three parts.
TS

The first part, comprising the first two terms in (D."{) is the contribution

" from the single particle intermediate states. The second part, consisting

67/1437/5

of the third term in (D.7) is the graviton exchange contribution. The ex-
L is the limit of { a¥d ?g(k-—k‘)/(k—k')z

nv, &8
Uéff', A d#(kgk‘), as k and- k! go simultaneously to zero in all thelr

pression F

components. The third part consisting of the remainder of (De7) is the ad-
ditional term which must be added to meintain gauge invariance. In pertur-

bation theory, it corresponds to the "sea=gull" term pictured in Fig. 3.

The expression (D.?) may be simplified. For this we shall necd

the differential form of (D.3)

-ﬂgtg \ N, - SN/ p
T (pp) = PR DT,
P\)C (D.8)

(This is not manifestly symmetric in & and 60. Symmetry is established
by recalling that Dm1(p), for spin zero particles, is a function only of
p2, so that p<© ((D/‘g)p\éj) D-T(p) is prmoporticnal to pEp ‘f.) Next we
recall that the scattering amplitude is given by contracting the above
with ¢ e v and e* (XE* iB» with ?M?,{ = Z‘*D(E*D( = 0. Also D
may be taken to be in its rest frame and the polarj_.zation ftensors. may be
chosen without a time component. Hence terms'i'nfx(D.‘?)» proportional to
p/‘*, pV ’ pM . P {3, g/“[/ and g‘Yﬁ do not contribute. It is seen that
the first two terms in (D.7) do not contribute. The third term does con-
tribute. In the remainder, the only terms that are not proportional to a
momentum, are those that involve, €e8ey & VE P’Wi‘ However, from (D.8)
it is seen that |—’~ M is proportional either to a momentull, plj‘“pM ’

or to D“1 which vanishes on the mass shell. Thus in the zero energy

limit we may take for S
AV X B



41,

B { - :;“’XJ/
S/WAF B rm (ep) MY AP

(D.9)

i.c., only the graviton exchange term contributcs. We inscrt (D.8) ;

the portion of rﬂgkg proportional to g JQ”D—T does not contribute,
since D vanishes on the mass shell, Thus
/ﬁ - . " .
_ ({) [) | ( \ — ¥ o
D - o > /
MV.O(ﬁ PE‘ -———-——’-f(-j—-*‘ }“ MV, B

- -
0 p (D.10)

0~ ! has the form (p2~m2)(1+ :Z(pz)), where ;2~(p2) vanishes on the

mass shell. Therefore, the final result for the zero cnergy scattering

amplitude for gravitons off spin zero particles is

= D — ¥, 00
va,c&@ ZPK pg ’W’d‘@ =wmt F

(D.11)

The cross-section which follows from (D.11) is then given by (III.11).
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pole

A subtle point ariegss in conmnection with this sclution for T’ﬁ ot

+ T;Mb/“ We have succecded in giving T;Mb’§k2=k12=09 which

ig all that is required for physical applications. However,

it ig not obvious that this solutiorn is unique, viz., that

if we could obtain the form of 2! ., when kzﬁoﬁkfz, that

the limit of this Ttu{/ as k and kf2»>o is the above

o 1 ' . . leuls . api .
b.Lvenl T &L/|k2=k:2=0 Bxplicit calculation for spin 0 and

spin % targets does in fact show that the solution is uniquee.

Purthermore, the calculation in Appendix C also shows that
the solution we give here is the correct, unique solution.
I am indebted to Dr. J.S. Bell for calling my attention to

this point.
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Comments similar for those of notc 9) apply herec.

D. Boulware and S. Desecr - J.Math.Phys. 8, 1468 (1967).

The first derivative Schwinger term in the [EO’Q, Hmn:J

(Q, m, n

form.

1, 2, 3)

equal time commutator is not of this
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FIGURE CAPTIOND

Pole terms in scattering of photons.

Pole terms in scattering of gravitons

Sea-gull term in graviton scattering.
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