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LOW-FREQUENCY COMPUTATIONAL ELECTROMAGNETICS
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" ANTENNA ANALYSIS

E. K. Miller, Group MEE-3, MS J580
Los Alamos National Laboratory

PO Box 1663, Los Alamos, NM 87545

G. J. Burke, L- 156
Lawrence Livermore National Laboratory

PO Box 808, Livermore, CA 94550

ABSTRACT

An overview of low-frequency, compuational metheds for modeling the electromagnetic
characteristics of antennas is presented here. The article presents a brief analytical
background, and summarizes the essential ingredients of the method of moments, for
numerically solving low.frequency antenna problems. Some extensions to the basic
models of perfectly conducting objects in free space are also summarized, followed by a
consideration of some of the some computational issues that affect model accuracy,
efficiency and utility. A variety of representative computations are then presented to
illustrate various modeling aspects and capabilities that are currently available. A fairly
extensive bibliography is included to suggest further reference material to the reader.
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1. INTRODUCTION

" Although Computational ElectroMagnetics (CEM) dates its origin prior to development

of the large-scale digital computer, depending previously on mechanical calculators for

the necessary computations, it truly began in the early 1960s with the appearance of the

first scientific mainfrarnes. With the approximately 10,000,000 times speed increase

from the 1,000 floating-point operations (FLOPs)/second of the UNIVAC-1 to the

near-10 GigaFLOP speed of the present mainframes, the size, complexity and scope of

problems that are routinely computer modeled not only in electromagnetics but in ali of

science and engineering, has vastly increased. The purpose of this article is to

summarize present capabilities in CEM for antenna applications.

The article title includes the words "low frequency" because in spite of the continuing

increase in computer speed that is occurring, a factor of 10 about every five years, the

raw "number-crunching" requirements of first-principles, numerically-rigorous EM

modeling grows at least as fast as the fourth power of the frequency, f, for a given

problem. Thus, it is not hard to challenge the capacity of 10 GigaFLOP computers, and

when the speed has further increased to 1 TeraFLOP or 1 PetaFLOP, the set of

problems for which computer modeling is practical will be less dramatically expanded.

The digital computer has never-the-less irrevocably altered the world of the

electromagneticest, supplementing and complementing analysis and measurement with

computer modeling as a third method of problem solving.

The article is organized as follows. In Section 2 we present the necessary analytical

background to explain the mathematically formal descriptions of low-frequency antenna

models that are included here. This is followed in Section 3 by a summary of the

numerical treatments employed to obtain quantitative results from the analytical

descriptions. We consider some extensions to the basic problem of perfect condutors in

free space in Section 4, followed by a consideration of some computational issues that

affect model selection and application in Section 5. A survey of representative modeling

capabilities and applications is included in Section 6, with some concluding Section

comments in Section 7.
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2. ANALYTICAL BACKGROUND
e

As already discussed by Balanis in the first paper in this issue [1], the analytical starting

point for electromagnetics is Maxwelrs Equations. These equations can be expressed in

two distinctly different forms. Perhaps most familiar is their differential form, when

they are written as curl and divergence relations. An altemate way of writing

Maxwell's Equations is in a source-integral form using some appropriate Green's

function, usually that for an infinite medium. The essential difference between these two

descriptions of electromagnetic fields, and other formulations such as the geometrical

theory of diffraction and modal expansions based on multipoles, arises from the

analytical means by which source-field relationships are prescribed, i.e., in how field

"propagation" is described mathematically. In addition, these equations can be written in

the time domain with time an explicit, independent variable, or in the frequency domain

for a radian frequency cowhere a time variation of the form eJ°at is assumed.

Numerical models can be developed using either form and either domain. Those

derived from the differential equations are usually called finite-difference and

finite-element models, while those based on integral equations are known as

boundary-element or moment-method models, about which more discussion follows in

Section 3 below. For convenience, we use the abbreviations DE and IE to denote

differential-equation and integral-equation models, and FD and TD similarly to indicate

whether they are formulated in the frequency domain or time domain. Thus, TDDE is

used for a differential-equation model developed in the time domain.

2.1 Maxwell's Equations and the Wave Equation

For infinite, homogeneous, isotropic media, Maxwell equations in the TD as a

function of space coordinate r and time t are given by [2]
,%

:=-I.t-_ttH(r,t ) - K(r,t), V. E(r,t)= p (r,t)/e,
VxE(r,t)

VxH(r,t) = e_.E(r,t) + J(r,t), V. H(r,t) = m(r,t)/kt,

(1)

with E(r,t) and H(r,t) the space- and time-dependent electric and magnetic field vectors,

J(r,t) and K(r,t) the electric and magnetic current densities, p(r,t) and m(r,t) the
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electric and magnetic Charge densities, and _:and t.t the medium electric permittivity and
11

magnetic permeability. Their FD counterparts are obtained from (1) by separating time

and space variables, i.e. using F(x,t) - f(x,co)eJcot,which replaces the time derivatives

by jco multipliers. The TD wave equation for E(r,t) can be derived from (1) to obtain

V×V×E(r,t+
c Ot =-g_.J(r,t)- VxK(r,t)

(3)

with a similar equation for H(r,t), where c = 1/_ge is the speed of light in the medium.

2.2 Green's Function Representation of Maxwell's Equations

DEs of the kind above can be readily solved for point current sources [3], in terms

of the infinite, homogeneous medium, scalar Green's functions q)t(r,r',t,t')=

5(t-R/c-t')/R and tpco(r,r',co)= e'ikR/R, respectively, where R = lr ' r'l is the distance

separating a source at r' and observation point at r, the wavenumber k = co/c,and t'= t

- R/c is the retarded time. Additional vector-differential operations on these Green's

functions then yield the various time- and frequency-dependent field components as a

dyadic Green's function [4], which for electric currents in the FD is given by -jcog(k2I

+ VV)/k 2 with I the unit dyadic. It should be noted that the only condition satisfied by

the fields obtained in this manner is the Sommerfeld radiation condition [2], which

means that their outward propagating components, in the FD, satisfy the condition (r.V

+ jk)f(r,co) = 0 as Irl ---> _, i.e., their phase advances with increasing distance from the

source and they attenuate as lfR. :

Using the superposition principle, we are then able to represent the electromagnetic

fields as an integral of the dyadic Green's function operating on an arbitra .rysource

distribution. The sources could be volumetric distributions of free charges and currents,

or the tangential components of the fields produced by these sources over a surface that

encloses them. Altematively, the sources could reside on surfaces separating two

electrically dissimilar media, such as a perfect conductor and free space. We are thus

able to derive Green's-function integral representations of the total field in the FD, as

Low-Frequency Antenna Models, Proc. IEEE '91, Page 3



r(r) = TEinc(r) - -(n'xE)xV'qo_- (n'.E)V'qo_}ds'
,t

_TUdS

(3a)

and

H(r)= THine(r) + IsLi n'×E)o +(n'xHlxV' + (n'.H)V'q_o_}ds'

(3b)

where n is an outward-pointing unit vector normal to S and the quantity T = (1 -

f2/4rc)"1permits the observation point in (3) to be located outside or on the surface S

[5]. Similar integral expressions can be derived in the TD, which are omitted for

brevity. We see that, were the sources on the surface S to be known, the fields would

then be completely determinable, but since that is not the case, our problem has now

become one Of finding that source distribution on a prescribed surface whose fields,

together with the incident field causing those sources, will satisfy the required boundary

conditions, iThis is the basic idea behind the need for solving an integral equation, whose

derivation is next discussed.

2.3 Developing an Integral Equation

Derivation of an IE from integral expressions for the fields as given above can be

achieved in various ways. One of the most appealing on physical grounds, though

involving some mathematically challenging issues such as singular integrals, is

boundary-condition matching. That is, we can let the observation point in (3) approach

a surface on which the total field satisfies known boundary conditions. At the surface of

a penetrable object, for example, the tangential components of both the electric and '-

magnetic fields are known to be continuous. If the object in question is a perfect electric

conductor, the situation most commonly encountered in antenna analysis and design, then

the total tangential electric field is zero,or nx[Escat(r) + Einc(r)] = 0, with Escat(r)

being the field of the sources caused by the incident field. Two different kinds of IEs

can be derived for perfect conductors from (4), having either the incident electric field

or incident magnetic field as the forcing function. The IEs for penetrable objects

involve both field components together.

2.3.1 Frequency-Domain Integral Equations--For a perfectly

Low-Frequency Antenna Models, Proc. IEEE '91, Page 4



conducting object defined by the surface S, (4) reduces to the following IEs:

" nxEinc(r) = nx jtogJqo_ + l(v.J)V'qo_, ds', r _ S,
j¢o

(4a)

and

J(r) = 2nxHinC(r)+1nx[ JxV'9_ds', r _ S.
2rr .Is

(4b)

where J = nxH is the surface current on the conducting body. Equation (4a) is known as

the electric-field integral equation (EFIE) and (4b) as the magnetic-field integral

equation (MFIE). They are Fredholm IEs of the first and second kinds respectively, in

which the unknown appears either only under the integral sign, or outside it as well.

The mathematical operations on the unknown which occur under the integral sign are

called the "kemer' of the integral equation. In terms of applicability, the EFIE is suited

to more general object shapes, including thin plates, open shells and wires, while the

MFIE's applicability is limited to closed, relatively smooth, objects.

2.3.2 Time-Domain Integral Equations--Equivalent TDIEs are given

by

4-_ Is[ "_t' 1 ( 1 , +1 _)Ps(._,t') r-['. Ida,nxEinc(r,t) = nx I.t Js(r',t') lr- r'l lr-r I c _gt' lr- r'l 2

(5a)

and

1.fsJ(r,t) = 2nxHinC(r,t) + _ nx R"_ cc3t'lc3 J(r',t')x da' ,.

(5b)

respectively, where the surface-charge density, Ps, comes from the integral form of the

continuity equation
t

Ps(S,t)= -I_ V'J(s,l:)d't

2.4 Integral Equations for Wires

Wires are a special class of objects whose study has long occupied

electromagneticests. This is because much of the early development of radio-wave
Low. Frequency Antenna Models, Proc. IEEE '91, Page 5



communication incorporated wires and wirelike objects as antennas. In addition, thin
p

wires also represented one of the few geometries beyond those admitting

separation-of-variables solutions, such as circular cylinders and spheres, amenable to

analysis prior to the digital computer [6]. Finally, when arranged to form a mesh, more

general conducting bodies can be approximated both physically and mathematically, by

collections of wires. Several kinds of IEs have been used for wires, in both the TD and

FD. Some of the more commonly-used ones are summarized below.

2.4.1 Frequency.Domain IEs for Wires..In the context of the

thin-wire approximation (TWA), a wire is represented as a circular cylinder of diameter

D and length L such that D <_L and D <<_,, about which several assumptions are made.

First, it is assumed that the azimuthally-directed component of surface current is

negligible. Second, the longitudinally flowing current, I(s'), is taken to be independent

of azimuth. Finally, because only the longitudinal electric field is then important, the

boundary condition is enforced on only this field component and the surface integrals

are simplified to one-dimensional line integrals using the so-called reduced kernel in the

IE. More details on the TWA and its implementation can be found in [7] and [8].

Perhaps the oldest wire IE is that derived by Pocklington [5] for a straight wire, whose

more general form is expressed by

1 I(s') k2s's ' /) /) --_--ds', s e C(r)s.EinC(s)= 4n;jcoe (r) /)s c)s'

(6)

where s and s' are unit tangent vectors to the wire at s and s' respectively, and C(r)

defines the wire geometry with s displaced by the wire radius a from the source filament

at s'. Otheir versions of the TWA lE are the mixed-potential form [1] and the generalized

Hallen IE [9].

2.4.2 Time.Domain IE for Wires --Equivalent TD versions of the

FDIEs for wires can also be developed. One example is given by [10]

_'0_C IS'S'()(r R /)t 'I(s''t' s'R _) , 2s'R., 1s'Einc(s,t) = ) + c'-_"_s, I(s ,t')- c --_--q(s ,t') ds', s _ C(r)

(7)
Low-Frequency Antenna Models, Proc. IEEE '91, Page 6
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2°5 Operator Form of the Equations

It is convenient to express the various equations summarized here, both

differential as in (1) and integral as in (4), (5), (6) and (7), more concisely for

subsequent discussion of their numerical treatmentusing the MM. In the FD, following

Harrington [11], we use the generic operator form

L(s,s';o_)f(s';o_)= g(s;o_) =_ L(s,s')f(s') = g(s) (8)

where the explicit dependence on frequency is normally suppressed. In this shorthand

notation, L(s,s') represents an integral or differential operator, f(s') is the unknown,

and g(s) is the forcing function, or "right-hand side" (RHS) of the equation. A similar

expression can be written for the TD as
t o l !

L(s,s ,t,t )f(s ;t') = g(s;t) (9)

where the explicit dependence on source and observation times is retained to distinguish

this equation from its FD counterpart.

It should be noted that the formulation and numerical solution via the MM, as briefly

outlined below, is independent of the RHS, so that most models are equally applicable to

radiation or scattering problems. For the former, the RHS is a localized "incident

field," usually a voltage or a specified tangential electric or magnetic field defined over

a limited region of the model. In the latter case, the incident field exists over the entire

structure being modeled. Therefore, although this discussion is specifically addressed to

low-frequency antenna modeling, we include a number of references to scattering

applications.

tr

r

Low-Freq,Jency Antenna Models, Proc, IEEE '91, Page 7



b

3. NUMERICAL TREATMENT

Although the term "moment method', (MM) has come to be most corr_nonly associated

with integral-equation models, it actually refers to a general procedure for numerically

solving DE, IE mad integro-differential equations in the TD and FD [11]. The MM is an

intuitively logical way to develop a numerical solution to equations of these kinds. Its

basic steps are generically the same whatever the specific kind of equation is being

solved. These are first briefly outlined below, and then described more completely in

the following sections.

3.1 The Basic Steps in the MM for the Frequency Domain

1) Sampling and approximating the unknown sources and/or fields whose

solutions are sought using some appropriate basis- or expansion -function

representation, involving unknown con,_tants whose numerical solution is the

goal of the MM model.

2) Sampling the defining equations which the expansion-function representation is

required to satisfy in a manner determined by some weighting or testing

functions, to develop quantitative relationships among the unloaown constants

and thereby forming a linear system of equations.

3) Solving the linear system of equations using various matrix procedures.

3.2 Time-Stepping for a Solution in the Time Domain

Developing a MM model from a TD formulation requires not only space

sampling, but also involves:

4) Developing a time response using time sampling and stepping. ,

3,3 Further Consideration of the Moment Method

3.3.1 Sampling and approximating the unknown sources/fields--

Two basically different kinds of expansions can be used. One is the entire-domain basis

(EDB) which is defined over the entire object or space being modeled, an example bei%

the Fourier series YAnsin(2rms/L ), n = 1,..., to represent the current on a wire or

two-dimensional strip. For a general object whose surface is defined by G(r), the EDB

canbe expressed as

Low-Frequency Antenna Models, Proc. IEEE '91, Page 8



Xs

f(s') = ZIibi(s'), s'e G(r)

li

m

i=l

(110

where there are XS unknown coefficients Ii whose quantitative values are to be Obtained

in the MM solution and the bi(s') are the basis functions.

Although useful for simpler objects, EDB are not as well suited for more complex

geometries such as aircraft, for example, for which sub-domain bases (SDB) are instead

employed. These are expansions defined over smaller patches or segments, AGi(r), of

the object, and can be written as
Xs Ni

f(s,) = y__,E,riijUi(s,)bij(s,)with Ui(s,)={ 1for.. s'_ AGi(r)
i=l j= 1 0 otherwise

(lla)

where the number of subdomains is Xs and the basis bij(s') has Ni terms on segment i,

an example of which is the three-term basis

Ii(s) = Ai + Bisin[k(s-si)] + Cicos[k(s-si)]; where Is- sil < Ai/2 (1 lb)

Normally, this kind of multi-term basis is the same for ali subdomains, except for

boundaries such as the ends of wires or edges of strips. Two or more terms in each

subdomain basis may be employed to produce some specified degree of continuity in the

unknown at segment junctions, which also reduces the total number of unknowns in (11)

from XsN i to of order Xs. Hybrid combinations of EDB and SDB have also been-found

to be useful [12].

3.3.2 Sampling the defining equations and forming a linear

system of equations--This step can be expressed, for the case of the EDB,

as

_G(rltj(s),L(s,s')bi(s')ds = _G(rltj(s),g(s)ds, j = I,...,Xs,...,NT

(12)

where tj(s) is the j'th testing function. There are normally at least Xs testing functions

Low-Frequency Antenna Models, Prec. IEEE '91, Page 9



so that (12) generates as many equations as unknowns. A similar equation also holds fora

the SDB. As for the basis functions, the testing functions can be either entire-domain or

sub-domain, or some combination thereof. One of the more commonly used subdomain

testing functions is the delta function, in which case the integral (12) samples the field,,;at
f

a set of NT discrete points on the object being modeled. The use of other kinds of

testing functions essentially varies the contribution of the boundary field at a given point

on the object to the final matrix coefficients in proportion to the value of the testing

function at that point. For mathernatical reasons, it can be advantageous to employ the

same functions for both the basis and testing functions, an approach that is known as

Galerkin's method [11].

r

Each equation sample involves an operation or FLOP count that is a constant for DEs

and is proportional to XS for IEs. The DE FLOP-count dependency is lower because ali

of the terms in a DE are collocated in space. The DE field therefore involves onl3'

neighboring fields/sources (F/S) through sampled approximations of the differential

operators, thus requiting a fixed number of terms per equation sample. The lE field, on

the other hand, involves F/S over the entire surface on which tney reside through a

sampled summation which has XS terms. The total FLOP count for this step is therefore

proportional to NT for DEs and NT XS for IEs.

This steps results in
XS :.

2;ZijI j =Vi;i= 1,...,Xs,...,N T
j=l ,

where (13)

rG(r)ti(s)L(s's _G
Zi, j = ')bj(s')ds and V i =:- ti(s)g(s)ds

(r)

with Zi,j the coefficients of the system, or impedance, matrix as it is called for an IE

EFIE model. We note that when NT > Xs, which results in more equations than

unknowns, a solution to (13) can be obtained by method of least squares, or using a

pseudo inverse, which is achieved by "squaring" the overdetermined impedance matrix

by multiplying it by the complex conjugate of its transpose. This approach is equivalent

.Low-Frequency Antenna Models, Proc. IEEE '91, Page 10



I,

• to implicitly imposing NT - Xs auxiliary relationships among the testing equations.

Alternatively, an explicit relationship could be employed, for example using weighted

sums of the sampled equations to reduce their numbers. Using NT < Xs is also

permitted, which results in more unknowns than equations, in which case the number of

unknowns must be decreased. This can also be done by the use of the pseudo inverse,

which as before introduces implicit auxiliary relationships among the basis functions.

This is equivalent to representing the current using weighted sums of the basis functions,

which cre, also be done explicitly as in the Numerical Elect, omagnetics Code (NEC)

[13].

3.3.3 Solving the linear syi_tem of equations--A solution to (13) can

be formally written as
Xs

I i = ZYijVj where [Y] = [z]-1
j=l

(14)

but an inverse is seldom actually computed, the solution more often obtained in factored

form or using iterative techniques, with Yi,j the coefficients of the solution, or

admittance, matrix as it is called for an IE EFIE. TheFLOP count for this step varies

from XS to (Xs)3, the former for DE models solved via iteration to the later for IE

models solved using LU decomposition. As problem size and complexity increase, the

solution step will eventually dominate the overall FLOP count, and is an active area of

current research to reduce the operation count [14].

3.3.4 Time sampling in a time-domain model--This step is needed to

develop the time-sampled behavior as a sequence of updated, sampled spatial responses.

Time stepping can be implicit, where interactions are permitted between the various

spatial samples during the updating at the most recent time step, or explicit, where these

interactions do not occur. The possibility of an explicit solution is a direct consequence

of causality, or the fact that light propagates at a finite speed so that a change in the

source located at r' at time t' is not known at r until time t = t' + R/c. The implicit

approach requires solution of a linear system at each time step whereas the explicit

Low-FrequencyAntennaModels,Proc,IEEE'91, Page11
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approach does not. Instead, it produces an algebraic, i.e. non-matrix solution, which is

computationally more efficient, but which limits the time-sample interval to some

maximum value [ 15]. For example, 5t _<_x/c is required in one dimension, where Ax is

the space-sample size, with similar limitations applying in two- and three-dimensional

problems.

3.4 Exploiting Symmetries

Many problems in electromagnetics exhibit various kinds of symmetries such as

rotation, translation and reflection. When part or aH of a given problem has such

symmetries, they can be extremely effective in reducing computer storage and time

requirements. This arises from me fact that the MM impedance matrix then has a

known structure whose effect is to reduce the number of different coefficients in the

matrix. An n-sided regular polygon, for example, modeled using one segment per side

then has only n, rather than n2, different matrix coefficients, producing an impedance

matrix called circulant. "[his matrix can be solved with an operation count of order n,

rather than the n3 that would otherwise be required. More about symmetry effects can

be found in [ 16].

3.5 Some Observations

It is worthwhile summarizing some of the key differences concerning application

of tile MM to IEs and DEs in the TD and FD as follows'

1) A DE model produces a linear system that is very sparse, i.e. all but some

small, fixed number of its coefficients are zero, because a DE samples the F/S locally

whereas an IE samples globally over some boundary.

2) The coefficients of both the DE and IE models are complex numLci s in the FD
but real numbers in the TD.

3) For homogeneous-region problems, the number of spatial source/field and

equation samples using a DE model is proportional to frequency D, where D (= 1,2,

3) is the problem spatial dimensionality, whereas that for an IE model is proportional

to lD-1. This is because the former must sample fields on some mesh throughout the

problem volume whereas the latter needs to sample only on some enclosing su,face.

4) For problems involving infinite exterior domains, the DE model requires some
kind of closure condition to terminate the solution mesh, whereas the IE model has a

built-in radiation condition because of He Green's function used m its fomlulation.

5) All FD models require solution of a linear system of equations, whe' "as their

Low-Frequency Antenna Models. Proc. IEEE '91, Page 12



TD versions can be solved without matrix solution when an explicit treatment is used,
,

" for which the time steps are small enough that neighboring spatial samples of the F/S

do not interact within the same time step. When same-time-step interaction is

allowed in a TD model, they are called implicit formulations.

6) TD models are solved as initial-value problems using time stepping, whether

implicit or explicit, and whether DE or lE models.

7) Transient results can be obtained directly using a TD model or via transformed

FD results in general, but for nonlinear, time-varying media and/or components, a

TD approach would normally be the better choice.

8) A TD model can a provide wideband solution valid up to some maximum

frequency, fmax, but for a single spatial excitation, whereas a FD model can provide

a solution valid for arbitrary spatial excitation but for a single frequency.

Low-Frequency Antenna Models, Proc. IEEE '91, Page 13



b

4.0 MODEL EXTENSIONS

The preceding discussion covered the basic elements of MM modeling. We now briefly

examine some topics associated with making these models more efficient or more widely

applicable.

4.1 Special Green's Functions for Integral Equations

Most IEs are based on the free space Green's _nction, so that the only boundary

condition they explicitly satisfy is the Sommerfeld radiation condition. While this

results in the simplest kernel function for the integral equation, it means that the induced

sources which reside over any portion of S become part of the unknowns whose solution

is required. An alternative approach is to employ special Green's functions that

automatically satisfy the required boundary conditions over part or ali of S. While such

Green's functions can significantly complicate the IE kernel, at the _same time they can

greatly reduce the number of unknowns in the MM model, and thereby decrease the

overall computer time required.

As might be anticipated, such special Green's functions are available for only a limited

number of geometries for which wave-equation solutions can be obtained by separation

of variables. Even though this does limit their generality, these Green's functions can be

effective for problems having components possessing these special geometries. Some

examples worth mentioning here are the sphere, parallel-plate waveguides, and infinite

planar surface.

Some satellites have basic spherical shapes with various additional wire appendages,

panels, etc. Use of the Green's function for a point current source near a sphere means

that a model for this kind of object will involve as unknowns only the currents flowing

on its non-spherical parts [17]. This idea has been generalized to bodies of rotation

(BOR) having wire appendages, so that a solution can be developed as a series of modes

varying as In(s)ejnq_ [ 18], [19], [20]. A BOR exhibits oneof the kinds of symmetry that

can be exploited to increase solution efficiency, as already mentioned above. We note

that rotation symmetry arises in both continuous and discrete forms, the former being

. exhibited by a circular loop and that latter by an n-sided regular polygon as an
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approximation thereto.

In ElectroMagnetic lhdse (EMP) studies, it is common to employ parallel-plate

waveguides as simulators to measure the response of test objects to an impulsive,

planewave field. A MM model of such interactions can be more efficiently evaluated

using a Green's function for a current source located between parallel, infinite

conductir,g planes [21]. This approach has also been extended to rectangular cavities for

model the mode-stirred chambers being used for ElectroMagnetic Compatibility (EMC)

analysis [22].

The problem of two half spaces of different electrical properties having a common,

infinite, planar interface is one which well describes the environment of at least two

classes of antenna problems. One is that of communications antennas operated at

frequencies below 100 MHz located near the surface of the earth, for which the

Sommerfeld integrals are the special Green's functions [23], [24] and which will be

discussed more below. The other is the problem of microstrip geometries_ which at

frequencies up to 100 GHz and higher are finding increasing use as antennas, and at

lower frequencies but in much smaller sizes are found in very large scale integrated

circuits where field effects are being found increasingly important [25], [26], [27], [28].

More general layered-media problems have also been modeled, including anisotropic

layers [29], [30], and multiple layers [31], [32], [33].

4.2 Hybrid Models .-

Many of the problems needing analysis today exhibit features not well suited to

any single kind of model. For example, although IE models are generally best for

modeling perfectly conducting, or homogeneous penetrable object, for which they

require only surface sampling in contrast with DE models which require volumetric

sampling, when tile penetrable object is spatially inhomogeneous, then the IE model also

requires volumetric sampling. But since the IE matrix has all nonzero coefficients (see

section 3.3 below), or is dense, compared with the DE matrix which is always sp,:,rse,

the DE approach would generally be the better choice for inhomogeneous objects, lt

follows that when a problem involves a combination of inhomogeneous and perfectly
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conducting objects, using both the lE and DE approaches together in a hybrid model
t

would often be more efficient than modeling the entire problem using either approach

alone.

Such hybrid models are becoming more commonly employed ;n CEM [34]. One of tile

first examples employed the geometrical theory of diffraction (GTD) and the MM to

handle wire antennas located near the edge of a ground plane [35]. The GTD diffraction

coefficients were used to calculate the fields scattered from the edge so its effect could

be included in an lE model for which the unknown current remained only that on the

antenna. Other hybrid models have combined DEs and IEs [36], modal expansions and

lEs [37], and low-frequency results with IEs [38], as well as extended the GTD-IE

models [39], [40], [41], [42]. The basic motivation for development of such hybrid

approaches is the goal of modeling each of the separate parts of a complex problem with

a technique that is best suited to its particular characteristics. As the problems needing

solution becomes more complex, the need for hybrid models will continue to grow.

4.3 Modeling Slots and Apertures

Perhaps the simplest class of antennas to model are those composed of wires. As

demonstrated by the collection of articles in this special issue however, wires represent a

relatively small set of antenna geometries of interest, even at low frequencies. Other

geometries include microstrip structures and aperture antennas, both of which generate

the need to handle more general body shape having narrow slots and apertures. Many of

these problems effectively result in the entire body in which the slot or aperture is ,-

placed acting as the antenna with its excitation being provided by apertures or slots in it,_

surfaces. Models based on the numerical techniques being discussed here can be

developed for such problems [43].

Slot antennas are usually defined to be narrow, extended apertures which, when located

in a,a infinite, plane conducting sheet are described by a Pocklington-type IE [44]. The

unknown in this case is the voltage across the narrow dimension of the slot as compared

with the longitudinal current on a thin wire. Slots and antennas composed of thin strips

of metal are called dual structures [45], so named because their mathematical
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descriptions are identical with a suitable interchange of variables. But more general
. i

apertures are not solvable using duality, and their modeling requires careful

consideration of the fields in the aperture as well as over the surface in which it is

located. The problem of modeling apertures and slots is closely related to the so-called

source problem, that of def'ming circuit quantities for antennas for which thin gaps or

slots are most often used for their excitation, which is discussed briefly below in Section

6.1.

4.5 Modeling Imperfectly.Conducting Objects

Our discussion thusfar has addressed primarily the problem of modeling perfectly

conducting objects. Because high antenna efficiency, i.e., the ratio of radiated to input

power, is usually desirable, most anteltnas are made so as to minimize dissipative loss.

This is in contrast to the fabrication of "low-observable" targets where the goal is to

absorb energy from the incident field to minimize the scattered radiation. Thus,

"perfect-conductor" antenna models are applicable to a large proportion of

low-frequency antenna applications.

Never-the-less, it is desirable that these models also include a capability for handling

imperfectly-conducting objects. Applications for this capability include use of reactive

loading to decrease the physical size at which a structure is resonant and for impedance
i

matching, and where the antenna's environment includes dielectric or lossy materials as

is increasingly the case with the use of composites and other specialized materials. The

analytical and numerical rigor needed for modeling imperfect conductivity depends,on

problem requirements and characteristics. For wires, two kinds of extensions to perfect

conductivity have been employed. One is the use of impedance loading on the wire to

account for the effects of lumped loads, such as might represent the generator

impedance, or distributed loads as a means of modeling finite conductivity, or to handle

transmission-line interconnection (TLI) between two ports on the antenna [ 13]. The

other is to appro×irnate the effects of dielectric sheaths which are frequently used for

buried antennas by radially-directed displacement currents [46].

The effect of an impedance load can be accommodated in (13) simply by including a
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voltage drop on the RHS to obtain
Xs

ZZi,jlj = Vi- I_Z_t.;i = 1,...,Xs,...,NT
j=l

(13)

where ZiL is the load on segment i. Note that unless TLI loading is employed, the load

terms affect only the diagonal entries of a modified impedance matrix, For surfaces, an

equivalent procedure is to employ a surface-impedance term, which relates the electric

and magnetic surface-currents ,I and K as K = Zsnx,l, where Zs is the surface

impedance. In this case, there are no additional unknowns beyond those required for a

perfect conductor. More generally, both ,I and K need tobe found from an IE derived

from imposing continuity of both E and H across the surface, a topic not pursued

further here.
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• 5.0 COMPUTATIONAL ISSUES

We discuss here a number of issues that must be considered in selecting a model or

computer code for application to a given problem or class of problems. We begin by

first briefly examining the desirable attributes of a useful computer model, followed by

a more detailed discussion of how these attributes are affected by the analytical and

numerical treatment on which a model is based and its intended applications,

5.1 Desirable Model Attributes

Although there are many equivalent ways in which the desirable features of a useful

computer model can be described, in one way or another the most basic model attributes

desired by most users would be accuracy, efficiency, and utility. We briefly discuss

these issues here.

5.1.1 Accuracy/Reliability--The quantitative degree to which the

computed results conform to the mathematical and physical reality King modeled, lt is

determined by the physical modeling error (Ep) and the numerical modeling error (cN),
i

5.1.2 Efficiency/Productivity.-Following accuracy as a desirable

attribute is efficiency, the relative cost of obtaining the _ results. It is determined

by the human effort required to develop the computer input and interpret the output,

and by the associated comt_uter cost of running the model.

5.1.3 Utility/Applicability--The applicability of the computer model in

terms of problem size and complexity. Utility also relates to ease of use, reliability of

results obtained, etc.

5.2 Model Accuracy/Reliability

Above all else, a modeling computation must posses acceptable, preferably knoxv_a.

. and better yet "dialable" accuracy. This is an attribute to which ali others, however

desirable they might be, must be considered secondary, for invalid results have no value

and can even be detrimental. Of the two basic modeling errors, _:pcomes from

replacing the real physical problem with an idealized mathematical representation, while
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EN come from obtaining an approximate numerical solution for that idealized

representation.

For only a few problems is Ep possibly zero, a sphere for example The

physical-modeling error can arise in r_everaldifferent ways, including using a simplified

or different shape for the numerical model, such as approximating a circular loop by a

polygon. Other causes of Ep are using a different kind of object, such as a wire mesh in

piace of a solid, continuous surface, or even different material constants. Their actual

values may be not be available to the needed accuracy, or they may be approximated,

one example being use of a perfectly conducting ground plane in place of a loss),,

penetrable greund. In most cases, ep will be the largest error source and ultimately

requires experimental measurement for its assessment.

On the other hand, eN can usually be made acceptably small in principle, but possibly at

the expense of increasing Xs beyond a computationally affordable limit, since for large
,,

Xs it varies approximately as exp(-kX s) [47]. This is because the difference that can

exist between the computed result and an exact solution, the solution error, is caused b\'

using a finite number of unknowns. Also contributing to EN is the equation error,

which results because of roundoff due to using finite-precision computations, however

many unknowns are used. Another source of eN includes omitting details of the

mathematical representation in the numerical model. In wire modeling, for example.

although the actual currents flowing near wire junctions can be expected to exhibit

azimuthal variatic,n, this effect is normally not included in the _,,umericalmodel, as is

also the case of the endcap currents flowing on the ends of wires.

Although experimental data remains the preferred way to validate numerical results,
!

most model developers and users rely heavily on "convergence" tests to determine

whether the numerical results are converging towards some limiting value as Xs is

increased. Convergence tests should be regarded as a necessary, but not sufficient,
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condition for a model to satisfy, since convergence to the correct result is not

. guaranteed. Furthermore, the appearance of convergence can depend on what computed

quantity is being examined. A simple example is presented in Fig. 1, where the input

impedance and admittance of a two-wavelength long, center-excited dipole antenna is

plotted as a function of the number of unknowns, as obtained using NEC [13]. These

two kinds of results, both obtained from the same model, being related as Z = I/Y, coulct

lead to quite different conclusions about the validity of this simple model for a given

number of unknowns. Although the admittance results exhibit acceptable convergence,

the impedance data seems to imply that many more unknowns are required to achieve

the same degree of convergence. This shows that care must be used in interpreting

convergence tests, especially when complex numbers are involved where resonance

effects can arise.

Generally speaking, most low-frequency EM models require a sampling density

equivalent to six to twenty samples per wavelength to obtain acceptable resUlts, for

which the normalized convergence error can then be expected to be in the range 'of 0.01

or less. There are actually two kinds of effects that drive the required sampling density.

For smooth, extended geometries such as a sphere as the idealized example, the sampling

density is truly "wavelength" driven, with Xs determined primarily by overall electrical
,,

size, When the object is more geometrically or electrically complex, the required

sampling density can become much greater in order to resolve the rapid changes in the

F/S that can occur near discontinuities or rapid changes. This point is made is Fig. 2

where the convergence in the tumble-average, backscattered fields for a number of wire
- :.

objects is presented as a function of sampling density [47].
,,

Application-relevant, model-independent validation measures are needed for

quantitatively assessing the accuracy of computed results. Some of the categories of

results that might be useful include' 1) far,field quantities [radiation/scattering pattern.

total radiated power]; 2) near-field quantities [local electric and magnetic fields,

reactive and real power flow]; 3) boundary quantities [total tangential electric field on

perfect conductor]' 4) approximation effects [the effects for bends and wire ends

normally ignored in wire models].
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- An example of a boundary-condition check is included in Fig. 3 where the magnitude of

the tangential electric field produced by the current excited on a center-fed dipole

modeling using a point-matched solution to the EFIE with a three-term current basis is

plotted. This field should be zero except in the source region where it should negate the

applied excitation, but as can be observed here, it is zero numerically zero only at the

match points. This result, which is rather typical, shows that the required boundary'

conditions may be satisfied only approximately by a numerical solution. A more

appropriate quantitative measure of how well the boundary conditions are satisfied is

provided by an integral of the boundary-field error divided by the incident field, which

for this case would be near 0.01, comparable to the result that might be expected from a

convergence test.

5.3 Mo0el Efficiency/Productivity

While it is obvious that a model that efficiently produces inaccurate results has no

value, it is equally true that a model that produces acceptably accurate results but which

requires computer and/or human resources incommensurate with the application has

little more value. As mentioned above, from the viewpoint of the overall cost of

achieving a specified accuracy for the electromagnetic observables needed from a given

model, efficiency involves two components' computer and human. The computer cost

itself might be stated in several ways including total CPU time or the money charges of
b

the computation. A more relevant and hardware-independent measure of the computing

cost would instead be provided by estimating the total number of FLOPS required for
'..

" the overall computation. It might be even more informative to multiply this numberin

turn by the number of bits manipulated per FLOP to establish the total number of bit

operations, or BLOPS, required for the model computation to be accomplished to some

acceptable accuracy.

The BLOP count could be especially significant in comparing two otherwise similar

models applied to the same problem when one of them requires higher,precision

computations because it is less well conditioned. The FLOP count, on the other hand,

could be more relevant when one of the models produces unused information relative to
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the other. An example of the latter situation is that of computing the factored form of

• the impedance matrix when using an IE model for an antenna problem where a solution

is needed for only one excitation, in which case an iterative procedure can be more

efficient for one or a few RHSs.

Although ali electromagnetic models proceed from Maxwell's equations, their particular

formulation or numerical implementation may result in substantial differences in the

kind and amount of information provided by the basic computation. A DE-based model.

for example, provides the spatial fields throughout some solution volume whereas an

IE-based model normally yields only the sources over bounding surfaces. Matrix

solution by factorization provides a RHS independent solution matrix whereas iteration

requires that an entirely new solution be computed for each new RHS. lt might be

useful to define a measure of information efficiency for given models applied to given

problems. Or,_ possibility would be that of dividing the information concerning

electromagnetic observables actai_allyneeded in the application by the total information
i

given by routine use of the model. For antenna problems which involve a single point

of excitation but which are mod_,_ledusing an IE-based code which solves the impedance

matrix by factorization, this effic:iency measure would be of order 1/Xs since only the

equivalent of Xs.

One aspect of efficiency that is not so dependent on the formulation, numerical

implementation, and solution procedures as it is on the user interface provided by a

model's developers is the user efficiency. Thus, a model which that be deficient with '

respect to user efficiency but which is othe',n_viseattractive could be improved with the

addition of more "user-friendly" interfaces. For a user choosing among competing

models and having less demanding applications, user efficiency could be the most

important overall factor in making a selection.

Each of the above measures of efficiency might be combined in an appropriately

weighted sum to derive some overall efficiency measure, the weights being determined

by the importance of each component to a prospective user of a given code.
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' 5.4 Model Utility/Applicability

Finally, we must consider a model's utility in terms of the kinds of problems to

which it can be applied. At this stage, general-purpose modeling codes and specialized.

single-problem codes become most differentiated. On the one hand, it is always easier tc,

develop a model specialized for a particular problem that will be more accurate mad/or

efficient than a general-purpose code that can model that same problem. On the other

hand, the more widely applicable a given modeling code becomes, and the more easily

used it is, the greater its utility for the non-specialist who does only infrequent

modeling.

This attribute is perhaps less easily defined than accuracy or efficiency but can be

regarded as including ali those factors not included in either. Utility essentially

measures the kinds of problems for which a model might reasonably be used. Among.

the factors which comprise utility are: 1) geometrical configurations permitted; 2)

electrical characteristics included [perfectly conducting, impedance-loaded,

homogeneous penetrable, inhomogeneous, anisotropic, etc,]; 3) kinds of excitations

[plane wave, dipole sources, Gaussian beams, local voltages]; 4) solution domain, FD or

TD; 5) input/output requirements needed to express real-world problem in model

terms; 6) hardware requirements [what computers,what interface hardware, word-size

requirements, storage needed, etc.].

5.4 A Comparison of Model FLOP Counts

As discussed above, the spatial sampling required of any of the models considered

here is driven by the wave-nature of electromagnetic fields, involving Xs total spatiat

unknowns. For resonance-region modeling, where a characteristic dimension, L, of the

object to be modeled is in the range 0.1 _<L/_ _<10, the minimum equivalent sample

density is on the order of 5 to 10 spatial samples per wavelength, but can be much

greater for geometrically complex objects. A comparison of convergence rates for ,

several different methods used to model scattering from a straight wire about 12

wavelengths long is shown in Fig. 4.

Besides the spatial-sampling required whether using an FD or TD model, there is also
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the additional temporal sampling required of TD modeling, which is on the order of 5 t()

- 10 temporal samples per period of the highest-frequency component in the response.

Furthermore, we note that TD models are required to be "run" or time stepped over

some minimum time duration of order L/c to achieve a steady-state response when

time-harmonic excitation is used, or to obtain a converged result when the excitation is

wideband. This minimum time is needed to allow the farthest extremities of the object

to interact, and involves a total number of time samples XT.

The number of samples needed to model a problem is the principle parameter

determining the computer time required for its solution, since we should expect the

overall FLOP count to grow at least as fast as Xs for FD models and XsX T for TD

models. But because the amount of computation required per sample can itself be a

function of the number of unknowns, the actual FLOP count can grow much more

rapidly than this. For example, a FDIE, while involving Xs unknowns can require on

the order of (Xs)2 FLOPs per unknown to compute an inverse or factor the impedance

matrix, since the total number of operations varies as (Xs) 3. Surrunarized in Table I are

the frequency dependencies of some of the more commonly used FD models. In this

table, D is the problem dimensionality (D = 1 for plane-layered media, D = 2 for

infinite-cylindrical geometries madwires, and D = 3 for general, three-dimensional

problems. Also, N is the operation count per unknown, S is the number of additional

operations per RHS, and H is the total number of RHSs needing solution.

TABLE I--Frequency Dependence of Xs, N, and S for IE and DE Frequency-Domain
Models

.!EHomogeneous IE lnhomogeneousD_D__E

Sample Count Xs lD.] fD

Operation Count per Unknown N

Iteration _f2("] _f2D ConstwTtLU Decomposition D-I) f2(D.] )

Total Operations for Single Solution

f2(D-I ) f_ D _DIteration _(D-1) DLU Decomposition "-
Operat_ionsper Additional RHS S

Iteration f_(D-1) f2 D ff_9.DLU Decomposition (D-] ) f2D

Total Operations for H RHSs, or Complexit3'
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" Iterrtion Hf2(D. 1) _D D _t_.LU Decomposition f3(D-l) ' 2

+,F(D-J) +,S2_ +,i2_
i
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6.0 REPRESENTATIVE APPLICATIONS/CAPABILITIES

• Space limitations permit but an brief overview of what present low-frequency antenna

modeling capabilities and applications include. Considering the necessity of covering

at least the basic ingredients of the analytical formulation and details of the numerical

implementation and computational issues, we can include here only a sparse samplin_

of applications. We first discuss one of the most important aspects of low-frequency
/

antenna modeling, that of modeling the source used to numerically excite the antenna

we then present FT)examples for infinite-media applications, environmental effects

suchas the earth-air interface and mounting structures for antennas, and special

modeling issues. The section is concluded by brief consideration of TD applications.

The relative importance of the various physical characteristics that might be used to

describe low-frequency antenna performance, such as input impedance, current

distributions, the near fields, the radiation pattern, radiation efficiency, etc. depends on

the needs of a particular application, In most applications, the frequency dependance

of the input impedance would be of most concern because of the need to design

matching circuits. This would be closely followed by the radiation efficiency, with the

importa_ce of the radiation pattern be somewhat more variable, depending on the use

intended for the antenna. For some communication's applications, it may be necessary

to produce a pattern that is isotropic to some prescribed degree in a particular plane,

while for direction finding, the location and depth of nulls is critical. The examples

presented here illustrate some of these aspects, starting with the fundamental problem

of source modeling.
.

6.1 Source Modeling

Antenna iqput admittance is defined as the current per unit voltage at the

excitation port. Although a circuit quantity, it must be derived from antenna field_,

since while the current at a given point on the antera'_acan be uniquely defined, the

voltage is an integral quantity whose rigorous evaluation would require integration of

the field across the source region. For point-sampled thin-wire models, where the

field is fixed only at discrete points, the variation of the electric field between match

points is not known, so finding the effective drive voltage would require evaluation
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and integration of the electric field after the current distribution has been computed.

" This process can require as many, or more, FLOPs than filling the impedance matrix.

One way to avoid this problem is to assume that the incident or exciting electric field.

Eex, is constant over the segment to which the excitation is applied, and zero

elsewhere, so that the voltage can be approximated as Vex ~ -EexA where A is the

length of the source segment, which is sometimes called the "gap" model [13]. The

plot in Fig. 5 demonstrates the potential difficulty of defining the exciting voltage fro]_
ii

a single sarnple of the tangential electric field [48] A magnetic field, "frill-source

model has als() been employed [49], which seems best suited for "thicker" wires.

,

This model, and even more numerically robust ones where the tangential fields are

integrated by using testing functions that sample the fields along the wire, are

reasor. lbly reliable. However, they do not include the capacitance of feed wires or

structure that are normally required to connect the antenna to a physical generator.
,,

Some results are shown in Fig. 6 _o demonstrate this effect. Two results for the

frequency dependence of a dipole antenna input admittance are presented, one for the

point-sampled simple source model just described and the other which uses a

transmission line (TL) to excite the dipole, also modeled using NEC. A downward

shift in the resonance peaks can be observed in the TL model, evidently caused by the

capacitive effect of the dipole-TL connection. The problem of Some other work on

source models is described elsewhere [50], [51], [52], [53], [54].

6.2 Infinite.Media Applications

Many antennas are located near the perturbing effects of the ground, or

structures such as vehicles, aircraft, ships, building, etc. which affect their

performance. These effects are important to understand both qualitatively and

quantitatively. One way of doing this is to assess its characteristics when the antenn:_i,,

located in an infinite medium for comparison with these same characteristics when

located in its actual operational environment [55]. For this and other reasons, much

modeling deals with the simpler application of a given antenna operated in free space.

or some other infinite medium.
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The variety of antenna types modeled in infinite media is vast, including linear, vee

. [56] and folded dipoles [57] and loops [58], conical and helical [59] spirals, linear [601

and log-periodic arrays (LPA), dielectric rods [61], and others [62], [63]. The MM

results obtained for such antennas are usually found to agree with measured results for

input impedance and radiation pattern to high accuracy, usually within the

experimental error, when the numerical model includes the important features of the

measured structure. Three representative examples are shown here in Figures 6, 7,

and 8. Fig. 7 displays the radiation pattern of a fore-shortened LPA [55], in which the

lengths of the longer antenna elements have been reduced to a fixed value by

employing lumped inductance loading to reduce their resonant lengths, as a way to

make the overall antenna structure smaller. The current distribution on a conical

spiral antenna as obtained using the Pocklington EFIE and the Hallen IE [64] is shown

in Fig. 8, where good agreement may be observed.

An example of modeling an antenna in an infinite, plasma medium, is included in Fig.

8 [55]. This particular problem was chosen because of the desire to extend the basic

NEC model to handling antennas buried in a lossy ground. In order to do this, a

capability is needed of modeling antennas in infinite media having the same electrical

properties. Although a somewhat specialized medium, a plasma was chosen to validate

the lossy..medium extension because other results were readily available. Excellent

agreement is exhibited between the TWA IE results and the quasistatic formulation

described in [65].

6.3 Environmental Effects

Environmental effects on antenna performance are taken here to include an),

perturbation to the infinite-media behavior of the generic antenna due to changes in it,,

near-field environment, such as represented by the earth-air interface, structures on

which the antenna is mounted, or other changes in its basic structure. Examples of

each area are briefly discussed below.

6.3.1 Modeling sheaths--Insulating sheaths are sometimes included on

wire antennas to protect the metal from the environment or to modify the electrical
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characteristics of the antenna. Ice accumulation on wires may also create a sheath,

" Antenna wires buried in the ground are often insulated, since a dielectric sheath can

greatly reduce power dissipation near the wire. The effect of a thin sheath on the

antenna characteristics can be included in the thin-wire model with relatively little

difficulty using a treatment first reported by Richmond and Newman [66]. Sheath

models have been included in wire antenna codes by Popovi'c et al. [67], who also

allows ferrite coatings, an_ in a version of NEC [68] which includes interface effects.

To model the effect of a sheath, the field due to radial polarization currents in the

sheath is included in enforcing the boundary condition on the wire. For a wire with

radius a and sheath radius b, the insulating sheath with complex relative permittivity

er2 = e2 - jo2/o_ o in a medium with Erl = E1 jol/o_ o is replaced by an equivalent

polarization

current of

Js(p,z,q_) = jCOeo(Er2- erl)[ES(p,z,(P) + E'mc(p,z,q_)]

= -(E2 - E1)I'(z)p/(2n Er2P); a _<p _<b

radiating in medium 1 E s is the electric field due both to currents on the wire and to

J itself, and E inc is the excitation field, To retain aone dimensional integral equation

for the axial wire current, the sheath is assumed to be electrically thin, and the total

field in the sheath is assumed to be dominated by the radial field due to charge on the

wire. The field due to Js is needed on the wire axis, which for a straight segment of

insulated wire with Iklbl _ 1 can be approximated in terms of the second derivative ,efr

the axial current as j(E2 - E1)I''(z)ln(b/a)/[2x tt_eoerlEr2] [68], which is included in the

total, axial electric field in the thin-wire integral equation.

The accuracy of the thin-wire sheath model for insulated wires in air has been

demonstrated by comparison with measurements in [24] and (67]. An comparison of

results obtained using this sheath model with independent data is included in Fig, 10,

A totally different approach for modeling sheaths using a Wiener-Hopf approach [69]

is presented in Fig. 11.
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6.3.2 Modeling the earth-air interface--At frequencies below VHF,

- many antennas necessarily include the earth-air interface as part of their near-field

environment. An analytically rigorous formulation for such problems begins with the

Sommerfeld-integral fields, or their equivalents [23], by which the fields of veTtical

and horizontal point-current sources near an interface are represented as

infinite-domain, Fourier-type integrals. In an IE model, these integrals form part of

the IE kernel, and can increase the FLOP count associated with the MM impedance

matrix evaluation by a factor of 100 or even more. Using model-based parameter

estimation (see Section 6.4 below) to replace the Sommerfeld fields with more

cornputationally efficient approximations can reduce the FLOP to near that of the

infinite-medium problem. Use of this approach to model a vertical, base-fed monopole

antenna connected to One to three wires parallel to the ground to act as a sparse,

directive ground screen is illustrated in Fig. 12.

6.3.4 Modeling antenna groundstakes--A more difficult problem to

model is that of objects interacting across the earth-air interface, since then the fields

on both sides of the interface are required. The approach described above can be

extended to this kind of problem, but requires accounting for the fields reflected from,

andtransmitted across, the imerface. This makes possible modeling the behavior of

monopoles excited against a ground stake, the combination of which is represented as a

single wire that is vertical to, and penetrates, the interface. A result for this kind of

model is shown in Fig. 13 [23], where the input resistance and reactance are presented.

Since the radiated power can be obtained by integrating the far-field in air, this model
". i

makes it feasible as well to compute the antenna efficiency where power absorbed into

the ground is the loss term.

6.3.4 Modeling ground screens--Most ground screens consist of many

more radials, and for practical reasons are buried rather than elevated. The approach

just described can be effective for this kind of problem as weil, for which a sample

result is presented in Fig. 14, where the difference in input impedance of a monopole

drl_ ._ against a perfect ground and against a buried ground screen having N

evenly-spaced wires is shown as a function of the screen radius. The plotted poinls arc_
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obtained from a compensation approach [70] and the continuous curves from the NEC

- model [8], Good agreement is obtained in the region where the approximation is valid.

providing mutual validation of these independent results and demonstrating the utility

of the Sommerfeld-based formulation,_

6.3.5 Modeling ground probing--Antennas located in free space above

the ground can be used to detect subsurface anomalies, a principle exploited in metal

and mine detectors. A sample result is shown in Fig. 15 for this kind of application,

again based on the NEC model [8],[ 13]. Detectability of subsurface features can be

based on impedance variations of a scanning antenna or on measurements of the total

field near the interface due to some independent source field and that scattered from a

subsurface target.

,

6.3.6 Modeling sheathed wires near the earth-air

interface--When an insulated wire is embedded in a medium such as earth or water

the current tends to have a sinusoidal form, as for a bare wire, but the wave number

may be orders of magnitude less than for a bare wire in the medium. Use in (1l b) of a

wavenumber equal to the wave number in the surrounding medium can then result in
i

slow convergence of the solution [70]. A more appropriate value for ks can be

obtained from an approximation for the wave number on a buffed insulated wire

developed from the theory of coaxial transmission lines [71], given by kL = (1 +

H0(2)/[k lbln(b/a) H0(1 )]) where k 1 is the wave number in the infinite medium, k2 is

the wave number in the insulating material and H0(1) and H0(2) are Hankel functions

of order 0 and 1 and argument kl b.

Results of the NEC medel for buried insulated wires have been validated by

comparison with an independent boundary-value solution developed by Wait [72] for

an insulated wire in a lossy medium including an interface. The propagation constant

F = o_L + j[3L was determined from the NEC solution by fitting a function Ioexp(-Fx)

to the numerically determined current. Results of a NEC model for a buried insulated

wire including an interface are compared with Wait's solution in Fig. 16 for varying
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distance fiom the interface. Results for [3L are seen to be in very good agreement,

while a L shows some difference for small d, but generally good agreement overall,

with a maximum error of about 5 percent.

6.3.TAntenna-structure effects--Antennas are often mounted on

complex structures, the effect of which can greatly modify the antenna's impedance,

current distribution and radiation pattern. Some results are included here to

demonstrate some applications to this problem. The input admittance of a monopole

ante_ma mounted at the edge of a conducting box is shown as a function of frequency in

Fig. 17 [73]. The numerical results, obtained from a surface EFIE, exhibit good

agreement with the experimental measurement. A wire-mesh model of azaaircraft

with two wire antennas attached between the vertical stabilizer and the forward

fuselage is shown in Fig. 18 [74], together w_tha comparison of a measured results,

which again show good agreement. In this case, a shunt capacitance was added at the

base of the antenna as an impedance load to the wire-grid model which itself did not

adequately account for the its effect.

Large reflector antennas, especially those used on satellites, are fabricated from meshes

to conserve weight and for more compact stowage. The effects of the mesh on the

reflecting properties of these antennas are needed to achieve the intended gain, and so

some basic studies of meshes have been undertaken using MM models. The basic idez_

is to define a unit cell of an infinite planar mesh and to exploit Floquet's theorem to

reduce the problem to that of modeling this single cell and its interaction with the "-

infinite array of cells [75]. Of interest in this application are the effects of finite wire

conductivity and imperfect junctions at the connection points of wires in the mesh, for

which some results are shown in Fig. 19.

6.4 Some Other Modeling Issues

6.4.1 Modeling endcaps--In practice there appears to be little

difference between a cylindrical antenna with open ends or flat end caps [76].

However, since the validity of some implementations of the TWA requires a closed

surface, it is sometimes necessary to close, the wire ends to obtain a stable solution witl_
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the thin-wire kernel. The simplest way of closing the wire end is with a fiat cap. A

" simple first-order correction for a flat end cap has been found to yield a significant

improvement in the stability of the solution with minimal increase in solution time [8].

In this treatment the singularity of charge at the edge is neglected, and a constant

surface charge density is assumed on the cap, with current and charge continuous frona

the wire to the cap. The current density on the end cap, Jc(P) to maintain continuity

with the net wire current Iw(z) at the end z = 0, is then Jc(P) = pSIw(0)P/(2na2)

where Pis the radial coordinate from the wire axis, a is the wire radius and S is 1 if

the reference direction for Iw is toward the end cap and - 1 otherwise. The charge

density on the end cap is then given by Pc = JV'Jc(P)/C° = jSIw(0)/(°-"_a2) . Also

requiring continuity of charge density from the wire to the end cap yields the conditiola

[I'w(Z)/Iw(Z)]z= 0 = 2S/a which is enforced at the end of the wire in defining the

three-term current basis (11b).

The effect of including caps on wire ends and voltage sources is shown in Fig. 20 for a

quarter-wave monopole with a wire radius of 0.01 )_. The monopole was divided into

80 segments, so that &/a was 0.3125. The invalid condition of zero field on the axis of

an open cylinder results in oscillations of the current at the wire end and voltage

source. These oscillations become apparent for segment lengths less than about the

wire diameter, although the effect of end caps may become significant before this

point. Adding caps to the wire end and source, using the simple model with constant

charge density, is seen to greatly reduce the oscillations in the solution. "-

6.4.2 Junctions of multiple and stepped_radius wires--In compl__x

wire models it is generally advantageous to impose conditions on the current and, if

possible, the charge on wires at a junction. The appropriate conditions will be

exhibited by a numerically accurate solution of an integral equation, such as (4).

However, accurate results will be obtained using a smaller value for Xs if physically

correct conditions are imposed in the current expansion. These conditions maybe

introduced in equations appended to the full MM impedance matrix, but m_,re ofle_l
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they are built into the basis functions so that they are automatically satisfied in the

" solution for current.
I

The first condition, used in nearly all wife codes, is continuity of current, or

Kirchhoffs current law at multiple-wire junctions. In simpler current expansions,

such as a piecewise linear or pulsebasis, Kirchhoff's law may be satisfied at a junctio_a

of m wires by wrapping continuous basis functions across the junction from wire i to

wire i + 1, skipping i = m. Alternately, the basis function on each segment may branch

onto each of the other segments with amplitudes satisfying Kirchhoff's law.

With three-term current expansions, a condition on charge, or equivalently the

derivative of current, is needed to define the basis function, since there is one more

degree of freedom. Determining a correct condition on charge is not as easy as for

current, since the charge must distribute so that tangential electric field is minimized

over the junction or, in the quasistatic form, the scalar potential is continuous across

the junction. One approach is to solve an auxiliary IE at each wire junction whose

purpose is to minimizethe integrated electric field along the junction wires, a

procedure that also avoids increasing Xs were these extra conditions to become part of

the MM impedance matrix.. A condition on charge density that takes into account the

proximity of a step in radius and interaction of wires at a junction has been obtained b)

executing a separate MM solution for each junction [8]. Any junction at which the
i

charge cannot be determined as uniform due to symmetry is considered isolated from

the rest of the structure with the wires extended to infinity away from the junction...

An integral equation based on continuity of scalar potential can then be written for the

junction of m wires as

m J'O e-jkRin(s's')E qn(S') 'ds'= C; i = 1, ....,m; 0 < s < Smax
n=l Rin(S'S')

]_Jqn(s'){exp[-jkRin(S,S')]/Rin(S,S')}ds' = C: i,n = 1,..., m; 0 < s <

Smax

where qn(s') is the charge density at s' on wire n aild Rin(S,S') is the distance between',

the points at s on wire i and s' on wire n, and C is an arbitrary constant. The distance
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Smax should approach zero for continuity of potential, but a finite but electrically
q, i

small value is used for the numerical solution.
i

This charge treatment has given stable results for stepped-radius wires over a wide

range of segment lengths, and also yields accurate solutions for multi-wire junctions

including a fan of 18 wires in an angle of 26 degrees. The fan, forming a strip line

over a ground plane, could not be modeled accurately with the equal charge densities

implied by (x3). The minimum angle at which wires can meet is set by the limitation

of the thin-wire approximation which typically fails as the match point on one segment

approaches within about a wire radius of the surface of the adjacent wire.

6.4.3 Wires at interfaces and surfaces--Several other conditions may

occur at a wire end that call for alternate junction treatments. When a wire is

connected to a perfectly conducting surface the charge, or derivative of current; is set

to zero at that end. If the wire meets the surface at an angle from normal the charge

will vary around the wire circumference. However, since the current and its image

must form an even function about the plane, zero charge is the appropriate condition in

the thin-wire approximation. In addition, if the wire connects to a surface on which

the current is computed with a surface MM solution, a singular component is usually

included in the surface current to ensure continuity of current from tJ',ewire to the

surface. The typical surface cun'ent is I(0)p/2_p 2, where I(0) is the current at the end

of the wire and p is the radial vector from the connection point.

When a wire crosse_, an interface between two different media the current remains

continuous and charge density is discontinuous as q+/q. = e+/e.., where e+ and e. are

the permittivities of the upper and lower media, respectively [77]. This condition

results from the requirement of continuity of radial electric field when the penetrating

wire is normal to the interface. However, the condition has been used for wires tilted

by more than 60 degrees from the normal with apparently good resu!ts, based on small

values of tangential electric field computed along the wire at the interface. For a loss5

medium the condition on derivative of current is I'+/I'. = er+/e r_ where er+ and er,
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are the complex relative permitti!vities.
o

No simple condition has been deirived for charge at a junction of a wire with a
, t

dielectric or conducting sheath and a bare wire,. _ such a case, the best approach may

be to include an equation minimi!_ing tangential electric field at the junction as part of

' the MM equations. The same appears true when interaction with an interface has a

substantial effect on charge distribution at a,junction. Well-converged results have

been obtained using the above derivative condition on a monopole connected to a

buried radial-wire ground screen, iWhile the derivative condition does not include the

interaction of horizontal screen wires with the interface, it represents the dominant
I

effect on charge when crossing the interface.

6.4.4 Model.based parameter estimation (MBPE)'-The two most
i

FLOP-intensive operations when doing FDIE modeling are the matrix fill and solution '

steps, with the one that dominates i!heoverall FLOP count being determined by how

large is Xs. For FDDE models and for explicit TD models using DEs or IEs, t.Je
! ,

solution time drives the FLOP count. Clearly, whatever part of the modeling process

dominates the FLOP count, in orddr to improve model utility the total FLOP count

needed to acquire the desired infor,nation should be minimized to the extent possible.

Limiting our attention to the FDIE we conclude that for problems where matrix fill
i

time is the dominant factor, which is the case of special Green's functions such as
!

.. encountered for the interface problem, and where more careful integration is require_t

by the formulation and numerical treatment, such as when using the EFIE for surfaces,

it would be advantageous if computation of the interaction coefficients could be made

more efficient. When the matrix solution dominates, and it is necessary to cover a

band of frequencies, a commonly encountered problem, then it would be useful to

either reduce the solution FLOP count and/or minimize the number of frequency

samples needed over the desired bandwidth. We have mentioned that iteration is one

way of reducing the solution FLOP count, from of order (Xs)3 to of order (Xs)2. On
i

the other hand, for reducing matrix fill time or the number of needed frequency

samples, MBPE offers an effective approach [78], [79].
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MBPE involves identifying some appropriate, preferably physically motivated,

simplified representation (the model) which involves a small number of unknown

coefficients (the parameters) whose numerical values are to be estimated in some

suitable fashion. We mention two examples here of this basic idea.

As noted above, numerical evaluation of the Sommerfeld integrals that are the Green's

function for the interface problem can be a FLOP-intensive operation. Using the most

straightforward numerical approach, they can require up to 1,000 times the computer

time otherwise needed to compute the free-space fields of the same current source.

This can make modeling antennas and scatterers near the ground an impracticably'

expensive operation. However, it can be demonstrated that the Sommerfield fields are

not that physically complex, and indeed can be well-represented by simple

interpolation formulas [23]. But by using asymptotic approximations to these fields as

the model, with the amplitudes being the parameters to be estimated from accurately

evaluated Sommerfeld integrals, an even more efficient approach can be devised, the

result of which is to reduce the matrix fill time for the problem of objects interacting

across the earth-air interface to less than 10 timestheir free-space values. The basis

for this approach is illustrated by Fig. 21. lt should be obvious that the same idea can

be employed in other circumstances, one example being for the parallel-plate

waveguide [78].

Application of MBPE to the problem of obtaining wideband frequency results usin2.,u

reduced number of frequency samples is illustrated in Fig. 22 [79]. The model in this

case is a low-order rational function whose numerator and denominator orders are n

and d respectively. Many fewer samples can can be.u_ed to accurately represent the

frequency response in an analytical form than would otherwise be the case, for

example using simple linear interpolation. Furthem_ore, the frequency derivatives of

the response can be computed directly, from a MM model for an operation count of

order (Xs)2, and because they provide information equivalent to another frequency

sample, reduce the overall operation count even further.
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6.5 Time.Domain Applications

" As systems bandwidths have increased, the effects of EMP and other wideband,

impulsive sources have become of concern, and wideband experimental hardware has

become more available, the need to predict the transient response of antennas has

attracted increasing interest. There are two basic reasons for modeling in the time

domain. One is that for some particular prob]ems, the TD models can yield the

desired results more efficiently than their transformed, FD counterparts. The other is

that nonlinear and time-varying media and components might be handled in a more

straightforward way in the time domain.

As noted above, TD modeling involves time stepping to produce a sequence of spatial

samples from which a transient response is developed. While the excitation that

produces the response can be a narrowband, even monochromatic waveform, the

benefit of having a TD model is not then fully exploited, which comes from using

some appropriate transient excitation. One of the more useful transient excitations is

exemplified by the Gaussian pulse, whose time variation is exp[-a2t 2] and for which the

frequency spectrum is exp[-to2/a2]. Thus, as the coefficient "a" is made smaller, the

bandwidth of the Gaussian pulse becomes broader, permitting the spectrum of the

excitation to be matched to the parameters of the t, 'merical model. A step response

can be approximated by integrating the Gaussian, w,iile derivatives of various orders

might also be used [80].

The transient feedpoint receiving current for a 30-cm monopole on a groundplane,

obtained from a TD EFIE and measured on a transient range are compared in Fig. 23

along with their Fourier-transformed frequency spectra. A single calculation for a TD

model is seen to produce a wideband frequency response, for which a FD model would

. require many frequency samples to acquire equivalent information. The numerical

results were computed using a TD equivalent of NEC [80], while the measured results

were obtained from a TD experimental range [81]. For antenna problems like this,

where a solution is needed for a single RHS, the TD model can be more efficient than

performing the computation in the FD. The result of a more complex TD antenna

computation is shown in Fig. 24, where a simple wire-mesh model of a truck is shov,_
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together with the frequency variation of the bumper-mounted CB antenna. Although

experimental results are not available for comparison, the VSWR of an actual vehicle

having such an antenna was consistent with the predicted admittance in the CB band.

An example of using a TD model to determine the effect of a special nonlinearity is

shown in Fig. 25 [80]. Here, the dipole is again excited by a Gaussian field at is center.

but is loaded along its length with a series of diodes, 60 in all. The diodes are initially

forward-biased by the exciting voltage, but become back-biased when the induced

charge packets have flowed out to the ends of the antenna. As a result, the current in

the reverse direction is much reduced, being made essentially zero, although over a

long-enough time charge neutrality would once again be restored. The two pulses of

far-field radiation produced by the Gaussian excitation occur initially, from the charge

being set into motion at the antenna's center, and finally when the charge has stopped

moving. Charge acceleration is well known as the cause of far-field radiation [80]. If

the dipole were not loaded with diodes, there would be a series of radiation pulses of

alternate sign and decreasing amplitude due to the succession of end reflections

undergone by the charges moving back and forth along the antenna. Thus, in addition

to permitting modeling of non-linearities, the TD approach also yields physical insight

not as readily available in the FD.

6.6 Input/Output

As computer speed increases, making possible the solution of larger problems.

the difficulty of defining the problem to be modeled and examining the results that are

produced becomes commensurately greater. Computer graphics are coming to be

indispensable for dealing with these input/output requirements. Two examples are

included here to illustrate the value of graphics for visualizing the output. In Fig. 26 is

presented one of a sequence of plots depicting the pattern of electric field motion as a

function of time for a time-harmonic solution of a biconical antenna [82]. A similar

kind of result is shown in Fig. 27 where the magnitude of the electric field at one

instant of time produced by a Gaussian-excited conical monopole antenna obtained

using a TDDE model is presented [83]. Although it is probably more obvious that sucl_

a sequence results naturally from a TD model and can be presented as in a movie, this
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: can also be done in the FD where time-phaser rotation creates acomparz_'.',1etime

sequence. Visual electromagnetics is sure to become a more popular tool, of benefit tcI

the researcher and student alike.
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7.0 CONCLUDING COMMENTS

In the above discussion we have presented an overview of low-frequency antenna

modeling using numerical techniques. We began by summarizing a few of the more

commonly encountered equations on which these numerical models are based, limiting

our specific attention to modeling perfectly-conducting objects using integral equation_

A brief introduction was then given to the method of moments, a general procedure fc_r

solving differential, integral and integro-differential equations in the time and frequent')

domains, was presented. Some further discussion was then addressed to enhancing the_c'

basic models for more efficient or more general application, followed by consideration

of some of the computational issues involved. A variety of representative application_

were then presented to demonstrate some of the capabilities for low-frequency antenn_

modeling that are now available. A concluding point to be made here is that

computational methods have joined experimentation and analysis as one of the three

complementary problem-solving tools of the antenna designer. Further information and

more detail about moment-method modeling can be found in a number of books and

summary articles [84-91].

Low-Frequency Antenna Models, Proc. IEEE '91, Page 42



REFERENCES

. [1] C.A. Balanis, "Antenna Theory: A Review," 1EEE Proc., this issue, 1991.
[2] J.A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, Inc., New
York, 1941.
[3] W.K.H. Panofsky and M. Phillips, Classical Electricity and Mag,,casrn,
Addison-Wesley Publishing Company, Inc., 1955.
[4] J. Var, t_ladel, Electromagnetic Fields, McGraw-Hill Book Company, Inc., Nex_
York, 1964.

[5] A.J. Poggio and E. K. Miller, Integral equation solutions of three-dimensional
scattering problems, Chapter 4 in Computer Techniques for Electromagnetics, R. Mittrzt
ed., Pergamon Press, New York,1973.
[6] R.W.P. King, The Theory of Linear Antennas, Harvard University Press,
Cambridge, MA., 1956.
[7] G.J. Burke and A. J. Poggio, Numerical Electromagnetics Code (NEC)--Meth_)d

of Moments, Lawrence Livermore National l.aboratory, Rept. UCID-- 18834, Jan. 1981.
[8] G.J. Burke, "Recent Advances to NEC: Applications and Validation," AGARD
Lecture Series 165, 1989.

[9] A.J. Poggio and E. K. Miller, Low frequency analytical and numerical method_
for antennas, in Antenna Handbook, Y. T. Lo and S. W. Lee, ed., Van Nostrand
Reinhold, New York,1987.

[10] E.K. Miller, A. J. Poggio, and G. J. Burke, "An Integro-Differential Equation
Technique for the Time-Domain Analysis of Thin-Wire Structures, I: The Numerical
Method, J. Comput. Phys., vol. 12, no. 1, 1973.
[11] R.F. Harrington, Field Computation by Moment Methods, Macmillan, New York.
1968.

[12] Medgyesi-Mitschang, L. N., and J. M. Pumam (1985), Electromagnetic scattering
from extended wires and two- and three-dimensional surfaces, IEEE Trans. Antep_Ta.s
and Propagat., AP-33, 1090- ] 100.
[13] G.J. Burke and A. J. Poggio, Numerical Electromagnetics Code (NEC)--Methocl
of Moments Parts I, II, and Hl, NOSC TD 116, Naval Ocean Systems Center, San Diego,.
CA, (revised),1980.

[14] E.K. Miller, organizer, Special Session at 1990 AP-S Meeting, Dallas, TX, on
"Reducing the operation count in computational electromagnetics, 1990.
[15] E.K. Miller, A selective survey of computational electromagnetics, IEEE Tra_7__
Antennas and Propagat., AP-36, 1281, 1988.
[16] E.K. Miller, "An Overview of Time-Domain Integral-Equation Models in
Electromagnetics", Journal of Electromagnetic Waves and Applications, VNU Science'
Press, 1(3), 269-293, 1987.

[17] F.M. Tesche and A. R. Neureuther, Radiation patterns for two monopoles on a

perfectly conducting sphere, IEEE Trans. Antennas and Propagat., AP-18,
692-294,1970.

[18] A. Berthon and R. P. Bills, Integral equation analysis of radiating structures of
revolution, IEEE Trans. Antennas and Propagat., AP-37, 159, 1989.
[19] R. Perez-Leal and M, F. Catedra, Input impedance of wire antennas attached
on-axis to conducting bodies of revolution, IEEE Trans. Antennas and Propagat.,
AP-36, 1236, 1988.

[20] H. Kawakami and G. Sato, Broadband characteristics of rotationally symmetric

Low-Frequency Antenna Models, Proc. IEEE '91, Page 43



w

antennas and thin wire constructs, IEEE Trans. Antennas and Propagat., AP-35, 26,
1987.

q

[21] F.M. Tesche, On the behavior of thin-wire antennas and scatterers arbitrarily
located within a parallel-plate region, IEEE Trans. Antennas and Propagat., AP-20,
482-486,1972.

[22] Wu, D. To, and D. C. Chang, Current distribution on a thin wire in a multimode
rectangular cavity, National Radio Science Meeting, University of Colorado, Boulder,
CO, 1986.
[23] G.J. Burke and E. K. Miller, Modeling antennas near to and penetrating a loss3
interface, IEEE Trans. Antennas and Propagat., AP-32, 1040-1049,1984.
[24] I.V. LindeH, E. Alanen, and K. Mannersalo, Exact image meti_od for impedance
computation of antennas above the ground, IEEE Trans. Antennas andPropagat.,
AP-33, 937-945,1985.

[25] P.B. Katehi and NI G. Alexopoulos, "On the modeling of electromagneticall3'
coupled microstrip antennas--the printed strip dipole," IEEE Trans. Antennas and
Propagat., AP-32, 1179,1984.
[26] D. M Pozar, "Microstrip antennas," Proc. IEEE, this issue, 1991.
[27] T. Itoh, An overview on numerical techniques for modeling miniaturized passive:,
components, Ann. Telecommun., 41,449-462,1986.
[28] H. Nakano, S. R. Kemer, and N. G. Alexopoulos, The moment method solution
for printed wire antennas of arbitrary configuration, IEEE Trans. Antennas and

Propagot., AP-36, 1667, 1988.
[29] J.L. Tsalamengas and N. K. Uzunoglu, Radiation from a dipole in the proximitx
of a general anisotropic grounded layer, IEEE Trans. Antennas and Propagat., AP-33.
165, 1985.

[30] J.L. Tsalamengas and N. K. Uzunoglu, Radiation from a dipole near a general
anisotropic layerJEEE Trans. Antennas and Propagat., AP-38, 9, 1990.
[31] J.L. Tsalamengas, Electromagnetic fields of elementary dipole antennas
embedded in stratified general gyrotropic media, IEEE Trans. Antennas and Propaga:.,
AP-37,399, 1989.
[32] N. Engheta and C. Elachi, Radiation characteristics of a source in a thin substr:_te
mounted over a dielectric mei'lium, IEEE Trans. Antennas and Propagat., AP-36,322.
1988.

[33] A. Lakhtakia, V. K. Varadan and V. V. Varadan, Excitation of layered media
having rough interfaces by line sources, IEEE Trans. Antennas and Propagat., AP-35.
462, 1987.

[34] G.A. Thiele, Overview of selected hybrid methods in radiating system analysis.
Proc. IEEE, this issue, 1991.
[35] Thiele, G. A., and T. H. Newhouse, A hybrid technique for combining moment
methods with the geometrical theory of diffraction, IEEE Trans. Antennas and
Propagat., AP-17, 62-69, 1969.
[36] J.M. Jin and V. V. Liepa, A note on hybrid finite element method for solving
scattering problems, IEEE Trans. Antennas and Propagat., AP-36, 1486, 1988.
[37] A.Z. Elsherbeni and M. Hamid, Scattering by parallel conducting circular
cylinders, 1EEE Trans. Antennas and Propagat., AP-35,355, 1987.
[38] R.G. Olson and P. D. Man.nikko, Validation of the hybrid quasi-static/full-_:t_ _'

method for capacitively loaded thin-wire antennasJEEE Trans. Antennas and Prol_:',',:,' .

Low-Frequency Antenna Models, Proc. IEEE '91, Page 44



AP-38, 516, 1990.
. [39] H.T. Shama,,_sky, A. K. Dominek and L. Peters, Jr., Electromagnetic scattering.

by a straight thin wire, IEEE Trans. Antennas and Propagat., AP-37, 1019, 1989.
[40] Bumside, W. D., and P. H. Pathak (1980), A summary of hybrid solutions
involving moment methods and GTD, in Applications of the Method of Moments to
Electromagnetic Fields, B. J. Strait, ed., The SCEEE Press, St. Cloud, Florida.
[41] M. Matin and M. F. Catedra, ,_ study of a monopole arbitrarily located on a disk
using hybrid MM/GTD techniques, IEEE Trans. Antennas and Propagat., AP-35, 2b;7,
1987.

[42] R. Tiberio, G. Manara, and G. Pelesi, a hybrid technique for analyzing wire
antennas in the presence of a plane interface, IEEE Trans. Antennas and Propagat.,
AP-33, 881, 1985.

[43] R. C, Hansen, "Aperture antennas,"Proc. IEEE, this issue, 1991o
[44]. A. Hadidi, and M. Hamid, "A novel treatment of Pocklington's equation applied to
slot antennas, IEEE Trans. Antennas and Propagat., AP-37, 1124, i989.
[45] R.F. Harrington,Time Harmonic Electromagnetic Fields, McGraw-Hill, New
York, 98-100, 1961.
[46] J.H. Richmond and E. H. Newman,"Dielectric Coated Wire Antennas," Radi_)
Science, Vol. 11, no. 1, 13, Jan. 1976.

[47] E.K. Miller, G. J. Burke and E. S. Selden, Accuracy-modeling guidelines for
integral-equation modeling of thin-wire scattering Structures, IEEE Trans. Antennas apl,l
Propagat., AP-19,534,1971.
[48] T. Do-Nhat and R. H. MacPhie, The static electric field distribution between txvo
semi-infinite circular cylinders: A model for the feed gap field of a dipole antenna,

IEEE Trans. Antennas and Fropagat., AP-35, 1273, 1987.
[49] Popovic, B. D., M. B. Dragovic, and A. R. Djordjevic, "Analysis and Synthesi._ _/
Wire Antennas", Research Studies Press, Letchworth, Nertfordshire, England, 1982.
[50] T. Do-Nhat and R. H. MacPhie, On the effect of gap width on the admittance of
solid circular cylindrical dipoles, lEEk."Trans. Antennas and Propagat., AP-37, 1545,
1989.

[51] H.K. Schuman, Modeling folded dipoles and feedlines for radiation and
scatteringJEEE Trans. Antennas and Propagat., AP-38, 30, 1990.
[52] S.A. Saoudy and B. P. Sinha, Feed gap aperture fieldand input admittance of a_
infinitely long insulated antennadEEE Trans. Antennas and Propagat., AP-38,922_
1990.

[53] S.A. Saoudy and M. Harold, Input admittance of a biconical antenna with x_ide
feed gap, IEEE Trans. Antennas and Propagat., AP-38, 1784, 1990.
[54] T. Do-Nhat and R. H. MacPhie, Effect of gap length on the input admittance of
center fed coaxial waveguides and infinite dipoles, IEEE Trans. Antennas and Prop,_,,,,_:.
AP-35, 1293, 1987.
[55] E.K. Miller, "Numerical modeling techniques for antennas," in NATO AGARD
Lecture Series No. 131, Brussels, 7-1.
[56] A.J. Fenn, Element gain pattern prediction for finite arrays of V-dipole antenn_,,
over ground plane, IEEE Trans. Antennas and Propagat., AP-36, 1629, 1988.
[57] H.A. Kalhor and A. R. Mallahzadeh, Analysis of a folded dipole antenna naou_Ic_l
on a cylindrical metallic mast, IEEE Trans. Antennas and Propagat., AP-34, 99, 1986,
[58] J.W. Bums and T. B. A. Senior, The backscattered field of a thin wire loop for

Low-Frequency Antenna Models, Proc. IEEE '91, Page 45



H-polarization, IEEE Trans. Antennas and Propagat., AP-35, 1049, 1987.
• [59] R.G. Vaughan and J. B. Andersen, Polarization properties of the axial mode helix

antenna, IEEE Trans. Antennas and Propagat., AP-33, 10,1985.
[60] K. Siakavar and J. N. Sahalos, A simplification of the synthesis of parallel wirt:
antenna arrays, IEEE Trans. Antennas and Propagat., AP-37, 936, 1989.
[61] K. Mahdjoubi and C. Terret, An analysis of piecewise homogeneous dielectric ro_t
antennas, IEEE Trans. Antennas and Propagat., AP-34,598, 1986.
[62] H.E. Green and J. D. Cashman, The transmission line antenna revisited,lEEE

Trans. Antennas and Propagat., AP-38, 575, 1990.
[63] J.M. Jarem, Electromagnetic field analysis of a four-wire anechoic chamber,
IEEE Trans. Antennas and Propagat., AP-38, 1835, 1990.
[64] Y.S. Yeh and K. K. Mei, "Theory of conical equiangular spiral antennas' Part I.
Numerical techniques, IEEE Trans. Antennas and Propagat., AP.15,634, 1967.
[65] K.G. Balmain, Dipole admittance for magnetoplasma diagnostics, !EEE TrapT_
Antennas and Propagat., AP-17, 389, 1969.
[66] B, D. Popovi'c, M. B. Dragovi'c and A. R. Djordjevi'c, Analysis and Synthesi.s (4
Wire Antennas, Research Studies Press, New York, 1982.
[67] B.P. Sinha and S. A. Saoudy, Rigorous analysis of finite length insulated antenna
in air, IEEE Trans. Antennas and Propagat., AP-38, 1253, 1990.
[68] G.J. Burke, A Model for Insulated Wires in the Method of Moments Code NEC,
Lawrence Livermore National Laboratory, Rept. UCID-21301, January 1988.
[69] J.R. Wait and W. A. Pope, 'The characteristics of a vertical antenna with a radi',_l
conductor ground system,.' Appl. Sci. Res., Sec. B., Vol. 4. 177, 1954.
[70] R.W.P. King and G. S. Smith, Antennas in Matter, The MIT Press, Cambridge,
MA, 1981.
[71] J. R Wait, "Electromagnetic Wave Propagation Along a Buried Insulated Wire,"
Canadian J. of Pt),s., Vol. 50, pp. 2402-2409, 1972,
[72] S. Bhattac_arya, S. A. Long, and D. R. Wilton, The input impedance of a
monopole anterma mounted on a cubical conducting box, IEEE Trans. Antennas and

Propagat., AP-35,756, 1987.
[73] S.J. Kubina, "Measureme: t and computer simulation of antennas on ships and
aircraft for results of operational reliability," NATO AGARD Lecture Series No. ] 65,
1989.

[74] W. Imbriale, V. Galindo-Israel and Y. Rahmat-Samii, "Numerical and ..
experimental results of multi-wire junction tricot knit mesh reflectors by Fourier
moment methods," Proceedings of 5th Annual Review of Progress in Applied
Computational Electromagnetics, Monterey, CA, 692, 1989.
[75] G.H. Brown and O. M. Woodward, "Experimentally Determined Impedance
Characteristics of Cylindrical Antennas," Proceedings of the 1. R. E., pp. 257-262,

April 1945.
[76] G.J. Burke and E. K. Miller, "Modeling Antennas Near to and Penetrating a
Lossy Interface," IEEE Trans. Antennas and Propagation, Vol. AP-32, pp. 1040-1049,
1984.

[77] K.R. Demarest, E. K. Miller, K. Kalbasi, and L-K Wu, "Using Model-Based
Parameter Estimation for Computing Green's Functions", IEEE Transactions on

Magnetics ,25, 2878, 1989
[78] G.J. Burke, E. K. Miller, S. Chakrabarti, and K. R. Demarest, "Reducing the

Low-Frequency Antenna Models, Proc, IEEE '91, Page 46



Number of Frequency Samples Needed to Estimate an Electromagnetic Transfer
. Function", IEEE Transactions on Magnetics,25 2807, 1989.

[79] E.K. Miller, "Some applications of model-based parameter estinaation in
computational electromagnetics, NATO AGARD Lecture Series No. 165, 1989.
[80] E.K. Miller and J. A. Landt, "Direct Time-Domain Techniques for Transient
Radiation and Scattering from Wires", Invited Paper in Proceedings of the 1EEE, 68,
pp. 1396-1423, 1980.
[81]. R.M. Bevensee and E. K. Miller, "The LLNL electromagnetic transient facility:
design, test, and applications of a time-domain, ground-plane facility," in Time-Domai_z
Measuremems in E1ectromagnetics, E. K. Miller, ed., Van Nostrand Reinhold, New
York, 1986.

[82] E.K. Miller, Editor of "Time-Domain Measurements in Electromagnetics", Van
Nostrand Reinhold, New York, NY, 1986.
[83] K.W. Kark and R. Dill, "A gene.r,1 theory on the graphical representation of
ante.ma-radiation fields," IEEE Trans. Antennas and Propagation, Vol. AP,38, 160.
1990.

[84] J.G. Maloney, G. S. Smith and W. R. Scott, Jr., "Accurate computation of the
radiation from simple antennas using the finite-difference time-domain method, IEEE

Trans. Antennas and Propagation, Vol. AP-38, pp. 1059, 1990.
[85] B.J. Strait, editor, Applications of the Method of Moments to Electromagnetic
Fields, the SCEEE Press, St. Could, Florida, 1980.

[86] B. J, Strait, and A. T. Adams, On contributions at Syracuse University to the
Moment Method, IEEE Trans. Electromagn. Comp., EMC-22,228-237, 1980.
[87] W.L. Stutzman and G. A. Thiele, Antenna Theory and Design, John Wiley and
Sons, New York, 1981.

[88] J. Perine, and D. J. Buchanan, Assessment of MoM Techniques for shipboard
applications, IEEE Trans. Electromagn. Comp., EMC-24, 32-39, 1982.
[89] J. Moore and R. Pizer, "Moment Methods in Electromagnetics: Techniques apT_l

Applications", Wiley & Sons, New York, 1984.
[90] M.M. Ney, Method of moments as applied to electromagnetic problems, IEEE
Trans. Microwave Theory Tech., MTT-33, 972-1980, 1985.

Low-Frequency Antenna Models, Proc. IEEE '91, Page 47



ii,

FIGURE CAPTIONS

Fig. 1, Convergence of the admittance, Y, and impedance, Z, of a two-wavelen_tl_.
center-fed dipole antenna as a function of the number of unknowns. Because the
frequency is near a resonance, the admittance exhibits a smooth, monotonic behavior
whereas the impedance does not, giving a quite diffcrent impression of how
well-converged the model might be for a given number of unknowns

q

Fig. 2. Tumble-average radar cross section of several different wire objects as a
function of the sampling density/wavelength [47]. Although.displaying different
convergence rates for smaller sampling densities, eventually all objects z .proach a
similar slope on this log-linear plot, indicating that the solution error decreases
approximately as exp(-KXs).

Fig. 3, Plot of tangential electric field boundary error versus position on one-hall
of a straight wire,

Fig. 4. Comparison of convergence rates of several different numerical methods
for modeling a straight wire as a function of the number of unknowns [55]. Quantity of
the ordinate is the RMS error in the current, computed on a 12-wavelength long straig.ht
wire illuminated from broadside by a planewave, for the number of unknowns on the
abscissa, relative to a reference RMS current obtained for at least 250 unknowns.

Models use' A) Pocklington IE with 3-term basis and point matching; B) Pocklington l[i
with 2-term sinusoidal basis and testing functions; C) mixed potential IE with 2-term
linear basis and testing functions; and D) Pocklington IE with pulse basis and point
matching.

Fig.. 5. Potential and flux contours for a 90o wedge at potential V near a
conducting plane at zero potential [48]. Variation of fields in vicinity of gap shows the
potential difficulty of defining voltage across gap from single sample of the field.

Fig. 6. Comparison of the input impedance for a dipole antenna obtained using_a
local tangential electric-field source with that which results from connecting the antenm_
to a two-wire transmission [55]. The downward frequency shit exhibited by the
transmission line results is evidently due to the capacitive loading effect of the ..-
antenna-transmission line junction.

Fig. 7. Radiation pattern of a foreshortened 19-element log-periodic anterma [551,
The antenna size is decreased by inserting inductive loads on each of the four longest

, elements to reduce their resonance frequencies to those that would occ _rif the unlo:_dc_t
elements were used.

Fig. 8, Comparison of the current distribution on a conical spiral antenna as
obtained using an electric-field and Hallen-type integral equation [55], [64]. Even
though the two results are in excellent agreement, the analytical difficulty of
generalizing the Hallen approach for arbitrary wire geometries has restricted its
application.
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Fig. 9. lr,put impedance of a dipole antenna in a lossy infinite plasma. Results frt_l_/
• the integral-equation model are in good agreement with analytical values [65], valictatill,_'

the numerical model's applicability to loss media. This capability is needed for tile
general interface problem where part or ali of an antenna may be buried in a loss),
ground.

Fig. 10. Input admittance of an insulated dipole antenna in air with length L, radiu,,

a = L/640 and sheath radius b = 5.84a, The relative permittivity of the sheath is 2,3 a_l,,I
the conductivity is zero [8].

Fig. 11. Input admittance of an insulated antenna of half-length h as a function oi"
frequency for a sheath of relativepermittivity 9 and a sheath radiu_,,b = 9a [67].

Fig, !2. (a) A computer plot of a representative monopole-screen geometry, (b)

Elevation (O) and (c) azimuth (q_with O= 45°) plane patterns for 1-3 screen wires witla
a dipole included for comparison [55]. The total included angle of the screen wires is
30 °, their length is 3.0 m as is the monopole height and height above ground is 0.3 m.
Results are shown for constant input power.

Fig. 13. Variation of the input impedance of a wire monopole as a function of
ground-stake length [23]. This computation requires both the fields reflected from and
transmitted through the air-ground interface.

Fig. 14. Input impedance of a quarter-wave monopole on a buried radial wire
ground screen with N wires, showing the difference from the impedance with a
perfectly conducting ground ground plane [8]. The NEC results (points) are compared
with results obtained from the compensation theorem [69].

Fig. 15. Resistance of an elevated dipole due a buried wire with wire burial depth t_
parameter [23]. The wires are parallel to each other and the interface with their centers
in a common vertical plane. Wire lengths are L = 0.125 and diameters 0.0002, with
elevated dipole 0.02 above the interface, all distances measured in free-space
wavelength.

Fig. 16. Propagation constant on an insulated wire at a depth d below an inteHace
computed with Sommerfeld integral approach in NEC [23] (the dots and x's) and
independent solution [71 ], the lines. The upper half space is air, the complex relatix'e
permittivity of the medium surrounding the wire 10 - j l04 and the insulation is air.
Wire radius a = 2.38 x 10-7 free-space wavelengths, sheath radius b = 3a, and [30=

Fig. 17. Results for monopole antenna mounted at edge of conducting box, witlatla_'

patch geometry (a) and comparison of computed and measured results (b) [72].

Fig. 18, Wire-grid model of P-3/CP-140 aircraft (a) and comparison of measur_'d
and computed results for input impedance of short-wire antenna as a function of
frequency (b)[73].
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Fig. 19. Some results comparing predicted and measured transmission loss of 1_o
' models of mesh reflector [74]. The results on the left are for a "perfect" mesh havin_

good electrical connections at the nodes and on the right for a mesh with broken _
connections.

Fig. 20. Current on a quarter-wave monopole excited by a 1 V source at its haw,

comparing results incorporating endcap correction on the right, and using the ttain-xvir_..
kernel on the left [8].

Fig. 21. Transmitted component in the air of the radial Sommerfeld field due to a
vertical current ,_ource 0.1 free-space wavelength beneath the interface for a ground (_t
relative permittivity 16 [23], as modeled by least squares approximation. A total of SS
points are fit to the rigorously computed Sommerfeld integral (36 in the plane of tla_
figure with the visible ones shown).

Fig. 22. Input admittance of a forked monopole (monopole with vee end, one arm
, slightly different in length from the other) on a perfectly conducting ground. Directl\

computed values ( ) are compared with MBPE rational-function results (...... ),
employing n = 4 and d = 4, based on the eight samples indicated by the dots [78],1791.

Fig. 23. Comparison of the computed and measured results for the short-circuit
current excited on a monopole antenna and the ,'orresponding frequency response [81 l.

Fig. 24. Wire-grid truck model over perfect ground (a) yields input admittance/b_
from time-domain integral-equation [55]. Results approximate the behavior of a CB
antenna connected to rear bumper of light utility vehicle.

Fig. 25. Demonstration of nonlinear time-domain model of dipole (1 m lon_) ,,vhich
conducts current in only one direction [55]. The model incorporates 60 ideal diode.,,
and exhibits possibility of pulse shaping using such loads. Feedpoint current (a)
produces initial radiated pulse (b) due to Gaussian exciting voltage at center while
second pulse is caused by stopping of the charge as it reaches the dipole ends, resulti_a,:
in a notched spectrum (c). .

Fig. 26. One frame from a set showing field-pattern motion near a nonsymmetric',_l
biconical antenna fed in the TEM-mode [83]. The antenna is one wavelength in radit_,,.

Figl 27. One frame from a set showing radiation of a Gaussian pulse from a co_aic,tl
monopole antenna [84]. The gray scale plots show the magnitude of the electric field.
the line drawing shows the surface charge density on the antenna.

Low-FD9quency Antenna Models, Proc, IEEE '91, Page 50



4
i

WHILE IMPEDANCE RESULTS MAY IMPLY
i'_.r_ __THAT POOR C_NVERGENCE IS OBTAINED

_o0oo '

5000 tJ_ ' i'

" 5 0 0 0 " _ .... 1 ' ' , _ _ '

0 100 2OO 300

Number of Unknowns

--THE ADMITFANCE REVEALS THAT GOOD
CONVERGEI_ CE IS ACTUALLYACHIEVED

0'2_ _ . _o., AN.s2599

Conductance

.o,_ : Susceptance

-0,2

i -0.3

i -0,4
•0.5 "1 _ , • , '

0 100 200 300

Number of Unknowns



i'

i

• _tToIght Wire

0 Circul_ Ring

I t, Cf_, _e*_ Dipo_e_

0 _ul_l C_. •

N Z_Z_
i

' _ V DII_Ne

i .....,_

.01

,OOl=

N,L (NU/_[| C)_ SEO_NTS_AV[LE_H

Fig 2, Relative error _ funct,_,_nof number of legmer,_ per wa_'eleng_h

.,.,.





• • " " - • m

o 1oo 1oo

NU_EBER OF UNKNOW%._S

I

I

"'_ i

:.-1

z

::.b

rrlC":

• • • • • - " - • • b

Fig. i. Convergence rate for several

numerical methods [i0]. Quantity on

the ordinate in (a) is the normalized

RMS current and in (b) the EMS error in
current for the number of unknowns on ""

the abscissa, relative to a reference

RMS current obtained for N - N R £ 250.
Results are for a straight wire of

length L _ 12 ;,long illur,inated from

broadside by a planewave. Numerical

models employed are as described in

the references listed.

t

r

r • i /

i /\

I



,L*'"

O 0 0 "

Fi_.5. PolentaalandfluxcontoursforthelJrrdlinL2caseofa _J'v.ed_eal
potent/alV neara plane a_zeropotential



TransmissionL_e Model ..... Sirr_le Source Model I

, t------L-----I I_ L------I

F-&

'- ' - t'_= 10

t_ = L/12

14 !1

i _o _L4 i
2 • !

' t _
0 I

I

_ .
8 I iI

o .-/_" i"

-2 lI/._"/
-4 i I ,LI i i I i ' i _I

0 2 4 6 8 10

.-Frequency (kL)

Fig. 4. Comparison of the input impe-

dance for a dipole antenna obtained

using a tangential electric-field

source with that which results from

connecting the antenna to a two-wire

transmission line. The downward fre-

quency shift exhibited by the trans-
mission line results is evidently due

to the capacitive loading effect of the

antenna-transmission line junction.

• .



, 7.18

I-ii_ I_,_

Fig. II. Radiation pattern of e fore-

shortened 19-element log-periodic

antenna. The antenna size is decreased

by inserting inductive loads on each of

the four longest elements to reduce

their resonance frequencies to those

that would occur if the unloaded ele-

ments were used.

\

//



6_" _ll,-,_lltl LI.,,I_11 :

3H
/ _\ 0 -- -- -- ,.,. i.u. oi l.l,mj i"

•,B,//

z. "*_

'ig. 10. Comparison of the current:
listribution on a conical spiral

_ntenna as obtainecl using an electric-
!ield and Hallen-type integral equations

150]. Even though the two results are

Ln excellent agreement, the analytical

Jifficulty of generalizing the Halle_

ipproach for arbitrary wire geometries
_as restricted its application.



10'

•10 .° _

/ i : ,_,r'-
,o" - _ ,,)It ! X NEC

,.

'_ I I J J J J_
0,5 1 O 1 5 2 0 2.5 3 0 35

f(MHz)

Fig. 7. Input impedance of a dipole

antenna in a lossy infinite plasma.

Results from the Integral-equation

model are in good agreement With analy-

tical values [54], validating the

numerical model's applicability to

lossy media. This capability is needed

for the general interface problem where

part or all of an antenna may be buried

in a lossy ground.





i

280

, Z40

i _00
i

160
m

. 120
).

eQ

Co)

Fi 8. 3, Input adrrutlance of sn insulated antenna for (a) _, = 32, b/a = 2
and (b) _, = 9, b,'a = 4.

!/



||o loo

IlO0 QO , ,,''"*'*', ......

_oo o I

"" feeL _ /

t._1! ,11 t

. ..... ,. LIi i
,II 0 i ,l _II

41i_ ii I

dance of a wire monopole as a function

of ground-stake length [60]. This
computation requires both the fields

reflected from and transmitted through
the air-ground interface.

]

, (

(

(

!

i

i

I

_c _

Fig. 29. (a} A computer plot of a

representative monopole-screen geometry.
(b) Elevation (8) and (c) a_.imuth

(_ with e - 45 °) plane patterns for

i-3 screerJ wires with a dipole included

for comparison [64). The total

included angle of the screen wires is

30 °, their length is 3.0 m as is the

moncpole height and height above ground

is 0.3 m. Results shown are for con-

stant input po_,er.



24. 16.- . .o . .' . ....

0 0

• 20. 12,
0 h

16, 8,

t8 :to

_ , ,._ '_" , _-_

,=, , -12 • b = 0.32

-4 v • i o = 10- jl _, = 10- jl
i _ , -16 .

i ! J I ! • _ ,,,A | l, !0,0 0.2 04 0.6 O.S 1,0 0.0 " ' '0,2 0,4 0,6 0.8 1.0

Screen Radius/,,/o Screen Radius/,,lo ,...





t

' 3.1"

2 94 7 , 150 3,e-_, FP 74

" 3,6- _ _ ._ _I \, • _ i

.... . . w 1_5 3 i "1 \\ _ 'i

.., ,,=,o_fIo 4 :-3 ,.9__,,0,
1[-6 llZ-c. 1C-4 .001 01 1[-6 11;-5 1[ i .081 .81 I





"_ . 7 "-'_

removed at will by numerical input.- q n the process of model creation it provides the

medium for the creator to have better insight into the _ignificant parameters that

are important _o the success of the model simulation. DIDEC is also available now

for sur;

i

:...



$

U_ED _

Icr 1_

" _IU x

L[r X

r

CP-140 HF 5HDIRT WIRE IMPEDRNCE KEY

IBK -- M[RB_ED m

sr

I._ ]_)_)' v" ,I --M[ASLIRED X

l.J ' , q "".,,

(= 18' ;I l_

_. i I I ,i

,_ -I0 d" w

w -]_P. I

_, l,h..;s-,_'_-Z

tr -IK
I....

-1BR
16 18 2_ _2 _4

FREOUENCY IMHZ

Figure 2.7 - Corrected Impedal



O

60 ], 20 -

40 1 _5-

.jl

_' -5- NEC-4X ,.,"

If NEC-S, TWK _ .. " l!

80q i ' i -10--- " ---'1- "
0 0.1 0.2 0 0.1 0.2

__. _ Dbtsmce/A Distamce/A

2o



°- ° ....



2 2__

and its first derivative at the five frequencies indicated by dots.

n.4 -- COMPUTED

. t
.-_ 3o lo /

-10

10
"2O

o - :_, - :r _ I I
o,_ 0,4 0.6 os _,o 0.2 o4 06 08 _.o

IJWt. IJWL

l_i_u'e 5.6, _lput admittance of a forked monopole on a perfecfl.v conducung ground Directly computed values (._)

are compared v,uth the rariona.J-/un, c_on model (. --) employing n = 4 and d = 4 ba._ed on the antenna admittance '
at the nine frequencies indicated by dots.

.,,:-o.



i li, , , I

4

i

THE LLNL ELECTROMAGNETIC TRANSIENT FACILITY 219

i " _ ' E

"- ° o t _

ZH/V- epn3,.Lu6euj m,4o._suea3,ae.Lano.:l _-

c4,
' C,,,I 6_.

.'_ .

_'_ U "" _ '

,,,.., ,,-' ._

i _ -

t ° r,,,, '_, Z

__... }_'

' __- 3,ue,_Jn3 peo"l _ _.

I ' III 'I , , , , , , ,



1,0 _ _ 0. ]? i1
!

i 1.2-' • C,O_
', F_ --

- _ ' I

., " _'_'_- i' -

"0"20 2 4 _ O 0 I 4 6

(_ (_)

9
, 4 ' _ -- P L i

_._- ,_

t

0,_ - I ' " '_---. "

(¢)

Fig. 41. Demonstration of nonl_near

time-domain model of dipole (i m long)

which conducts current in only one

direction. The model incorporates 60

ideal diodes and exhibits possibility
of pulse shaping using such loads.

Fee_point current (a) produces initial

radiate_ pulse (b) due to Gaussian

exciting voltage at center while second

pulse is caused by stopping of the

charge as it reaches dipole ends,

resulting in a notched spectrum (c).
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