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Abstract. The nonlinear amplitude modulation dynamics of electrostatic oscilla-
tions of massive charged defects in a three-component pair plasma is investigated,
i.e. doped pair-ion plasmas (anticipating the injection of a massive charged com-
ponent in the background, e.g. in fullerene experiments). Ion-acoustic oscillations
in electron-positron-ion (e-p-i) plasmas are also covered, in the appropriate limit.
Linear and nonlinear effects (MI, envelope modes) are discussed. The role of the
temperature and density ratio between the pair species is stressed.

1. Introduction

Pair plasmas (p.p.) are characterized by the coexistence of two charged particle
species which have equal masses and charges of same (absolute) value yet opposite
sign. Although this formal plasma description was originally conceived to model
electron-positron (e-p) configurations [1, 2], recent laboratory experiments pair
on fullerenes (C60) [3] have enabled the realization of pair-ion (C

+
60/C

−
60) plasmas,

which, say, mimick the behavior of e-p plasmas, yet are not constrained by re-
combination (annihilation) processes. We shall here take the term p.p. to denote
eitherpair-ion or e-p plasmas, yet extending its meaning to cover the existence of
(a) background component(s) (e.g. electrons, or defects), as discussed below.
The dynamics of p.p. bears novel phenomena, which are neither trivial nor quite

expected. Contrary to the traditional textbook plasma picture, where distinct fre-
quency scales are imposed by the mass difference between electrons and ions, the
two-pair species respond on the same scale. Rather surprisingly, the dynamical
characteristics of pair plasmas cannot always be inferred by simply taking the
limit of equal (ion and electron) masses, formally. For instance, ion-acoustic waves
have no analogue in pair plasmas, where electrostatic (ES) wave dispersion obeys
a Langmuir-type dispersion law [1, 2].
Although symmetric pair components were originally assumed (equal number

density and temperature) in the modeling of p.p., it was soon realized that this
picture may not be realistic. The remarkable features of symmetric and pure, say,
p.p. may therefore be modified in the presence of either temperature fluctuations, or
a charge imbalance between the pair species, due to the presence of “third” species
in the background. For instance, e-p plasmas may also be characterized by the
presence of positive ions, in addition to electrons and positrons. Electron-positron-
ion (e-p-i) plasmas occur in astrophysics, e.g. in active galactic nuclei (AGN) [4]
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and in pulsar magnetospheres [5], and have also been created in the laboratory [6].
On the other hand, one may anticipate the existence of a small fraction of charged
massive particles in fullerene pair-ion plasma [3], either intrinsically as defects,
or injected intentionally (doping) as a means of controlling plasma behavior. The
above picture may be modeled by assuming (apart from the pair components) a
massive background species, which may bear either positive or negative charge (the
former case also formally accounts for ions in e-p-i plasmas). Said from the outset,
another possibility, which has been suggested in the past, namely the existence of
free electrons in fullerene p.p., will here be neglected.
Departing therefore from a symmetric pair-component plasma configuration,

which was claimed to have been generated in the fullerene experiments mentioned
above, it is virtually certain that the positive-to-negative species density and tem-
perature ratio(s) may differ from unity (either locally or globally, i.e. affecting
the overall charge and pressure balance). It is therefore timely and appropriate to
consider the role of charged impurities (defects) in multicomponent pair plasmas.
It is obvious that multicomponent pair plasmas (as discussed above) may be

characterized by two (at least) distinct frequency scales, basically delimited by the
(common) pair species plasma frequency, in contrast with that of the (much heavier)
background defect component. The (ES) dynamics of the pair component has gener-
ated significant interest (and controversy) in the past. Experimental investigations
of low-amplitude (linear) ES oscillations suggest the existence of three distinct
modes [3]. Two of these modes, namely an acoustic mode and a Langmuir-like high-
frequency mode, are straightforward to predict via, e.g. two-fluid theory [1, 2, 7, 8].
An intermediate-frequency mode also reported [3] is viewed as a controversial topic
by theoreticians, and interpretations suggested for it include soliton-trains [9], ion
acoustic wave acceleration by surplus electrons [10] and Bernstein–Greene–Kruskal
(BGK)-like trapped ion modes [11]. On the pair species vibration scale, nonlinear
excitations predicted include solitons, either of ES [9, 12, 13] or electromagnetic
(EM) [14] type, modeled by Korteweg-de Vries (KdV) (or Zakharov-Kuznetsov in
2D) theory or via the Sagdeev pseudopotential formalism. Furthermore, envelope
solitons have been shown to occur on the high (pair-) frequency scale, as part of the
evolution of either EM [15] or ES [7, 8] wave packets. On the other side of the scale,
low-frequency oscillations of the massive background component (defects, or heavy
ions) were investigated via a Krylov–Bogoliubov–Mitropolsky (KBM) perturbation
technique, and were shown to be modulationally unstable at finite wavelengths
[16, 17].
Our purpose here is to address the dynamics of low-frequency oscillations of the

massive background component, propagating as modulated wave packets. We con-
sider a fully ionized collisionless unmagnetized three-component plasma, consisting
of two pair-species (mass m+ = m− = m, charge q+ = −q− = Ze), in addition to
a background population of massive charged particles (mass md = M�m, charge
qd = sZde; index d for dust, or defects); here e is the magnitude of the electron
charge, and Z (Zd ) denotes the charge state of the pair (background, respectively)
particle species. We choose to leave the charge sign s = qd/|qd | arbitrary, in account
of either positive or negative defects. Finally, the density and temperature ratio(s)
of the pair species is (are) left arbitrary (i.e. not necessarily equal to unity), for gen-
erality. The role of the temperature/density asymmetry (and thus, of the stationary
background species) is focused upon and will be emphasized. Pair recombination is
neglected here for simplicity.
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2. Model equations

We adopt a fluid model for the dynamics of electrostatic excitations of the massive
background component d (for dust, or defects) in a three-component pair plasma:

∂nd

∂t
+

∂(ndud)
∂x

= 0, (2.1)

∂ud

∂t
+ ud

∂ud

∂x
= −sZd

e

md

∂φ

∂x
, (2.2)

∂2φ

∂x2 = −4πe(sZdnd − Zn− + Zn+), (2.3)

where nα (α = +, −, d) is the number density of the respective species, ud is the
fluid velocity and φ is the electrostatic potential.
Given the (low-) frequency scale of interest, the pair populations can be safely

assumed to be in thermal equilibrium, viz.

n− = n−,0 exp(Zeφ/kB T−) , n+ = n+ ,0 exp(−Zeφ/kB T+) . (2.4)

Overall charge neutrality at equilibrium imposes Zn−,0 − sZdnd,0 = Zn+ ,0 , where
the index ‘0’ denotes the equilibrium quantities.
We shall here work with the rescaled (dimensionless) fluid equations

∂n

∂t
+

∂(nu)
∂x

= 0 , (2.5)

∂u

∂t
+ u

∂u

∂x
= −s

∂φ

∂x
, (2.6)

∂2φ

∂x2 ≈ −s(n − 1) + c1φ + c2φ
2 + c3φ

3 , (2.7)

where we have expanded Poisson’s equation near equilibrium. Space is scaled by
the effective Debye length λ0 = (

∑
α=+ ,−

4πnα 0 Z 2 e2

kB Tα
)−1/2 ≡ (

∑
α=+ ,− λ−2

D,α )−1/2 ∼
(n+ 0

T+
+ n−0

T−
)−1/2 , while time is scaled by the inverse (defect) plasma frequency ω−1

p,d =
(4πnd0Z

2
d e2/md)−1/2 . The state variables nd , ud and φ are thus scaled as n =

nd/nd0 , u = ud/v0 and φ = Zdeφ/(kB T∗), where we have defined the characteristic
speed scale v0 ≡ (kB T∗/md)1/2 = ωp,dλ0 . The temperature scale T∗ takes into
account T± and n±,0 and is determined by compatibility requirements. (Note the
formal analogy with dust-acoustic waves [18].)
The coefficients entering Poisson’s equation, i.e. (2.7) are

c1 =
δ + θ

s(δ − 1)
, c2 =

δ − θ2

2s(δ − 1)
, c3 =

δ + θ3

6s(δ − 1)
, (2.8)

i.e. cm = [δ − (−1)m θm ]/[s(δ − 1)m!] (for m = 1, 2, 3), all positive here. We have
defined the temperature ratio θ and the dimensionless parameter δ as

θ =
T−
T+

δ =
n−
n+

= 1 + s
Zd0nd0

Zn+
, (2.9)

which reflects the defect concentration in the plasma. Notice that δ below (above)
unity denotes negative (positive) dust/defect charge.
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3. Nonlinear wave packet envelope dynamics

To model the nonlinear dynamics of the modulated amplitude of an ES wave packet
in our model, we shall make use of the multiscale perturbation (or KBM) technique.
The lengthy details are explained step by step in earlier works (see, e.g. [19]), so these
need not be reproduced here. The essential information to retain for our purposes
here will follow.
We consider a general stretched (slow) space and time variables scaling as Xm =

εm x , Tm = εm t , separating the fast carrier (m = 0) from the slow-amplitude
(form � 1) dynamics. We consider small deviations from equilibrium (n(0) = 1 and
u(0) = φ(0) = 0), and express the state variables as S = S(0) +

∑∞
m=1 εm S(m ) , where

ε�1 is a small parameter. Here S denotes any of n, u and φ (all functions of {x, t}).
The contribution at every ordermwill be a sum of (l−th) harmonics (l = 0, 1, 2, . . .),
viz. S(m ) =

∑m
l=−m S

(m )
l (Xm , Tm ) exp[il(kx−ωt)]. Upon substituting into (2.5–2.7),

and then isolating various orders in εm and respective l−th harmonic contributions,
we obtain a system for the harmonic contributions to each order.
The solution obtained for the electric potential through the long (yet perfectly

straightforward) calculation is of the form

φ ≈ ε φ
(1)
1 ei(kx−ωt) + ε2 [φ(2)

0 + φ
(2)
2 e2i(kx−ωt) ] + · · · , (3.1)

where the complex conjugates (c.c.) φ
(1)
1

∗
and φ

(2)
2

∗
were omitted where obvious.

The expressions for n and u are analogous.
The 1st harmonic amplitudes read

n
(1)
1 = s(k2 + c1)φ

(1)
1 , u

(1)
1 = s

ω

k
(k2 + c1)φ

(1)
1 =

ω

k
n

(1)
1 . (3.2)

The dispersion relation obtained reads

ω2 =
k2

k2 + c1
, (3.3)

which suggests an acoustic behavior ω ≈ k/
√

c1 for small k (large wavelength).
We stress the dependence of the “true” phase speed vph = v0/

√
c1 and (Debye)

screening length λD = λ0/
√

c1 (recovering dimensions for a moment) on θ and δ
(via c1).
The final outcome of the analysis, apart from a set of expressions for the vari-

ous harmonics (reported in the Appendix) is a nonlinear evolution equation for
the (electric potential) fundamental harmonic amplitude, say φ

(1)
1 ≡ ψ(x, t). The

nonlinear Schrödinger (NLS) equation thus obtained reads

i
∂ψ

∂T
+ P

∂2ψ

∂X2 + Q|ψ|2ψ = 0 , (3.4)

where the slow independent variables here are T = ε2t and X = ε(x − vg t),
suggesting that the slow time-varying envelope profile moves at the group velocity
vg = ω′(k) = c1ω

3/k3 .
The dispersion coefficient in the NLSE (3.4) is given by P = ω′′(k)/2 = −3c1ω

5/
(2k4) < 0, which varies as P ∼ k, for small k; as a matter of fact P ≈ −3s(δ −
1)3/2/[2(δ + θ)3/2 ] for k�1. Note that P is negative throughout.
The nonlinearity coefficient in the NLSE (3.4) is given by a lengthy expression,

here omitted, of the form Q = Q(k; δ, θ). For small k (i.e. for large wavelength,
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compared to the Debye length), it varies as Q ∼ 1/k, viz.

Q ≈ [δ(1 + 2δ) + 6δθ + (2 + δ) θ2 ]2

12[s(δ − 1)]5/2(δ + θ)3/2

1
k

. (3.5)

Note, in combination with (2.9), that the latter expression does not depend on
the defect charge sign s. In fact, P < 0 < Q is guaranteed for small k, ensuring
stability for long wavelengths (viz. PQ < 0, cf. discussion below).
The NLSE (3.4) is well known and has been studied in detail in the past. Summar-

izing known results [19], we may distinguish two regimes, in terms of the product
p = PQ (or the ratio r = P/Q, say) of the coefficients P and Q.

• For negative p (or r), the wave packet is modulationally stable, and the modu-
lated envelope may assume the form of a dark-type (black or grey) envelope soliton
(i.e. a potential dip, propagating along with a density hole).

• For positive p (or r), the amplitude is modulationally unstable, i.e. a purely
growing mode (imaginary frequency) develops under the effect of an external per-
turbation, e.g. due to noise or background turbulence. Modulational instability (MI)
in this analytical framework is admittedly but a first-order prediction, which may
presumably lead at a later stage to the wave packet’s breakdown. Alternatively,
an ordered state may be attained in the form of a (train of) bright envelope soliton
solutions of the NLSE being formed. These bell-shaped envelope pulses are remin-
iscent of information pulses in nonlinear optics (e.g. in optical fibers), and, not
surprisingly, the methodology of study is analogous.

• In either bright (for PQ > 0) or dark (for PQ < 0) soliton case, the soliton
width L is related to the maximum amplitude ψ0 as ψ0L ∼ (P/Q)1/2 = r1/2 .

4. Parametric investigation

Let us first investigate from first principle the effect of the density (δ) and temper-
ature (θ) ratios of the pair species on the linear dispersion characteristics. Recall
that this is an acoustic mode, so higher frequency suggests a higher value of the
phase speed vph = ω/k. The analysis that follows is somehow standard, yet the
consequences, say, in a potential experimental verification of our predictions are
straightforward to look for.

Linear effect of the defect concentration density: pair-ion density misfit (δ 	= 1). The
dispersion relation of the low-frequency defect mode is depicted in Fig. 1, where we
have considered both negative and positive defect charge sign cases. For negative
defect charge (δ < 1; see Fig. 1(a)), the frequency ω is seen to increase if lower
values of δ are considered; i.e. with an increase in negative “dust’ concentration.
For positive defects (δ > 1; see Fig. 1(b)), the analytical behavior is reversed (ω
increases with higher δ), yet the physical interpretation is the same, namely, higher
frequency with an increase in δ, and hence, in positive-defect concentration.

Linear effect of the pair-species temperature difference (θ 	= 1). Considering negatively
charged defects/dust, the frequency ω is seen to decrease with higher negative pair-
ion temperature (increasing θ); see Fig. 2(a). The same is true for positively charged
defects/dust, as obvious in Fig. 2(b).

Nonlinear characteristics. In the end of the preceding section, we have concluded
that the wave packet’s stability is guaranteed for small k, while MI is possible
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Figure 1. (Color online) Dispersion relation: the frequency ω is depicted vs. the wave number
k, for θ = 1 (equal pair species temperature). (a) (Left panel) negative defects/dust; from
top to bottom, dotted curve: δ = 0.3; dashed curve: δ = 0.4; solid curve: δ = 0.5; (b) (Right
panel) positive defects/dust; from top to bottom, solid curve: δ = 1.5; dashed curve: δ = 1.3;
dotted curve: δ = 1.2.
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Figure 2. (Color online) Dispersion relation: the frequency ω is depicted vs. the wave number
k, for negatively (positively) charged background defects/dust in the left panel (right panel,
respectively). We have taken δ = 0.8 (left panel) and δ = 1.2 (right panel). From top to
bottom, dotted curve: θ = 0.8; dashed curve: θ = 1; solid curve: θ = 1.2.

for a carrier wave number value above a certain critical carrier wave number kcr .
The instability window (i.e. the range of wave number k̃ values for an amplitude
perturbation to trigger MI extends from zero up to a threshold, which is in fact
given by, say†, k̃0 = (2Q/P )1/2 |ψ0 | ∼ r−1/2 (this is a nonlinear instability, so its
features depend on the maximum amplitude ψ0). The smaller the value of k̃0 , the
more probable it is for MI to occur, and the more likely it is for bright envelope

† The amplitude perturbation wave number k̃0 is here to be distinguished from the carrier
wave number MI threshold kcr .
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Figure 3. (Color online) Variation of the ratio P/Q vs. the carrier wave number k. A negatively
charged background defect/dust population has been considered here. (a) (Left panel) here
θ = 1 (equal pair-species temperature); dotted curve: δ = 0.2; dashed curve: δ = 0.25; solid
curve: δ = 0.3. (b) (Right panel) here δ = 0.2 (fixed negative defects/dust); dotted curve: θ =
0.8; dashed curve: θ = 1; solid curve: θ = 1.2.

solitons to be formed and propagate. Furthermore, the soliton characteristics obey
the relation ψ0L ∼ (P/Q)1/2 = r1/2 . It is therefore appropriate to investigate the
dependence of the ratio r = P/Q, among others, on the parameters θ and δ. Recall
in the following that higher values of r = P/Q imply wider envelope solitons (i.e.
higher L for a given maximum amplitude ψ0) in addition to a smaller threshold for
MI to occur, viz.† smaller k̃0 .
Figure 3(a) depicts the variation of the coefficient ratio r = P/Q (for negative

dust) versus k for different values of δ and θ. For a fixed value of θ, it is noticed
that the critical carrier wave number kcr , at which instability sets in (i.e. where r
changes sign), decreases as we increase the defect/dust concentration (i.e. with a
decrease in δ). More negative defects lead to MI set in to be more likely.
In Fig. 3(b), a similar kind of behavior (increase in kcr ) is seen for an increase

in the value of θ, for fixed δ = 0.2 (negative defects/dust). The MI threshold is
therefore lowered (rendering MI more probable, and bright envelope solitons more
likely to occur for smaller k) by taking the negative ion component (among the
pair species) to be of lower temperature (θ decreasing). The effect is reversed in
the case of a positive defect background: MI is more probable (and kcr is lowered)
by taking the positive pair-ion to get colder (θ increasing) (or, say, the positrons,
in e-p-i plasma). However, we have not depicted the latter situation for positive
d+ charge, since the critical value obtained numerically was unrealistically high
(presumably invalidated by Landau damping).
The same analysis is iterated for a positively charged background (defects, or

dust) in Fig. 4. In Fig. 4(a), keeping θ fixed (for θ = 1 there), we have varied the
density ratio δ; we see that the critical wave number kcr decreases with an increase in
the value of δ (i.e. an increase in the positive dust/defect concentration). Therefore,
adding of more defects seems to enhance MI. In Fig. 4(b), keeping δ fixed (taking
δ = 1.8, i.e. n− > n+ ), we have depicted the effect of the temperature ratio θ; we
observe a decrease in kcr as seen for a decrease in the value of θ: MI is thus enabled
(at lower k) by a colder negative (or a warmer positive) pair-ion component.
We have also investigated the behavior of the critical carrier wave number kcr

(where instability sets in) upon varying the value(s) of θ and/or δ. In Fig. 5, the
carrier wave number threshold kcr is depicted versus δ and θ (keeping the other
parameter fixed). Our earlier conclusions made in Figs. 3 and 4 are again verified
here. Note that, comparing the negative to the positive defect/dust charge case(s),
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Figure 4. (Color online) Variation of the ratio P/Q vs. the carrier wave number k. A positively
charged background defect/dust population has been considered here (formally also applying
to ions in e-p-i plasmas). (a) (Left panel) here θ = 1 (equal pair-species temperature); dotted
curve: δ = 1.6; dashed curve: δ = 1.7; solid curve: δ = 1.8. (b) (Right panel) here δ = 1.8
(fixed positive defects/dust); dotted curve: θ = 0.8; dashed curve: θ = 1; solid curve: θ = 1.2.
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Figure 5. (Color online) Variation of kcr with (a) (left panel) δ (density ratio n−/n+ ), for θ = 1,
and (b) (right panel) θ (temperature ratio T−/T+ ), for δ = 0.2 in the lower curve, and δ = 1.8
in the upper one.

we see a different analytical tendency in Fig. 4(a), which nevertheless reflects
the same physical effect: more defects in the background cause a lowering of the
threshold, and thus enhance modulation instability (in addition to the appearance
of bright envelope solitons). On the other hand, as we see in Fig. 5(b), kcr increases
with an increase in θ values, i.e. as the negative pair component gets warmer, or
the positive one gets colder.

5. Conclusions

We have investigated the linear and nonlinear dynamics of electrostatic oscillations
of charged defects in three-component pair plasmas. The formulation covers either
doped pair-ion plasmas, or e-p-i plasmas. Pair recombination was neglected. The
modulational profile was studied, in particular stressing the role of a temperature
and/or number density asymmetry being present between the pair species.
It may be added, for rigor, that Landau damping is inevitably overseen in this

fluid model, yet could be introduced via a rigorous kinetic study. A first prediction
could be inferred from analogous studies of dust acoustic waves (formally relating
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defects/i+ /i− here to dust/i+ /e− in that case, and taking the equal mass limit).
A first look in this direction suggests that damping would be controlled by the
pair-plasma configuration and could be minimized [20].
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Appendix. Harmonic amplitude contributions

The amplitudes corresponding to the first harmonics in order ε2 are given by

n
(2)
1 = s(k2 + c1)φ

(2)
1 − 2isk

∂φ
(1)
1

∂X1
,

u
(2)
1 =

sk

ω
φ

(2)
1 − isω

∂φ
(1)
1

∂X1
φ

(2)
1 = iÃ

∂φ
(1)
1

∂X1
, (A 1)

where the choice of Ã is arbitrary and we shall take it equal to zero.
For m = 2 and l = 2, the evolution equations provide the amplitudes of the

second-order harmonics as

n
(2)
2 = C

(22)
1 φ

(1)
1

2
, u

(2)
2 = C

(22)
2 φ

(1)
1

2
and φ

(2)
2 = C

(22)
3 φ

(1)
1

2
, (A 2)

C
(22)
1 = sc2 + s(4k2 + c1)C

(22)
3 , C

(22)
2 =

ω

k

(
C

(22)
1 − (k2 + c1)2), and

C
(22)
3 = − c2

3k2 +
s(k2 + c1)2

2k2 . (A 3)

Combining the equations obtained for (m = 2, l = 0) and (m = 3, l = 0),

n
(2)
0 = C

(20)
1

∣∣φ(1)
1

∣∣2 , u
(2)
0 = C

(20)
2

∣∣φ(1)
1

∣∣2 and φ
(2)
0 = C

(20)
3

∣∣φ(1)
1

∣∣2 , (A 4)

C
(20)
1 = s

(
c1C

(20)
3 + 2c2

)
, C

(20)
2 = −2ω

k
(k2 + c1)2 + vgC

(20)
1 and

C
(20)
3 =

2c2v
2
g − s(k2 + 3c1)
1 − c1v2

g

. (A 5)

To third order in ε, the reduced equations for l = 1 yield an explicit compatibility
condition, which reduces to the NLSE (3.4). The nonlinearity coefficient Q is

Q =
ω3

k2

[
c2

(
C

(20)
3 + C

(22)
3

)
+

3
2
c3

]
− ω

2
(
C

(20)
1 + C

(22)
1

)
− k

(
C

(22)
2 + C

(20)
2

)
. (A 6)
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