| N F—qzosu%w/
LA-UR -91-109

=

T

FEBO 5 10g

Los Alamos National Laboratory 1s operated by the University of California for the United States Department of Energy under contract W-7405.ENG-36

LA-UR--91-109
DE91 007384

TiTLE:  LOW-FREQUENCY COMPUTATIONAL ELECTROMAGNETICS
FOR ANTENNA ANALYSIS

AUTHOR(S).  E, K., Miller and G. J. Burke

SUBMITTED TO:  Proc. IEEF '91

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights, Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

By acceptance of this article, the publisher recognizes that the U S Government retains a nonexclusive, royalty-free license to pubiish or reproduce
the published form of this contribution, or to allow others to do so. for U.S Government purposes

The Los Alamos National Laboratory requests that the publisher identily this article as work performed under the auspices of the U S Department of Energy

L@S A @ﬁ@@@ Los Alamos National Laboratory
Los Alamos,New Mexico 87545
HTEQ

FORM N R4 UM‘NT % ‘
s? NO 552893:«5\ DlSTR‘BUﬂoN OF THIS ‘P’mﬁbTER




LOW-FREQUENCY COMPUTATIONAL ELECTROMAGNETICS
FOR
ANTENNA ANALYSIS

E. K. Miller, Group MEE-3, MS J580
Los Alamos National Laboratory
PO Box 1663, Los Alamos, NM 87545
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ABSTRACT

An overview of low-frequency, compuational metheds for modeling the electromagnetic
characteristics of antennas is presented here. The article presents a brief analytical
background, and summarizes the essential ingredients of the method of moments, for
numerically solving low-frequency antenna problems. Some extensions to the basic
models of perfectly conducting objects in free space are also summarized, followed by a
consideration of some of the some computational issues that affect model accuracy,
efficiency and utility. A variety of representative computations are then presented to
illustrate various modeling aspects and capabilities that are currently available. A fairly
extensive bibliography is included to suggest further reference material to the reader.
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1. INTRODUCTION

Although Computational ElectroMagnetics (CEM) dates its origin prior to development
of the large-scale digital computer, depending previously on mechanical calculators for
the necessary computations, it truly began in the early 1960s with the appearance of the
first scientific mainfrarnes. With the approximately 10,000,000 times speed increase
from the 1,000 floating-point opcrations (FLOPs)/second of the UNIVAC-1 to the
near-10 GigaFLOP speed of the present mainframes, the size, complexity and scope of
problems that are routinely computer modeled not only in electromagnetics but in all of
science and engineering, has vastly increased. The purpose of this article is to
summarize present capabilities in CEM for antenna applications.

The article title includes the words "low frequency" because in spite of the continuing
increase in computer speed that is occurring, a factor of 10 about every five years, the
raw "number-crunching" requirements of first-principles, numerically-rigorous EM
modeling grows at least as fast as the fourth power of the frequency, f, for a given
problem. Thus, it is not hard to challenge the capacity of 10 GigaFLOP computers, and
when the speed has further increased to 1 TeraFLOP or 1 PetaFLOP, the set of
problems for which computer modeling is practical will be less dramatically expanded.
The digital computer has never-the-less irrevocably altered the world of the
electromagneticest, supplementing and complementing analysis and measurement with
computer modeling as a third method of problem soiving.

The article is organized as follows. In Section 2 we present the necessary analytical
background to explain the mathematically formal descriptions of low-frequency antenna
models that are included here. This is followed in Section 3 by a summary of the
numerical treatments employed to obtain quantitative results from the analytical
descriptions. We consider some extensions to the basic problem of perfect condutors in
free space in Section 4, followed by a consideration of some computational issues that
affect model selection and application in Section 5. A survey of representative modeling
capabilities and applications is included in Section 6, with some concluding Section
comments in Section 7.
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2.  ANALYTICAL BACKGROUND

As already discussed by Balanis in the first paper in this issue [1], the analytical starting
point for electromagnetics is Maxwell's Equations. These equations can be expressed in
two distinctly different forms. Perhaps most familiar is their differential form, when
they are written as curl and divergence relations. An alternate way of writing

Maxwell's Equations is in a source-integral form using some appropriate Green's
function, usually that for an infinite medium. The essential difference between these two
descriptions of electromagnetic fields, and other formulations such as the geometrical
theory of diffraction and modal expansions based on multipoles, arises from the
analytical means by which source-field relationships are prescribed, i.e., in how field
"propagation” is described mathematically. In addition, these equations can be written in
the time domain with time an explicit, independent variable, or in the frequency domain
for a radian frequency ® where a time variation of the form eJ®t js assumed.

Numerical models can be developed using either form and either domain. Those
derived from the differential equations are usually called finite-difference and
finite-element models, while those based on integral equations are known as
boundary-element or moment-method models, about which more discussion follows in
Section 3 below. For convenience, we use the abbreviations DE and IE to denote
differential-equation and integral-equation models, and FD and TD similarly to indicate
whether they are formulated in the frequency domain or time domain. Thus, TDDE is
used for a differential-equation model developed in the time domain.

2.1 Maxwell's Equations and the Wave Equation
For infinite, homogeneous, isotropic media, Maxwell equations in the TD as a
function of space coordinate r and time t are given by [2]

VXE(r,t) = —u-a%H(r,t) -K@,t), VErE)=prt)s

VxH(r,t) = egt-E(r,t) +J(r,t), V-H(r,t) = m(r,t)/u,
(1)

with E(r,t) and H(r,t) the space- and time-dependent electric and magnetic field vectors,
J(r,t) and K(r,t) the electric and magnetic current densities, p(r,t) and m(r,t) the
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electric and magnetic charge densities, and € and p the medium electric permittivity and
magnetic permeability. Their FD counterparts are obtained from (1) by separating time
and space variables, i.e. using F(x,t) = f(x,m)ej(’)t, which replaces the time derivatives
by jo multipliers. The TD wave equation for E(r,t) can be derived from (1) to obtain
2
VxXVXE(r,t) + —l—-g—E(r,t) = —p-%.](r,t) - VxK(r,t)

c? ot

3)

with a similar equation for H(r,t), where ¢ = 1/Vpe is the speed of light in the medium.

2.2 Green's Function Representation of Maxwell's Equations
DEs of the kind above can be readily solved for point current sources [3], in terms

of the infinite, homogeneous medium, scalar Green's functions @(r,r',t,t'") =
3(t-R/c-t")/R and Qg (r.r',0) = e-kR/R, respectively, where R = Ir - r'l is the distance

separating a source at r' and observation point at r, the wavenumber k = w/c, and t' =t
- R/c is the retarded time. Additional vector-differential operations on these Green's
functions then yield the various time- and frequency-dependent field components as a
dyadic Green's function [4], which for electric currents in the FD is given by -j(ou(kzl
+ VV)/k2 with I the unit dyadic. It should be noted that the only condition satisfied by
the fields obtained in this manner is the Sommerfeld radiation condition [2], which
means that their outward propagating components, in the FD, satisfy the condition (r-V

+ jk)f(r,0) = 0 as Irl ---> oo, i.e., their phase advances with increasing distance from the

source and they attenuate as 1/R.

Using the superposition principle, we are then able to represent the electromagnetic
fields as an integral of the dyadic Green's function operating on an arbitrary source
distribution. The sources could be volumetric distributions of free charges and currents,
or the tangential components of the fields produced by these sources over a surface that
encloses them. Alternatively, the sources could reside on surfaces separating two
electrically dissimilar media, such as a perfect conductor and free space. We are thus
able to derive Green's-function integra! representations of the total field in the FD, as
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E(r)=TE"™(r)- %js{jwm'xﬂm — WXEXV'¢, - (0E)V'¢, }ds'

(3a)
and
He)=TH™x)+ 4—1 L{ joem'xE)p,, + MxH)XV'e, + (" H)V'p,}ds'

(3b)
where n is an outward-pointing unit vector normal to S and the quantity T = (1 -
Q/4m)-1 permits the observation point in (3) to be located outside or on the surface S
[5]. Similar integral expressions can be derived in the TD, which are omitted for
brevity. We see that, were the sources on the surface S to be known, the fields would
then be completely determinable, but since that is not the case, our problem has now
become one of finding that source distribution on a prescribed surface whose fields,
together with the incident field causing those sources, will satisfy the required boundary
conditions. This is the basic idea behind the need for solving an integral equation, whose
derivation is next discussed.

2.3 Developing an Integral Equation

Derivation of an IE from integral expressions for the fields as given above can be
achieved in various ways. One of the most appealing on physical grounds, though
involving some mathematically challenging issues such as singular integrals, is
boundary-condition matching. That is, we can let the observation point in (3) approach
a surface on which the total field satisfies known boundary conditions. At the surface of
a penetrable object, for example, the tangential components of both the electric and -
magnetic fields are known to be continuous. If the object in question is a perfect electric
conductor, the situation most commonly encountered in antenna analysis and design, then
the total tangential electric field is zero,or nx[ESCat(r) + EINC(r)] = 0, with EScat(r)
being the field of the sources caused by the incident field. Two different kinds of IEs
can be derived for perfect conductors from (4), having either the incident eleciric field
or incident magnetic field as the forcing function. The IEs for penetrable objects

involve both field components together.

2.3.1 Frequency-Domain Integral Equations--For a perfectly
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conducting object defined by the surface S, (4) reduces to the following IEs:
i 1 . 1
nxE"(r =—n‘xJ.{ o) + —(V- V' }ds',re S,
(r) an S jopJo,, j(!)( HV'e,

(4a)
and

- inc __1__ ' '
Jor)=2nxH ™ (r) +27t n><jS JxV'e,ds', r e S.

(4b)
where J = nxH is the surface current on the conducting body. Equation (4a) is known as
the electric-field integral equation (EFIE) and (4b) as the magnetic-field integral
equation (MFIE). They are Fredholm IEs of the first and second kinds respectively, in
which the unknown appears either only under the integral sign, or outside it as well.

The mathematical operations on the unknown which occur under the integral sign are
called the "kernel" of the integral equation. In terms of applicability, the EFIE is suited
to more general object shapes, including thin plates, open shells and wires, while the
MFIE's applicability is limited to closed, relatively smooth, objects.

2.3.2 Time-Domain Integral Equations--Equivalent TDIEs are given

by
inc ___1_ _Q_ Cer 1 1 1 a\Ps(S t) r—r' \
BT = 4n“xjs{” R N (e o P }da
(5a)
and
inc (1 1949 R \
Jr,t)=2nxH (I’t)+5— DX{[E -(-:--a—-jlj(r t)XE—} a
(5b)

respectively, where the surface-charge density, pg, comes from the integral form of the

continuity equation

t
ps(s,t) == V'J(S,T)d‘[

2.4 Integral Equations for Wires
Wires are a special class of objects whose study has long occupied

electromagneticests. This is because much of the early development of radio-wave
Low: Frequency Antenna Models, Proc. IEEE '91, Page 5



communication incorporated wires and wirelike objects as antennas. In addition, thin
wires also represented one of the few geometries beyond those admitting
separation-of-variables solutions, such as circular cylinders and spheres, amenable to
analysis prior to the digital computer [6]. Finally, when arranged to form a mesh, more
general conducting bodies can be approximated both physically and mathematically, by
collections of wires. Several kinds of IEs have been used for wires, in both the TD and

FD. Some of the more commonly-used ones are summarized below.

2.4.1 Frequency-Domain IEs for Wires--In the context of the
thin-wire approximation (TWA), a wire is represented as a circular cylinder of diameter
D and length L such that D « L and D « A, about which several assumptions are made.
First, it is assumed that the azimuthally-directed component of surface current is
negligible. Second, the longitudinally flowing current, I(s"), is taken to be independent
of azimuth. Finally, because only the longitudinal electric field is then important, the
boundary condition is enforced on only this field component and the surface integrals
are simplified to one-dimensional line integrals using the so-called reduced kernel in the
IE. More details on the TWA and its implementation can be found in [7] and [8].

Perhaps the oldest wire IE is that derived by Pocklington [5] for a straight wire, whose
more general form is expressed by

s E™(s)= —

—jkR
0 9 }e ds', se C(r)

1 : .
47tj0)8JIC(r)I(S )|:kzs's " 3o0s'] R
(6)
where s and s’ are unit tangent vectors to the wire at s and s' respectively, and C(r)
defines the wire geometry with s displaced by the wire radius a from the source filament
at s'. Other versions of the TWA IE are the mixed-potential form [1] and the generalized
Hallen IE [9].

2.4.2 Time-Domain IE for Wires --Equivalent TD versions of the
FDIEs for wires can also be developed. One example is given by [10]

. inc — “‘0 S'S' a [ S'R a [ ‘ZSIR [ '
sE7(s,t)= I C(r[ TETI(S ’tHCE?—B—sTI(S Jt)—c¢ —}-i3—q(s t )i|ds ,s€ C(r)

(7
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2.5 Operator Form of the Equations
It is convenient to express the various equations summarized here, both
differential as in (1) and integral as in (4), (5), (6) and (7), more concisely for
subsequent discussion of their numerical treatment using the MM. In the FD, following
Harrington [11], we use the generic operator form
L(s,s';0)f(s’; ) = g(s;w) = L(s,s)f(s") = g(s) (8)
where the explicit dependence on frequency is normally suppressed. In this shorthand
notation, L(s,s") represents an integral or differential operator, f(s') is the unknown,
and g(s) is the forcing function, or "right-hand side" (RHS) of the equation. A similar
expression can be written for the TD as
L(s,s5t,tHf(s";t) = g(s;t) 9)
where the explicit dependence on source and observation times is retained to distinguish
this equation from its FD counterpart.

It should be noted that the formulation and numerical solution via the MM, as briefly
outlined below, is independent of the RHS, so that most models are equally applicable to
radiation or scattering problems. For the former, the RHS is a localized "incident

field," usually a voltage or a specified tangential electric or magnetic field defined over
a limited region of the model. In the latter case, the incident field exists over the entire
structure being modeled. Therefore, although this discussion is specifically addressed to
low-frequency antenna modeling, we include a number of references to scattering
applications.
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3. NUMERICAL TREATMENT ,
Although the term "moment method" (MM) has come to be most cominonly associated
with integral-equation models, it actually refers to a general procedure for numerically
solving DE, IE and integro-differential equations in the TD and FD [11]. The MM is an
intuitively logical way to develop a numerical solution to equations of these kinds. Its
basic steps are generically the same whatever the specific kind of equation is being
solved. These are first briefly outlined below, and then described more completely in
the following sections. |

3.1 The Basic Steps in the MM for the Frequency Domain

1) Sampling and approximating the unknown sources and/or fields whose
solutions are sought using some appropriate basis- or expansion -function
representation, involving unknown constants whose numerical solution is the
goal of the MM model.

2) Sampling the defining equations which the expansion-function representation is
required to satisfy in a manner determined by some weighting or testing
functions, to develop quantitative relationships among the unknown constants
and thereby forming a linear system of equations.

3) Solving the linear system of equations using various matrix procedures.

3.2 Time-Stepping for a Solution in the Time Domain
Developing a MM model from a TD formulation requires not only space

sampling, but also involves:
4) Developing a time response using time sampling and stepping.

3.3  Further Consideration of the Moment Method
3.3.1 Sampling and approximating the unknown Sources/ﬁelds--
Two basically different kinds of expansions can be used. One is the entire-domain basis
(EDB) which is defined over the entire object or space being modeled, an example being

the Fourier series Elnsin(ZTms/L), n=1,...,torepresent the current on a wire or

two-dimensional strip. For a general object whose surface is defined by G(r), the EDB
can be expressed as

Low-Frequency Antenna Models, Proc. IEEE '91, Page 8



Xs

f(s') = ZIibi(s'), s' € G(r)

i=1
(110

where there are Xg unknown coefficients I; whose quantitative values are to be obtained

in the MM solution and the bj(s') are the basis functions.

Although useful for simpler objects, EDB are not as well suited for more complex
geometries such as aircraft, for example, for which sub-domain bases (SDB) are instead

employed. These are expansions defined over smaller patches or segments, AG;(r), of

the object, and can be written as
Xs N,

1

f(s") ='221ijUi(s')bij(s') with U(s") ={ 1for s'e AG; (r)

ot e 0 otherwise
i=1 j=1

(11a)
where the number of subdomains is X and the basis bj;(s') has Nj terms on segment i,
an example of which is the three-term basis
. Ii(s) = Aj + B;sin[k(s-s;)] + C;cos[k(s-s;)]; where Is - s;| < A;/2 (11b)
Normaily, this kind of multi-term basis is the same for all subdomains, except for
boundaries suchl as the ends of wires or edges of strips. Two or more terms in each

subdomain basis may be employed to produce some specified degree of continuity in the

unknown at segment junctions, which also reduces the total number of unknowns in (11)
from XNj to of order Xg. Hybrid combinations of EDB and SDB have also been-found
to be useful [12].

3.3.2 Sampling the defining equations and forming a linear
system of equations--This step can be expressed, for the case of the EDB,

j t(5),L(s,5")by(s")ds = J t(5).2(s)ds, j = 1,....Xg.....Np
G(r) G(r) ;

(12)

where t;(s) is the j'th testing function. There are normally at least X testing functions
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so that (12) generates as many equations as unknowns. A similar equation also holds for
the SDB. As for the basis functions, the testing functions can be either entire-domain or
sub-domain, or some combination thereof. One of the more commonly used subdomain
testing functions is the delta function, in which case the integral (12) samples the ﬁ;lds at
a set of N discrete points on the object being modeled. The use of other kinds of
testing functions essentially varies the contribution of the boundary field at a given point
on the object to the final matrix coefficients in proportion to the value of the testing
function at that point. For mathematical reasons, it can be advantageous to employ the

same functions for both the basis and testing functions, an approach that is known as
Galerkin's method [11].

Each equation sample involves an operation or FLOP count that is a constant for DEs

and is proportional to Xg for IEs. The DE FLOP-count dependency is lower because all

of the terms in a DE are collocated in space. The DE field therefore involves only
neighboring fields/sources (F/S) through sampled approximations of the differential
operators, thus requiring a fixed number of terms per equation sample. The IE field, on

the other hand, involves F/S over the entire surface on which tney reside through a

sampled summation which has Xg terms. The total FLOP count for this step is therefore

proportional to N for DEs and N Xg for IEs.

This steps results in
Xs |
Y7 1=Vii=1,... X, Ny
=1 |

where (1
Zij=] ti(s)L(s,s)bj(s)ds and V;= j ti(s)g(s)ds
G(r) G(r)

3)

with Z; ; the coefficients of the system, or impedance, matrix as it is called for an IE

EFIE model. We note that when N > X, which results in more equations than

unknowns, a solution to (13) can be obtained by method of least squares, or using a

pseudo inverse, which is achieved by "squaring" the overdetermined impedance matrix

by multiplying it by the complex conjugate of its transpose. This approach is equivalent
Low-Frequency Antenna Models, Proc. IEEE '91, Page 10



to implicitly imposing N - X auxiliary relationships among the testing equations.
Alternatively, an explicit relationship could be employed, for example using weighted

sums of the sampled equations to reduce their numbers. Using NT < X is also

permitted, which results in more unknowns than equations, in which case the number of
unknowns must be decreased. This can also be done by the use of the pseudo inverse,
which as before introduces implicit auxiliary relationships among the basis functions.
This is equivalent to representing the current using weighted sums of the basis functions,
which cau also be done explicitly as in the Numerical Elect: omagnetics Code (NEC)
[13].

3.3.3 Solving the linear system of equations--A solution to (13) can

be formally written as
Xs

L= D Y,;V;where [Y]=[Z]"
=1

(14)
but an inverse is seldom aétually computed, the solution more often obtained in factored

form or using iterative techniques, with Yi,j the coefficients of the solution, or

admittance, matrix as it is called for an IE EFIE. The FLOP count for this step varies

from Xg to (Xg)3, the former for DE models solved via iteration to the later for IE

models solved using LU decomposition. As problem size and complexity increase, the
solution step will eventually dominate the overall FLOP count, and is an active area of
current research to reduce the operation count [14]. “

3.3.4 Time sampling in a time-domain model--This step is needed to
develop the time-sampled behavior as a sequence of updated, sampled spatial responses.
Time stepping can be implicit, where interactions are permitted between the various
spatial samples during the updating at the most recent time step, or explicit, where these
interactions do not occur. The possibility of an explicit solution is a direct consequence
of causality, or the fact that light propagates at a finite speed so that a change in the
source located at r' at time t' is not known at r until time t = t' + R/c. The implicit

approach requires solution of a linear system at each time step whereas the explicit
Low-Freguency Antenna Models, Proc. IEEE '91, Page 11



approach does not. Instead, it produces an algebraic, i.e. non-matrix solution, which is
computationally more efficient, but which limits the time-sample interval to some
maximum value [15]. For examnle, dt £ Ax/c is required in one dimension, where Ax is
the space-sample size, with similar limitations applying in two- and three-dimensional
problems.

3.4 Exploiting Symmetries

Many problems in electromagnetics exhibit various kinds of symmetries such as
rotation, translation and reflection. When part or all of a given problem has such
symmetries, they can be extremely effective in reducing computer storage and time
requirements. This arises from tne fact that the MM impedance matrix then has a
known structure whose effect is to reduce the number of different coefficients in the
matrix. An n-sided regular polygon, for example, modeled using one segment per side
then has only n, rather than n2, different matrix coefficients, producing an impedance
matrix called circulant. This matrix can be solved with an operation count of order n,
rather than the n3 that would otherwise be required. More about symmetry effects can
be found in [16). |

3.5 Some Observations

It is worthwhile summarizing some of the key differences concerning application

of the MM to IEs and DEs in the TD and FD as follows:

1) A DE model produces a linear system that is very sparse, i.e. all but some
small, fixed number of its coefficients are zero, because a DE samples the F/S locally
whereas an IE samples globally over some boundary.

2) The coefficients of both the DE and IE models are complex numbe, s in the FD
but real numbers in the TD.

3) For homogeneous-region problems, the number of spatial source/field and
equation samples using a DE model is proportional to frequencyD, where D (= 1, 2,
3) is the problem spatial dimensionality, whereas that for an IE model is proportional
to fD-1, This is because the former must sample fields on some mesh throughout the
problem volume whereas the latter needs to sample only on some enclosing surface.

4) For problems involving infiniie exterior domains, the DE model requires some
kind of closure condition to terminate the solution mesh, whereas the IE model has a
built-in radiation condition because of the Green's function used 1n its formulation.

5) All FD models require solution of a linear system of equations, whe' *as their

Low-Frequency Antenna Models, Proc. IEEE '91, Page 12



TD versions can be solved without matrix solution when an explicit treatment is used.
for which the time steps are small enough that neighboring spatial samples of the F/S
do not interact within the same time step. When same-time-step interaction is
allowed in a TD model, they are called implicit formulations.

6) TD models are solved as initial-value problems using time stepping, whether
implicit or explicit, and whether DE or IE models.

7) Transient results can be obtained directly using a TD model or via transformed
FD results in general, but for nonlinear, time-varying media and/or components, a
TD approach would normally be the better choice. |

8) A TD model can a provide wideband solution valid up to some maximum
frequency, fmax, but for a single spatial excitation, whereas a FD model can provide
a solution valid for arbitrary spatial excitation but for a single frequency.

Low-Frequency Antenna Models, Proc. IEEE ‘91, Page 13



4.0 MODEL EXTENSIONS

The preceding discussion covered the basic elements of MM modeling. We now briefly
examine some topics associated with making these models more efficient or more widely
applicable.

4.1 Special Green's Functions for Integral Equations

Most IEs are based on the free space Green's function, so that the only boundary
condition they explicitly satisfy is the Sommerfeld radiation condition. While this
results in the simplest kernel function for the integral equation, it means that the induced
sources which reside over any portion of S become part of the unknowns whose solution
is required. An alternative approach is tc employ special Green's functions that
automatically satisfy the required boundary conditions over part or all of S. While such
Green's functions can significantly complicate the IE kemel, at the same time they can
greatly reduce the number of unknowns in the MM model, and thereby decrease the
overall computer time required.

As might be anticipated, such special Green's functions are available for only a limited
number of geometries for which wave-equation solutions can be obtained by separation
of variables. Even though this does limit their generality, these Green's functions can be
effective for problems having components possessing these special geomeiries. Some
examples worth mentioning here are the sphere, parallel-plate waveguides, and infinite
planar surface.

Some satellites have basic spherical shapes with various additional wire appendages,
panels, etc. Use of the Green's function for a point current source near a sphere means
that a model for this kind of object will involve as unknowns only the currents flowing
on its non-spherical parts [17]. This idea has been generalized to bodies of rotation
(BOR) having wire appendages, so that a solution can be developed as a series of modes

varying as In(s)ein‘P (18], {19], [20]. A BOR exhibits one of the kinds of symmetry that

can be exploited to increase solution efficiency, as already mentioned above. We note
that rotation symmetry arises in both continuous and discrete forms, the former being
exhibited by a circular loop and that latter by an n-sided regular polygon as an

Low-Frequency Antenna Models, Proc. IEEE '91, Page 14



approximation thereto.

In ElectroMagnetic Pulse (EMP) studies, it is common to employ parallel-plate
waveguides as simulators to measure the response of test objects to an impulsive,
planewave field. A MM model of such interactions can be more efficiently evaluated
using a Green's function for a current source located between parallel, infinite
conductirg planes [21]. This approach has also been extended to rectangular cavities for
model the mode-stirred chambers being used for ElectroMagnetic Compatibility (EMC)
analysis [22].

The problem of two half spaces of different electrical properties having a common,
infinite, planar interface is one which well describes the environment of at least two
classes of antenna problems. One is that of communications antennas operated at
frequencies below 100 MHz located near the surface of the earth, for which the
Sommerfeld integrals are the special Green's functions [23], [24] and which will be
discussed more below. The other is the problem of microstrip geometries, which at
frequencies up to 100 GHz and higher are finding increasing use as antennas, and at
lower frequencies but in much smaller sizes are found in very large scale integrated
circuits where field effects are being found increasingly important [25], [26], [27], [28].
More general layered-media problems have also been modeled, including anisotropic
layers [29], [30], and multiple layers [31], [32], [33].

4.2 Hybrid Models

Many of the problems needing analysis today exhibit features not well suited to
any single kind of model. For example, although IE models are generally best for
modeling perfectly conducting, or homogeneous penetrable object, for which they
require only surface sampling in contrast with DE models which require volumetric
sampling, when the penetrable object is spatially inhomogeneous, then the IE model also
requires volumetric sampling. But since the IE matrix has all nonzero coefficients (see
section 3.3 below), or is dense, compared with the DE matrix which is always spirse,
the DE approach would generally be the better choice for inhomogeneous objects. It

follows that when a problem involves a combination of inhomogeneous and perfectly
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conducting objects, using both the IE and DE approaches together in a hybrid model
would often be more efficient than modeling the entire problem using either approach
alone.

Such hybrid models are becoming more commonly employed in CEM [34]. One of the
first examples employed the geometrical theory of diffraction (GTD) and the MM to
handle wire antennas located near the edge of a ground plane [35]. The GTD diffraction
coefficients were used to calculate the fields scattered from the edge so its effect could
be included in an IE model for which the unknown current remained only that on the
antenna. Other hybrid models have combined DEs and IEs [36], modal expansions and
IEs [37], and low-frequency results with IEs [38], as well as extended the GTD-IE
models [39], [40], [41], [42]. The basic motivation for development of such hybrid
approaches is the goal of modeling each of the separate parts of a complex problem with
a technique that is best suited to its particular characteristics. As the problems needing

solution becomes more complex, the need for hybrid models will continue to grow.

4.3 Modeling Slots and Apertures

Perhaps the simplest class of antennas to model are those composed of wires. As
demonstrated by the collection of articles in this special issue however, wires represent a
relatively small set of antenna geometries of interest, even at low frequencies. Other
geometries include microstrip structures and aperture antennas, both of which generate
the need to handle more general body shape having narrow slots and apertures. Many of |
these problems effectively result in the entire body in which the slot or aperture is -
placed acting as the antenna with its excitation being provided by apertures or slots in its
surfaces. Models based on the numerical techniques being discussed here can be
developed for such problems [43].

Slot antennas are usually defined to be narrow, extended apertures which, when located
in an infinite, plane conducting sheet are described by a Pocklington-type IE [44]. The

unknown in this case is the voltage across the narrow dimension of the slot as compared
with the longitudinal current on a thin wire. Slots and antennas composed of thin strips

of metal are called dual structures [45], so named because their mathematical
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descriptions are identical with a suitable interchange of variables. But more general
apertures are notl solvable using duality, and their modeling requires careful
consideration of the fields in the aperture as well as over the surface in which it is
located. The problem of modeling apertures and slots is closely related to the so-called
source problem, that of defining circuit quantities for antennas for which thin gaps or
slots are most often used for their excitation, which is discussed briefly below in Section
6.1.

4.5 Modeling Imperfectly-Conducting Objects

Our discussion thusfar has addressed primarily the problem of modeling perfectly
conducting objects. Because high antenna efficiency, i.e., the ratio of radiated to input
power, is usually desirable, most anteunas are made so as to minimize dissipative ioss.
This is in contrast to the fabrication of "low-observable" targets where the goal is to
absorb energy from the incident field to minimize the scattered radiation. Thus,

"perfect-conductor” antenna models are applicable to a large proportion of
low-frequency antenna applications.

Never-the-less, it is desirable that these models also include a capability for handling
imperfectly-conducting objects. Applications for this capability include use of reactive
loading to decrease the physical size at which a structure is resonant and for impedance
matching, and where the antenna's environment includes dielectric or lossy materials as
is increasingly the case with the use of composites and other specialized materials. The
analytical and numerical rigor needed for modeling imperfect conductivity depends-on
problem requirements and characteristics. For wires, two kinds of extensions to perfect
conductivity have been employed. One is the use of impedance loading on the wire to
account for the effects of lumped loads, such as might represent the generator
impedance, or distributed loads as a means of modeling finite conductivity, or to handle
transmission-line interconnection (TLI) between two ports on the antenna [13]. The
other is to approximate the effects of dielectric sheaths which are frequently used for
buried antennas by radially-directed displacement currents [46].

The effect of an impedance load can be accommodated in (13) simply by including a
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voltage drop on the RHS to obtain
Xs
Zzi,ﬂj =V;-1iZjy;i=1,....Xs,...Nt
j=1

(139
where Z;] is the load on segment i. Note that unless TLI loading is employed, the load

terms affect only the diagonal entries of a modified impedance matrix. For surfaces, an

equivalent procedure is to employ a surface-impedance term, which relates the electric
and magnetic surface-currents J and K as K = Z¢nxJ, where Zg is the surface

impedance. In this casé, there are no additional unknowns beyond those required for a
perfect conductor. More generally, both J and K need to be found from an IE derived
from imposing continuity of both E and H across the surface, a topic not pursued
further here.
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5.0 COMPUTATIONAL ISSUES
We discuss here a number of issues that must be considered in selecting a model or
computer code for application to a given problem or class of problems. We begin by
first briefly examining the desirable attributes of a useful computer model, followed by
a more detailed discussion of how these attributes are affected by the analytical and
numerical treatment on which a model is based and its intended applications.

5.1 Desirable Model Attributes
Although there are many equivalent ways in which the desirable features of a useful
computer model can be described, in one way or another the most basic model attributes
desired by most users would be accuracy, efficiency, and utility. We briefly discuss
these issues here. |

5.1.1 Accuracy/Reliability--The quantitative degree to which the
computed results conform to the mathematical and physical reality bcing modeled. It is

determined by the physical modeling error (€p) and the numerical modeling error (eN).

5.1.2 Efficiency/Productivity--Following accuracy as a desirable
attribute is efficiency, the relative cost of obtaining the needed results. It is determined

by the human effort required to develop the computer input and interpret the output,
and by the associated computer cost of running the model.

5.1.3 Utility/Applicability--The applicability of the computer model in
terms of problem size and complexity. Ultility also relates to ease of use, reliability of
results obtained, etc.

5.2 Model Accuracy/Reliability
Above all else, a modeling computation must posses acceptable, preferably known.
and better yet "dialable" accuracy. This is an attribute to which all others, however

desirable they might be, must be considered secondary, for invalid results have no value

and can even be detrimental. Of the two basic modeling errors, €p comes from

replacing the real physical problem with an idealized mathematical representation, while
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€N come from obtaining an approximate numerical solution for that idealized

representation.

For only a few problems is €p possibly zero, a sphere for example The

physical-modeling error can arise in ceveral different ways, including using a simplified

or different shape for the numerical model, such as approximating a circular loop by a

polygon. Other causes of ep are using a different kind of object, such as a wire mesh in

place of a solid, continuous surface, or even different material constants. Their actual
values may be not be available to the needed accuracy, or they may be approximated,
one example being use of a perfectly conducting ground plane in place of a lossy,

penetrable grcund. In most ’cases, ep will be the largest error source and ultimately

requires experimental measurement for its assessment.

On the other hand, €N can usually be made acceptably small in principle, but possibly at
the expense of increasing X beyond a computationally affordable limit, since for large

X it varies approximately as exp(-kXS) [47]. This is because the difference that can
exist between the computed result and an exact solution, the solution error, is caused by
using a finite number of unknowns. Also contributing to €y is the equation error,
which results because of roundoff due to using finite-precision computations, however
many unknowns are used. Another source of €y includes omitting details of the

mathematical representation in the numerical model. In wire modeling, for example.
although the actual currents flowing near wire junctions can be expected to exhibit
azimuthal variaticn, this effect is normally not included in the numerical inodel, as is

also the case of the endcap currents flowing on the ends of wires.

Although experimental data remains the preferred way to validate numerical results,

most model developers and users rely heavily on "convergence" tests to determine

whether the numerical results are converging towards some limiting value as Xg is

increased. Convergence tests should be regarded as a necessary, but not sufficient,
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condition for a model to satisfy, since convergence to the correct result is not
guaranteed. Furthermore, the appearance of convergence can depend on what computed
quantity is being examined. A simple example is presented in Fig. 1, where the input
impedance and admittance of a two-wavelength long, center-excited dipole antenna is
plotted as a function of the number of unknowns, as obtained using NEC [13]. These
two kinds of results, both obtained from the same model, being related as Z = 1/Y, could
lead to quite different conclusions about the validity of this simple model for a given
number of unknowns. Although the admittance results exhibit acceptable convergence,
the impedance data seems to imply that many more unknowns are required to achieve
the same degree of convergence. This shows that care must be used in interpreting
convergence tests, especially when complex numbers are involved where resonance
effects can arise. |

Generally speaking, most low-frequency EM models require a sampling density
equivalent to six to twenty samples per wavelength to obtain acceptable results, for
which the normalized convergence error can then be expected to be in the range of 0.01
or less. There are actually two kinds of effects that drive the required sampling density.
For smooth, extended geometries such as a sphere as the idealized example, the sampling

density is truly "wavelength" driven, with X determined primarily by overall electrical

size. When the object is more geometrically or electrically complex, the required
sampling density can become much greater in order to resolve the rapid changes in the
F/S that can occur near discontinuities or rapid changes. This point is made is Fig. 2
where the convergence in the tumble-average, backscattered fields for a number of wire
objects is presented as a function of sampling density [47]. _

Application-relevant, model-independent validation measures are needed for
quantitatively assessing the accuracy of computed results. Some of the categories of
results that might be useful include: 1) far-field quantities [radiation/scattering pattern.
total radiated power]; 2) near-field quantities [local electric and magnetic fields,
reactive and real power flow]; 3) boundary quantities [total tangential electric field on
perfect conductor]: 4) approximation effects [the effects for bends and wire ends
normally ignored in wire models].
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An example of a boundary-condition check is included in Fig. 3 where the magnitude of
the tangential electric field produced by the current excited on a center-fed dipole
modeling using a point-matched solution to the EFIE with a three-term current basis is
plotted. This field should be zero except in the soﬁrce region where it should negate the
applied excitation, but as can be observed here, it is zero numerically zero only at the
match points. This result, which is rather typical, shows that the required boundary
conditions rﬁay be satisfied only approximately by a numerical solution. A more
appropriate quantitative measure of how well the boundary conditions are satisfied is
provided by an integral of the boundary-field errcr divided by the incident field, which
for this case would be near 0.01, comparable to the result that might be expected from a
convergence test.

5.3 Model Efficiency/Productivity

While it is obvious that a model that efficiently produces inaccurate results has no
value, it is equally true that a model that produces acceptably accurate resulis but which
requires computer and/or human resources incommensurate with the application has
little more value. As mentioned above, from the viewpoint of the overall cost of
achieving a specified accuracy for the electromagnetic observables needed from a given
model, efficiency involves two components: computer and human. The computer cost
itself might be stated in several ways including total CPU time or the money c¢harges of
the computation. A more relevant and hardware-independent measure of the cor\nputin‘g
cost would instead be provided by estimating the total number of FLOPS required for
the overall computation. It might be even more informative to multiply this number in
turn by the number of bits manipulated per FLOP to establish the total number of bit
operations, or BLOPS, required for the model computation to be accomplished to some
acceptable accuracy.

The BLOP count could be especially significant in comparing two otherwise similar
models applied to the same problem when one of them requires higher-precision
computations because it is less well conditioned. The FLOP count, on the other hand.,

could be more relevant when one of the models produces unused information relative to
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the other. An example of the latter situation is that of computing the factored form of
the impedance matrix when using an IE model for an antenna problem where a solution
is needed for only one excitation, in which case an iterative procedure can be more
efficient for one or a few RHSs. | |

Although all electromagnetic models proceed from Maxwell's equations, their particular
formulation or numerical implementation may result in substantial differences in the
kind and amount of information provided by the basic computation. A DE-based model.
for example, provides the spatial fields throughout some solution volume whereas an
IE-based model normally yields only the sources over bounding surfaces. Matrix
solution by factorization provides a RHS independent sdlution matrix whereas iteration
requires that an entirely new solution be computed for each new RHS. It might be
useful to define a measure of information efficiency for given models applied to given
problems. Orc possibility would be that of dividing the information concerning
electromagnetic observables actjally needed in the application by the total information
given by routine use of the model. For antenna problems which involve a single point

of excitation but which are modeled using an IE-based code which solves the impedance

matrix by factorization, this efficiency measure would be of order 1/Xg since only the

equivalent of Xj.

One aspect of efficiency that is not so dependent on the formulation, numerical
implementation, and solution prcicedures as it is on the user interface provided by a
model's developers is the user efficiency. Thus, a model which that be deficient with
respect to user efficiency but which is otherwise attractive could be improved with the
addition of more "user-friendly" interfaces. For a user choosing among competing
models and having less demanding applications, user efficiency could be the most

important overall factor in making a selection.

Each of the above measures of efficiency might be combined in an appropriately
weighted sum to derive some overall efficiency measure, the weights being determined

by the importance of each component to a prospective user of a given code.
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5.4 Model Utility/Applicability

Finally, we must consider a model's utility in terms of the kinds of problems to
which it can be applied. At this stage, general-purpose modeling codes and specialized.
single-problem codes become most differentiated. On the one hand, it is always easier 10
develop a model specialized for a particular problem that will be more accurate and/or
efficient than a general-purpose code that can model that same problem. On the other
hand, the more widely applicable a given modeling code becomes, and the more easily
used it is, the greater its utility for the non-specialist who does only infrequent
modeling.

This attribute is perhaps less easily defined than accuracy or efficiency but can be
regarded as including all those factors not included in either. Utility essentially

- measures the kinds of problems for which a model might reasonably be used. Among
the factors which comprise utility are: 1) geometrical configurations permitted; 2)
electrical characteristics included [perfectly conducting, impedance-loaded,
hofnogeneous penetrable, inhomogeneous, anisotropic, etc.]; 3) kinds of excitations
[plane wave, dipole sources, Gaussian beams, local voltages]; 4) solution domain, FD or
TD; 5) input/output requirements needed to express real-world problem in model

terms; 6) hardware requirements {what computers,what interface hardware, word-size

requirements, storage needed, etc.].

5.4 A Comparison of Model FLOP Counts

As discussed above, the spatial sampling required of any of the models considered

here is driven by the wave-nature of electromagnetic fields, involving X total spatial

unknowns. For resonance-region modeling, where a characteristic dimension, L, of the
object to be modeled is in the range 0.1 < L/A < 10, the minimum equivalent sample
density is on the order of 5 to 10 spatial samples per wavelength, but can be much
greater f‘or“geometn’cally complex objects. A comparison of convergence rates for
several different methods used to model scattering from a straight wire about 12

wavelengths long is shown in Fig. 4.

Besides the spatial-sampling required whether using an FD or TD model, there is also
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the additional temporal sampling required of TD modeling, which is on the order of 5 to
10 temporal samples per period of the highest-frequency component in the response.
Furthermore, we note that TD models are required to be "run" or time stepped err
some minimum time duration of order L/c to achieve a steady-state response when
time-harmonic excitation is used, or to obtain a converged result when the excitation is
wideband. This minimum time is needed to allow the farthest extremities of the object

to interact, and involves a total number of time samples Xr.

The number of samples needed to model a problem is the principle parameter

determining the computer time required for its solution, since we should expect the

overall FLOP count to grow at least as fast as Xg for FD models and XgX1 for TD

models. But because the amount of computation required per sample can itself be a
function of the number of unknowns, the actual FLLOP count can grow much more

rapidly than this. For example, a FDIE, while involving X¢ unknowns can require on
the order of (XS)2 FLOPs per unknown to compute an inverse or factor the impedance

matrix, since the total number of operations varies as (X5)3. Summarized in Table [ are

the frequency dependencies of some of the more commonly used FD models. In this
table, D is the problem dimensionality (D = 1 for plane-layered media, D = 2 for
infinite-cylindrical geometries and wires, and D = 3 for general, three-dimensional
problems. Also, N is the operation count per unknown, S is the number of additional

operations per RHS, and H is the total number of RHSs needing solution.
TABLE I--Frequency Dependence of X, N, and § for IE and DE Frequency-Domain

Models
E Homogeneous IE InhomogeneousDE
Sample Count X - o fD_

Operation Count per Unknown N
Iteration -1 Fi X Constant
LU Decomposition F£(D-1) j24 P(D-1)
Total Ogeranons for Single Solution

Iteration f2D fD

LU Decomposition ﬂ(D 1) psD BD-2
Operanom er Additional RHS §

Iteration f2(D-1) 2D .2

LU Decomposition £2(D-1) 2D 2D

Total Operations for H RHSs, or Complexin
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Iterr tion - HR(D-1) HPD H
LU Decomposition p(D-1) D D-2
+ Hf2(D-1) + HfZD + Hf2D
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6.0 REPRESENTATIVE APPLICATIONS/CAPABILITIES

Space limitations permit but an brief overview of what present low-frequency antenna
modeling capabilities and applications include. Considering the necessity of covering
at least the basic ingredients of the analytical formulation and details of the numerical
implementation and computational issues, we can include here only a sparse sampling
of applications. We first discuss one of the most important aspects of low-frequency
antenna modeling, that of modéling the source used to numeﬁcal]y excite the antenna.
We then present FD examples for infinite-media applications, environmental effects
such as the earth-air interface and mounting structures for antennas, and special
modeling issues. The section is concluded by brief consideration of TD applications.

The relative importance of the various physical characteristics that might be used to
describe low-frequency antenna performance, such as input impedance, current
distributions, the near fields, the radiation pattern, radiation efficiency, etc. depends on
the needs of a particular application. In most applications, the frequency dependance
of the input impedance would be of most concern because of the need to design
matching circuits. This would be closely followed by the radiation efficiency, with the
importaiice of the radiation pattern be somewhat more variable, depending on the use
intended for the antenna. For some communication's applications, it may be necessary
to produce a pattern that is isotropic to some prescribed degree in a particular plane,
while for direction finding, the location and depth of nulls is critical. The examples
presented here illustrate some of these aspects, starting with the fundamental problem
of source modeling.

6.1 Source Modeling

Antenna iniput admittance is defined as the current per unit voltage at the
excitation port. Although a circuit quantity, it must be derived from antenna fields.
since while the current at a given point on the anter.na can be uniquely defined. the
voltage is an integral quantity whose rigorous evaluation would require integration of
the field across the source region. For point-sampled thin-wire models, where the
field is fixed only at discrete points, the variation of the electric field between match
points is not known, so finding the effective drive voltage would require evaluation
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and integration of the electric field after the current distribution has been computed.
This process can require as many, or more, FLOPs than filling the impedance matrix.

One way to avoid this problem is to assume that the incident or exciting electric field.

Eex, is constant over the segment to which the excitation is applied, and zero

elsewhere, so that the voltage can be approximated as Voy ~ -EoxA where A is the

length of the source segment, which is sometimes called the "gap" model [13]. The
plot in Fig. 5 demonstrates the potential difficulty of defining the exciting voltage from
a single sample of the tangential electric field [48]. A magnetic field, "frill-source”
model has also been employed [49], which seems best suited for "thiéker" wires.

This model, and even more numerically robust ones where the tangential fields are
integrated by using testing functions that sample the fields along ihe wire, are

reasor 1bly reliable. However, they do not include the capacitance of feed wires or
Structure that are normally required to connect the antenna to a physical generator.
Some results are shown in Fig. 6 to demonstrate this effect. Two results for the |
frequency dependence of a dipole antenna input admittance are presented, one for the
point-sampled simple source model just described and the other which uses a
transmission line (TL) to excite the dipole, also modeled using NEC. A downward
shift in the resonance peaks can be observed in the TL model, evidently caused by the
capacitive effect of the dipole-TL connection. The problem of Some other work on
source models is described elsewhere [50], [51], [52], [53], [54].

6.2 Infinite-Media Applications

Many antennas are located near the perturbing effects of the ground, or
structures such as vehicles, aircraft, ships, building, etc. which affect their
performance. These effects are important to understand both qualitatively and
quantitatively. One way of doing this is to assess its characteristics when the antenni i
located in an infinite medium for comparison with these same characteristics when
located in its actual operational environment [55]. For this and other reasons, much
modeling deals with the simpler application of a given antenna operated in free space.
or some other infinite medium.
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The variety of antenna types modeled in infinite media is vast, including linear, vee
[56] and folded dipoles [57] and loops (58], conical and helical [59] spirals, linear [60]
and log-periodic arrays (LPA), dielectric rods [61], and others [62], [63]. The MM
results obtained for such antennas are usually found to agree with measured results for
input impedance and radiation pattern to high accuracy, usually within the |
experimental error, when the numerical model includes the important features of the
measured structure. Three representative examples are shown here in Figures 6, 7,
and 8. Fig. 7 displays the radiation pattern of a fore-shortened LPA [55], in which the
lengths of the longer antenna elements have been reduced to a fixed value by
employing lumped inductance loading to reduce their resonant lengths, as a way to
make the overall antenna structure smaller. The current distribution on a conical
spiral antenna as obtained using the Pocklington EFIE and the Hallen IE [64] is shown
in Fig. 8, where good agreement may be observed.

Arn example of modeling an antenna in an infinite, plasma medium, is included in Fig.
8 [55]. This particular problem was chosen because of the desire to extend the basic
NEC model to handling antennas buried in a lossy ground. In order to do this, a
capability is needed of modeling antennas in infinite media having the same electrical
properties. Although a somewhat specialized medium, a plasma was chosen to validate
the lossy-medium extension because other results were readily available. Excellent
agreement is exhibited between the TWA IE results and the quasistatic formulation
described in [65].

6.3 Environmental Effects

Environmental effects on antenna performance are taken here to include any
perturbation to the infinite-media behavior of the generic antenna due to changes in its
near-field environment, such as represented by the earth-air interface, structures on
which the antenna is mounted, or other changes in its basic structure. Examples of

each area are briefly discussed below.

6.3.1 Modeling sheaths--Insulating sheaths are sometimes included on
wire antennas to protect the metal from the environment or to modify the electrical
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characteristics of the antenna. Ice accumulation on wires may also create a sheath,
Antenna wires buried in the ground are often insulated, since a dielectric sheath can
greatly reduce power dissipation near the wire. The effect of a thin sheath on the
antenna characteristics can be included in the thin-wire model with relatively little
difficulty using a treatment first reported by Richmond and Newman (66]. Sheath
models have been included in wire antenna codes by Popovi'c et al. [67], who also

allows ferrite coatings, anc in a version of NEC [68] which includes interface effects.

To model the effect of a sheath, the field due to radial polarization currents in the
sheath is included in enforcing the boundary condition on the wire. For a wire with
radius a and sheath radius b, the insulating sheath with complex relative permittivity

€r9 = €9 - jO7/WE in a medium with e, = €7 - jdl/meo is replaced by an equivalent
polarization |
current of

Js(P2.®) = jweq(ers - erIES(p,2,¢) + ENC(p,2,0)]

= -(€p - ePI'(2)p/(2m €19p); asps<b

radiating in medium 1. ES is the electric field due both to currents on the wire and to
J itself, and EINC is the excitation field. To retain a one dimensional integral equation
for the axial wire current, the sheath is assumed to be‘e]ectrically thin, and the toial
field in the sheath is assumed to be dominated by the radial field due to charge on the

wire. The field due to Jg is needed on the wire axis, which for a straight segment of
insulated wire with Ik bl « 1 can be approximated in terms of the second derivative af

the axial current as j(€7 - €1)1"(z)In(b/a)/[21 we€r1€,0] [68], which is included in the

total, axial electric field in the thin-wire integral equation.

The accuracy of the thin-wire sheath model for insulated wires in air has been
demonstrated by comparison with measurements in [24] and (67]. An comparison of
results obtained using this sheath model with independent data is included in Fig. 10.
A totally different approach for modeling sheaths using a Wiener-Hopf approach [69]
is presented in Fig. 11.
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6.3.2 Modeling the earth-air interface--At fréquencies below VHF,
many antennas necessarily include the earth-air interface as part of their near-field
environment. An analytically rigorous formulation for such problems begins with the
Sommerfeld-integral fields, or their equivalents [23], by which the fields of vertical
and horizontal point-current sources near an interface are represented as
infinite-domain, Fourier-type integrals. In an IE model, these integrals form part of
the IE kemel, and can increase the FLOP count associated with the MM impedance
matrix evaluation by a fact’or of 100 or even more. Using model-based parameter
estimation (see Section 6.4 below) to replace the Sommerfeld fields with more
computationally efficient approximations can reduce the FLOP to near that of the
infinite-medium problem. Use of this approach to model a vertical, base-fed monopole
antenna conriected to one to three wires parallel to the ground to act as a sparse,

directive ground screen is illustrated in Fig. 12.

6.3.4 Modeling antenna groundstakes--A more difficult problem to
model is that of objects interacting across the earth-air interface, since then ihe fields
on both sides of the interface are required. The approach described above can be
extended to this kind of problem, but requires accounting for the fields reflected from. -
and transmitted across, the interface. This makes possible modeling the behavior of
monopoles excited against a ground stake, the combination of which is represented as a
single wire that is vertical to, and penetrates, the interface. A result for this kind of
model is shown in Fig. 13 [23], where the input resistance and reactance are presented.
- Since the radiated power can be obtained by integrating the far-field in air, this model
makes it feasible as well to compute the antenna efficiency where power absorbed into
the ground is the loss term.

6.3.4 Modeling ground screens--Most ground screens consist of many
more radials, and for practical reasons are buried rather than elevated. The approach

| just described can be effective for this kind of problem as well, for which a sample

result is presented in Fig. 14, where the difference in input impedance of a monopole

driver against a perfect ground and against a buried ground screen having N

evenly-spaced wires is shown as a function of the screen radius. The plotted points ar¢
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obtained from a compensation approach [70] and the continuous curves from the NEC
model [8]. Good agreement is obtained in the region where the approximation is valid.
providing mutual validation of these independent results and demonstrating the utility
of the Sommerfeld-based formulation.

6.3.5 Modeling ground probing--Antennas located in free space above
the ground can be used to detect subsurface anomalies, a principle exploited in metal
and mine detectors. A sample result is shdwn in Fig. 15 for this kind of application,
again based on the NEC model [8],[13]. Detectability of subsurface features can be
based on impedance variations of a scanning antenna or on measurements of the total
field near the interface due to some independent source field and that scattered from a
subsurface target. |

6.3.6 Modeling sheathed wires near the e:arth-air
interface--When an insulated wire is embedded in a medium such as earth or water
the current tends to have a sinusoidal form, as for a bare wire, but the wave number
may be orders of magnitude less than for a bare wire in the medium. Use in (11b) of a

wavenumber equal to the wave number in the surrounding medium can then result in
slow convergence of the solution [70]. A more appropriate value for kg can be
obtained from an approximation for the wave number on a buried insulated wire

developed from the theory of coaxial transmission lines [71], given by k; = (1 +
Ho(2)/[kbIn(b/a) Hy(1)]) where k1 is the wave number in the infinite medium, k is
the wave numbser in the insulating material and Hy(1) and Hy(2) are Hankel functiors

of order 0 and 1 and argument kb.

Results of the NEC medel for buried insulated wires have been validated by
comparison with an independent boundary-value solution developed by Wait [72] for

an insulated wire in a lossy medium including an interface. The propagation constant

I' = ay_+ jBy was determined from the NEC solution by fitting a function Igexp(-I'x)

to the numerically determined current. Results of a NEC model for a buried insulated

wire including an interface are compared with Wait's solution in Fig. 16 for varying
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distance from the interface. Results for ] are seen to be in very good agreement,

while o shows some difference for small d, but generally good agreement overall,

with a maximum error of about 5 percent.

6.3.7Antenna-structure effects--Antennas are often mounted on
complex structures, the effect of which can greatly modify the antenna's impedance,
current distribution and radiation pattern. Some results are included here to
demonstrate some applications to this problem. The input admittance of a monopole
- antenna mounted at the edge of a conducting box is shown as a function of frequency in
Fig. 17 [73]. The numerical results, obtained from a surface EFIE, exhibit good
agreement with the experimental measurement. A wire-mesh model of an aircraft
with two wire antennas attached between the vertical stabilizer and the forward
fuselage is shown in Fig. 18 [74], together with a comparison of a measured results,
which again show good agreement. In this case, a shunt capacitance was added at the
base of the antenna as an impedance load to the wire-grid model which itself did not
adequately account for the its effect,

Large reflector antennas, especially those used on satellites, are fabricated from meshes
to conserve weight and for more éompact stowage. The effects of the mesh on the
reflecting properties of these antennas are needed to achieve the intended gain, and so
some basic studies of meshes have been undertaken using MM models. The basic ide
is to define a unit cell of an infinite planar mesh and to exploit Floquet's theorem to
reduce the problem to that of modeling this single cell and its interaction with the
infinite array of cells [75]. Of interest in this application are the effects of finite wire
conductivity and imperfect junctions at the connection points of wires in the mesh, for

which some results are shown in Fig. 19,

6.4 Some Other Modeling Issues |
6.4.1 Modeling endcaps--In practice there appears to be little
difference between a cylindrical antenna with open ends or flat end caps [76).
However, since the validity of some implerhentations of the TWA requires a closed

surface, it is sometimes necessary to closc the wire ends to obtain a stable solution with
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the thin-wire kernel. The simplest way of closing the wire end is with a flat cap. A
simple first-order correction for a flat end cap has been found to yield a significant
improvement in the stability of the solution with minimal increase in solution time [§].
In this treatment the singularity of charge at the edge is neglected, and a constant

surface charge density is assum#zd on the cap, with current and charge continuous from

the wire to the cap. The current density on the end cap, J.(p) to maintain continuity
with the net wire current I,(z) at the end z = 0, is then J(p) = pSIw(O)p/(znaz)

where p is the radial coordinate from the wire axis, a is the wire radius and S is 1 if
the reference direction for I, is toward the end cap and - 1 otherwise. The charge
density on the end cap is then given by p. = jV'JC(p)/(a) = jSIW(O)/(umaz). Also
requiring continuity of charge density from the wire to the end cap yields the condition
[I'w(2)1\(2)),=0 = 2S/a which is enforced at the end of the wire in defining the

three-term current basis (11b).

The effect of including caps on wire ends and voltage sources is shown in Fig. 20 for a
quarter-wave monopole with a wire radius of 0.01 A. Thz monopole was divided into
80 segments, so that A/a was 0.3125. The invalid condition of zero field on the axis of
an open cylinder results in osciliations of the current at the wire end and voltage
source. These oscillations become apparent for segment lengths less than about the
wire diameter, although the effect of end caps may become significant before this
point. Adding caps to the wire end and source, using the simple model with constant
charge density, is seen to greatly reduce the oscillations in the solution. '

6.4.2 Junctions of multiple and stepped-radius wires--In complzx
wire models it is generally advantageous to impose conditions on the current and, if
possible, the charge on wires at a junction. The appropriate conditions will be

exhibited by a numerically accurate sclution of an integral equation, such as (4).

However, accurate results will be obtained using a smaller value for X if physically

correct conditions are imposed in the current expansion. These conditions may be

introduced in equations appended to the full MM impedance matrix, but more often
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they are built into the basis functions so that they are automatically satisfied in the
solution for current.

The first condition, used in nearly all wire codes, is continuity of current, or
Kirchhoff's current law at multiple-wire junctions. In simpler current expansions,

such as a piecewise linear or pulse basis, Kirchhoff's law may be satisfied at a junction
of m wires by wrapping continuous basis functions across the junction from wire i to
wire [ + 1, skipping i = m. Alternately, the basis function on each segment may branch
onto each of the other segments with ‘amplitudes satisfying Kirchhoff's law.

With three-term current expansions, a condition on chargé, or equivalently the
derivative of current, is needed to define the basis function, since there is one more
degree of freedom. Determining a correct condition on charge is not as easy as for
current, since the charge must distribute so that tangential electric field is minimized
over the junction or, in the quasistatic form, the scalar potential is continuous across
the junction. One approach is to solve an auxiliary IE at each wire junction whose
purpose is to minimize the integrated electric field along the junction wires, a

procedure that also avoids increasing X were these extra conditions to become part of
the MM impedance matrix.. A condition on charge density that takes into account the
proximity of a step in radius and imeraction of wires at a junction has been obtained by
executing a separate MM solution for each junction [8]. Any junction at which the
charge cannot be determined as uniform due to symmetry is considered isolated from
the rest of the structure with the wires extended to infinity away from the junction. ..

An integral equation based on continuity of scalar potential can then be written for the
junction of m wires as

]kRm(SS
s=C;i=1,...m;0<s
J. Qn(s) m(ss) i m; 0 < § < Sy

qun(s’){exp[-ijin(s,s’)]/Rin(s,s')}ds' =C:in=1,...,m0<s<

Smax
where g,(s’) is the charge density at s' on wire n and R, (s,s") is the distance betweer

the points at s on wire 1 and s' on wire n, and C is an arbitrary constant. The distance
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Smax Should approach zero for continuity of potential, but a finite but e]ectncally

small value is used for the numencal solution.

This charge treatment has given stable results for stepped-radius wires over a wide
range of segment lengths, and also yields accurate solutions for multi-wire junctions
including a fan of 18 wires in an angle of 26 degrees. The fan, forming a strip line |
over a ground plane, could not be modeled accurately with the equal charge densities
implied by (x3). The minimum angle at which wires can meet is set by the limitation
of the thin-wire approximation which typically fails as the match point on one segment
approaches within about a wire radius of the surface of the adjacent wire.

6.4.3 Wires at interfaces and surfaces--Several other conditions may
occur at a wire end that call for alternate junction treatments. When a wire is
connected to a perfectly conducting surface the charge, or derivative of current, is set
to zero at that end. If the wire meets the surface at an angle from normal the charge
will vary around the wire circumference. However, since the current and its image
must form an even function about the plane, zero charge is the appropriate condition in
the thin-wire approximation. In addition, if the wire connects to a surface on which
the current is computed with a surface MM solution, a singular component is usually
included in the surface current to ensure continuity of current from the wire to the
surface. The typical surface current is I(O)p/21tp2, where 1(0) is the current at the end

of the wire and p is the radial vector from the connection point.

When a wire crosses an interface between two different media the current remains
continuous and charge density is discontinuous as q4/q. = €,/ €_, where €, and € _ are
the permittivities of the upper and lower media, respectively [77]. This condition
results from the requirement of continuity of radial electric field when the penetrating
wire is normal to the interface. However, the condition has been used for wires tilted

by more than 60 degrees from the normal with apparently good results, based on small

values of tangential electric field computed along the wire at the interface. For a lossy

medium the condition on derivative of current is I'y/I'. = €.,/ €. where €, and €.
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are the complex relative permittivities.

No simple condition has been derived for charge at a junction of a wire with a
dielectric or conducting sheath ari‘xd a bare wire. in such a case, the best approach may
be to include an equation minimiging tangential electric field at the junctioh as part of
the MM equations. The same appears true when interaction with an interface has a
substantial effect on charge distriipution at a junction. Well-converged results have
been obtained using the above dei;ivative condition on a monopole connected to a |
buried radial-wire ground screen.‘%i While the derivative condition does not include the
interaction of horizontal screen wires with the interface, it represents the dominant
effect on charge when crossing th%: interface.

6.4.4 Model-based @arameter estimation (MBPE)--The two most
FLOP-intensive operations when d}oing FDIE modeling are the matrix fill and solution
steps, with the one that dominates ithe overall F’LOP count being determined by how

large is Xg. For FDDE models ancil for explicit TD models using DEs or IEs, t.1e

solution time drives the FLOP count. Clearly, whatever part of the modeling process
dominates the FLOP count, in ordeir to improve model utility the total FLOP count
needed to acquire the desired mfodnation should be minimized to the extent possible.
Limiting our attention to the FDIE, we conclude that for problems where matrix fill
time is the dominant factor, which %is the case of special Green's functions such as
encountered for the interface probléam, and where more careful integration is required
by the formulation and numerical tjreatment, such as when using the EFIE for surfaces.
it would be advantageous if compu}ation of the interaction coefficients could be made
more efficient. When the matrix solution dominates, and it is necessary to cover a
band of frequencies, a commonly é:ncountered problem, then it would be useful to
either reduce the solution FLOP count and/or minimize the number of frequency

samples needed over the desired bandwidth. We have mentioned that iteration is one
way of reducing the solution FLOP count, from of order (XS)3 to of order (XS)Q. On

the other hand, for reducing matrix‘j fill time or the number of needed frequency

samples, MBPE offers an effective approach [78] , [79].
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MB‘PE involves identifying some appropriate, preferably physically motivated,
simplified representation (the model) which involves a small number of unknown
coefficients (the parameters) whose numerical values are to be estimated in some

suitable fashion. We mention two examples here of this basic idea.

As noted above, numerical evaluation of the Sommerfeld integrals that are the Green's
function for the interface problem can be a FLOP-intensive operation. Using the most
straightforward numerical approach, they can require up to 1,000 times the computer
time otherwise needed to compute the free-space fields of the same current source.
This can make modeling antennas and scatterers near the ground an impracticably
expensive operation. However, it can be demonstrated that the Sommerfield fields are
not that physically complex, and indeed can be well-represented by simple
interpolation formulas [23]. But by using asymptotic approximations to these fields as
the model, with the amplitudes being the parameters to be estimated from accurately
evaluated Sommerfeld integrals, an even more efficient approach can be devised, the
result of which is to reduce the matrix fill time for the problem of objects interacting
across the earth-air interface to less than 10 times their free-space values. The basis
for this approach is illustrated by Fig. 21. It should be obvious that the same idea can
be employed in other circumstances, one example being for the parallel-plate
waveguide [78].

Application of MBPE to the problem of obtaining wideband frequency results ‘using_,a
reduced number of frequency samples is illustrated in Fig. 22 [79]. The model in this
case is a low-order rational function whose numerator and denominator orders are n
and d respectively. Many fewer samples can can be uied to accurately represent the
frequency response in an analytical form than would otherwise be the case, for
example using simple linear interpolation. Furthermore, the frequency derivatives of
the response can be computed directly from a MM model for an operation count of

order (Xs)z, and because they provide information equivalent to another frequency

sample, reduce the overall operation count even further,
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6.5 Time-Domain Applications

As systems bandwidths have increased, the effects of EMP and other wideband.
impulsive sources have become of concern, and wideband experimental hardware has
become more available, the need to predict the transient response of antennas has
attracted increasing interest. There are two basic reasons for modeling in the time
domain. One is that for some particular problems, the TD models can yield the
desired results more efficiently than their transformed, FD counterparts. The other is
that nonlinear and time-varying media and components might be handled in a more

straightforward way in the time domain.

As noted above, TD modeling involves time stepping to produce a sequence of spatial
samples from wiiich a transient response is developed. While the excitation that
produces the response can be a narrowband, even monochromatic waveform, the
benefit of having a TD model is not then fully exploited, which comes from using
some appropriate transient excitation. One of the more useful transient excitations is
exemplified by the Gaussian pulse, whose time variation is exp[-aztz] and for which the
frequency spectrum is exp[-mz/az]. Thus, as the coefficient "a" is made smaller, the
bandwidth of the Gaussian pulse becomes broader, permitting the spectrum of the
excitation to be matched to the parameters of the 1 ‘merical model. A step response
can be approximated by integrating the Gaussian, wuile derivatives of various orders
might also be used [80].

The transient feedpoint receiving current for a 30-cm monopole on a groundplane.
obtained from a TD EFIE and measured on a transient range are compared in Fig. 23
along with their Fourier-transformed frequency spectra. A single calculation fora TD
model is seen to produce a wideband frequency response, for which a FD model would
require many frequency samples to acquire equivalent information. The numerical
results were computed using a TD equivalent of NEC [80], while the measured results
were obtained from a TD experimental range [81]. For antenna problems like this,
where a solution is needed for a single RHS, the TD model can be more efficient than
performing the computation in the FD. The result of a more complex TD antenna

computation is shown in Fig. 24, where a simple wire-mesh model of a truck is shown
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together with the frequency variation of the bumper-mounted CB antenna. Although
experimental results are not available for comparison, the VSWR of an actual vehicle

having such an antenna was consistent with the predicted admittance in the CB band.

An example of using a TD model to determine the effect of a special nonlinearity is
shown in Fig. 25 [80). Here, the dipole is again excited by a Gaussian field at is center.
but is loaded along its length with a series of diodes, 60 in all. The diodes are initially
forward-biased by the exciting voltage, but become back-biased when the induced
charge packets have flowed out to the ends of the antenna. As a result, the current in
the reverse direction is much reduced, being made essentially zero, although over a
long-enough time charge neutrality would once again be restored. The two pulses of
far-field radiation produced by the Gaussian excitation occur initially, from the charge
being set into motion at the antenna's center, and finally when the charge has stopped
moving. Charge acceleration is well known as the cause of far-field radiation [&80]. If
the dipole were not loaded with diodes, there would be a series of radiation pulses of
alternate sign and decreasing amplitude due to the succession of end reflections
undergone by the charges moving back and forth along the antenna. Thus, in addition
to permitting modeling of non-linearities, the TD approach also yields physical insight
not as readiiy available in the FD.

6.6 Input/Output

As computer speed increases, making possible the solution of larger problems.
the difficulty of defining the problem to be modeled and examining the results that are
produced becomes commensurately greater. Computer graphics are coming to be
indispensable for dealing with these input/output requirements. Two examples are
included here to illustrate the value of graphics for visualizing the output. In Fig. 26 13
presented one of a sequence of plots depicting the pattern of electric field motion as a
function of time for a time-harmonic solution of a biconical antenna [82]. A similar
kind of result is shown in Fig. 27 where the magnitude of the electric field at one
instant of time produced by a Gaussian-excited ccnical monopole antenna obtained
using a TDDE model is presented [83]. Although it is probably more obvious that such

a sequence results naturally from a TD model and can be presented as in a movie, this
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can also be done in the FD where time-phaser rotation creates a comparz’~ie time
scyuence. Visual electromagnetics is sure to become a more popular tool, of benefit to

the researcher and student alike.

Low-Frequency Antenna Models, Proc. IEEE '91, Page 41



7.0 CONCLUDING COMMENTS

In the above discussion we have presented an overview of low-frequency antenna
modeling using numerical techniques. We began by summarizing a few of the more
commonly encountered equations on which these numerical models are based, limiting
our specific attention to modeling perfectly-conducting objects using integral equations.
A brief introduction was then given to the method of moments, a general procedure for
solving differential, integral and integro-differential equations in the time and frequency
domains, was presented. Some further discussion was then addressed to enhancing these
basic models for more efficient or more general application, followed by consideration
of some of the computational issues involved. A variety of representative applications
were then presented to demonstrate some of the capabilities for low-frequency antenna
modeling that are now available. A concluding point to be made here is that
computational methods have joined experimentation and analysis as one of the three
complementary problem-solving tools of the antenna designer. Further information and
more detail about moment-method modeling can be found in a number of books and
summary articles [84-91].
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FIGURE CAPTIONS

Fig. 1. Convergence of the admittance, Y, and impedance, Z, of a two-wavelength.
center-fed dipole antenna as a function of the number of unknowns. Because the
frequency is near a resonance, the admittance exhibits a smooth, monotonic behavior
whereas the impedance does not, giving a quite different impression of how
well-converged the model might be for a given number of unknowns.

Fig. 2. Tumble-average radar cross section of several different wire objects s a
function of the sampling density/wavelength [47]. Although displaying different
convergence rates for smaller sampling densities, eventually all objects ¢ _proach a
similar slope on this log-linear plot, indicating that the solution error decreases
approximately as exp(-KXj).

Fig. 3. Plot of tangential electric field boundary error versus position on one-half
of a straight wire,

rig. 4. Comparison of convergence rates of several different numerical methods
for modeling a straight wire as a function of the number of unknowns [55]). Quantity of
the ordinate is the RMS error in the current, computed on a 12-wavelength long straight
wire illuminated from broadside by a planewave, for the number of unknowns on the
abscissa, relative to a reference RMS current obtained for at least 250 unknowns.
Models use: A) Pocklington IE with 3-term basis and point matching; B) Pocklington If:
with 2-term sinusoidal basis and testing functions; C) mixed potential IE with 2-term
linear basis and testing functions; and D) Pocklington IE with pulse basis and point
matching.

Fig: 5. Potential and flux contours for a 90° wedge at potential V near a
conducting plane at zero potential [48]. Variation of fields in vicinity of gap shows the
potential difficulty of defining voltage across gap from single sample of the field.

Fig. 6. Comparison of the input impedance for a dipole antenna obtained using
local tangential electric-field source with that which results from connecting the antenn:
to a two-wire transmission [55]. The downward frequency shit exhibited by the
transmission line results is evidently due to the capacitive loading effect of the
antenna-transmission line junction.

Fig. 7. Radiation pattern of a foreshortened 19-element log-periodic antenna [55].
The antenna size is decreased by inserting inductive loads on each of the four longest
elements to reduce their resonance frequencies to those that would occ ir if the unloaded
elements were used. |

Fig. 8. Comparison of the current distribution on a conical spiral antenna as
obtained using an electric-field and Hallen-type integral equation [55], [64]. Even
though the two results are in excellent agreement, the analytical difficulty of
generalizing the Hallen approach for arbitrary wire geometries has restricted its
application.
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Fig. 9. Irput impedance of a dipole antenna in a lossy infinite plasma. Results {rom
the integral-equation model are in good agreement with analytical values [65], validating
the numerical model's applicability to loss media. This capability is needed for the
general interface problem where part or all of an antenna may be buried in a lossy
ground.

Fig. 10. Input admittance of an insulated dipole antenna in air with length L, radius
~a=L/640 and sheath radius b = 5.84a. The relative permittivity of the sheath is 2.3 and
the conductivity is zero [8].

Fig. 11. Input admittance of an insulated antenna of half-lengtih h as a function of |
frequency for a sheath of relative permittivity 9 and a sheath radius b = 9a [67].

Fig. 12. (a) A computer plot of a representative monopole-screen geometry. (b)
Elevation (8) and (c) azimuth (¢ with 6 = 459) plane patterns for 1-3 screen wires with
a dipole included for comparison [55]. The total included angle of the screen wires is
300, their length is 3.0 m as is the monopole helght and height above ground is 0.3 m.
Results are shown for constant input power.

Fig. 13. Variation of the input impedance of a wire monopole as a function of
ground-stake length [23]. This computanon requires both the fields reﬂected from and
transmitted through the air-ground mterface

Fig. 14. Input impedance of a quarter-wave monopole on a buried radial wire
ground screen with N wires, showing the difference from the impedance with a
perfectly conducting ground ground plane [8]. The NEC results (points) are compared
with results obtained from the compensation theorem [69].

Fig. 15. Resistance of an elevated dipole due a'buried wire with wire burial depth «
parameter [23]. The wires are parallel to each other and the interface with their centers
in a common vertical plane. Wire lengths are L = 0.125 and diameters 0.0002, with
elevated dipole 0.02 above the interface, all distances measured in free-space
wavelength. |

Fig. 16. Propagation constant on an insulated wire at a depth d below an interfuce
computed with Sommerfeld integral approach in NEC [23] (the dots and x's) and
independent solution [71], the lines. The upper half space is air, the complex relative
permittivity of the medium surrounding the wire 10 - 104 and the insulation is air.
Wire radius a = 2.38 x 10-7 free-space wavelengths, sheath radius b = 3a, and B() =

2n/A.

Fig. 17. Results for monopole antenna mounted at edge of conducting box. with the
patch geometry (a) and comparison of computed and measured results (b) [72].

Fig. 18. Wire-grid model of P-3/CP-140 aircraft (a) and comparison of measured
and computed results for input 1mpedance of short-wire antenna as a function of
frequency (b) [73].
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Fig. 19. Some results comparing predicted and measured transmission loss of two
models of mesh reflector [74]. The results on the left are for a "perfect” mesh having

good electrical connections at the nodes and on the right for a mesh with broken
connections.

Fig. 20. Current on a quarter-wave monopole excited by a 1 V source at its basc.
comparing results incorporating endcap correction on the right, and using the thin-wirc
kemel on the left [8].

Fig. 21. Transmitted component in the air of the radial Sommerfeld field due to «
vertical current source 0.1 free-space wavelength beneath the interface for a ground of
relative permittivity 16 [23], as modeled by least squares approx1mat10n A total of 8
points are fit to the rigorously computed Sommerfeld integral (36 in the plane of tlu
figure with the visible ones shown).

Fig. 22. Input admittance of a forked monopole (monopole with vee end, one arm
slightly different in length from the other) on a perfectly conducting ground. Directly
computed values (————) are compared with MBPE rational-function results (------ ).
employing n = 4 and d = 4, based on the eight samples indicated by the dots [7&],[79].

Fig. 23. Compariscn of the computed and measured results for the short-circuit
current excited on a monopole antenna and the corresponding frequency response [&81]

Fig. 24. Wire-grid truck inodel over perfect ground (a) yields input admittance (b)
from time-domain integral-equation [55]. Results approximate the behavior of a CB
antenna connected to rear bumper of light utility vehicle.

Fig. 25. Demonstration of nonlinear time-domain model of dipole (1 m long) which
conducts current in only one direction [55]. The model incorporates 60 ideal diodes
and exhibits possibility of pulse shaping using such loads. Feedpoint current (a)
produces initial radiated pulse (b) due to Gaussian exciting voltage at center while
second pulse is caused by stopping of the charge as it reaches the dipole ends, resulting
in a notched spectrum (c).

- Fig. 26. One frame from a set showing field-pattern motion near a nonsymmetric:il
biconical antenna fed in the TEM-mode [83]. The antenna is one wavelength in radius.

Fig. 27. One frame from a set showing radiation of a Gaussian pulse frorm a conical

monopole antenna [84]. The gray scale plots show the magnitude of the electric ficld.
the line drawing shows the surface charge density on the antenna.
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dance of a wire monopole as a function
of ground-stake length [60). This
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Fig. 29, (a) A computer plot of a
representative monopole-screen geometry.
(b) Elevation (©) and (¢) azimuth

(@ with ® = 45°) plane patterns for

1-3 gcreen wires with a dipole included
for comparison [64), The total
included angle of the screen wires is
30°, their length is 3,0 m as is the
moncpole height and height above ground
is 0,3 m. Results shown are for con-
stant input power.
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