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ABSTRACT

Averaging techniques are developed here to
represent buck, boost, and buck-boost types of
switched dec-dc converters by approximate continuous
models. Simple analytical expressions in terms of
the circuit components are derived for the charac-
teristic transient and frequency responses of time-
averaged (continuous) power-stage models for use
in designing and understanding the behavior of
corresponding switched power stages. Novel con-
clusions include the dependence of effective
circuit component values upon switch duty ratio
and the existence of a real positive zero in
certain transfer functions., Responses from analog
computer simulations of the switched and averaged
power stages agree well and, in turn, confirm the
analytic predictions. High-order systems can be
analyzed by the averaging technique without a
commensurate increase in complexity.

INTRODUCTION

Switched dc-dc converters are composed of two
functional blocks as shown in Fig. 1l: the power
stage chops, rectifies, and filters an analog sig-
nal derived from the source vg to produce an
analog output voltage v, and the switch control-
ler provides from an analog signal ¢ the digital
control d necessary to drive the "chopping"
switch in the power stage. Figure 2 shows repre-
sentative power-stage types (buck, boost, and
buck-boost) commonly used in switched converters;
the assumed load is resistive R, and resistances
Ry, and R, are included to account for parasitic
losses exposed by large currents in the physical
inductor and capacitor. The nature of circuit
operation has been adequately discussed elsewhere
(1) and will not be reiterated here., The duty
ratio D, defined as the fraction of time that
the chopping switch is closed, is a control mech-
anism for varying the dc output voltage. One
can assume without loss of generality that the
switch is driven by the digital signal d accord-
ing to

1, switch closed
d(t) = ; (1)
0, switch open
consequently, D 1is numerically equal to the dec
average of d(t).

POWER L o v(t)

STAGE

acey | T

vs(t)-_—_;

SWITCH
CONTROLLER
e(t)
Figure 1. Block diagram of a power stage and
controller,

When the converter is part of a regulator in
which the controller input ¢ 1is generated from
an appropriate feedback signal, then closed-loop
stability becomes important. Stability can be ex-
amined if one knows how a disturbance in e
propagates through the controller and power stage
to affect d and v. A given switch controller
can be characterized at least approximately by
describing-function analysis, but the power stage,
because it is a switched nonlinearity not amenable
to conventional analysis, has succumbed only to a
static description (2) of the dec output in terms
of duty ratio. In review, the static ratio of dec
output to dec source input varies with duty ratio
and is always less than unity for buck, always
greater than unity for boost, and either greater
or less than unity for buck-boost power stages.

The present objective is to extend the static
description of power stages by analyzing dynamic
{e.g. transient and sinusoidal) variations of the
two power-stage inputs; in essence, this means
finding the effective transfer functions which
relate vg and e to power-stage output v, even
though the power stage is switched and nonlinear.
Previous attempts at dynamic analysis were either
prematurely stalled (3) before reaching simple
equivalent circuits and tractable expressions, or
thwarted by poor experimental correlation (4).
The objective is attained here by the development
of continuous linearized models for the switched
power stages in Fig. 2; thus, the power stage and
controller can be treated as separate linear
blocks.
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Circuit configurations of switched
(a) buck, (b) boost, and

Figure 2.
power stages:
(c¢) buck-boost.

AVERAGED POWER-STAGE MODELS
General Models

Consider first the boost power stage. One
can easily verify that Fig. 3 is an exact equiva-
lent circuit™ of the boost power stage shown in
Fig. 2(b). The factor 1-d(t) can be identified as
a discontinuous dependent generator gain and is
the principal cause of analytic difficulty. If
one is willing to neglect detail in order to study
long-range trends, then the forcing functions
(sources) may be averaged over a time interval
small with respect to the response times of the
state variables without appreciably altering the
essential nature of circuit response. This concept
is the basis of subsequent simplifications; its
usefulness arises from the fact that by design the
state-variable response times are always much
greater than the nominal period T of the switch
controller, and therefore the averaging interval
can be comparable to the switching period in order
to average the factor 1-d. A possible definition
of the averaging operation, which is useful for
the extraction of low-frequency components from d,

I0bserve the following notational convention:
circles are used to denote independent sources,
whereas squares represent dependent generators.
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Figure 3.
power stage.

Equivalent circuit of switched boost

is given (1) by £

<a@>(t) = % A(x) dx (2)

t-T

The effect of averaging is approximately that of a
low-pass filter with cut-off frequency Wy = Zﬂ/T.

The time-averaged model of the boost power
stage is shown in Fig. 4(a). The model is useful
only for frequencies less than wg since the
switching ripple has been averaged out, Although
the model is still basically nonlinear, the de-
pendent generator gains are now continuous. In
the same manner, averaged models of the buck-boost
and buck power stages, respectively, are obtained
and illustrated in Figs. 4(b) and L(c). Because
its dependent generator gains are unity, the aver-
aged buck power stage can be simplified to the
linear equivalent circuit in Fig. L(d).

The basic models have now been formulated to
analyze the slowly-varying average envelope of
power-stage responses, Transient and frequency
analysis of the response to the two power-stage
inputs, source and control, will be investigated
next; however, since super-position does not apply
for nonlinear circuits, a particular response is
meaningful only if both inputs are specified.

Analysis of Response to Source Variations

Assume for simplicity that the averaged con-
trol is constant“:

<a>(t) = D (3)

The equivalent circuit which results when Fig. 4(4d)
is specialized by the above substitution is shown
in Fig. 5 and relates unspecified source variations
to the corresponding output variations for the buck
power stage. In applying the same procedure to the
boost power stage, one can define a complementary
duty ratio D' as

D''=1-D 5 (L)

2As previously noted, that constant is numerically
equal to the duty ratio.



which with Eq. (3) and Pig. 4(a) yields the aver-
aged model shown in Fig. 6{(a). The dependent
generators can be eliminated by normalizing the
constant generator gains to unity in the following
manner, If in the inductor loop one divides the
voltage sources and impedance values by the factor
D', the current <i> remains unchanged. After
the current generator gain has been similarly nor-
malized to unity, the equivalent circuit shown in
Fig. 6(b) can be further simplified to the linear
circuit model in Fig, 6(c). Development of the

corresponding buck-boost model is entirely anal- Figure 5. Equivalent circuit of the averaged
ogous to that of the boost model so only the final buck power-stage model for source variations
simplified circuit, which results from the assump- and constant control.

tion in Eq. (3), is shown in Fig. 7.

(v

(1-a){w)
(1-a)1) [1

Figure 6. Reduction of the averaged boost power-
stage model for source variations and constant
control,

=]

C

1

Figure L. Averaged power-stage models:
(a) boost, (b) buck-boost, (c) buck, and
(d) simplified buck.
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Figure 7. Equivalent circuit of the aver-
aged buck-boost power-stage model for
source variations and constant control.

The averaged circuits in Figs. 5, 6(c), and 7
are linear and hence useful for analysis of either
transient or frequency responses caused by varia-
tions in the source voltage; when the source is
held constant, they also apply for transient anal-
ysis caused by the control input since the control
is constant following a step change. Although the
circuit topology for each power-stage type is iden-
tical, notice how the effective circult component
values for the boost and buck-boost power stages
are modified by the (complementary) duty ratio.
When Laplace transform theory is applied to each
type of power stage to find the source-input trans-
fer function Gg(s) defined as

e(s) =
]

s (5)

zero initial conditions

where V(s) and Vs(s) are respectively the
Laplace transforms of v(t) and vg(t), the
result can be expressed as

G (s) = Ay Gp(s) , (6)

where
1+ 3
@y

2
1+%8 +(§ )
Q w_ ‘o
o o

Equation (6) can be interpreted as the transfer
function of an amplifier in series with a filter as
shown in Fig. 8. Analytic expressions for the nor-
malized filter and amplifier factors are listed in
Table 1 for each type of power stage; observe the
effect of duty ratio on selected corner frequencies
and on the quality factor of the filter as a conse-
quence of modified effective component values.

Vs(s) A Gf(s) > V(s)

S0

Figure 8. Block diagram of the averaged power-
stage model for source variations and constant
control.
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Analysis of Response to Control Variations

Consider now the sitwation when the averaged
source voltage is a constant Vg,

we) = : (8)
and the averaged control is fluctuating with time,
The buck power stage is readily investigated by
using the above substitution in Fig, 4(d) to obtain
Fig. 9, which is a linear circuit with constant
component values; however, the averaged boost and
buck-boost models are nonlinear for variations of
the control so a different approach is required.

12, (v?

;;;C

Figure 9. Equivalent circuit of the averaged
buck power-stage model for control variations
and a constant source.

The transient responses of the various power
stages caused by step changes in averaged control
are directly available from the equivalent circuits
in the preceding subsection when the averaged
source is constant, so in the present subsection
the effect of an arbitrary control perturbation on
the output is sought, Assume the averaged control
is given by

<a>(t) = D+ d4(t) ) (9)
where d 1is a time-varying perturbation of the
duty ratio D. Based on Egs. (4) and (9), one can
show that

<1-a>(t) = D' - d(t) . (10)

The control perturbation causes corresponding per-
turbations of the averaged state variables as
expressed by

<v>(t)

<i>(t) =

v+ 3(t) (11)
I+ i(t) . (12)

The problem is to find ¥ in terms of d.
The equivalent circuit of the averaged boost power
stage which results when Eqs. (8) to (12) are sub-
stituted into Fig. 4(a) is shown in Fig. 10(a).
After the unperturbed values of the state variables
are evaluated from the steady-state equivalent
circuit in Fig. 10(b) and subtracted from Fig.l10(s),
the equivalent circuit which remains for perturba-
tions is shown in Fig., 10(c). The circuit in Fig.
10(c) can be linearized by restricting the pertur-
bation amplitude in order to make the second-order
terms dv and 41 negligibly small with respect



(D'=d)(V+7)
(0'—d) (147

(a)

Qo>
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Figure 10. Reduction of the averaged boost power-stage model for small control variations and a
constant source.
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Table 1. Summary of analytic parameters in power-stage transfer functions.
Buck Boost Buck-Boost
A D 1/D! D/D’
80
12 _
A v (D ) R RQ (D')ZR - (D_DI)RQ, VS
co s (D")2R + R, (0?2 (D')2R + Ry, (p")?
G R — R - R
fo R+ Ry R+R /(D)7 R+Rg/(D")?%
[V 2
. L - [RFR l‘\/(D)R+R 1 \/(D)R+R2
[+ JiC R+ RC Vic R+RC Jic R + Rc
- -1 + L -1
1 CRRy+ L | -1 1 CRRg+ L A P CRR:
Q CR + ——{CR + ———— o ¢ T o
w, ¢ R+Ry W ¢ (D")° R+ Ry ) (D')°R+Ry
w 1 L L1
Z CR CR CR
(&3 [ C
. 00 Y% - &y (0")%R - (>-D')R,
a 1. DL
to the other generator terms:
v <<y
for small-amplitude d . (13)
1«1z
I
—— V

For each generator one of the remaining terms is
proportional to the independently forced control
perturbation while the other is proportional to a
circuit-dependent perturbation, so meaningful
separations into dependent and independent gener-
ators can be accomplished. Following the procedure
described in the preceding subsection, one can
normalize to unity the gains of the dependent gen-
erators to reveal the circuit illustrated in Fig.
10(d). The dotted section of Fig. 10(d) should be
recognized as an ideal unity-gain transformer, so
it can be simplified as shown in Fig. 10(e). The
presence of two generators in Fig, 10(e) obscures
the relationship between and 6, but since
the circuit is linear, Laplace transforms can be
manipulated using Thevenin and Norton equivalents
to combine the generators into the single source
shown in Fig. 10(f). The equivalent circuit is
now in the Iaplace transform domain, where D(s)
and ¥(s) are the Laplace transforms of d(t)

and v(t), respectively.

The procedure just outlined for the boost
power stage is also applicable to the buck-boost
power stage. The steady-state and perturbation
components of the output voltage are easily derived
for the buck-boost power stage from Figs. 11(a)
and ll(b), respectively. The equivalent circuit
for perturbations was linearized by Eq. (13), as
before,
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Figure 11, Equivalent circuits of the averaged
buck-boost power-stage model for small contrdl
variations and a constant control:

(a) steady state, and (b) linearized for
variations.



Linearized equivalent circuits for small-
amplitude control perturbations have been derived
for each power stage. The factors which multiply
D(s) 1in the equivalent voltage generators in Figs.
10(f) and 11(b) can be identified as the transfer
function of an effective amplifier A,(s) as shom
in Fig. 12; thus the linearized control-input
transfer function G (s),

Gc(s) = v_(s_l
B(s)

P (1)
zero initial conditions

for each power-stage type can be written in the
form

Gc(s) = Ac(s) Gf(s) 5 (15)
where

Ac(s) = Aco(l-s/ma) , (16)
and Gf(s) is the filter transfer function given
by Ea. (7). Analytic expressions for the normal-

ized filter and amplifier factors are contained in
Table 1. The duty ratio has the same influence on
effective component values as observed for source
variations., Notice in addition the unusual form of
the effective amplifier transfer function for boost
and buck-boost power stages; the real zero is
positive for D'> D}, where

[

, boost

R
D} - : (27)
R, R R
42 1
/(l+§—)R_ -J g » Dbuck-boost
Since RL/R’ and consequently Dé, is typically

small, &, 1is usually positive, so both the phase
lag and amplitude of A,(jw) increase with w.
Figure 13 shows the block diagram of G.(s) in
order to expose the similarity of interpretation
of Egs. (15) and (6).

Rather unusual analytical results have been de-
rived from the averaged power stages. To the
authors' knowledge, no tractable analysis of the
transient or frequency response associated with a
control variation has appeared in the literature

filter

amplifier

Figure 12, Equivalent circuit showing an effec-
tive amplifier in the averaged boost and buck-
boost power-stage models for small control
variations and a constant source.

—— V(S)

B(s) ——sf A (s) y(s)

Figure 13. Linearized block diagram of the
averaged power-stage model for small control
variations and a constant source.

for boost or buck-boost power stages. However,
Kossov (2) has performed an exact static analysis
of the source-to-output gain for the three basic
power stages, so for comparison the corresponding
gains will be derived from the averaged power-
stage models.

For static conditions expressed by Egs. (3)
and (8), the averaged power-stage models are par-
ticularly simple since there 1s no capacitor
current or inductor voltage in the steady state.
The static source-to-output gain of each power-
stage configuration is easily derived (1):

DR

V/VS = §Z_1_T€ , buck (18)
t
V/VS = D—Rz , boost (19)
1
R, + (D')°R
V/VS = ——E—QL—B—E— , buck-boost. (20)
R, + (D")°R

It may be observed that with corresponding notation
Egs. (18) to (20) agree precisely with Kossov's
Egs. (6a), (6b), and (6c).

Though not analytically founded, a hypothesis
postulated by Wells et al. (5) states that the
lowest corner frequency in the open-loop boost
control-input desecribing function varies propor-
tionately with D'. Wells' hypothesis was re-
portedly supported by experimental observations of
a particular boost configuration with additional
input and output filtering. The averaged model of
the boost power stage under consideration here has
a quadratic pole with break frequency w, given in
Table 1 which does, in fact, vary approximately
with D' for typical circuit values and operating
conditions:

» = 2 ——EL——-for D'>>Dé , boost . (21)
° /1 R+ R,

To the extent that the effective source impedance
(source impedance, input filter, and boosting in-
ductor) is inductive and the effective load imped-
ance (output filter and load) is capacitive, Wells'
hypothesis may be a general result; notice, howevey
that the corner frequency of the effective ampli-
fier is a stronger function of duty ratio:

(22)

~ 2
W, (p*)® R/L , for D'>>D!, boost .
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OPEN-LOOP BEHAVIOR

Of the two input variations considered in the
preceding section, responses to control variations
are considerably more interesting because the aver-
aged power-stage models are nonlinear with respect
to control variations, Analog computer simula-
tions (1) of the switched power stages in Fig. 2
and the corresponding averaged power stages in Fig
L4 are subjected to transients and sinusoidal per-
turbations of the control for comparison with the
analytic expressions just derived, but first a
specific switch controller is chosen to operate
the switched power stage.

Switch Controller

A pulse-width-modulator (PWM) is used to con-
trol the switches in the computer simulation of
the power stages in Fig. 2. The PWM samples the
controller input ¢ at uniform time intervals to
initiate a sequence of output pulses whose dura-
tions are proportional to the sampled input values:

1l; 0= t-nT < T
a(t) = , n = integer, (23
0; otherwise

where
i 0; e(nT) <0
— = { e(nT) ; 0 < ¢(nT) <1, n=integer. (2k)
T 1; 1 < ¢(nT)

To compare computer results with analysis, one
should use a simple analytic controller model.
Step changes of ¢ manifest themselves in the con-
troller output within a switching period T and
the controller output remains unchanged thereafter.
Since T is much less than the response time of
the power stage, the PWM does not significantly
affect the overall transient response., Sinus-
oidal control perturbations are a different matter;
however, if the dimensionless controller input, as
shown in Fig. 1h(a), is given by

e(t) = U+ u sin(wt-¢) , (25)
where U+u<l and U-u>0Q, then the spectrum of
the controller output shown in Fig. 14(b) can be
evaluated by the extension (1) of a tedious two-
dimensional Fourier analysis (6):

o -in(@en) I luaTl  3a(t-UT)
Y oe —_— e

[o2]
a(t) = U - =
(t) R AT
no= mw +I]U\)%O
Jmw t

® 1 s

N e (26)
— JmmsT ’

m#O

where Jn[z] is s Bessel function of the first
kind.
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fundamental
1 component
(b) D
0
0
Figure 14, PWM response to sinusoidal modula-

tion: (a) input, and (b) output.

Whether « and w_ are commensurable or not,
the describing function™of the PWM can be approxi-
mated well for small u by exp(-juUT); thus the
frequency response of the PWM can be modeled by a
phase lag which increases linearly with modulation
frequency w.

Component Values

The following numerical values are consistent
with typical design constraints (L/Ry>> T, RC >> T,
2L/R > T) and will be used henceforth for specific
analysis.

T = 10'“ second
R = 60 ohm
L= 61073 henry
C= 1/2:+1073 farad = W1.7uf (27)
RL= 3 ohm
R = 1 o
c
V = 60 volt

Transient Response

It is convenient to record on a strip chart
the transient response of switched and averaged con-
verter models as simulated on the analog computer,
Whereas step transitions of ¢ and <d> between
all permutations of the levels 0.25, 0,50, and 0.75
were investigated, only representative transitions
for the boost power stage are shown here. Figure
15 shows corresponding experimental transient re-
sponses of the switched and averaged models for
comparison; the excellent correlation is typical of
all power stages and control transitions., Notice
qualitatively how the damping factor and natural
frequency depend on duty ratio as predicted.



SWITCHED

v(t) v(t)
e
(a) LT
: ‘ —+- L
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s [ i
o T
(e) B e Y
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H N T t »
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4 i ]
(a) : e ] [
s ! R
i R § | ot
Figure 15, Experimental transient responses of switched and averaged boost power-stage models.

Control transitions are (a) 0.75 — 0.50,

[scale factors:

Frequency Response

A simple analytic description of converter fre-
quency response results when the PWM describing
function is multiplied with the linearized control-
input power-stage describing function G.(jw) in
Eq. (15). A Bode plot of the theoretical frequency
response of a boost converter is shown in Fig. 16
for several values of duty ratio.

Experimental frequency response is measured by
enforcing a control input in the form of Eq, (25).
At any given modulation frequency «, the control
input and power-stage output are simultaneously re-
corded on a strip chart, from which the amplitude
and phase of the output component at the modulation
frequency can be measured with respect to the modu-
lation amplitude and phase., The amplitude and phsse
of the effective transfer function are then located
on a Bode diagram. Figure 17 shows experimental
data from the switched and averaged models of the
boost power stage superimposed on the theoretical
frequency response for D=0.50, The degree of cor-
relation in evidence is typical of the other power
stages and duty ratios investigatzd.

(b) 0.25 = 0.50,
36 v/Div vertical, 0.5 msec/Div horizontall.

(c) 0.50 = 0.25, and (d) 0.75 - 0.25;

The scattering of switched data at higher fre-
quencies in Fig. 17 leaves uncertain the role of
various theoretical factors in determining the
overall frequency response., To study this question
one can decompose the theoretical transfer function
into distinct factors which represent the effective
amplifier, filter, and switch controller of the
aver%ged boost power stage. These component fac-
tors-, together with the composite response, are
plotted as a function of frequency in Fig, 18 and
show that data correlation with the computed curve
in Fig, 17 would be much worse if any single theo-
retical factor were missing; in particular, the
presence of the effective amplifier term, novel be-
cause of its real positive zero, has been confirmed,

3For convenient amplitude normalization, the scale
factor Vg 1s divided from the amplifier factor
and multiplied with the filter factor.
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CLOSED-LOOP BEHAVIOR

Given that the open-loop frequency response of
switched power stages is approximated by that of
the averaged models, one should investigate how
well the closed-loop behavior of the switched
system can be predicted by the averaged system.
One must remember that validity of stability pre-
dictions from the averaged model is inherently
limited to frequencies less than the switching
frequency. The objective of this section is to
provide a comparison between theoretical closed-
loop stability of averaged systems and experimental
stability measurements of switched systems.

The feedback configuration used for stability
analysis 1s shown in Fig. 19 and was designed to
make the dc controller output independent of the
feedback factor K. When K=0 (no feedback), the
de controller input U sets values for the static
PWM output D and the static output voltage V;
if V.. 1is chosen equal to V, then the static
output voltage remains constant as K increases,

+,
+ e(t) d( | POWER
Vi 7 PWM sTaGe [T

Figure 19, Converter in a closed-loop regulator
configuration.

Local stability can be experimentally examined
by gradually increasing the value of the gain
factor K until a small disturbance in the steady-
state limit cycle no longer decays with time but
grows in amplitude. The critical value of K
which separates the two modes of behavior is de-
noted K., and the corresponding oscillation
occurs at frequency w,. Theoretical values for
K., and w, are computed from expressions for the
frequency response.of the averaged models by ob-
serving the frequency w. where the phase lag is
n and then computing the gain factor K. which
makes the magnitude of the open-loop gain equal to
unity,

Experimental values of K, and ., are com-
pared in Table 2 with predicted analytical values.
Experimental values could not be obtained in the
buck-boost simulation for D=0.25 because, as K
increases, the discontinuities in output voltage,
which are a consequence of switched current
through the parasitic resistance of the imperfect
filter capacitor, drive the switch controller into
a saturated condition before the system becomes un-
stable; however, one should conclude from Table 2
that empirical closed-loop stability data from the
switched simulation correlates well, overall, with
values derived analytically from the averaged
models,

Table 2 Critical stability factors of the
closed-loop regulator configuration.
D K w [10° rad/sec]
c c
Theory Measured Theory [ Measured
Boost
0.25 0.028 0.034 2.8L 2.87
0.50 0.012 0.015 1.73 1.65
0.75 0.004 0.007 0.73 0.82
Buck-boost
0.25 0.158 - 6.3k% -
0.50 0.023 0.037 2.37 1.89
0.75 0.006 0.010 0.93 1.13
CONCLUS IONS

A technique to characterize the low-frequency
response of switched power stages has been devel-
oped and applied to the simple analytic evaluation
of source- and control-input describing functions.
Analysis of continuous models which approximate the
behavior of switched converters reveals several in-
teresting characteristics including, for boost and
buck-boost power stages, the modification of effec-
tive component values by the switch duty ratio, and
the typical existence of a real positive zero in
the linearized control-input describing function.
The pulse-width-modulator as a switch controller
exerts only weak influence on the frequency re-
sponse in comparison with the power stage. The
averaging technique can include parasitic effects
such as realistic switch and diode models in the
analysis., A computer simulation demonstrates that
both open- and closed-loop responses of switched
power stages are predicted well by continuous
models; thus, the averaging technique should be a
useful tool for the design and analysis of switched
converters,
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