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Abstract: As is known, the multi-sublattice structure of antiferromagnets (AFMs) entails that, under
size diminution to the nanoscale, compensation of the sublattice magnetizations becomes incomplete.
Due to that, the nanoparticles acquire small, but finite permanent magnetic moments. An AC
field applied to such particles induces their magnetic response, the measurement of which is well
within the sensitivity range of the experimental technique. Given the small size of the particles,
their magnetodynamics is strongly affected by thermal fluctuations, so that their response bears a
considerable superparamagnetic contribution. This specific feature is well-known, but usually is
accounted for at the estimation accuracy level. Herein, a kinetic model is proposed to account for
the magnetic relaxation of AFM nanoparticles, i.e., the processes that take place in the frequency
domain well below the magnetic resonance band. Assuming that the particles possess uniaxial
magnetic anisotropy, the expressions for the principal components of the both linear static and
dynamic susceptibilities are derived, yielding simple analytical expressions, including those for the
case of a random distribution of the particle axes.

Keywords: antiferromagnetic nanoparticles; uncompensated magnetic moment; superparamagnetism;
AC probing; low-frequency magnetic susceptibility

1. Introduction

In 1961, Louis Néel [1,2] predicted that nanoparticles of the materials that in the
bulk phase are conventional antiferromagnets (AFM), i.e., the systems consisting of fully
compensated spin sublattices, should possess, albeit weak, but quite discernible permanent
magnetic moments. In other words, it had been established that there is no such object
as a completely antiferromagnetic nanoparticle. Instead, one always deals with an entity
whose magnetic response combines the contributions from: (i) its antiferromagnetic spin
order, which ensures anisotropic susceptibility, and (ii) a permanent magnetic moment
resulting from the decompensation of the sublattices, which otherwise have identical
properties. This decompensation may have diverse origins, but the main two are: unequal
spin populations of the sublattices due to the limited number N of atomic spins in the
particle and an incomplete spin closely surrounding the particle surface. As surmised
by Néel, the uncompensated magnetic moment µu should be of the order µBzN1/2 if the
spin-site occupation fluctuations occur in the bulk of a particle; here, z is the number of
electron spins per atom and µB the Bohr magneton. In general, some other hypotheses
of spin-ordering imperfection may be invented, which establish the possible value of µu
between µBzN1/3 and µBzN2/3 [1].

Néel’s predictions had been confirmed in numerous experiments on various materials,
including most customary AFMs: transition metal oxides and the species of the iron
hydroxide and oxyhydroxide families, of which ferritin is the best-known one. This

Magnetism 2022, 2, 340–355. https://doi.org/10.3390/magnetism2040024 https://www.mdpi.com/journal/magnetism

https://doi.org/10.3390/magnetism2040024
https://doi.org/10.3390/magnetism2040024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/magnetism
https://www.mdpi.com
https://orcid.org/0000-0002-0590-7395
https://orcid.org/0000-0002-6167-6528
https://doi.org/10.3390/magnetism2040024
https://www.mdpi.com/journal/magnetism
https://www.mdpi.com/article/10.3390/magnetism2040024?type=check_update&version=1


Magnetism 2022, 2 341

knowledge had been accumulating for quite a time in an academic, rather than application-
oriented manner because the boost of magnetic nanotechnologies was focused on the
use of ferromagnet and ferrite particles. However, in recent decades, the interest has
turned considerably towards nanosized antiferromagnets. Their unbeatable advantages
are very low stray fields, which virtually exclude field-induced agglomeration, and notable
drift in a gradient field—the effects of which are inherent to and unavoidable with their
ferromagnetic analogues. It has turned out that, despite their relatively low magnetization,
the AFM nanoparticles are very appropriate for spintronics and magneto-optoelectronics [3],
as well as for high-density data storage and various biomedical applications [4–7]. An
important difference is that, for the AFM spintronics proper, one needs the particles with
zero µu [3,8], whereas for other purposes the presence of a small, but nonzero µu is quite
desirable, e.g., for MRI contrast [4,6]. Therefore, the identification and quantification of
the uncompensated magnetic moment of AFM particles are important and practically
useful issues.

If we look at the methods by which the uncompensated magnetic moments are
detected and measured, we find out that those are mainly magnetic measurements of
quasistatic [9–11] or low (up to 100 Hz) frequencies [12,13], always involving a field of a
rather high strength. With these data, one is able to distinguish the linear effect of the
AFM susceptibility as such from the nonlinear Langevin-like curve, which renders the
contribution of µu. Meanwhile, AC probing, whose frequency range (.1 MHz) is well
below the magnetic resonance one (&10 GHz), provides a direct way to diagnose the
nano-AFM samples, and such experiments do not require fields of any substantial strength,
i.e., no higher than a few hundreds of Oersteds. The measurements of that kind have been
performed extensively on ferritin powders below room temperature [10,14,15], where the
frequency dispersion due to superparamagnetic relaxation is well discernible.

In a theoretical interpretation, when considering the dynamic measurements, the AFM
nature of the nanoparticles is, most often, ignored, and the latter are treated as generic
ferromagnet single-domain particles possessing superparamagnetism with µu [10,14]. Re-
cently, however, a much more adequate approach, which takes into account that an AFM
particle comprises two interacting sublattices and possesses a non-compensated magnetic
moment began to develop. A brief outline was given in [16]. Soon afterwards, in [17–19],
the authors, using the energy expression heuristically proposed in [16], considered the
magnetodynamics of AFM nanoparticles with the aid of Brown’s kinetic equation, directly
applying it to the uncompensated magnetic moment µu, i.e., treating an AFM particle as
an effectively ferrimagnetic one. The goal of the present paper is to modify the approach
of [17–19], explicitly taking into account that µu is the result of the decompensation of the
sublattices from which an AFM nanoparticle is built. In the framework of the developed
model, one may consider the particles with an arbitrary magnetic moment including the
case µu → 0, i.e., a true antiferromagnet.

2. Magnetic Energy of an Antiferromagnetic Nanoparticle

Consider a mechanically fixed single-domain antiferromagnetic (AFM) nanoparticle
with the easy-axis anisotropy. Its magnetic structure is described in the continuum ap-
proximation, i.e., as a set of two uniform interpenetrating and interacting sublattices, each
of which unites the spins with the same orientation. The sublattice magnetizations are
denoted as M1 and M2; in the absence of an external field, these vectors are antiparallel.
The magnetic part Um of the particle energy comprises: the exchange energy, the Zeeman
energy in the external field H, and the anisotropy energy; the surface contributions are
neglected. This enables one to deal with the energy volume density U = Um

/
V (where V

is the particle volume):

U = Λ(M1M2)− H (M1 + M2)−
K

2M2
1
(M1n)2 − K

2M2
2
(M2n)2; (1)
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here, Λ > 0 is the sublattice exchange parameter, K the anisotropy constant, which is the
same for both sublattices, and n a unit vector that defines the direction of the anisotropy
axis. Given that the conditions of the magnetic equilibrium are

M1×
∂U

∂M1
= 0, M2×

∂U
∂M2

= 0. (2)

After substitution of (1), they take the form

−ΛM1×M2 + M1×H +
K

M2
1
(M1n)(M1×n) = 0, (3)

−ΛM2×M1 + M2×H +
K

M2
2
(M2n)(M2×n) = 0.

Let us introduce the net magnetization and antiferromagnetic vector of the particle as

Mp = M1 + M2, Lp = M1 −M2 (4)

and make them nondimensional in the following way:

m = Mp
/

2M0, l = Lp
/

2M0, M0 =
√

M1M2. (5)

Using these definitions, one finds that under zero external field, where the sublattice
magnetizations are antiparallel, the values

m0 =
M1 −M2

2
√

M1M2
, l0 =

M1 + M2

2
√

M1M2
, l0 =

√
1 + m2

0 (6)

are known quantities. Evidently, m0 renders the extent of magnetic decompensation in
the particle in the initial state. Under full compensation, m0 = 0 and l0 = 1; if the
decompensation is present, but small (m0 � 1), the correction to l0 is of the second-order
of magnitude:

l0 ≈ 1 + 1
2 m2

0. (7)

In an arbitrary field, vectors m and l are related to each other as

(ml) =
M2

1 −M2
2

4M2
0

=
M1 −M2

2
√

M1M2
· M1 + M2

2
√

M1M2
= m0l0, m2 + l2 = 2l2

0 − 1. (8)

Making equilibrium conditions (3) nondimensional and subtracting the first from the
second one, one obtains

l×m− K
4Λ

(
1

M2
2
+

1
M2

1

)
[(mn)(l×n) + (ln)(m×n)]− 1

2ΛM0
(l×H) = 0, (9)

where the coefficient of the second term may be transformed to

K
4Λ

(
1

M2
1
+

1
M2

2

)
=

K
M0
· 1
ΛM0

· (M1 + M2)
2 − 2M2

0
4M2

0
=

HA
HE

(
l2
0 −

1
2

)
; (10)

here, HA ≡ K/M0 is the effective anisotropy field and HE ≡ ΛM0 is the exchange field.
An estimate of the exchange field follows from a comparison of the exchange and

thermal energies:
µBHE ∼ kBTN , (11)

where µB is Bohr’s magneton and TN the Néel temperature. For all the typical antiferro-
magnets, TN ∼ 101–102 K, i.e., HE ∼ 105–106 Oe, whereas the anisotropy field HA as a rule
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does not exceed ∼ 104 Oe; hence, the condition HA � HE holds for the majority of cases.
Given that Equation (9) simplifies and admits an explicit solution for the magnetization:

m =
1

2ΛM0

[
H − l(lH)

l2

]
+

m0l0
l2 · l, (12)

where the first term yields the induced (proportional to the field) contribution, while the
second term—we denote it as mu—is the non-compensated magnetization. As is seen,
vector mu is always directed along l and, according to Equation (12), in zero field mu = m0.

The application of the external field, generally speaking, should change the length
of vector l and, as a consequence, the magnetization m. However, the corrections are of

the order of (H/HE)
2—we recall that l =

√
2l2

0 − 1−m2; see (8)—and under condition
H � HE may be neglected. On that basis, in what follows, we assumed that relations l = l0
and mu = m0 hold whatever the external field strength. Then, introducing a unit AFM
vector as e = l/l0, from (12), one has

m =
1

2ΛM0
[H − e(eH)] + mue. (13)

The part of the volume energy density U that depends on the applied field is obtained
with the aid of definition Mp = −∂U

/
∂H:

UH =
1

2Λ

[
(eH)2 − H2

]
−Mu(eH), (14)

where Mu = 2M0mu is the non-compensated magnetization in dimensional form.
The anisotropy energy density (see (1)) expressed in terms of m and l takes the form

UA = − K
2M2

1
(M1n)2 − K

2M2
2
(M2n)2 = K(1 + 2m2

0)
[
(ln)2 + (mn)2]+ 4Km0l0(mn)(ln), (15)

where, after applying the previously adopted approximations m2 � l2 and l ≈ 1, one
obtains

UA ≈ −K(1 + 2m2
0)l

2
0(en)2 ≈ −K(en)2. (16)

The summation of (14) and (16), for the overall energy density, yields

U = UH + UA =
1

2Λ

[
(eH)2 − H2

]
−Mu(eH)− K(en)2; (17)

this expression justifies the heuristic one proposed in [16].
The equilibrium orientation of vector e at zero temperature is determined from the

requirement that the effective magnetic torque N equals zero:

N = −e× ∂U
∂e

= − 1
Λ
(eH)(e×H) + Mu(e×H) + 2K(en)(e×n) = 0. (18)

3. Static Susceptibility

At a finite temperature, the AFM vector e and, thus, magnetization M of each particle
experiences orientational thermal fluctuations. In equilibrium, the probability density,
i.e., the orientational distribution function W(e) obeys the Boltzmann law:

W(e) = Z−1exp [−Um/T], Z =
∫

de exp [−Um/T]; (19)

integration in the normalizing factor Z spans over all possible orientations of vector e. Note
that in Formulas (19), temperature is measured in energy units.
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The ratio of the orientational-dependent magnetic energy Um = UV to the thermal
one T,

Um

T
= −MuV

T
(eH)− KV

T
(en)2 +

V
2ΛT

(eH)2, (20)

may be equivalently presented as

Um

T
= −2βσq(eh)− σ(en)2 + σq2(eh)2, (21)

where q = H/H∗ is the nondimensional strength of the external field, h = H
/

H is a unit
vector, whereas H∗ =

√
2HEHA =

√
2KΛ is a scaling factor. The temperature parameter is

defined as σ = KV/T, and β = MuH∗/4K stands for the non-compensated magnetization
of the sublattices.

Consider a monodisperse ensemble of mechanically trapped non-interacting antifer-
romagnetic particles. If we denote the volume fraction of AFM particles as φ, then the
projection of the ensemble magnetization in direction h of the applied field—this variable
is, as a rule, measured in experiments—in the herein-adopted notations, takes the form

M = φ〈Mh〉 = φ

[
Mu〈eh〉+ H

Λ

(
1− 〈(eh)2〉

)]
; (22)

here, angular brackets denote averaging with the distribution function W(e) from (19). As
the corresponding nondimensional characteristic of the ensemble, we take function

m =

√
Λ
4K
〈Mh〉 = β〈eh〉+ q

[
1− 〈(eh)2〉

]
, (23)

which is independent of the particle concentration.
In a rectangular coordinate frame with the Oz axis along anisotropy axis n and the

Ox axis in the plane made by n and h, one has hx = sin ψ, hy = 0, hz = cos ψ, where ψ is
the angle under which the field is inclined to n. In the linear approximation, the relations
between the averaged components of e are

〈ex〉 = 〈ex〉0 + q α⊥hx, 〈ez〉 = 〈ez〉0 + q α‖hz; (24)

here, α⊥ and α‖ are the independent components of a second-rank tensor, which defines
the response of the AFM vector to a constant field; angular brackets 〈. . .〉0 denote averaging
for the case of zero external field.

The symmetry of distribution function W at q = 0 establishes that 〈ex〉0 = 〈ez〉0 = 0,
so that

〈e · h〉 =
[
α⊥
(

h2
x + h2

y

)
+ α‖h

2
z

]
q =

(
α⊥ sin2 ψ + α‖ cos2 ψ

)
q. (25)

To evaluate magnetization in the linear approximation, it suffices to find the average
of the squared scalar product in (23) just in the zero-field limit. Taking into account that
〈exez〉0 = 0, it yields

〈(eh)2〉0 = 〈e2
x〉0 sin2 ψ + 〈e2

z〉0 cos2 ψ. (26)

The nondimensional magnetization in the direction of the field is then

m = χ(ψ)q, χ(ψ) = 1 +
(

βα‖ − 〈e2
z〉0
)

cos2 ψ +
(

βα⊥ − 〈e2
x〉0
)

sin2 ψ, (27)

where χ(ψ) is the static susceptibility of an antiferromagnetic particle to a field inclined
under a given angle ψ. Denoting χ(0) ≡ χ‖ and χ(π/2) ≡ χ⊥, for an angle ψ, one finally
brings Expression (27) to a standard form of the susceptibility of a uniaxial medium:

χ(ψ) = χ‖ cos2 ψ + χ⊥ sin2 ψ. (28)
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3.1. Static Susceptibility in Longitudinal Field

In a configuration where the external field is imposed along the anisotropy axis (ψ = 0),
the equilibrium distribution function depends only on the angle ϑ between vectors e and n:

W(ϑ) = Z−1 exp
[
2βσq cos ϑ + σ(1− q2) cos2 ϑ

]
; (29)

with a pertinent normalizing factor.
For that situation, the in-field projection of averaged magnetization writes

m = β〈cos ϑ〉+ q
[
1− 〈cos2 ϑ〉

]
, (30)

where

〈cos ϑ〉 = 2π

π∫
0

dϑ·sin ϑ cos ϑ·W(ϑ) =
4π

Z

1∫
0

dx·sinh(2βσqx) exp
[
σ(1− q2)x2

]
;

〈cos2 ϑ〉 = 2π

π∫
0

dϑ·sin ϑ cos2 ϑ·W(ϑ) =
4π

Z

1∫
0

dx·x2 ·cosh(2βσqx) exp
[
σ(1− q2)x2

]
.

At zeroth-order with respect to the field strength, the normalizing factor and the mean
square of the cosine are, respectively,

Z = 4π

1∫
0

dx·exp
(

σx2
)
= 4πR(σ), 〈cos2 ϑ〉0 =

R′(σ)
R(σ)

,

with

R(σ) =
1∫

0

dx·exp
(

σx2
)

, R′(σ) =
dR
dσ

,

whereas the mean cosine evaluated up to the first-order in q is

〈cos ϑ〉 = 2βσq
R′(σ)
R(σ)

.

As a result, magnetization (23) takes the form

m = q
[

1 +
R′(σ)
R(σ)

(
2β2σ− 1

)]
, (31)

where, for the longitudinal susceptibility, one obtains

χ‖ =
[

1− R′(σ)
R(σ)

]
+ 2β2σ

R′(σ)
R(σ)

. (32)

As is seen, for an AFM particle with fully compensated sublattice magnetizations (β = 0),
this formula reduces to just its first term.

It is useful to present χ‖ for the cases of low (σ� 1) and high (σ� 1) temperatures.
The pertinent expansions for function R′(σ)/R(σ) were derived in [20]:

R′(σ)
R(σ)

= 1− 1
σ
− 1

2σ2 + . . . , (σ� 1);
R′(σ)
R(σ)

=
1
3
·
(

1 +
4σ

15
+

8σ2

315
+ . . .

)
, (σ� 1).



Magnetism 2022, 2 346

With this asymptotics, one obtains

χ‖ =


1
σ
+ 2β2

(
σ− 1

2σ

)
, for σ� 1,

2
3

[
1 + σ

(
β2 − 2

15

)]
, for σ� 1.

(33)

Equation (33) shows that in the low-temperature limit T → 0 (σ → ∞), the suscep-
tibility χ‖ tends to zero in the particles with full magnetic compensation (β = 0) and
grows boundlessly provided β 6= 0. In the high-temperature (σ → 0) range, χ‖ tends
to a constant value 2/3 whatever the decompensation parameter. The plots of Figure 1a
illustrate this behavior.
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Figure 1. Temperature dependence of the static magnetic susceptibilities of an ensemble of AFM
particles whose anisotropy axes are: (a) parallel with the applied field, (b) perpendicular to it, and
(c) distributed at random; the decompensation parameter β = 0 (solid lines), 0.2 (dots), 0.4 (dashes).
Note the different vertical scales in all three panes.

3.2. Static Susceptibility in Perpendicular Field

In the transverse configuration, where the external field is perpendicular to the
anisotropy axis, the energy function scaled with the thermal energy writes

Um(ϑ, ϕ)
/

T = −2βσq sin ϑ cos ϕ + σq2(sin2 ϑ cos2 ϕ)− σ cos2 ϑ,

with ϑ and ϕ being the polar and azimuth angles defining the orientation of the AFM vector
e; we remind that the polar axis points along the anisotropy one. In this case, the projection
of nondimensional magnetization in the field direction takes the form

m = β〈sin ϑ cos ϕ〉+ q
(

1− 〈sin2 ϑ cos2 ϕ〉
)

. (34)

To find the linear susceptibility, we expand it to the first order in the field strength. The
mean value of the product sin ϑ cos ϕ, evaluated with that accuracy, is

〈sin ϑ cos ϕ〉 = 1
4πR(σ)

π∫
0

dϑ·sin2 ϑ exp
(

σ cos2 ϑ
) 2π∫

0

dϕ·(1 + 2βσq sin ϑ cos ϕ) cos ϕ

=
βσq

2πR(σ)

π∫
0

dϑ·sin3 ϑ exp
(

σ cos2 ϑ
) 2π∫

0

dϕ cos2 ϕ = βσq
[

1− R′(σ)
R(σ)

]
,

whereas for 〈sin2 ϑ cos2 ϕ〉, it suffices to find it in the zeroth approximation:
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〈sin2 ϑ cos2 ϕ〉 =
1

4πR(σ)

π∫
0

dϑ ·sin3 ϑ exp
(

σ cos2 ϑ
) 2π∫

0

dϕ ·cos2 ϕ =
1
2

[
1− R′(σ)

R(σ)

]
.

With the aid of these expressions, the magnetization induced by the perpendicular
field takes the form

m = β2σq
[

1− R′(σ)
R(σ)

]
+ q
[

1− 1
2

(
1− R′(σ)

R(σ)

)]
, (35)

so that the transverse susceptibility is

χ⊥ =
1
2

[
1 +

R′(σ)
R(σ)

]
+ σβ2

[
1− R′(σ)

R(σ)

]
(36)

with the following asymptotic expressions obtained for it with the aid of Formulas (33):

χ⊥ =


1 + β2 − 1

2σ
(1− β2), for σ� 1,

2
3

[
1 + σ

(
β2 +

1
15

)]
, for σ� 1.

(37)

In the athermal limit (σ→ ∞), the transverse susceptibility, as is seen from Equation (37),
equals 1 + β2.

The temperature behavior of χ⊥ is illustrated in Figure 1b. It is seen that the transverse
susceptibility goes down with temperature at any value of the decompensation parameter
β; however, this decay is not very fast.

3.3. Ensemble of Particles with Random Axes’ Orientation

The susceptibility of an ensemble of particles with an arbitrary distribution of the
anisotropy axes’ orientations is obtained by averaging Formula (28) with a given distribu-
tion function of the orientation angle:

χ = χ‖cos2 ψ + χ⊥sin2 ψ,

where the overline denotes the angular, not statistical ensemble, averaging. An instructive
example is the situation where this distribution is random, i.e., the axes are spread uniformly
over the whole spatial angle. In that case, cos2 ψ = 1/3 and sin2 ψ = 2/3, so that the
ensemble susceptibility simplifies to

χ =
1
3

(
χ‖ + 2χ⊥

)
,

and, after substitution of Expressions (32) and (36), takes the form

χ =
2
3

(
1 + σβ2

)
. (38)

Going back to the susceptibility defined in terms of dimensional quantities, one obtains

χH =
φ

Λ
· χ =

1
3

φ

(
2
Λ

+
M2

uV
T

)
. (39)

Being a combination of Equations (32) and (36), Formula (39) comprises two qualita-
tively different contributions. The first one depends neither on magnetic decompensation,
nor on temperature; it renders the result of the relative inclination of the sublattices due
to the applied field. The second one is the superparamagnetic origin: it is non-zero only
if the AFM particles possess a non-compensated magnetic moment; this part goes down
with the temperature increase. As expected, this part coincides with the susceptibility of an
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assembly of imaginary identical ferromagnetic particles with volume V and permanent
magnetization Mu. As it should be in the case where the easy axes’ distribution is random,
the linear static susceptibility of the ensemble does not depend on the magnetic anisotropy
of the particles. The plots of Figure 1c illustrate these conclusions. The evident close re-
semblance of Figure 1a,c is due to the relatively small reference values of the transverse
susceptibility χ⊥; see Figure 1b.

4. Dynamic Susceptibility
4.1. Kinetic Equation

The assumption that both the applied and intrinsic anisotropy field strengths are far
lower than that of the exchange one facilitates substantially the problem of the dynamic
response of an antiferromagnet. Then, the magnetic relaxation process in an AFM particle
may be treated as a sequence of two stages, which differ greatly in their time scales. Initially,
under the dominating effect of the exchange field during a short time τE, the coherence of
sublattice magnetizations is established: settling antiparallelly, they fix the length of the
AFM vector Lp. The reference scale of this process may be associated with the decay time of
the Larmor precession of magnetization of either of the sublattices in the exchange field HE,
viz. τE ∼ (αγΛM0)

−1, where α is the “friction” coefficient and γ the gyromagnetic ratio.
For typical antiferromagnets with HE ∼ 105–106 Oe, this yields τE ∼ 10−13 s. Evidently,
the same time lapse is required to establish a time-independent (20) link between the AFM
vector and particle non-compensated magnetization The second stage of relaxation is a
relatively slow decaying precession of the antiferromagnetic vector about the effective field,
which is a superposition of the applied and anisotropy fields.

Therefore, over the intervals, which notably exceed τE, the AFM vector rotates, keeping
its length constant. Given the precessional character of this motion, if describing it phenomeno-
logical, it seems reasonable to use an equation of the Landau–Lifshitz–Gilbert type:

dL
dt

= −γN +
α

L
L× dL

dt
,

where N is the effective magnetic torque; see Formula (18). As already mentioned, if
neglecting corrections of the order of ∼ (H/HE)

2, the length of the AFM vector equals
2M0, so that this equation may be written for the unit vector e as

de
dt

=
γ

2M0

(
e× ∂U

∂e

)
+ αe× de

dt
. (40)

To account for the orientational fluctuations of the AFM vector in nanoparticles, one
has to transit from the deterministic Equation (40) to a kinetic equation of the Brown type
for the distribution function W(e, t):

2τD
∂W
∂t

= Ĵe W Q̂e

(Um

T
+ ln W

)
, Ĵe = e× ∂

∂e
, Q̂e = Ĵe +

1
α

∂

∂e
. (41)

The relaxation time, herein introduced, defines the rate of rotary diffusion of the
AFM vector in a particle with negligible magnetic anisotropy; for its estimate expression,
τD = M0V/αγT, which follows from the fluctuation–dissipation theorem applied to
Equation (40). However, in general, τD should be looked at as a phenomenological parame-
ter deduced from the comparison of the theory with the experiment. It is worth noting that
in the developed model, the time τD does not depend on the existence of non-compensated
magnetization and, because of that, does not tend to zero when Mu is absent in the particle.
By that, our result differs essentially from the models developed in [17–19].

In the low-frequency interval (i.e., far below the microwave range), one may neglect
in Equation (41) the probability flux that renders the precessional motion of vector e and
treat the magnetic response of the system as a purely relaxational one. A formal transition
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is performed by replacing in the kinetic Equation (42) operator Q̂e with Ĵe; the modified
equation takes the form

2τD
∂W
∂t

= Ĵe W Ĵe

(Um

T
+ ln W

)
. (42)

Note that the function W refers to the orientation distribution of the antiferromagnetic
vector l, not the uncompensated magnetic moment µu, although in the developed model,
they are always parallel. Therefore, Equation (42) is equally applicable to fully compensated
AMF nanoparticles like those considered in [8]. An equation of that type was used in [21],
where only the longitudinal response of AFM nanoparticles was investigated; herein,
kinetic Equation (42) is used for the case of arbitrary field orientation. Assuming that the
probing field is harmonic, the solution of Equation (42) is Fourier transformed, so that
the sought after dynamic magnetic susceptibility is found from the linear relation mω =
χ(ω) qω between the Fourier components of the statistically averaged nondimensional
magnetization and field. Repeating for the case of the AC field the considerations that led
to Expression (28), one comes to the relation

χ(ω) = χ‖(ω) cos2 ψ + χ⊥(ω) sin2 ψ, (43)

where indices mark the susceptibility components for the cases of the probing field being
directed either along or across the particle anisotropy axis.

4.2. Longitudinal Dynamic Susceptibility

The expression for the longitudinal dynamic susceptibility of a nanosized AFM particle
with a non-compensated magnetization was obtained in [21]. In brief, this was performed
as follows. The solution of Equation (42) is constructed in the Gilbert functional space,
whose unit vectors are spherical harmonics

Yl,k(ϑ, ϕ) = (−1)k
√

(2l+1)(l−k)!
4π(l+k)! Pl,k(cos ϑ)eikϕ, −l ≤ k ≤ l, Y∗l,k = (−1)kYl,−k, (44)

which constitute a canonical basis of rotational group representation in 3D space. For the
case U/T → 0, they are eigenfunctions of the coordinate part of the operator of the kinetic
Equation (43). If h ‖ n, distribution function W depends only on the angle ϑ that AFM
vector e makes with the anisotropy axis, so that expansion:

W(ϑ, t) =
l=∞

∑
l=0

bl(t)Yl,0(ϑ)

comprises only spherical harmonics (44) with k = 0. Substituting this series in (42), one
arrives at the set of linear equations for coefficients bl :

τ0

l(l+1)
dbl
dt

=

(
1−q2

(2l−1)(2l+3)
− 1

2σ

)
bl+

1
2

βq

(√
1

(2l−1)(2l +1)
bl−1−

√
1

(2l+1)(2l + 3)
bl+1

)

+ (1− q2)

(
l − 1

2l − 1

√
1

(2l − 3)(2l + 1)
bl−2 −

l + 2
2l + 3

√
1

(2l + 1)(2l + 5)
bl+2

)
,

with the reference time τ0 = τD/σ = M0
/
(αγK), which in this representation, is both

temperature- and particle-size-independent In the superparamagnetic theory, the ratio
f0 = 1/(2πτ0) is usually identified with the so-called attempt frequency, which character-
izes oscillations of the magnetic moment inside the potential well imposed on it by the
anisotropy energy.

By introducing a column vector:
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X =



b1

b2

...

bN


,

this set of equations may be transformed to matrix form:

τ0
dX
dt

= A · X + B. (45)

The number N of elements is chosen on the requirement that, upon increasing it,
the results would not change within the prescribed accuracy; the elements of the free term
vector B are proportional to coefficient b0 = 1/

√
4π.

To find the susceptibility, Equation (45) is linearized. For that, the to-be-evaluated
vector X is presented as the sum of equilibrium components X0; it corresponds to zero
applied field (q = 0) and a small non-equilibrium additive X1. In the same approximation,
matrix A and column vector B are expanded as

A = A0 + qA1, B = B0 + qB1;

here, A0 = A(q = 0) and B0 = B(q = 0) refer to the unperturbed state, whereas the
non-equilibrium parts should be evaluated from the equation

τ0
dX1

dt
= A0 · X1 + q(A1 · X0 + B1).

At a short time lapse, its solution is

X1(t + dt) =
∞

∑
k=1

αkVke−λ0
k dt + X̃1,

where Vk and λ0
k are the eigenvectors and absolute values of eigenvalues of matrix A0; the

terms in this sum are settled in ascending order with respect to λ0
k . At the time interval

dt, vector
X̃1 = −qF, F = A−1

0 · (A1 · X0 + B1) (46)

yields a constant contribution to the solution.
In [21], it is shown that the smallest eigenvalue of unperturbed matrix A0 is

λ0
1 =

1
τ0

√
4σ

π
e−σ, σ =

KV
T

. (47)

As the temperature parameter σ grows, λ0
1 goes down exponentially and at σ & 1 becomes

far smaller than any of the other eigenvalues λ0
k . This enables one to proceed to a more

rough time scale, where the time lapses dt � 1/λ0
k for any k > 2, so that the system

response becomes a single-mode one:

X1(t + dt) = α1V1e−λ0
1·dt + X̃1,

and the equation for the non-equilibrium additive simplifies to

dX1(t)
dt

= −λ0
1
[
X1(t)− X̃1(t)

]
,
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which leads to the following Fourier representation:

Xω
1 =

X̃ω
1

1 + iωτ1
=

F
1 + iωτ1

qω, τ1 = 1/λ0
1. (48)

In terms of the components of vector X, the nondimensional ensemble magnetiza-
tion (23) is expressed as

m(t) = β〈cos ϑ〉+ q
[
1− 〈cos2 ϑ〉

]
=

√
4π

3
β b1(t) + q

(
2
3
−
√

16π

45

)
b2(t). (49)

Performing Fourier transformation, one obtains

mω =

√
4π

3
βbω

1 +

(
2
3
−
√

16π

45
b0

2

)
qω. (50)

In this formula, bω
1 is the first element of vector Xω

1 , whereas b0
2 equals the equilibrium

value of coefficient b2 under zero field, making the second element of vector X0. With the
allowance of the representation (49) for Xω

1 and for the frequency independence of vector
X0, Expression (50) may be transformed to mω = χ‖ · qω, where

χ‖(ω) = χ
(0)
‖ +

χ
(1)
‖

1 + iωτ1
. (51)

The frequency-independent term χ
(0)
‖ in the susceptibility expression (51) is

χ
(0)
‖ =

2
3
−
√

16π

45
b0

2 = 1− 〈cos2 ϑ〉0 = 1− R′(σ)
R(σ)

; (52)

it does not depend on decompensation parameter β and delivers the susceptibility of a
fully compensated antiferromagnet. As Equation (52) shows, the frequency dependence
of the magnetic response of an AFM particle is of the Debye type. Therefore, at ω = 0,
the sum of χ

(0)
‖ + χ

(1)
‖ should reduce to the longitudinal static susceptibility (32). Given

that, one finds that the Debye (dispersion) part of Equation (50) depends quadratically on
decompensation parameter β:

χ
(1)
‖ = 2β2σ · R′(σ)

R(σ)
. (53)

4.3. Arbitrary Orientation of Anisotropy Axes

As the previously presented results show, to evaluate the dynamic susceptibility in
the single-mode approximation, it suffices to find the static components and—for deter-
mining the frequency dependence—to know the lowest (by its modulus) eigenvalue of the
unperturbed kinetic matrix. If the system is subject only to a probing field (no permanent
bias), then the mentioned eigenvalue is delivered by Formula (47) and is independent of
the particle orientation. Following this pattern, the transverse dynamic susceptibility of an
AFM nanoparticle may be presented as

χ⊥(ω) = χ
(0)
⊥ +

χ
(1)
⊥

1 + iωτ1
, where τ1 = τ0 ·

√
π

4σ
eσ. (54)
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The frequency-independent term χ
(0)
⊥ is the static susceptibility of a magnetically

compensated particle; according to Equation (36), it is

χ
(0)
⊥ =

1
2

(
1 +

R′(σ)
R(σ)

)
. (55)

The difference between the static transverse susceptibilities of non-compensated and com-
pensated (55) particles yields the coefficient of the dispersion term in (54):

χ
(1)
⊥ = σβ2

(
1− R′(σ)

R(σ)

)
. (56)

The above-obtained expressions for the longitudinal and transverse components and
Formula (43) enable one to find the linear magnetic response of an AFM particle at an
arbitrary inclination of the probing field to the anisotropy axis. Besides that, averaging
Equation (43) over a given distribution function of ψ yields the susceptibility of an ensemble
of those particles with any prescribed orientational texture. In particular, if the axes are
distributed at random, so that cos2 ψ = 1/3, the dynamic susceptibility is rendered by
the expression

χ(ω) =
2
3

[
1 +

σβ2

1 + iωτ1

]
. (57)

5. Discussion

The most probable orientation texture of a solid ensemble of AFM nanoparticles, given
the low if any values of the particle magnetic moments, is the random one, in whichever
way the system is prepared: by solidification of a colloid or by phase separation in a solid
solution. In principle, this applies even to a true (liquid) colloid if there are no non-magnetic
(e.g., chemical) sources of the particle structuring. Then, from the experimental viewpoint,
the susceptibility of type (57) seems to be the subject of prime interest.

As follows from the problem formulation, herein, we addressed only the low-frequency
dynamics of the AFM particles, setting aside the processes in the Larmor frequency range.
Because of that, in our model, the susceptibility components come out as simple analytical
formulas. In particular, the orientation-averaged function (57) that characterizes a random
system comes out as two-term expression that combines the constant contribution due to
the exchange coupling of the sublattices and a temperature-dependent term entailed by the
presence of the uncompensated magnetization.

Formula (57) contains just one relaxation time, and because of that, the modeled
frequency dependences of the in-phase and out-phase components of the dynamic suscepti-
bility (see Figures 2 and 3) have a Debye-like shape.

The only difference is that the exchange contribution, which within the envisioned
temperature and field-amplitude intervals, is considered as a constant, yields some pedestal
for those otherwise standard Debye lines. The temperature dependence of the absorption
line is in full compliance with the superparamagnetic behavior: with cooling, the peak shifts
to lower frequencies; see Figure 3. In general, with allowance for the unavoidable poly-
dispersity of the nanoparticles, this conclusion fairly well complies with the temperature
dependences of the AC susceptibility of ferritins reported in [10,14,15].

The mentioned temperature drift of the absorption peak is inherent, as such, to all the
models based on the superparamagnetic approach. For example, in the model developed
in [17–19], where a single AFM particle with the anisotropy axis tilted to the applied
field under some fixed angle was considered, the overall temperature behavior of the
susceptibility components is essentially the same.
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Figure 2. Frequency dependence of the: (a) real χ′ and (b) imaginary χ′′ parts of the magnetic
susceptibility of an antiferromagnetic particle ensemble with a random distribution of the anisotropy
axes; the decompensation parameter β is: 0.1 (dashes), 0.2 (dots), 0.3 (solid lines); the temperature
parameter σ = 10.
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Figure 3. Frequency dependence of: (a) real χ′ and (b) imaginary χ′′ parts of the magnetic suscepti-
bility of an antiferromagnetic particle ensemble with a random distribution of the anisotropy axes;
the temperature parameter σ is: 10 (dashes), 20 (dots), 30 (solid lines); the decompensation parameter
β = 0.2.

The difference between the above-presented results and those of [17–19] is conceptual
and stems from the statement of the kinetic problem. Our Equation (41) describes the
stochastic motion of antiferromagnetic vector l, which is the characteristic of any AFM
particle whether or not it bears an uncompensated magnetic moment mu. Therefore,
the latter is albeit an important, but optional attribute of an AFM particle. We remark that,
in [8], where fully compensated AFM nanoparticles were considered without using the
kinetic equation, the model fundamentally implies that τ0 is taken to be proportional to
M0. Meanwhile, the kinetic equation on which the considerations of [17–19] were based
employs only the orientation distribution function of the uncompensated magnetic moment
as itself. Because of that, the latter description seems to come to a dead-end as soon as the
particle magnetic moment goes down to mu = 0.

The difference in the approaches entails a qualitative mismatch in the time scales
of the respective models. This is clear if comparing the definitions, the one given in
the above and its analogue, which follows from Formula (3) of [17]. Presenting them in
temperature-independent form, one obtains

τ0 = τD
/

σ = M0
/

αγK, τ∗0 = τN
/

σ = Mu
/

αγK. (58)
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As is seen, the attempt time τ0 does not depend on the uncompensated magnetization,
whereas τ∗0 diverges at Mu → 0, i.e., when the AFM particle loses its magnetic moment,
remaining intact otherwise. This looks to be an unphysical effect.

Unfortunately, the experimental evidence reported in [10,14,15] is insufficient to be
used for a decisive choice between the models. The crucial point is that the estimated
values of τ0 (or τ∗0 ) for the AFM nanoparticle samples tested there vary from 10−12 to 10−9 s.
This is a general issue: until now, the evaluation of the attempt time is a “weak point” in
superparamagnetic theory. Such an evaluation goes via determining the blocking temper-
ature TB, which is usually identified with the position of the cusp of ZFC magnetization
curves. As shown in [22], this method, besides being strongly affected by the polydispersity
of the sample, is nevertheless acceptable in the case of ferromagnetic nanoparticles, but
may cause huge errors if applied—as was done in [10,14,15]—to AFM nanoparticles with
µu. Due to that, one has to admit that the uncertainty in the evaluation of τ0 remains huge
even if the particle volume and µu are well known.

A direct way to compare the model predictions would have been to make a set of AC
measurements on a number of otherwise identical nanoparticles differing just by the value
of their uncompensated magnetic moments. As far as we know, no such attempts have
been made so far. Although, the task of preparing such samples seems to pose a serious
problem, this does not mean that it is impossible in principle. For example, the technique
of synthesizing artificial ferritins that enables one to modify the iron-containing core of the
apoferritin protein cage [23,24] might offer a plausible solution.

6. Conclusions

A kinetic model of low-frequency magnetic susceptibility for antiferromagnetic nanopar-
ticles bearing uncompensated magnetic moments was developed. In this frequency domain,
the exchange interaction maintains a strong correlation (anti-parallelism) of the sublattice
magnetizations, thus forming the antiferromagnetic vector L of constant length. The perma-
nent (uncompensated) magnetic moment µu entailed by the nanosize of the particle comes
out as a result of the difference between those magnetizations. Due to that, in equilibrium
vectors µu and L are always coaligned. The kinetic equation that describes the effect of
thermal fluctuations on the particle magnetodynamics is formulated for the motion of L,
so that the magnetic response is an optional result of decompensation. The orientation
relaxation time is proportional to the sublattice magnetization and refers equally to the rotary
relaxation of L and µu.
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