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Abstract

We present a current and charge conserving theory for the low frequency admittance of

a quantum point contact. We derive expressions for the electrochemical capacitance and

the displacement current. The latter is determined by the emittance which equals the ca-

pacitance only in the limit of vanishing transmission. With the opening of channels the

capacitance and the emittance decrease in a step-like manner in synchronism with the con-

ductance steps. For vanishing reflection, the capacitance vanishes and the emittance is

negative.
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There is growing interest in transport properties of electric nanostructures such as quan-

tum point contacts, quantum wires, and quantum dots, to mention but a few [1,2]. These

mesoscopic conductors can be so small that transport at low temperatures is phase coher-

ent or even mainly ballistic including only a few elastic scattering events. The scattering

approach to electrical conduction [2–4] has successfully been used to describe many ex-

periments. For a phase coherent conductor with two probes this theory relates the trans-

mission probabilities T (j) of the occupied one-dimensional subbands to the dc-conductance

G(0) = (2e2/h)
∑

T (j). The validity of this conductance formula was experimentally con-

firmed first by van Wees et al. [5] and Wharam et al. [6] who found a stepwise increase of

the conductance by successively opening conduction channels of a quantum point contact.

A more novel concept concerns the notion of the mesoscopic capacitance. Usually, the

capacitance Cµ is defined by the static change of the charge on a conductor as a response to

the electrochemical voltage drop between the contacts. However, there exists also a dynamic

point of view which is important for practical use: the capacitance is then associated with the

phase shift between a current and a voltage oscillation at small frequencies ω, i.e. with the

imaginary part of the low frequency admittance G(ω) of a resistor and condenser in parallel.

A dynamical derivation of a mesoscopic capacitance was given by Büttiker, Thomas, and

Prêtre [7]. To make a clear distinction between the static and the dynamic conceptions, we

call Eµ = i(dG/dω)ω=0 the emittance of a conductor. For a purely capacitive structure such

as a condenser the static and dynamical derivations lead to identical results, i.e. Eµ = Cµ.

This case is characterized by a displacement current entering the sample through the leads

which is equal to the change of the charge on a condenser plate. We mention that in a meso-

scopic sample the relevant density of states (DOS), dN1/dE and dN2/dE, of the ‘mesoscopic

condenser plates’ can be so small that Cµ is no longer equal to the geometric capacitance C0

but depends on the DOS [7]: C−1
µ = C−1

0 +D−1
1 +D−1

2 with Dk = e2dNk/dE. This is due to

the fact that the voltage drop between the reservoirs can differ significantly from the drop

of the electrostatic potential at the plates. On the other hand, for conductors which permit

transmission Eµ = Cµ is not valid. In this Letter, we derive expressions for the capacitance
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and the emittance of a quantum point contact (Fig. 1). The model which we develop also

describes a ballistic quantum wire containing an elastic scatterer or a mesoscopic condenser

with tunneling between the two condenser plates (leakage). Capacitance properties of small

conductors with transmission are also of great importance in tunneling microscopy [8].

First, we present our results for a single-channel conductor. Subsequently, their deriva-

tion and the generalization to many channels is provided using the scattering approach to

low-frequency transport developed in Refs. [9,10].

Consider a phase-coherent single-channel conductor containing a localized scattering

obstacle. It turns out that Cµ and Eµ decrease for increasing transmission probability

T = 1 − R. In particular, we show that the capacitance is proportional to the reflection

probability R

Cµ =
R

C−1
0 + D−1

1 + D−1
2

. (1)

In general, also the geometric capacitance C0 depends on R. For example, C−1
0 decreases for

two condenser plates approaching each other. However, since the Dk are nearly independent

of T and remain finite for R → 0 one concludes from Eq. (1) that Cµ vanishes for R → 0

even if C−1
0 vanishes. This is reasonable since for ideal transmission (no barrier) a charge

accumulation does not occur. For R = 1, on the other hand, we recover from Eq. (1) the

above mentioned expression for the electrochemical capacitance of a mesoscopic condenser.

The emittance of a single-channel conductor is given by

Eµ = CµR −
D

4
T 2 , (2)

where D = D1 +D2 is associated with the total (relevant) DOS of the sample. As expected,

R = 1 implies Eµ = Cµ. On the other hand, for total transmission (R = 0) the emittance

is negative, Eµ = −D/4. For the particular case where the geometric capacitance is suf-

ficiently large and where the sample is spatially symmetric, i.e. C0 ≫ D1 = D2, we find

Eµ = (D/4) (R − T ). This illustrates a cross-over between positive and negative emittance.

Negative emittances are characteristic for conductors with nearly perfect transmission. For
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resonant tunnel junctions an inductive-like kinetic response is discussed in Refs. [11–13]. In

Ref. [9] it is shown that the emittance remains negative even when the charge in the well

is totally screened. It is interesting that the emittance for the symmetric tunnel resonance

barrier in this limit can also be written as Eµ = (D/4) (R− T ). A similar relation has been

found by Mikhailov and Volkov [14] who calculated with a Boltzmann approach the low

frequency plasma-wave spectrum for a tunnel junction. Introducing a time τT , they found

a tunnel contribution CT to the capacitance which is proportional to τT (R − T ). Although

their result is not in full accordance with Eq. (2), it holds Eµ = CT if the barrier is sym-

metric, if capacitances in series and in parallel are neglected, and if one replaces τT by the

expression hD/(2e2). Furthermore, we showed in Ref. [15] that positive and negative emit-

tances exist in quantized Hall samples, depending on whether edge states provide perfect

transmission or perfect reflection channels.

Consider now a quantum point contact (Fig. 1) connected on either side to reservoirs α

(= 1, 2). A variation of the voltage δVα = δµα/e in reservoir α changes the electrochemical

potential δµα of the incoming particles which are partly scattered back and partly transmit-

ted. The admittance matrix Gαβ(ω) = δIα/δVβ represents the linear response of the current

δIα through contact α for a small voltage oscillation δVβ ∝ exp(−iωt) in reservoir β. For

low frequencies one can write

Gαβ(ω) = G
(0)
αβ − iωEαβ , (3)

where Eαβ is the emittance matrix. A microscopic calculation of the emittance is a compli-

cated task since the electrostatic potential is a complicated function of space. The aim of

this work is to develop a simple model that captures the essential physical features.

First, we mention that an applied voltage can polarize the conductor but leaves the

total charge unaffected. Hence, for a conductor in electrical isolation (no other nearby con-

ductors or gates) charge and current are conserved, meaning G11 = G22 = −G12 = −G21

≡ G ≡ G(0) − iωEµ. The non-equilibrium charge distribution with the form of a dipole

has a charge δq1 to the left and a charge δq2 = −δq1 to the right of the barrier. Instead of
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treating the entire potential landscape realistically we introduce only two potentials δU1,2 for

the regions Ω1,2 (dark regions in Fig. 1). These regions are characterized by an incomplete

screening of the excess charge. Consider for a moment a voltage shift δV1 = δµ1/e only in

the left reservoir. On the far left side of the point contact one has complete screening, thus

the local electric potential shift follows the electrochemical potential, δµ1/e, while on the far

right side it vanishes. As we move along the conductor from the left reservoir to the right

reservoir the potential shift drops from δµ1/e to δU1 to δU2 to zero. The potential drop will

be strongly localized near the maximum of the barrier in the center of the quantum point

contact. In fact, the potential drop will be localized within a screening length. We discretize

this potential [16]. We emphasize that within the framework of the general approach pro-

vided by Ref. [10] the complicated full quantum mechanical and space dependent problem

can be treated analogously.

In the basis of eigen-channels the transmission problem through a quantum point contact

can be represented as a sum of single-channel transmission-problems [17,18]. The potential

of a quantum point contact has the shape of a saddle [18] with a value eU0 at the saddle

point. Near the saddle the potential can also be separated into a longitudinal part eU(x)

and a transverse part eU(y). Thus, in a first step we consider a single-channel transmission

problem in a potential eU(x). The variation of this potential is slow compared to the Fermi

wavelength which allows us to use the semiclassical WKB approximation for the local density

of states dn(x)/dE and for the transmission probability T [19,20]. The regions Ωk to the left

and to the right of the barrier in which the potentials are not screened are Ω1 = [−l1,−x1]

and Ω2 = [x2, l2], respectively, where the l1,2 are of the order of the screening length. The

xk are determined by the WKB turning points if EF < eU0, and they are given by xk = 0

(the location of the barrier peak) for EF ≥ eU0. We express the DOS in the region Ωk in

the form of a quantum capacitance

Dk = e2
∫
Ωk

dx
dn(x)

dE
. (4)

For the following we need the nonequilibrium state, i.e. the charge δqk which resides in
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Ωk as a consequence of a voltage variation δVα = δµα/e at contact α. This charge can be

found with the help of the partial densities of states (PDOS) associated with carriers in Ωk

scattered from contact β to contact α [10]. In the semiclassical (WKB) case this PDOS is

given by

Dαkβ = Dk (T/2 + δαβ(R δαk − T/2) ) , (5)

where δkl is the Kronecker delta. Note that Dk =
∑

αβ Dαkβ. Greek and roman indices

label reservoirs and incompletely screened regions near the point contact, respectively. The

injected charges lead to induced electrostatic potentials δUk which counteract the built up

of charge in the regions Ωk, i.e. the shifts δUk of the band bottoms induce a charge response.

For a spatially slowly varying potential this response is local and is determined by the DOS,

δqind
k = −DkδUk. The charge in region k is then given by

δqk =
∑
αβ

Dαkβ(δVβ − δUk) ≡
∑
β

Dkβ(δVβ − δUk) , (6)

were we introduced the injectivity [10] Dkβ =
∑

α Dαkβ which is the PDOS of region Ωk

associated with carriers injected at contact β.

We next determine the electrochemical capacitance. We introduce a geometrical ca-

pacitance matrix C0,kl = (−1)k+lC0 associated with the regions Ωk, which we assume to

be known. In general, it is found by solving the Poisson equation. The electrostatic and

electrochemical capacitance matrices C0,kl and Cµ,kβ, respectively, relate the charge to the

potentials via

δqk =
∑

l

C0,kl δUl =
∑
β

Cµ,kβ δVβ . (7)

Charge conservation implies Cµ,kβ = (−1)k+βCµ. Using Eqs. (5)-(7) yields then the electro-

chemical capacitance (1).

To calculate the emittance matrix we remark that Eαβ δVβ corresponds to the displace-

ment charge δQα which passes contact α for a variation δVβ of the voltage in reservoir β.

Note that δqk = δQα=k is only valid if R = 1 but does not hold if R < 1. Since we re-

strict ourselves to the first-order frequency term, it is sufficient to calculate the quasi-static
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displacement charge. We take the Coulomb interaction into account self-consistently by

considering two contributions to δQα. A first part which neglects screening is given by the

kinetic contribution DαβδVβ, where Dαβ =
∑

k Dαkβ is the PDOS of carriers scattered from

contact β to contact α at fixed electrostatic potentials. A second part corresponds to a

screening charge which is due to the shifts δUk of the band bottoms. The part of the screen-

ing charge which is eventually scattered to contact α is then given by −
∑

kγ DαkγδUk ≡

−
∑

k Dαkukβ δVβ, where we defined the emissivity [10] Dαk =
∑

γ Dαkγ associated with the

states scattered from the region Ωk to contact α. Furthermore, we introduced the charac-

teristic potentials [10] ukβ = ∂Uk/∂Vβ which give the change of the electrostatic potential in

region k due to a variation of the voltage in reservoir β. The negative sign of the screening

charge is due to the fact, that a positive shift of the band bottom at fixed electrochemi-

cal potential diminishes the number of charge carriers. One finds from Eqs. (6) and (7)

ukβ = (Dkβ − cµ,kβ)/Dk. The emittance matrix is the sum of kinetic and screening charges

scattered to contact α [10]

Eαβ = Dαβ −
∑
k

Dαkukβ . (8)

Using the total density of states D = D1 + D2 =
∑

αk Dαk =
∑

αβ Dαβ of both regions Ω1

and Ω2, the expression (5) for the PDOS, and the characteristic potentials given above, we

find Eq. (2) for the emittance of a single-channel mesoscopic conductor.

In order to generalize the results (1) and (2) to M channels j = 1, ..., M with chan-

nel thresholds E
(j)
b we use the fact that the total PDOS is the sum of the PDOS of the

single channels, i.e. Dαkβ =
∑

j D
(j)
αkβ. If EF < E

(j)
b , the PDOS for the channel j van-

ish, D
(j)
αkβ(EF ) ≡ 0. If EF ≥ E

(j)
b , the PDOS D

(j)
αkβ(EF ) are given by the single-channel

PDOS (5) taken at an energy EF − E
(j)
b . Proceeding the same way as above, we find an

electrochemical capacitance (1) with a reflection probability R = 1 − T1/2 − T2/2, where

Tk = D−1
k

∑
j T (j)D

(j)
k is an average transmission probability weighted by the density of

states of Ωk. For the emittance we find

Eµ = CµR −
1

4
(D1T

2
1 + D2T

2
2 ) . (9)
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Equation (9) applies to a scattering obstacle in an N-channel wire. Let us now apply this

result to the quantum point contact of Fig. 1. One expects a step-like behavior of the

capacitance and the emittance as the number of open channels increases. In the follow-

ing we consider a symmetric barrier with the quadratic potential U(x) = U0(b
2 − x2)/b2 if

|x| ≤ b, and U(x) = 0 if b < |x| ≤ l. For this special case, the PDOS and the transmission

probability can be calculated analytically from the WKB expressions [19,20]. For simplicity,

we assume a constant electrostatic capacitance C0 = 1 fF between Ω1 and Ω2 and a fixed

number of occupied channels in these regions. The only parameter to be varied is the poten-

tial height U0. We assume that no additional channels enter into the regions Ωk during the

variation of U0. In Fig. 2 we show the result for a constriction with b = 500nm, l = 550nm,

and with three equidistant channels separated by EF /3 = 7/3 meV . The dotted, dashed,

and solid curves correspond to the dc-conductance, the electrochemical capacitance, and the

emittance, respectively. For small U0 where all channels are open, the capacitance vanishes

and the emittance is negative. At each conductance step, the capacitance and the emittance

increase and eventually merge when all channels are closed. Due to a weak logarithmic

divergence of the WKB density of states at particle energies E = eU0 (where WKB is not

appropriate), the WKB emittance diverges weakly (steep edges of the emittance below and

above the steps). A more accurate quantum mechanical calculation of the PDOS from the

scattering matrix [9,10] yields a suppression of these divergencies, i.e. the regions between

the steps become more flat.

To summarize, we present a theory for the capacitance and the low frequency admittance

of one-dimensional mesoscopic two-terminal conductors. The electrochemical capacitance

defined as the charge variation on a conductor for a voltage drop in the reservoirs turns out

to be proportional to the reflection probability. The quantity which is usually measured in

an experiment is not the charge (or the dipole moment) but rather the displacement current

which is determined by the emittance. The emittance equals the capacitance for vanishing

transmission but becomes negative if transmission predominates. Quantum point contacts

which provide the possibility to vary the number of open one-dimensional channels should
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thus show not only conductance steps but also steps in the capacitance and the emittance.

The generalization to conductors which are not in electrical isolation will be published else-

where. We only mention that metallic gates used to form the point contact couple with a

purely capacitive emittance which exhibits peaks as new channels are opened. Furthermore,

the presence of gates causes the zero in the emittance of the point contact to be shifted

to larger values of T (< 1). We believe that the presented theory is also a starting point

in order to treat the finite-frequency noise of quantum point contacts including Coulomb

interactions [21].
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FIGURES

FIG. 1. Quantum point contact connected to reservoirs with electrochemical potentials

µα = µ0 + δµα, and for the particular case of one transmitted and two backscattered channels

inside Ωk (dark regions) with electric potentials δUk.

FIG. 2. Dependence of the conductance (in units 2e2/h; dotted curve), capacitance and emit-

tance (in units of fF ; dashed and full curves, respectively) on the barrier height eU0 for a quantum

point contact with three relevant channels (see Fig. 1).
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