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Abstract

This paper discusses spacecraft Doppler tracking, the current-generation detector technol-
ogy used in the low-frequency (∼millihertz) gravitational wave band. In the Doppler method
the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler
tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity
2∆v/c = ∆ν/ν0, where ∆ν is the Doppler shift and ν0 is the radio link carrier frequency. A
gravitational wave having strain amplitude h incident on the earth-spacecraft system causes
perturbations of order h in the time series of ∆ν/ν0. Unlike other detectors, the ∼ 1 – 10 AU
earth-spacecraft separation makes the detector large compared with millihertz-band gravita-
tional wavelengths, and thus times-of-flight of signals and radio waves through the apparatus
are important. A burst signal, for example, is time-resolved into a characteristic signature:
three discrete events in the Doppler time series. I discuss here the principles of operation of
this detector (emphasizing transfer functions of gravitational wave signals and the principal
noises to the Doppler time series), some data analysis techniques, experiments to date, and
illustrations of sensitivity and current detector performance. I conclude with a discussion of
how gravitational wave sensitivity can be improved in the low-frequency band.
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Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking 7

1 Introduction

Radio communications systems on deep space probes are used for both command and control of
the spacecraft (via transmissions from the earth to the spacecraft, the uplink) and for returning
telemetry to the ground (via transmission from the spacecraft to the earth, the downlink). These
communications systems typically serve two additional purposes: navigation (use of radio ranging
and earth-spacecraft Doppler to determine the position and velocity of the probe) and radio science
(use of measured radiowave properties – amplitude, frequency, polarization, etc. – explicitly for
mission science). Radio science can address several scientific topics including estimation of plan-
etary masses and mass distributions, measurements of planetary ionospheres/atmospheres/rings,
studies of planetary shapes and surfaces, observations of the solar wind, and tests of relativistic
gravity.

This article describes a radio science application: the use of precision Doppler tracking of
deep space probes as a detector of low-frequency1 gravitational waves (GWs). Precision Doppler
experiments were pioneered by Vessot, whose GP-A suborbital experiment measured the general
relativistic redshift in the earth’s static gravitational field [126]. In the deep space GW observations
discussed here, the earth and a distant spacecraft are free test masses with the ground-based
Doppler tracking system continuously measuring the earth-spacecraft fractional velocity (2∆v/c =
∆ν/ν0, with ∆ν being the Doppler shift and ν0 being the radio link’s carrier frequency). A
gravitational wave with strain amplitude h causes perturbations of order h in ∆ν/ν0. Unlike other
GW detectors, the ∼ 1 – 10 AU earth-spacecraft separation makes the detector large compared
with millihertz-band gravitational wavelengths. Consequently times-of-flight of the GWs and radio
waves through the apparatus are important and impose characteristic signatures of GWs in the
observed Doppler time series.

The theory of the (two-way) Doppler GW detector was built up by generalizing the response
of so-called one-way Doppler measurements. In one-way tracking, each of two test masses has its
own frequency standard. Equipment on one test mass transmits a wave referenced to its frequency
standard and a receiver on the other mass estimates the Doppler shift by comparing the frequency
of the wave it receives with the frequency of its local standard.2 In 1970, Kaufmann [74] calculated
the fractional frequency fluctuation caused by GWs on one-way Doppler in the context of proposed
earth-based GW detectors using the Mössbauer effect. In 1971, Anderson [2] commented on∼ 100 s
fluctuations in Mariner 6’s Doppler time series with the suggestion that these might be related to
resonant-bar events reported at roughly the same time. In 1974, Davies [42] surveyed the prospects
for GW detection with deep space probes. He carefully noted the sensitivity advantages of Doppler
(as contrasted with ranging), identified several competing error sources, and presented the GW
response for two-way Doppler in the special case of GWs incident normal to the earth-spacecraft
line. In 1975, Estabrook and Wahlquist [52] derived the general GW response for arbitrary angle-of-

1 Gravitational-wave bands conventionally divide based on detector technology [108, 35]: Future extremely-low-
frequency (∼ 10−18 to ∼ 10−15 Hz) search programs will be based on mapping the intensity and polarization of the
cosmic microwave background; very-low frequency observations (∼ 10−9 to ∼ 10−6 Hz) mostly use pulsar timing
observations; low-frequency (∼ 10−6 to ∼ 10−1 Hz) observations currently use Doppler tracking of spacecraft (in
the 2020’s a laser interferometer in space); high-frequency (∼ 1 to ∼ 104 Hz) observations involve ground-based
laser interferometers or resonant bar detectors. For general reviews see [91, 108, 36].

2 Although conceptually important – and used with excellent success as part of the hydrogen-maser-based
suborbital GP-A experiment [126] – one-way Doppler presents a practical problem for precision tracking of deep
space probes: Flight-qualified frequency standards for deep space are currently (2015) substantially less stable than
ground-based standards. The quality of one-way spacecraft Doppler GW measurements is severely limited by noise
in the flight frequency generator. Deep space tracking systems circumvent this by measuring two-way Doppler. In
the two-way mode the ground station transmits a radio signal referenced to a high-quality frequency standard. The
spacecraft receives this signal and phase-coherently retransmits it to the earth. The transponding process adds
noise, but at negligible levels in current observations (see Table 2), and does not require a good oscillator on the
spacecraft. The ground station then measures the two-way Doppler shift by comparing the frequency of the received
signal against the frequency of a local reference derived from the ground frequency standard.
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8 J. W. Armstrong

arrival and for a detector large compared with the GW wavelength (see Section 3) and derived the
spectral distribution of Doppler fluctuations due to an isotropic GW background. With colleagues
they considered signal and noise transfer functions, the sensitivity of Doppler tracking to GWs
(including the prospects for improving it), and the utility of simultaneous tracking of several
spacecraft [52, 128, 46, 50, 47]. In 1976, Thorne and Braginsky [109] estimated event rates for
low-frequency GW bursts and discussed the prospects for observing these bursts with spacecraft
Doppler tracking. The first systematic GW observations with deep-space Doppler tracking were
made in the 1980s; those observations – and technical developments in the following two decades
resulting in thousand-fold improved GW sensitivity – are discussed below.
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Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking 9

2 Notation, Acronyms, and Conventions

Table 1 defines some acronyms used in this article. Since it is always clear from context, I use the
same symbol for theoretical statistical quantities (e.g., underlying spectra) and estimates derived
from finite data sets (e.g., sample spectra). All power spectra are two-sided.

Table 1: Some acronyms and notation used in this paper.

Symbol Meaning

acf autocorrelation function
AMC Advanced Media Calibration system (see Section 4.3)
DOY day-of-year, i.e., January 20=DOY 020
DSN Deep Space Network, the NASA/JPL spacecraft communications and tracking

network with antennas at complexes in Australia, Spain, and the United States
DSS Deep Space Station (identifier for specific antennas in the DSN, e.g., “DSS 25”)
f Fourier frequency
FTS Frequency and Timing System, the reference for two-way Doppler tracking
Ka-band a deep space communications frequency ≃ 32 GHz

(for Cassini, “Ka1” is the downlink referenced to the X-band uplink; “Ka2” is the
downlink referenced to the Ka-band uplink)

KaT Cassini’s “Ka-band Translator” which accepts an uplink Ka-band signal and phase-
coherently translates it to a downlink Ka-band signal for retransmission to earth

LISA Laser Interferometer Space Antenna, a future low-frequency GW observatory [24]
one-way Doppler tracking where the downlink is referenced to an oscillator on the spacecraft
pdf probability density function [88]
S-band a deep space communications frequency ≃ 2.3 GHz
scintillation phase fluctuation due to wave propagation in a random medium [106, 79, 40, 99, 71]
SEP angle sun-earth-probe angle, the apparent solar elongation angle of the spacecraft
Sx(f) power spectrum of x(t), i.e., Fourier transform of ⟨x(t)x(t+ τ)⟩ [73, 89]
T duration of an observation
T2 two-way light time between earth and spacecraft
three-way Doppler tracking where the received downlink is coherently referenced to an uplink

signal from another station
two-way Doppler tracking where the downlink is coherently referenced to the uplink signal
X-band a deep space communications frequency ≃ 8.4 GHz
x * y convolution of time series x(t) and y(t) [34]
y(t) generic time series of fractional frequency, ∆ν/ν0 [23]

(y2(t): time series of two-way Doppler fractional frequency)
(y3(t): time series of three-way Doppler fractional frequency)

ν radio frequency
σy(τ) Allan deviation, fractional frequency stability at integration time τ [23]
θ angle between GW propagation direction and earth-spacecraft vector; µ = cos(θ)
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10 J. W. Armstrong

3 Gravitational Wave Signal Response

The theory of spacecraft Doppler tracking as a GW detector was developed by Estabrook and
Wahlquist [52]. Briefly, consider the earth and a spacecraft as separated test masses, at rest with
respect to one another and separated by distance L = cT2/2, where T2 is the two-way light time
(light time from the earth to the spacecraft and back). A ground station continuously transmits
a nearly monochromatic microwave signal (center frequency ν0) to the spacecraft. This signal is
coherently transponded by the distant spacecraft and sent back to the earth. The ground station
compares the frequency of the signal which it is transmitting with the frequency of the signal it
is receiving. The two-way fractional frequency fluctuation is y2(t) = [ν(t − T2) − ν(t)]/ν0, where
ν(t) is the frequency of the actual transmitted signal. In this way the Doppler tracking system
measures the relative dimensionless velocity of the earth and spacecraft: 2∆v/c = ∆ν/ν0. In an
idealized system (no noise, no systematic effects, no gravitational radiation), this time series would
be zero.

A GW incident on this system causes perturbations in the Doppler frequency time series. The
gravitational-wave response ygw2 (t) of a two-way Doppler system excited by a transverse, traceless

plane gravitational wave [84] having unit wavevector k̂ is [52]

ygw2 (t) =
µ− 1

2
Ψ̄(t)− µ Ψ̄

(

t−
1 + µ

2
T2

)

+
1 + µ

2
Ψ̄(t− T2), (1)

where µ = k̂ · n̂, n̂ is a unit vector from the earth to the spacecraft, Ψ̄(t) = (n̂ ·h(t) · n̂)/(1−(k̂ · n̂)2),
and h(t) is the first order metric perturbation at the earth. (Here Ψ̄ is distinguished from the Ψ
used to analyze the LISA detector [16, 51, 119, 120]: Ψ = (1/2)Ψ̄.) The GW amplitude at the

earth is h(t) = [h+(t) e+ + h×(t) e×], where the 3-tensors e+ and e× are transverse to k̂ and,

with respect to an orthonormal (̂i, ĵ, k̂) propagation frame, have components

e+ =





1 0 0
0 −1 0
0 0 0



 , e× =





0 1 0
1 0 0
0 0 0



 . (2)

(If general relativity and a transverse traceless perturbation are not assumed, the amplitude of the
three-pulse response for a general tensor metric perturbation is given in [57].)

The Doppler responds to a projection of the time-dependent wave metric, in general producing
a “three-pulse” response to a pulse of incident gravitational radiation: one event due to buffeting
of the earth by the GW, one event due to buffeting of the spacecraft by the GW, and a third event
in which the original earth buffeting is transponded a two-way light time later. The amplitudes
and locations of the pulses depend on the arrival direction of the GW with respect to the earth-
spacecraft line, the two-way light time, and the wave’s polarization state. From Eq. (1) the sum
of the three pulses is zero. Since the detector response depends both on the spacecraft-earth-
GW geometry (T2, µ) and the wave properties (Fourier frequency content, polarization state) its
distinctive three-pulse signature plays an important role in distinguishing candidate signals from
competing noises. Figure 1 shows this three pulse response in schematic form.

In the special case of the long-wavelength limit (LWL, where the Fourier frequencies of the
GW signal are ≪ 1/T2), the gravitational wave can be expanded in terms of spatial derivatives.
Equation (1) then gives the LWL response for two-way Doppler tracking:

ygw,LWL
2 (t) →

T2

2
(µ2 − 1)Ψ̄

′

(t). (3)

In this limit the three-pulses overlap in the tracking record causing partial cancellation, loss of
signature, and loss of signal response. In the opposite limit, wave periods ≪ T2, the full three
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Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking 11

Figure 1: Schematic response of two-way Doppler tracking to a GW. The Doppler exhibits three pulses
having amplitudes and relative locations which depend on the GW arrival direction, the two-way light
time, and the wave’s strain amplitude and polarization state. The sum of the three pulses is zero, so the
pulses overlap and partially cancel when the characteristic time of the GW pulse is comparable to or larger
than the light time between the earth and spacecraft.

pulse character [Eq. (1)] is expressed in the Doppler time series. Figure 2 shows the spectral
response of a Doppler tracking system to sinusoidal GW signals from two specific directions and
the average response from sources distributed isotropically on the celestial sphere. Because Figure 2
plots the transfer function to the spectral power, the dependence at low-frequency is ∝ f2. The
algorithm used to average over GW polarization states in Figure 2 is described in [18, 16]. A related
discussion (how to infer GW amplitudes, h – or limits to h – from measurements of y2 when the
signal direction and polarization state are unknown) is in [18]. The LWL of the three-pulse GW
response has been used to analyze the GW response of ground-based Michelson gravitational wave
interferometers [47]. The three-pulse response can also be constructed using the formalism of
time-delay interferometry, the method LISA will use to cancel laser phase noise in an unequal-arm
spaceborne GW detector (see Section 8). The formalism has also been applied to analysis of other
spaceborne detector geometries, for example the candidate linear array, SyZyGy [49].

In a practical GW observation spanning 20 – 40 days, the earth-spacecraft distance and the
orientation of the earth-spacecraft vector on the celestial sphere change (typically slowly) with
time. This modifies the idealized GW response (it is not strictly time-shift invariant) and has
practical consequences in searches for long-lived signals (see Section 5.7).

To summarize the Doppler signal response:

1. GW signals are observed in the Doppler tracking time series through the three pulse response
[Eq. (1)].

2. The response depends on the two-way light time T2, the cosine of the angle between the GW
wavevector and unit vector from the earth to the spacecraft, and GW properties (Fourier
content and polarization state) (Eq. (1) and the expression for Ψ̄(t)).

3. The GW response is not in general time-shift invariant if T2 or µ change during the time of
observation.

4. The GW response is a high-pass filter: In the long-wavelength limit (frequencies ≪ 1/T2),
the response is attenuated due to pulse overlap and cancellation (see Figure 2).
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12 J. W. Armstrong

Figure 2: Polarization-averaged power response of the Doppler system to a gravitational wave signal as a
function of Fourier frequency. Earth-spacecraft geometry for Cassini’s gravity wave observations in 2000 –
2001 has been used. Blue: response from the direction of Virgo (µ ≃ 0.104). Black: response to randomly
polarized sources distributed isotropically on the celestial sphere. Red: response from the direction of
the galactic center (µ ≃ 0.9932). Note that in the case of waves from the galactic center, the three-pulse
response function ([52] and Eq. (1)) for the Cassini geometry is dominated by two pulses separated by only
about 0.00034T2 ≃ 20 s. This gives rise to the strong low-frequency suppression and the approximate sin2

modulation for the Cassini GWE1 geometry and GWs from the galactic center.
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Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking 13

4 Apparatus and Principal Noise Sources

The detector consists of the earth and a spacecraft as separated test masses, electromagnetically-
tracked using a precision Doppler system. The ground stations for the Doppler system are the
antennas of the NASA/JPL Deep Space Network (DSN). Figure 3 shows DSS 25, the high-precision
tracking station used in the Cassini gravitational-wave observations and other Cassini radio science
investigations.

Figure 3: DSS 25, a 34-m beam-waveguide antenna, shown here in the stowed position. DSS 25 is one
antenna in the NASA/JPL Goldstone Deep Space Communications Complex near Barstow, CA, U.S.A. It
has special instrumentation (Ka-band up- and downlink and advanced tropospheric calibration capability)
which enable particularly good quality Doppler observations.

Figure 4 shows an example of the other part of the Doppler system. This is the Cassini
spacecraft during ground tests. (Reference [37] gives a popular discussion of the Cassini mission,
the spacecraft, and its instrumentation.) The Doppler system is shown functionally in Figure 5:
A precision frequency standard from the Frequency and Timing Subsystem (FTS) provides the
frequency reference to both the transmitter and receiver chains. On the transmitter side, the
so-called exciter produces a near-monochromatic signal, referenced to the FTS signal but at the
desired transmit frequency. This is amplified by the transmitter (with a closed-loop feedback system
around the power amplifier to ensure frequency stability is not degraded) and routed via waveguide
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to the transmitter feedhorn in the basement of the antenna. (To correct for aberration the Ka-
band transmit feed horn is on a table which is articulated in the horizontal plane. This allows the
Ka-band transmitted beam to be pointed correctly relative to the received beam. The X-band feed
is common to both the transmit and receive chains.) In a beam waveguide antenna the transmitted
beam is reflected off of six mirrors within the antenna up to the subreflector (near the prime focus),
then back to the main dish and out to the spacecraft (passing first through the troposphere,
ionosphere, and solar wind). When the signal is received at the spacecraft it is amplified and
phase-coherently re-transmitted to the earth. The received beam bounces off the main reflector
to the subreflector and then, via mirrors and dichroic plates, to the receiver feed horn in the
antenna basement. The received signal is downconverted to an intermediate frequency where it is
digitized. The digital samples are processed to tune out the (very predictable) gross Doppler shift,
and reduce the bandwidth of the samples. For GW operations, the bandwidth of the pre-detection
data is typically reduced to 1 kHz, and those data are recorded to disk along with the tuning
information. The phase of the signal is detected in software and, using the tuning information, the
received sky frequency is reconstructed. This and the known frequency of the transmitted signal
are used to compute the Doppler time series. Removal of the orbital signature and correction for
charged particle and tropospheric scintillation gives Doppler residuals, which are used in subsequent
processing steps to search for GWs (or for other radio science objectives [29, 131, 78, 22]).

Figure 4: The Cassini spacecraft during pre-launch testing. Reference [37] gives a popular discussion of
the Cassini mission, the spacecraft, and its instrumentation (photograph courtesy NASA/JPL-Caltech).

Of course this cannot be done without introducing noise. The following Sections 4.1 – 4.11
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Figure 5: Conceptual sketch of signal flow for two-way Cassini observations, with emphasis on showing
which links are affected by specific noise sources. For example, spacecraft buffeting and the frequency and
timing subsystem (FTS) are common to all Doppler links. The Ka-band translator (KaT) affects only
the Ka2 downlink, while the conventional transponder (KEX) affects both the X-downlink and the Ka1
downlink, etc.

summarize the principal noises, their spectra or Allan deviations3, and their transfer functions to
the two-way Doppler time series.

4.1 Frequency standard noise

In two-way Doppler coherence is maintained by the frequency standard to which the up- and down-
links are referenced. Thus noise introduced by the frequency standard is of particular importance.
Figure 6 shows fractional frequency stability as a function of integration time for several frequency
standard technologies. In Cassini-era observations noise in the frequency and timing system (FTS)
contributed less than 10−15 at 1000 s and, although fundamental, is not the leading noise source at
the current level of sensitivity. (FTS stability required for future Doppler experiments is discussed
in Section 7.)

FTS noise enters the two-way Doppler time series via the transfer function [52, 46, 125]
yFTS(t) * [δ(t) − δ(t − T2)]. The transfer functions of this and other principal noises are illus-

3 Noises are characterized in the time domain by Allan deviation, σy(τ), or in the frequency domain by the power
spectra of fractional frequency fluctuations, Sy(f). These are related by

σ2
y
(τ) = 4

∫

∞

0

Sy(f) sin4(πτf)

(πτf)2
df,

where Sy(f) is the two-sided spectrum [23].
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Figure 6: Allan deviation (square root of Allan variance [23]) as a function of integration time for
several frequency and timing technologies in the Cassini-era. The technology used in precision Doppler
observations for GW searches with Cassini has σy(1000 s) less than 10−15. (Figure courtesy of Lute Maleki;
see also references [10, 11, 22].)

trated schematically in Figure 7. (An example of the FTS transfer function using real data is
shown in Figure 8. Although the stability of the ground frequency standard is excellent, for a few
days at the start of the first Cassini Gravitational Wave Experiment there was an intermittent
problem with an FTS distribution amplifier at the Goldstone complex. The effect was to introduce
isolated, fairly large, and very short glitches into the frequency reference for both the transmitter
and the receiver. This produced characteristic anticorrelated glitches, separated by a two-way light
time, in both the X- and Ka-band two-way Doppler time series; see Figure 8)

4.2 Plasma scintillation noise

The radio waves of the Doppler system pass through three irregular media: the troposphere, the
ionosphere, and the solar wind.4 Irregularities in the solar wind and ionospheric plasmas cause
irregularities in the refractive index. The refractive index fluctuations δn for a cold unmagnetized
plasma are −λ2reδne/(2π) and the phase perturbation is −

∫

λreδne dz, where λ is the wavelength,
re is the classical electron radius, and δne is the electron density fluctuation along the line of sight
z. These phase perturbations mimic time-varying distance changes (thus velocity errors) and so are
a noise source in precision Doppler experiments. The transfer function of plasma phase scintillation
to two-way Doppler is shown schematically in Figure 7. A solar wind plasma blob at a distance
x from the earth (producing a one-way fractional frequency fluctuation time series ysw) and an
ionospheric plasma blob at negligible light time from the ground station (with one-way time series

4 There is a large literature on wave propagation through random media. Excellent general references for
radiowave propagation observations include [106, 79, 40, 99, 71].
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Figure 7: Schematic transfer functions of noises to the two-way Doppler link, adapted from [46, 125].
For each type of disturbance a separate diagram (space vertically, time horizontally) is shown. Radio
waves propagate continuously up to and down from the spacecraft; some of these are represented as the
dashed lines to illustrate the indicated Doppler frequency perturbations. For example, a momentary glitch
in the FTS affects the frequency reference for both the receiver and the transmitter. This shows up as
an immediate effect in the received Doppler (difference between the transmitted and received frequency).
Because the glitch also affects the transmitted frequency, it shows up again – but with the opposite sense
– in the Doppler after a two-way light time. These various noise responses contrast with the three-pulse
GW response, shown in Figure 1; these differences are exploited in the signal processing.

yion) produce two-way time series ysw(t) * [δ(t) + δ(t − T2 + 2x/c)] and yion * [δ(t) + δ(t − T2)],
respectively.

Plasma scintillation is mostly a statistical contribution to variability in the two-way Doppler
time series. As such it can be seen in the autocorrelation function (acf) of the Doppler time series.
Examples of S-band correlation functions which peak at τ ≃ T2 (presumably ionospheric scintil-
lation) and τ < T2 (localized solar wind scintillation5) are shown in [9]. Occasionally, however,
large time-localized plasma events can be seen in the raw time series. Figure 9 shows an example
in Cassini data taken at DSS 25 on 2003 DOY 324. The top panel shows the time series of the
two-way X-band, with two discrete events observed near 10:20 and 10:40 ground received time,
echoed with positive correlation at about the two way light time. The middle panel is the time
series of X-(880/3344) Ka1, which isolates the downlink plasma (and cancels nondispersive pro-
cesses such as FTS noise, tropospheric noise, antenna mechanical noise, and gravitational waves;
see Section 4.6). This indicates that the large events observed in the upper panel are due to plasma
scintillation. The lower panel shows the acf of the two-way Doppler time series, ⟨y2(t) y2(t + τ)⟩.
The arrow marks the two-way light time. The acf peaks slightly earlier than T2, indicating that
the features observed in the other panels are caused by near-earth plasma.

Figure 10 summarizes the magnitude of the effect of plasma scintillation, tropospheric scintil-
lation, and antenna mechanical noise (the last two discussed below) on the stability of a Doppler
tracking system [46, 9, 10, 11, 12, 22]. Shown in red are data and model curves for plasma phase
scintillation: Circles are S-band (frequency ≃ 2.3 GHz) observations taken in the ecliptic using the
Viking orbiters spacecraft taken over a wide range of sun-earth-spacecraft (SEP) angles [131, 21];
crosses are X-band (frequency ≃ 8.4 GHz) taken near the antisolar direction using the Cassini
spacecraft [19, 22]. Clearly plasma scintillation minimizes for observations near the antisolar di-

5 A particularly well-defined example of a spatially-localized solar wind scattering region when Cassini’s line-of-
sight was close to the sun, thus τ substantially smaller than T2, is shown in [98]
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Figure 8: Time series of Cassini two-way Ka-band frequency residuals from a DSS 25 track on
2001 DOY 350. The data are sampled at 0.2 s after being detected with a time constant ≃ 1 s. At
this time resolution, the visual appearance of the time series is dominated by high-frequency noise. Super-
imposed on this noise are two systematic glitches which were traced to an intermittently-faulty distribution
amplifier in the signal chain providing frequency references to the transmitter and receiver. The distri-
bution amplifier fault acts like an FTS glitch and, in the two-way Doppler, appears twice in the time
series anticorrelated at the two-way light time (Figure 7). The glitches in the figure are paired with the
indicated two-way light time separation T2 ≃ 5737.7 s. The lower panels show blowups of the pair; the
glitch waveforms are unresolved (shapes set by the impulse response of the software phase detector) but
clearly show the characteristic FTS anticorrelation.

rection. The model curves drawn through the data are described in [21]. (Ionospheric phase
scintillation is, of course, included in the data presented in Figure 10. Based on very limited
multiple-station observations [21] and on transfer function studies [9], high-elevation-angle plasma
noise appears dominated by solar wind rather than ionospheric phase scintillation. In any case,
the effect of any plasma scintillation effect can be made small by observing at high enough radio
frequencies [128, 46, 21] or by using multi-link observations [65, 41, 27, 122, 121, 29] to solve-for
and remove the plasma scintillation effect.)

4.3 Tropospheric scintillation noise

Phase fluctuations also arise from propagation through the neutral atmosphere. Here the so-called
dry component of the troposphere is large but fairly steady with the wet component (water vapor
fluctuations) being smaller but much more variable [20, 95, 94, 96, 76]. Unlike plasma phase scin-
tillation, propagation in the troposphere is effectively non-dispersive at microwave frequencies [71].
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Figure 9: Doppler time series for DSS 25 Cassini track on 2003 DOY 324. Upper panel: time series of
the two-way X-band, showing two discrete events at about 10:20 and 10:40 ground received time, echoed
about a two way light time, T2, later. Middle panel: time series of X-(880/3344) Ka1, which isolates the
downlink plasma (and cancels nondispersive noises and signals: FTS, troposphere, antenna mechanical
noise, and GWs). This shows that the events observed in the upper panel are due to plasma scintillation.
Lower panel: acf of the two-way Doppler time series. The arrow marks the two-way light time. The lower
right panel is a blow-up of the acf near the two-way light time (indicated by the vertical line). The acf
peaks at lags slightly smaller than T2 ≃ 8021.5 s, indicating that the features observed in the upper panels
are caused by near-earth plasma.
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Figure 10: Summary of propagation and antenna mechanical noises as functions of sun-earth-spacecraft
angle (updated from [22], reproduced by permission of the American Geophysical Union; see also [131, 21,
65, 9, 10, 11, 122, 121]). Left axis: spectral density of fractional frequency fluctuations at f = 0.001 Hz.
Right axis: fractional frequency fluctuation (Allan deviation σy) at τ = 1000 s. S-band ≃ 2.3 GHz; X-
band ≃ 8.4 GHz; Ka-band ≃ 32 GHz. Red curves are for plasma scintillation at the indicated radio
frequencies (circles are S-band, more precisely: S-(3/11)X differential frequency fluctuations, data from
Viking [131, 21]); crosses are X-band (more precisely X-(880/3344) Ka1 differential frequency fluctuations,
from Cassini [122, 11, 19, 29, 121]). Blue region shows typical uncalibrated tropospheric scintillation levels
at a moderate-altitude dry site such as Goldstone, CA, or the National Radio Astronomy Observatory’s
Very Large Array [20, 75, 76]. Green arrows show upper (for antennas in the DSN “high efficiency” sub-
network, operated under operational but benign conditions) and lower (for DSS 25, near solar opposition)
limits to antenna mechanical noise [9, 19, 22].
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Figure 10 shows the magnitude of the effect: The blue cross-hatched region is the approximate
level of uncalibrated tropospheric scintillation at NASA’s Goldstone Deep Space Communications
Complex [75]. Roughly, tropospheric scintillation is worse in the summer daytime and better on
winter nights. Usually its raw magnitude is large compared with, e.g., antenna mechanical noise
(discussed below.)

Figure 11: Two water-vapor-radiometer-based Advanced Media Calibration units located near DSS 25,
shown here in November 2001. These are used to calibrate tropospheric phase scintillation for the Cassini
Gravitational Wave Experiment and other Cassini precision Doppler tracking observations. (Mark Gatti,
project manager for the Cassini Radio Science ground system upgrades, is in the foreground.)

Experiments by George Resch and colleagues [95, 94, 96] were influential in showing that suit-
ably boresighted water vapor radiometer measurements could calibrate and remove much of the
tropospheric scintillation noise in both radioastronomical and precision spacecraft Doppler tracking
observations. A water-vapor-radiometer-based Advanced Media Calibration (AMC) system (Fig-
ure 11) was developed and installed near DSS 25 to provide tropospheric corrections for Cassini
radio science observations. The AMC system [94, 96, 76] consists of two identical units placed close
enough to each other and to DSS 25 that the coherence of the tropospheric signal on the time scales
of interest was high in all three time series (see [10, 11] for examples of the squared-coherence as a
function of Fourier frequency). The AMC calibrations were used successfully in both the Cassini
gravitational-wave observations [19] and in relativity and plasma experiments taken near solar
conjunction [29, 122, 121, 22]. The transfer function of tropospheric scintillation to the two-way
Doppler is ytropo * [δ(t)+ δ(t−T2)]. Examples of the cross correlation function of Doppler and the
AMC-estimated tropospheric scintillation are shown in [10, 11].
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4.4 Antenna mechanical noise

Figure 7 shows schematically how mechanical noise in the antenna enters the Doppler. If, for
example, the antenna’s phase center suddenly moves toward the spacecraft, the received signal is
blue shifted, causing an immediate effect in the Doppler. The motion also causes the transmitted
signal to be blue shifted; this signal is echoed in the time series a two-way light time later. Early
tests by Otoshi and colleagues [86, 87] indicated that antenna mechanical stability would contribute
∼ 10−15 for 1000 s integrations on a 34-m-class antenna.6

Examples of the temporal autocorrelation of a typical Cassini DSS 25 Ka-band up- and downlink
tracks taken during the first Cassini GWE campaign in 2001 are shown in [19, 11]. Positive
correlation at the two-way light time is characteristic of low-level residual antenna mechanical
noise and is observed (with varying level of correlation at τ = T2) in all the Cassini DSS 25 GW
tracks. Antenna mechanical noise in this band (≃ 10−4 – 10−1 Hz) is thought to be caused by
high-spatial-frequency irregularities in the azimuth ring on which the antenna rolls, wind loading
of the main dish, and uncorrected dish sag as the elevation angle changes. In addition to this low-
level statistical antenna mechanical noise, discrete events positively correlated at the two-way light
time and large enough to be visible by eye in the time series are (rarely) observed in operational
tracks [11]. Figure 12 shows an example (Cassini tracked by DSS 25 on 2001 DOY 330). The
upper panel shows two-way Ka-band Doppler residuals with approximately 10 s time resolution.
The middle panel shows the time series of X-(880/3344) Ka1, i.e., essentially the X-band plasma
on the downlink, indicating the low level of plasma noise on this day. The AMC data (not plotted
here) similarly show low tropospheric noise. The event at about 07:30 UT is echoed about a two-
way light time later, and may be due to gusting wind on this day (another candidate pair is at
about 09:45 UT and a two-way light time later). The lower panel shows the autocorrelation of the
two-way Ka-band data, peaking at T2.

At lower Fourier frequencies (less than about 10−4 Hz) the apparatus operates in the LWL and
the signature of antenna mechanical noise is lost [19]. At these low frequencies aggregate antenna
mechanical noise is probably composed both of approximately random processes (e.g., atmospheric
pressure loading of the station [81, 123, 38], differential thermal expansion of the structure [100])
and of low-level quasi-deterministic processes (e.g., low-spatial-frequency imperfections in the an-
tenna’s azimuth track, systematic errors in subreflector focusing, etc.). Thermal processes (e.g.,
response of the structure to ≃ 10 K temperature variations during a track) can plausibly produce
only several millimeters of radio path length variation. The subreflector is continuously reposi-
tioned to approximately compensate for elevation-angle dependent antenna distortions; systematic
errors in this focusing at the several millimeter level over the course of a track are not unreasonable.
Additionally, there are systematic low- and high-spatial-frequency height variations, ≃ 6 mm peak-
to-peak, in the azimuth track which will cause path-length variability. Independently determined
VLBI error budgets (omitting components due to radio source structure, uncalibrated troposphere,
and charged particle scintillation which are not common with Cassini-class Doppler tracking obser-
vations) are believed dominated by station position and slowly-varying antenna mechanical noises.
These account for ≃ 1.3 cm rms path delay [104], occur on time scales ≃ 105 – 106 s, and correspond
to fractional frequency fluctuations ≃ 10−15 or smaller.

4.5 Ground electronics noise

The DSN ground electronics have been carefully designed to minimize phase/frequency noise and
produce only a small contribution to the overall error budget. (Here I distinguish this noise from the

6 The mechanical stability of the DSN’s 70-m antennas has not been systematically studied. A few observations
done with Cassini in 2003 suggest mechanical noise of the 70-m antennas is substantially larger than for the 34-m
beam-waveguide antennas.
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Figure 12: Doppler time series for DSS 25 Cassini track on 2001 DOY 330, showing an antenna mechanical
noise event. Upper panel: time series of the two-way Ka-band, with approximately 10 s time resolution.
The middle panel shows the time series of X-(880/3344) Ka1, i.e., essentially the X-band plasma on
the downlink, indicating the low level of plasma noise on this day. The AMC data similarly show low
tropospheric noise. The event at about 07:30 is echoed about a two-way light time later, and may be due
to gusting wind on this day (another candidate pair is at about 09:45 and a two-way light time later). The
lower left panel shows the autocorrelation of the two-way Ka-band data, peaking at T2 ≃ 5717.9 s. The
lower right panel is a blow-up of the acf near the lag of a two-way light time (indicated by the vertical
line).
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white phase noise due to finite signal-to-noise ratio; see Section 4.7). In a controlled test at DSS 25
(antenna stationary, FTS common to the transmit and received chains and thus cancelled in this
zero two-way light time test) the sum of the noises from the exciter, transmitter, downconversion
electronics, and receiver was measured (Figure 5). The power spectrum of those test data is shown
in [1]; the corresponding Allan deviation at τ = 1000 s is 2× 10−16.

4.6 Spacecraft transponder noise

Transponders accept an input carrier signal and produce an output signal at a different frequency.
The process is phase-coherent; that is, for every N integer cycles of the input there are M integer
cycles of the output (with M/N being the transponding ratio). When this condition is achieved,
the transponder is operating normally and produces an output that is “locked” to the input signal.
The Cassini spacecraft has two transponders7. The standard flight transponder (“KEX”) accepts
the X-band uplink and produces two phase-coherent outputs, one at fX · 880/749 (= X-band
downlink frequency) and another at fX · 3344/749 (= Ka1 downlink frequency), where fX is the
frequency of the X-band uplink signal observed at the spacecraft. These signals are amplified,
routed to the spacecraft high-gain antenna, and transmitted to the earth. Another flight unit,
the Ka-band Translator (“KaT”), accepts a Ka-band uplink signal and produces a phase coherent
signal with frequency fk · 14/15 (= Ka2 downlink frequency), where fk is the Ka-band signal
frequency observed at the spacecraft.

Pre-launch test data of transponders similar in design to Cassini’s KEX showed negligible (i.e.,
< 10−15) frequency noise. Prelaunch tests of the KaT similarly showed negligible frequency noise
(≃ 10−16 at τ = 1000 s), provided the received Ka-band uplink signal was relatively strong (greater
than about −127 dBm, see [1, 19, 78, 22]) at the input to the KaT.

Appropriate linear combinations of the frequency time series of the three downlinks can be used
to estimate and remove (at the Fourier frequencies of interest) downlink and round-trip plasma
noise [68, 65, 69, 70] in GW observations. For example, the downlink plasma noise time series
can be determined by forming fX − (880/3344)fKa1, which is independent of FTS noise, antenna
mechanical noise, spacecraft buffeting, and GWs (since these are all nondispersive.) These plasma
corrections were also used with good success by Bertotti, Iess, and Tortora [29] in a precision test
of relativistic gravity involving Cassini tracking very close to the sun.

4.7 Thermal noise in the ground and spacecraft receivers

Finite signal-to-noise ratios in the up- and downlinks cause white phase noise. For observations to
date, the signal-to-noise ratio (SNR) of the downlink dominates. The one-sided spectral density of
phase fluctuations due to finite SNR, Sφ, is ≃ 1/(SNR in 1 Hz band) rad2 Hz−1. The associated
Allan deviation [23] is ≃

√

3BSφ/(2πν0τ), where B is the bandwidth of the detection system and
assuming 2πBτ ≫ 1. For Cassini gravitational wave observations, B is typically ≃ 1 Hz and the
typical X- or Ka-band SNR in a 1 Hz bandwidth can be 45 dB or more. At τ = 1000 s finite link
SNR contributes negligibly to the overall noise budget in current generation Doppler experiments
(see Table 2).

4.8 Spacecraft unmodeled motion

Unmodeled motion of the spacecraft enters directly into the two-way Doppler time series (see
Figure 7). The lack of a time-domain signature makes it difficult to isolate spacecraft motion
using the Doppler data only. Such unmodeled motion can arise in principle from a variety of

7 In principle, Cassini has one transponder and one translator. The distinction is that a transponder performs
functions in addition to phase-coherent generation of the downlink signal from the uplink signal.

Living Reviews in Relativity

DOI 10.12942/lrr-2006-1

http://dx.doi.org/10.12942/lrr-2006-1


Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking 25

causes: fluctuations in the solar wind hitting the spacecraft, fluctuations in solar radiation pressure,
physical articulation of spacecraft parts, leaking thrusters, sloshing of fuel in the spacecraft’s tanks,
etc. Solar wind and solar radiation pressure fluctuations are computed to be far too small to affect
observations at current levels of sensitivity [100]. Articulation of instruments is restricted during
quiet spacecraft periods where good Doppler sensitivity is required. Leaking thrusters and fuel
sloshing are also thought to be small effects at current generation Doppler sensitivity [100].

In one case the as-flown spacecraft motion noise was independently determined. Using teleme-
try from Cassini’s reaction wheel assembly, Won, Hanover, Belenky, and Lee [129] inferred the time
series of antenna phase center motion projected onto the earth-spacecraft line (i.e., the sensitive
axis for the Doppler system). This test was done when Cassini was in semi-quiet cruise (thrusters
off but with physical articulation of elements of one science instrument, the Cassini Plasma Spec-
trometer, at ≃ 0.0025 Hz) for 40 hours during 2001 DOY 152-153. The resulting Allan deviation
for unmodeled spacecraft motion at τ = 1000 s was computed to be 2.3× 10−16. Figure 13 shows
the spectrum of velocity noise observed in that test. Unmodeled motion of the spacecraft – at
least the Cassini spacecraft – is thus negligible compared with other noises at the sensitivity of
current-generation Doppler experiments (see Figure 10 and Table 2).

4.9 Numerical noise in orbit removal

Removal of the systematic variation in the Doppler time series due to the known motion of the
earth and spacecraft can be done using the JPL/NASA Orbit Determination Program (ODP; [85])
or its successor the Mission-analysis, Operations, and Navigation Tool Environment (MONTE).
Subtraction of the computed systematic Doppler frequency from the observed time series then
gives residuals which can be searched for gravitational waves. The ODP computes Doppler by
differencing the computed range to the spacecraft at two separated times and dividing by the time
difference. Because of finite computer word length neither range nor time is expressed with perfect
accuracy. These, coupled with finite-accuracy computer arithmetic, give rise to numerical noise
which propagates to the residuals. Because of the granularity in time and distance the magnitude
of numerical noise depends on time past 12:00 UT January 1, 2000 (the ODP measures time
from J2000), distance and relative radial velocity of the spacecraft [133] and is small compared
with other noises for the early 2000s Cassini gravitational-wave observations (thus not included in
Table 2). However, it is clear in Cassini Doppler data taken later in the Saturn tour [133, 67] and
likely relevant for future, e.g., Juno and BepiColombo, observations.

4.10 Aggregate spectrum

Figure 14 shows the two-sided power spectrum of two-way fractional Doppler frequency, Sy2(f),
computed from data taken at DSS 25 during the 2001 – 2002 solar opposition (from [19]). It is
derived after using the multi-link plasma corrections and the AMC tropospheric calibrations. The
intrinsic frequency resolution of the spectrum is about 3× 10−7 Hz. The spectrum in Figure 14 is
smoothed to a resolution bandwidth of 3× 10−6 Hz to reduce estimation error. Approximate 95%
confidence limits for the logarithm of an individual smoothed spectral estimate are indicated [73,
89].

The low-frequency part of the spectrum in Figure 14 consists of a continuum plus spectral lines
between ≃ 10−5 – 10−4 Hz. The lines in the unsmoothed spectrum are near the resolution limit of
the 40 day observation; their apparent width in Figure 14 is due to the spectral smoothing used to
reduced estimation error. The lowest frequency line is near one cycle/day; the other lines are near
harmonics of one cycle/day. Because of the multi-link plasma correction, all random processes
contributing to this spectrum are non-dispersive. At frequencies greater than about 1/T2 there
is clear, approximately cosinusoidal, modulation. This is characteristic of positive correlation in
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Figure 13: Spectrum of Cassini radial velocity fluctuations, observed in a 40-hour cruise test during
2001 DOY 152-153 [129], reproduced here with permission. The Allan deviation associated with this
spacecraft buffeting noise [52, 46] is 2.3× 10−16 at an integration time of 1000 s.

the time series at lag τ = T2, i.e., either antenna mechanical noise or residual tropospheric noise.
The level is too large to be dominated by residual tropospheric scintillation, however, and so is
interpreted as mechanical noise. Many minima of the mechanical noise transfer function – at odd
multiples of 1/(2T2) – are easily visible in Figure 14. The spectrum appears to continue to be
dominated by mechanical noise up to ≃ 0.01 Hz, with the signature of the transfer function being,
however, difficult to see on this log plot (and also blurred at high frequencies since T2 changed
with time by about 3% over the course of the 40 day observation.)

4.11 Summary of noise levels and transfer functions

To summarize the noise model: The principal noises are frequency and timing noise (FTS), plasma
scintillation (solar wind and ionosphere), spacecraft electronics, unmodeled spacecraft motion,
unmodeled ground antenna motion, tropospheric scintillation, ground electronics noise, thermal
noise in the receiver, and systematic effects. The magnitudes of these noises in Cassini-era (2001 –
2008) observations are given in Table 2. Before any corrections, these noises enter the two-way
Doppler as

ynoise2 (t) = yFTS(t) * [δ(t)− δ(t− T2)] + ysw(t) * [δ(t) + δ(t− T2 + 2x/c)] +

yion * [δ(t) + δ(t− T2)] + ys/c elect(t) * δ(t− T2/2) + ys/c motion * δ(t− T2/2) +
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Figure 14: Power spectrum of the two-way fractional frequency fluctuations (calibrated for plasma and
troposphere) for 2001 – 2002 Cassini solar opposition observations (adapted from [19]). The spectrum has
been smoothed from the intrinsic resolution of the observations to a bandwidth of ≃ 3 µHz to reduce
estimation error. Representative 95% confidence limits are indicated.

yant(t) * [δ(t) + δ(t− T2)] + ytropo(t) * [δ(t) + δ(t− T2)] + yground elect(t) +

yrcvr + ysystematic(t), (4)

where x is the effective distance of the solar wind perturbation from the earth. After multi-link
plasma calibration, phase scintillation due to charged particles is effectively removed. Water-vapor-
radiometer-based tropospheric calibration removes ≃ 90% of the low-frequency fluctuations due to
the neutral atmosphere, so that the calibrated time series y2 is approximately

y2(t) ≃ ygw2 + yFTS(t) * [δ(t)− δ(t− T2)] + ys/c elect(t) * δ(t− T2/2) +

ys/c motion * δ(t− T2/2) + yant(t) * [δ(t) + δ(t− T2)] + ytropo(t)/10 * [δ(t) + δ(t− T2)] +

yground elect(t) + yrcvr + ysystematic(t)

= ygw2 + yother2 (t), (5)

where yother2 (t) is all the non-GW (noise plus systematics) contributions to the two-way Doppler
variability.

Table 2 summarizes the noise model and the associated Allan deviation at τ = 1000 s for the
principal noises (models of the spectra of the individual noises are given in [111]). Figure 5 shows,
highly schematically, the signal flow. This sketch, the GW transfer function (see Eq. (1)), and the
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noise transfer functions (see, e.g., Figure 7) are used in discussions of sensitivity, signal processing,
and for qualifying/disqualifying candidate GW events.

Table 2: Noise sources and contributions (expressed as Allan deviation [23] at 1000 s integration) in
Cassini-era precision Doppler tracking GW observations. This table is adapted from [1, 22]. SEP: sun-
earth-probe (solar elongation) angle; SNR: signal-to-noise ratio of the downlink. Models of the spectra of
the individual noises are given in [111].

Noise source σy [1000 s] Comment

Frequency standard ≃ 8× 10−16 fundamental noise source [1, 22]

Antenna mechanical ≃ 2× 10−15 DSS 25 (34-m antenna) under fa-
vorable conditions [19]

Ground electronics ≃ 2× 10−16 measured in controlled test,
DSS 25 [1]

Plasma phase scintillation < 10−15, for Ka-band and
SEP > 150∘

σy depends on SEP; dispersive;
scales as square of radio wave-
length; see Figure 10

Stochastic spacecraft motion ≃ 2× 10−16 Cassini in quiet cruise [129, 130];
see Figure 13

Receiver thermal noise few ×10−16 depends on link SNR and detec-
tor bandwidth [23]

Spacecraft transponder noise ≃ 10−16 preflight tests of Cassini Ka-
band translator [1, 22]

Tropospheric scintillation
(raw)

< 3×10−15 to ≃ 30×10−15 variable; nondispersive [20, 75]

Tropospheric scintillation
(corrected)

< 1.5×10−15 to ≃ 3×10−15 under favorable conditions [19];
median conditions in connected-
element interferometry tests [96]
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5 Signal Processing

This section discusses signal processing approaches, both formal and heuristic, which have been
used to analyze Doppler observations. These include noise spectrum estimation, analysis methods
to search for periodic, burst, and stochastic signals, and ideas for qualifying/disqualifying candidate
signals based on signal and noise transfer functions.

5.1 Noise spectrum estimation

Spacecraft Doppler tracking shares attributes with all other real observations: The noise is non-
stationary, there are low-level systematic effects, and there are data gaps. The noise can usually be
regarded as effectively statistically stationary for at most the interval of a tracking pass (≃ 8 hours).
The non-stationarity of (what may be fundamentally Gaussian but with time-variable variance)
noise is a complication. For example in matched filtering for bursts, discussed below, the noise
spectrum has to be estimated locally [63] for use in deriving locally-valid matching functions from
the assumed GW waveforms [61].

Noise characterization has historically been done via standard spectral and acf analysis tech-
niques [73]. Spectra of various data sets have been presented in [4, 18, 32, 9, 19]. The data have
typically been analyzed with varying time-frequency resolution to assess the fidelity of the spectral
estimates and to provide local (in Fourier frequency) estimates of the underlying noise spectral
density for sinusoidal and chirp signal searches (below). Running estimates of the variance and
third central moments have been used as guides for identifying intervals of stationarity in pilot
studies. Bispectra8 were computed for early data sets looking for non-linear, non-Gaussian effects.
Bispectral analysis seemed to have limited utility, however; the Doppler noise is close to Gaussian
and the slow convergence of higher statistical moments makes the bispectrum hard to estimate
accurately over the length of a stationary data interval.

5.2 Sinusoidal and quasiperiodic waves

Some candidate sources radiate periodic or quasiperiodic waves. From an observational viewpoint
a signal is effectively a sinusoid if the change in wave frequency over the duration of the observation
T is significantly less than a resolution bandwidth 1/T . Since in a search experiment the signal
phase is not known, spectral analysis [73, 107, 89] is appropriate. In the absence of a signal, the
real and imaginary parts of the time series’ Fourier transform are Gaussian and uncorrelated, so
the Fourier power is exponentially distributed [88]. In the presence of a signal, the Fourier power
is “Rice-squared” distributed [97]. Formal tests for statistical significance [55, 107, 4, 18, 7, 5, 89]
involve comparing the power in a candidate line with an estimate of the level of the local noise-
spectrum continuum. Since the frequency of the signal is also not known a priori, a range of
frequencies must be searched. The spectral power is approximately independent between Fourier
bins, so the joint probability density function of the power in n Fourier bins is the product of the
individual bin pdfs. This can be used to set statistical confidence limits for the sensitivity of a
search experiment over multiple candidate signal frequencies [18].

A signal is effectively a linear chirp if the change in frequency over the observation interval is
> 1/T but the curvature of the signal’s trajectory in a frequency-time plot is negligible over the
observing interval. In this case, signal power is smeared in (frequency, time) and simple spectral
analysis is inappropriate. In a chirp-wave analysis the Doppler data are first passed through a
software preprocessor which tunes the signal to compensate for the linear chirping. With the

8 The bispectrum is the Fourier transform of the third-order lagged product ⟨x(t)x(t + τ1)x(t + τ2)⟩; it gives
the contribution to the third moment from the product of three Fourier components having frequencies which add
to zero. It has been used in many fields, notably geophysics, to study weak nonlinearities (see, e.g., [56, 80]).
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correct tuning function, the chirp is converted to a sinusoid in the output. Spectral analysis is
then used to search for statistically significant lines. The tuning function exp(iπβt2) is complex.
The parameter β, an estimate of df/dt, is unknown and must be varied. (In an idealized situation,
this procedure resolves the signal into three lines, with frequency separation depending on β and
T2 [5]. The observability of all three lines is unlikely in real observations, however.) The situation
is different from the sinusoidal case in that an arrow of time has been introduced by the software
dechirping; the positive and negative frequency components of the dechirped spectrum contain
different information. In principle, an ensemble of chirping signals, each too weak to be detected
individually, could be identified by noting differences in the statistics of the positive and negative
frequency components of the dechirped spectrum.

Waveforms which are more complicated than linear chirps arise, e.g., from binary systems near
coalescence. To do proper matched filtering [61] the waveform and the source location on the sky
are needed. If one assumes the time evolution of the phase, the time series can be resampled at
unequal times [102, 5] so that (in terms of the resampled phase variable) the signal is periodic. This
suboptimum technique can be used in pilot analyses to pre-qualify candidates for exact matched
filtering. Nonsinusoidal periodic waves, generated, e.g., by non-circular binary systems, can have
rich Fourier content [127]. Searches for these waveforms have included folding the data with
assumed periods [18].

5.3 Bursts

Bursts are time-localized signals in the data set. Matched filtering with assumed waveforms involves
varying several parameters, including cos θ, in the three-pulse response. Burst searches are helped
by the very diagnostic three-pulse response (integral of signal response must be zero; location
and amplitude ratios of the “pulses” must be consistent with θ.) Matched filter outputs have a
“signal part” (integral of the matching function with the signal) and a “noise part” (integral of the
matching function with the noise). The variance of the matched-filter’s noise-only output changes
if the noise is non-stationary. If not accounted for this can result in distorted pdfs of matched filter
outputs and (superficially significant) tails of the distribution of matched filter outputs, even in
the absence of a signal. To allow for this [63] the data can be divided into intervals over which the
noise appears stationary. A model of the noise spectrum over each interval is used, along with the
assumed signal waveform, to compute the matching function. This matching function is then used
for that interval only. Simulation of the matched filter against synthetic noise having the same
spectrum and data gap structure of the interval being analyzed is used to estimate the variance of
the noise-only matched filter output. Then the actual matched filter outputs can be normalized
by the estimated noise-only variance to express outputs in terms of SNRs. This allows the outputs
of the matched filter to be compared consistently across a data set where the noise statistics are
changing. Multi-spacecraft coincidences can be used to reduce further false-alarms [28, 112, 63, 13].

Related to burst processing are “template independent” methods for identifying data intervals
for more detailed study. Wavelet transforms of the data on a pass-by-pass basis have been some-
times useful in finding time-localized intervals formally contributing anomalously large variance.
These are then typically checked to see if there are corresponding features within ±T2. Examina-
tion of the time series reconstructed from some small fraction (≃ 10%) of the largest amplitude
wavelets (or systematically from the wavelets in selected subbands only) have also been useful [11].

5.4 Stochastic background

Stochastic background limits can be derived from the smoothed Doppler frequency power spec-
trum [52, 26]. If the background is assumed isotropic, spectra of two-way Doppler can be con-
verted to spectra of strain by dividing by the sky- and polarization-averaged GW response func-
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tion [52, 54, 19]. (If a background is not isotropic, then the spectral response function is the square
of the Fourier transform of the three-pulse response evaluated for the relevant µ and averaged over
polarization states.) From Sh the strength of the background can be expressed relative to closure
density or as a characteristic strain amplitude [108, 93, 72] (see Section 6.5).

5.5 Classification of data intervals based on transfer functions

Although the signal waveforms are not known a priori, there is a good understanding of transfer
functions of the GW signal and the principal noises to the Doppler. Partitioning the data into
“known-noise-like” or “other” intervals based on the noise transfer functions can be useful. Ex-
amples of discrete-event noise classification based on transfer function were shown in Section 4;
statistical classification of data intervals based on the local acf is also possible (see, e.g., [9, 19]).
The local spectrum or correlation function has also been used to assess the relative importance of
different noises and their stationarity from, e.g., the degree of correlation at τ = T2.

5.6 Frequency-time representations

It is often useful to think of signal representations in a frequency-time phase space, shown schemat-
ically in Figure 15. There are many ways to tile frequency-time, e.g., Fourier transforms, wavelets,
chirplets, Gabor-transforms (and variants, depending on the temporal windowing used); there is
a correspondingly large literature. Depending on the situation each tiling can have special merit
(e.g., if additional information suggests a specific candidate signal is likely to project preferentially
onto a small fraction of a particular mathematical basis while the noise does not).

Figure 15: Schematic diagram of signals in a frequency-time space. Sinusoids are “on” for all time and
have horizontal tracks, linear chirps are straight lines with non-zero slope, bursts are time-localized, etc.
These localizations in frequency-time suggest different detection approaches for different classes of signal.
This space can be tiled in many ways. Particular tilings can have special merit for particular waveforms,
e.g., if a candidate signal projects preferentially onto a small fraction of a particular mathematical basis
while the noise does not.

As an example, Figure 16 shows normalized Fourier power as a function of frequency-time for
the Cassini two-way Ka-band track on 2001 DOY 350 (time series shown in Figure 8). This plot
was constructed by taking the unwindowed power spectrum of sequential 102.4 s data segments (in
this case 75% overlapped in time). The heavy white line indicates the two-way light time at the
beginning of the data set. The normalized power – power at a given (frequency, time) point divided
by the estimated local continuum power near that point – is plotted. This is a nondimensional
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measure of the contrast (and potential statistical significance) of the Fourier power at that point
relative to a local background. The color code runs from black (low values) through green to red
(very high values). Points with estimated contrast ratio > 10 are marked with white circles. If
two high-contrast features are at the same frequency and separated by a two-way light time, they
are connected with a thin white line. The FTS glitch of Figure 8 is clearly evident in both the
time series and in T2-separated bands of high-contrast Fourier power in the lower plot. Additional
features not evident in the time series but paired at T2 are detected near the beginning of the data
set and at low-frequency. See also Figures 17 and 18.

5.7 Qualifying/disqualifying candidates

Qualifying or disqualifying candidate signals is based both on spectra of noise processes and,
usually more crucially, on signal and noise transfer functions. In some cases it is immediately
obvious, using the noise transfer function and a single time series, that a stretch of data is noise
dominated (large antenna mechanical events for example). In other cases, multiple time series
(e.g., the multiple X- and Ka-band signals available with the Cassini observations; see Figure 5)
can be used to qualify candidates.

As an example, candidate periodic and quasiperiodic signals have been disqualified in various
data sets (discussed below) based on one or more of these considerations:

∙ Is there a radio wave amplitude variation associated with a Doppler variation (for GWs,
there should not be)?

∙ Is there something special about the data taking or the data records where the candidate is
observed?

– Is the back-end instrumentation distinguished in some way (e.g., common receiver or
receiver rack)?

– Is the candidate observed only at a specific tracking-station? (Is the candidate observed
at only one kind of station, e.g., only at the DSN beam-waveguide antennas and not at
the DSN “high-efficiency” antennas?)

– Is the signal a plausible alias of a man-made frequency?

– Could a narrow-band feature be due to a mechanical resonance of the antenna?

∙ Does it appear in only part(s) of the tracking record?

∙ Is its frequency modulation consistent with the source being at a fixed point on the sky, given
the known earth-spacecraft geometry variation over the observation?

∙ Is the candidate observed in more than one radio band (e.g., X- and Ka-band) simultaneously?
Is it demonstrably non-dispersive? Are the individual-band SNRs consistent with a common
∆v/c?

∙ Is the candidate consistent when observed with different resolutions in time and Fourier
frequency?

∙ Could this candidate have been introduced into the time series by a faulty calibration?

Each of the above has been used to assess reality or unreality of candidate periodic and quasiperi-
odic waves in different data sets. Some published examples include the following ones:

Anderson et al. [5] observed a chirp that persisted over 10 days. The data were reanalyzed
in subsets based on inclusion or exclusion of specific stations, specific transmitter/receiver pairs,
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Figure 16: Frequency-time representation of Cassini two-way Ka-band data on 2001 DOY 350. Upper
panel: time series of two-way Doppler data with ≃ 1 s time constant, sampled at 0.2 s/sample. At this
resolution the visual impression of the plot is set by relatively high frequency noise. Lower right panel:
low frequency resolution power spectrum of the full data set shown in upper panel. Lower left panel:
normalized dynamic spectrum of the data in the upper panel. This was constructed by forming sequential
spectra of short (≃ 102 s) unwindowed segments of the data. Each data segment is 75% overlapped with
its neighbors. The heavy white line indicates the two-way light time at the beginning of the data set. The
plotted quantity is power at a given point in (frequency-time) divided by a local estimate of the average
power at that (frequency, time) point, a nondimensional measure of the contrast of the Fourier power at
that point relative to an estimated background. The color code runs from black (low values) through green
(higher values) to red (very high values). Points with this estimated contrast ratio > 10 are marked with
white circles. If two high-contrast features are at the same frequency and separated by a two-way light
time, they are connected with a thin white line. The FTS glitch shown also in Figure 8 is clearly evident in
both the time series and in T2-separated bands of high-contrast Fourier power in the lower plot. Additional
features paired at T2 in the earlier, lower-frequency part of the data are also detected in the normalized
dynamic spectrum.
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and temporal partitions of the data set. The chirp was ultimately disqualified as non-astronomical
because it was only observed in the subset of the data involving a particular transmitter/receiver
pair.

In another Pioneer spacecraft observation [18] the statistical significance of candidate spectral
lines was assessed by scrambling the data within the data gaps and reanalyzing. This confirmed
analytical work on the false alarm probability and the (lack of) statistical significance of the
strongest candidate periodic signals.

In the three-spacecraft coincidence experiment involving the Galileo, Mars Observer, and
Ulysses spacecraft [13] matched filtering for signals from particular directions that were sinusoidal
(except for modulation due to earth-spacecraft motion modulation over the course of the ∼ 20-day
track) gave undistinguished peak SNRs in the Mars Observer and Galileo data sets, but a formally
significant SNR in the Ulysses data set. From the modulation over the period of the observations,
the inferred direction of arrival was α ≃ 0∘, δ ≃ +69∘. Since the position of the candidate source
was thus “known”, gravitational-wave polarization states [127, 18, 16] were explored looking for
states which could simultaneously couple well to Ulysses but poorly (so as to push a real astronom-
ical signal into the noise) to Mars Observer and Galileo. There was no polarization state which
could produce this simultaneously in the three data sets, so this candidate was excluded as a false
alarm.

The consistency of multiple, simultaneous data sets can also be used to qualify or disqualify
non-periodic waveform candidates. This is complicated by the fact that different data sets have
different noise levels and thus different sensitivities to GWs. Figure 17 shows a normalized dynamic
spectrum for Cassini two-way Ka-band data on 2003 DOY 008. The strong feature observed in the
average spectrum (right panel) comes from a short time interval in the track at about 08:50 UT.
Figure 18 shows the dynamic spectrum of two-way X-band for the same track, with no high-
contrast feature near (08:50 UT, 0.22 Hz). Subsequent analysis of band pass filtered time series
for the X- and Ka-band data showed that the event seen in the Ka-band data, if produced by a
real earth-spacecraft velocity, should have also been observable above the noise in the X-band and
was not. Such events were observed once per day in the 2002 – 2003 Cassini observing campaign
(only – and with varying strength) and are apparently a systematic effect specific to the two-way
Ka-band system (perhaps associated with the independence of the Ka-band transmit and receive
horns; see Section 4.4 and Figure 5).

Qualifying/disqualifying candidate burst waves is slightly different because, by hypothesis, the
signal is only “on” for a finite time and some of the above tests do not apply. However a true GW
burst must be nondispersive and show the correct three-pulse signature in the time series. Here
the three-pulse response [52] is very powerful: Whatever the GW waveforms, the signal must show
the three-pulse response with correct amplitudes and spacings for a GW from a specific direction
relative to the earth-spacecraft line (see Figure 1).

5.8 Other comments

Another analysis scheme which is attractive in principle but does not seem useful in current-
sensitivity Doppler data analysis is the Karhunen–Loéve expansion [61, 43]. This is a signal-
independent approach where the data themselves are used to construct a mathematical basis to
express the data. Such representations may be useful for template-free analysis of time series
dominated by a signal of unknown waveform. However, experiments with this analysis procedure
on simulated noise-dominated Doppler data sets were disappointing; the modes discovered in the
Karhunen–Loéve simulations were always the noise modes.

Editing flags developed, e.g., from spacecraft telemetry or from DSN tracking logs have not
historically been useful9 as veto signals (the internal monitoring capabilities of the spacecraft and

9 An exception was with Mars Observer [63, 13] where spacecraft engineering telemetry was crucial for correcting
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Figure 17: As for Figure 16, but for the Cassini two-way Ka-band track on 2003 DOY 008. The strong
features in the dynamic spectrum at about (08:50, 0.22 Hz) have peak local contrast > 100 (and are even
marginally visible in the time series in the upper panel).

ground stations were, of course, not intended for this purpose). The Doppler itself is much more
sensitive than the system monitors and also – being spatially distributed by cT2/2 – has noise-
signatures which often allow easier identification of specific disturbances affecting the time series
(see, e.g., Section 4).

Even though each class of tracking antenna has a common design, there are low-level station-
specific systematic differences. Getting data with different stations helps at least to identify these
systematics (see, e.g., [5]). Also data taken at low elevation angle (< 20∘) with any antenna are
statistically of poorer quality.

Finally, at current levels of sensitivity Doppler tracking observations are clearly search exper-
iments. We are looking for signals with poorly-constrained waveforms which are “surprisingly”
strong (thus expected to be rare). To maximize the chance that an unexpected real event will
not be dismissed as due to a known noise process (or overlooked altogether), it is obviously useful

the Doppler for the (slow) spacecraft spin.
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Figure 18: As for Figure 17, but for the Cassini two-way X-band track on 2003 DOY 008. Note the
absence of high-contrast features near (08:50 UT, 0.22 Hz).

to analyze the time series in different ways to bring out different aspects. Doppler tracking data
sets are not impossibly large: It is practical for a person to actually look at all the data with
varying time-frequency resolution – in addition to using formal and automated analysis proce-
dures. (A potential difficulty is still actually recognizing unanticipated features if they are present.
Reference [77] has interesting discussions of the problems of recognizing unexpected things.) As
emphasized by Thorne [108], the largest events may be from unexpected sources so the data analysis
scheme must be robust enough that unexpected signals are not preprocessed away.
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6 Detector Performance

6.1 Observations to date

Table 3 lists spacecraft Doppler GW observations to date and observations possible in the near
future.

Table 3: Spacecraft Doppler gravitational-wave observations. MO: Mars Observer; GLL: Galileo; ULS:
Ulysses; MGS: Mars Global Surveyor; AMC: Advanced Media Calibration system (tropospheric calibra-
tion). A “pass” is a tracking pass over a given DSN antenna, i.e., about 8 hours long.

Year Spacecraft Comment Reference

1980 Voyager several passes; S-band uplink, S/X downlink; burst search [60]

1981 Pioneer 10 3 passes; long T2; GW background limit; observationally
excluded GW from Geminga

[4, 6]

1983 Pioneer 11 3 days; long T2; broadband periodic search [18]

1988 Pioneer 10 10 days; long T2; chirp wave search [5]

1990 Ulysses 3.5 days; short T2 [31, 32]

1992 Ulysses 14 days; long T2; periodic and chirp search; S-band uplink,
S/X band downlink

[31, 32]

1993 MO/GLL/ULS 19 days; X/X-band on MO; coincidence experiment; search
for all waveforms

[63, 64, 13]

1994–95 Galileo 40/40 days (two oppositions); long T2; S/S-band [3, 13]

1997 MGS 21 days; short T2; X/X-band [9]

2001–03 Cassini 40/40/20 days (three oppositions); long T2; Ka-band;
AMC; multi-link plasma calibration

[19, 78]

2016+ Juno opposition in early 2016; long T2; Ka-band; AMC; good
geometric coupling to galactic center

[33, 83]

2019+ BepiColombo short T2; multi-link plasma calibration; AMC; good geo-
metric coupling to galactic center

[66, 25]

The observations in Table 3 reflect increasing sensitivity between about 1980 and the early
2000s. These improvements were due both to engineering advancements (in spacecraft and in the
DSN) and to programmatic decisions allowing use of planetary spacecraft for these observations.
Voyager sensitivity was limited by a combination of plasma noise in the S-band uplink (see Fig-
ure 10) and spacecraft buffeting noise from its thrusters. Although the data volume was small,
those observations were used in the first formal search for low-frequency burst waves [60]. The
Pioneer spacecraft were spin-stabilized, resulting in lower spacecraft buffeting noise, but were again
sensitivity-limited by plasma noise in the S-band radio links. Despite this, Pioneer data were able
to observationally exclude putative sinusoidal GW emission from Geminga [4] and place the then-
best limit on a low-frequency GW background [6]. Ulysses observations in 1992 were the longest
to date, motivated innovations in signal processing, and resulted in the then-best sensitivity to
periodic and chirp waveforms [31, 32]. Mars Observer was the first spacecraft to have X-band on
both the up- and downlinks, resulting in much-reduced plasma noise. Mars Observer, Galileo, and
Ulysses did the first (and so far only) coincidence experiment [63, 13] which was used successfully
to disqualify an event which was formally significant in one time series. Galileo observations in
1994 – 1995 had a long two-way light time and thus better GW response at lower Fourier frequen-
cies. Unfortunately, the failure of the high-gain antenna required S-band only observations (thus
high plasma noise) [9]. Mars Global Surveyor observations in 1997 were done with X-band links
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(but off of solar opposition) and were the only observations where spacecraft engineering telemetry
was used to correct the Doppler data for the (slow) systematic spacecraft motion. Those data also
showed strong correlation at the two-way light time, indicating the importance of tropospheric
calibration and placing upper limits on antenna mechanical noise [9, 22].

Most of the sensitivity discussion in this paper, however, relates to Cassini observations. Cassini
was launched on a mission to Saturn in 1997 [37]. After earth, Venus, and Jupiter gravity-assists, it
continued on a free interplanetary cruise trajectory toward orbit insertion at Saturn. The Cassini
gravitational-wave observations consisted of two 40-day data-taking campaigns, centered on the
spacecraft’s solar oppositions during 2001 – 2002 and 2002 – 2003, and one 20-day observation taken
somewhat off opposition during late 2003. This data set is distinguished by its very sophisticated
multi-link radio system (allowing essentially perfect plasma correction [69, 122, 70, 29, 121]) and by
the Advanced Media Calibration system (allowing excellent tropospheric scintillation removal) [94,
96, 19, 76].

6.2 Near-future observations

There are two potentially-good-sensitivity near-future GW opportunities using Juno and Bepi-
Colombo in their cruise phases. Juno will reach Jupiter in July 2016. BepiColombo is a low-altitude
orbiter of Mercury.

The Juno spacecraft has Ka-band up- and downlink, thus good immunity to plasma scintillation
noise. Juno’s two-way light time near opposition in 2016 will be about 4360 seconds, smaller than
that of Cassini (thus Juno will, in sky-average, have poorer low-frequency response). Juno is
distinguished, however, in that its GW coupling to the galactic center (the nearest plausible source
of strong millihertz GWs) is much better than that of Cassini. For Juno, near the 2016 solar
opposition, the cosine of the angle between the earth-spacecraft vector and the wavevector for a
source at the galactic center is µ = k̂ · n̂ ≃ 0.065 [Eq. (1)]. Juno’s transfer function to GWs (along
with that of BepiColombo; see below) is shown in Figure 19); Juno will have substantially better
geometric response to the galactic center in the 0.0001 – 0.001 Hz band, in particular.

The BepiColombo spacecraft will have a multi-link radio system similar to Cassini’s. Thus
plasma noise can be solved-for and removed from the data prior to GW analysis. The nominal
launch is in January 2017.10 Because BepiColombo is an inner solar system mission, the two-
way light time during the cruise phase will never be more than about 1700 seconds. There is
a GW observation opportunity, however. Between about 1000 and 1100 days after launch (e.g.,
late 2019 to early 2020 for the nominal launch date) the two-way light time is ≃ 1600 s while
the earth-spacecraft vector changes orientation substantially on the celestial sphere. Thus the
geometric coupling to sources on the sky changes. For example, θ = arccos(µ) for a source at the
galactic center changes between about 150 and 50 degrees over ≃ 100 days. Selected intervals in
this time window could be used to search for shorter GW bursts, for example, targeting specific
geometrically-favorable directions (Figure 19 shows the coupling to the galactic center for late
2019, assuming nominal launch date.) Such a campaign would require the spacecraft’s solar-electric
propulsion to be turned off during GW observations.

6.3 Sensitivity to periodic and quasi-periodic waves

6.3.1 Sinusoidal waves and chirps

Sinusoidal sensitivity is traditionally stated as the amplitude h of a sinusoidal GW required to
achieve a specified SNR, as a function of Fourier frequency [18, 113, 16]. Conventionally, the

10 Trajectory information for BepiColombo’s nominal mission was kindly provided by L. Iess and L. Imperi.
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Figure 19: Power response of the Doppler system to a gravitational-wave signal, as a function of Fourier
frequency, for signals from the direction of the galactic center. Blue: Juno 2016 opportunity. Black:
BepiColombo 2019+ opportunity. Red: Cassini 2001 geometry.

signal is averaged over the sky and over polarization state [52, 127, 16]. Figure 20 shows the all-
sky sensitivity based on a smoothed version of the actual spectrum (black curve) for the Cassini
2001 – 2002 observation. Cassini achieves ∼ 10−16 all-sky sensitivity over a fairly broad Fourier
band.

Early searches for periodic waves involved short duration observations (several hours to a
few days; see, e.g., [4, 18]) and thus ignorable modulation of an astronomical sinusoid due to
changing geometry (non-time-shift-invariance of the GW transfer function; see Section 3). A true
fixed-frequency signal would be reflected in the spectrum of the (noisy) Doppler times series as a
“Rice-squared” random variable [97] at the signal frequency. Subsequent observations were over
10 – 40 days and the time dependence of the earth-spacecraft-source geometry became important:
A sinusoidal excitation would be modulated into a non-sinusoidal Doppler response with power
typically smeared over a few Fourier frequency resolution bins. Non-negligible modulation has
both advantages and disadvantages. An advantage is that a real GW signal has a source-location-
dependent signature in the data and this can be used to verify or refute an astronomical origin
of a candidate. The disadvantage is that a simple spectral analysis is not sufficient for optimum
detection (SNR losses of the simple spectral analysis technique are frequency and geometry depen-
dent but can be ≃ 3 dB or more in some observations) and the computational cost to search for
even a simple astronomical-origin sinusoid becomes larger. Searches to date have addressed this
with a hierarchical approach to the data analysis. First a suboptimal-but-simple spectral analysis
is done. Candidates are then identified using an SNR threshold which is high enough to exclude
Fourier components which, even with proper analysis, would be too weak to be classified as other-
than-noise. The idea is to use a computationally inexpensive procedure (i.e., FFTs) to exclude
candidates which could not, in principle, be raised to a reasonable threshold SNR even with accu-
rate matched filtering. The frequencies of candidate signals passing the threshold are saved and
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Figure 20: Sensitivity of the Cassini 2001 – 2002 gravitational wave observations, expressed as the equiva-
lent sinusoidal strain sensitivity required to produce SNR=1 for a randomly polarized isotropic background
as a function of Fourier frequency. This reflects both the levels, spectral shapes, and transfer functions
of the instrumental noises (see Section 4) and the GW transfer function (see Section 3). Black curve:
sensitivity computed using smoothed version of observed noise spectrum; blue curve: sensitivity computed
from pre-observation predicted noise spectrum [111].

matched filters are constructed using the known time-dependence of the earth-spacecraft geometry
and for 20 points on the sky (the vertices of a dodecahedron projected onto the celestial sphere.11)

Linear chirp processing adds an additional parameter (chirp rate) and requires detection thresh-
olds to be set higher. In both the sinusoidal and chirp analyses, the pdfs of signal power have been
used to assess candidates (see, e.g., [18, 3, 32]). Non-linear chirps, if source parameters are favor-
able, could be strong candidate signals. Analysis methods, anticipated sensitivity, and detection
range for Cassini are discussed in [30].

6.3.2 Nonsinusoidal periodic waves

Calculations of Doppler response to GWs from a nonrelativistic binary system [127] show that the
observed Doppler waveform can have a rich harmonic content. Monte Carlo calculations of GW
strength from stars in highly elliptical orbits around the Galaxy’s central black hole have been
given in [53]. For these stellar-mass secondaries generate wave amplitudes more than an order of
magnitude weaker than Cassini-era Doppler sensitivity.

11 This was suggested by Estabrook as giving “noncommittal” directions on the celestial sphere and have separa-
tions which are reasonably matched to the effective angular response of a typical Doppler tracking observation.
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6.4 Burst waves

The first systematic search for burst radiation was done by filtering the data to de-emphasize
the dominant noise (plasma noise) relative to components of the time series anticorrelated at the
two-way light time [60]. Analysis of subsequent data sets used matched filtering with assumed
waveforms and targeted-sky-directions [7, 63, 64]. The utility of multiple-spacecraft observations
for burst searches was discussed by [28, 112, 13]. Figure 21 is the crudest measure of current-
generation (Ka-band, tropospheric corrected) all-sky burst sensitivity. It shows the power spectrum
of two-way Doppler divided by the isotropic GW transfer function (see, e.g., [52, 54] and Section 5.4)
computed as [108] hc(f) = [2fSgw

y2 /R̄2(f)]
1/2, where R̄2(f) is the sky- and polarization-averaged

GW response function [52, 54, 19]. The best sensitivity, hc < 2×10−15, occurs at about 0.3 mHz, set
by the minimization of the antenna mechanical noise through its transfer function, the bandwidth,
and the average coupling of the GW to the Doppler, R̄2, at this frequency.

Figure 21: Characteristic all-sky strain sensitivity for a burst wave having a bandwidth comparable to
center frequency for the Cassini 2001 – 2002 data set [19]. This is the crudest measure of sky-averaged burst
sensitivity: the square root of the product of the Doppler spectrum and the Fourier frequency, divided by
the sky-averaged GW response (see Section 6.4).

Sensitivity is not uniform over the sky and one can often do much better with knowledge
of the direction-of-arrival or the waveform. Figure 22 shows contours of constant matched filter
output for a circularly polarized mid-band burst wave using the Cassini solar opposition geometry
of November 2003. The red dot shows the right ascension and declination of Cassini as viewed
from the earth, the black dots are the positions of members of the Local Group of galaxies (larger
dots indicating nearer objects), and “GC” marks the location of the galactic center. Contour
levels are at 1/10 of the maximum, with red contours at 0.9 to 0.5 of the maximum filter output
and blue contours at 0.4 to 0.1. The response is zero in the direction and anti-direction of the
earth-Cassini vector (see Eq. (1)). The angular response changes for GWs in the long-wavelength
limit. Figure 23 similarly shows matched filter signal output contours, but for a burst wave with
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characteristic duration > T2. Pilot analyses using simplified waveforms [63, 11] have been done
accounting for the local non-stationarity of the noise and varying assumed source position on the
sky.

Figure 22: Contours of constant matched filter output for a wave having h+(t) = sin(2πt ·

0.001 Hz) exp(−t/1000 s)H(t) and h×(t) its Hilbert transform, adapted from [64]. Cassini November 2003
geometry is assumed (the red dot is the right ascension and declination of Cassini). Black dots are the
positions of members of the Local Group of galaxies. “GC” marks the location of the galactic center.
Contour levels are at 1/10 of the maximum, with red contours at 0.9 to 0.5 of the maximum signal output
and blue contours at 0.4 to 0.1. Doppler response is zero in the direction of Cassini (and its anti-direction).

Waves from coalescing binary sources are intermediate between periodic and burst waves. Ex-
pected sensitivity and analysis methods have been treated in detail by Bertotti, Iess, and Vec-
chio [30, 124]; supermassive black hole coalescences with favorable parameters are visible with
Cassini-class sensitivity out to 100s of Mpc. Cassini is also sensitive to ≃ 50M⊙ intermediate-
mass black holes coalescing with the supermassive black hole at the galactic center [30].

6.5 Sensitivity to a stochastic background

A stochastic background of low-frequency GWs, potentially detectable with single or multiple
spacecraft Doppler tracking, has been discussed by [52, 26, 58, 82, 6, 28, 44, 7, 54, 19]. The level of
stochastic GWs is conventionally expressed either as the energy density in GWs relative to closure
density, Ω, as a characteristic rms strain, or as spectrum of strain. The best directly observational
upper bounds on stochastic GWs in the low-frequency band come from the Cassini data. Details
of how the upper limits were produced are given in [19]. Figure 24 shows limits to Ω as a function
of Fourier frequency (upper limits expressed as spectrum of strain are given in [19]). The lowest
bound is at 1.2×10−6 Hz : Ω < 0.025. Between 1.2×10−6 and ≃ 10−5 Hz, Ω < 0.1, while between
about 10−5 – 10−4 Hz the upper bounds are between 0.1 to about 1.0. For f > 10−4 Hz the limits
to Ω are larger than 1. The Cassini data improved limits to Ω in the 10−6 to 10−4 Hz band by
factors of 500 – 1200 (depending on Fourier frequency) compared with earlier Doppler experiments.

Predictions for an astrophysical GW background in the low-frequency band, e.g., from an en-
semble of galactic binary stars or an ensemble of massive black hole binaries, have mainly been

Living Reviews in Relativity

DOI 10.12942/lrr-2006-1

http://dx.doi.org/10.12942/lrr-2006-1


Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking 43

Figure 23: As in Figure 22 but for a wave with h+(t) = sin(2πt · 0.0001 Hz) exp(−t/10000 s)H(t) and
h×(t) its Hilbert transform. This model waveform is long compared with T2.

aimed at the design sensitivity of future dedicated GW missions [24]. The galactic binary star
background is much too weak to be seen with spacecraft Doppler tracking. At lower frequencies
(10−9 – 10−6 Hz) the strength of a GW background from an ensemble of coalescing black hole bina-
ries has been estimated [93, 72, 132] mostly in the context of a pulsar timing array. Extrapolations
or predictions in the low-frequency band [72, 132] give strengths substantially lower than spacecraft
Doppler tracking can presently observe (see Figure 21).
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Figure 24: Upper limits to the energy density of GWs in bandwidth equal to center frequency, relative
to closure energy density. This assumes an isotropic GW background, H0 = 75 km s−1 Mpc−1, and is
computed from the Cassini 2001 – 2002 data [19].

7 Improving Doppler Tracking Sensitivity

What would be required to improve broadband12 burst sensitivity ten-fold, to ≃ 2× 10−16 (thus,
in a 40 day observation, have sensitivity to periodic waves of ≃ 10−17)? Assuming that there is
not some unexpected systematic effect entering between 10−15 and 10−16 and that the noises are
independent (thus variances add and each component must be brought to ≃ 10−16 ), Table 4 shows
the required improvements in the principal subsystems.

FTS stability at the 10−17 level for τ ≃ 1000 s has been demonstrated [62]. (If high-stability
flyable frequency standards become available in the future, they would allow simultaneous multiple
one- and two-way Doppler measurements. These multiple observations would give excellent diag-
nostics of many instrumental noises and provide further rejection of systematic effects [125, 8, 117]).
Better frequency standards would require better frequency distribution. Prototypes for frequency
distribution within the Atacama Large Millimeter Array achieve stability 10−16 or better for time
scales of about 1000 seconds [39].

Improving ground electronics noise by 2X is probably possible by even more careful design.
Reducing tropospheric scintillation by 10X will require either an antenna at very high altitude,
improvements in AMC technology (e.g., exactly coincident beams, better water vapor radiome-
try technology), or perhaps an interesting idea (suggested independently by Estabrook [48] and
Hellings [59]) whereby a second ground station (listen-only, at high altitude) could be employed

12 Signal processing procedures which exploit differences in the signal and noise transfer functions can give
improved sensitivity at selected frequencies (see, e.g., [110, 9, 11]).
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Table 4: Required improvement in subsystems to improve overall Doppler sensitivity by a factor of 10
relative to Cassini-era performance.

Noise source Comment (σy at τ = 1000 s) Required

improvement

Frequency standard currently FTS + distribution ≃ 8× 10−16 ≃ 8X

Ground electronics currently ≃ 2× 10−16 ≃ 2X

Tropospheric scintillation currently ≃ 10−15 under favorable conditions ≃ 10X

Plasma scintillation Cassini-class radio system probably adequate for
calibration to ≃ 10−16

≃ 1X

Spacecraft motion currently ≃ 2× 10−16 ≃ 2X

Antenna mechanical currently ≃ 2× 10−15 under favorable conditions ≃ 20X

to synthesize a Doppler observable which has the (presumably much lower) tropospheric phase
scintillation noise of the higher-altitude receive-only station. Plasma scintillation correction tech-
nology is already adequate to reach an Allan deviation of ∼ 10−16. Cassini spacecraft unmodeled
motion was measured to be within a factor of about 2 of 10−16 (see Section 4.8); it is not clear what
actually limited the Cassini motion measurement so additional analysis/design might be required
to assure that this component entered at the 10−16 level or lower.

The largest required improvement is in antenna mechanical noise. It is impractical to build a
large, steel, earth-based, moving structure (such as a 34-m antenna) which has intrinsic ≃ 10−16

mechanical stability; performance at this level will probably require a separate calibration/removal
of mechanical noise. One suggestion is to exploit the differing transfer function of antenna me-
chanical noise to two- and three-way observations [15]. Suppose that a stiffer (that is, smaller
mechanical noise) ancillary antenna is co-located with the two-way tracking antenna. The ancil-
lary antenna takes data in the “listen-only” (three-way) mode. The desired Doppler signal, ys,
and mechanical noises of the two antennas enter the time series of fractional Doppler fluctuation
according to

y2(t) = M2(t) +M2(t− T2) + ys (6)

y3(t) = M3(t) +M2(t− T2) + ys (7)

where M2 and M3 are the time series of mechanical noise at the two and three-way stations. The
data combination [15]

E(t) = y3(t) + y3(t− T2)− y2(t− T2) = M3(t) +M3(t− T2) + ys (8)

has the signal content of the standard two-way observation but antenna mechanical noise
as if the ancillary antenna were both transmitting and receiving. If the ancillary antenna is

sufficiently stiff (i.e., if the magnitude of M3 is small compared with the magnitude of M2) then
mechanical noise in the observation can in principle be reduced substantially.

This idea was tested during an otherwise-routine Cassini observation [15]. The Cassini space-
craft was tracked in the conventional two-way mode using NASA’s DSS14 70-m station while
simultaneous three-way data were taken at a nearby antenna (DSS 25). During the track DSS 14’s
subreflector was deliberately articulated to introduce a large, artificial “antenna mechanical vari-
ation” (the signal path within the antenna was described in Section 4). Figure 25 shows the two-
and three-way Doppler time series during the test. The upper panel shows the “two-pulse” signa-
ture of antenna mechanical variation in the two-way data (Eq. (6) and Figure 7). The lower panel
shows the effect of the deliberate subreflector motion in the three-way Doppler [Eq. (7)].
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Figure 25: Time series of DSS 14 two-way (upper panel) and DSS 25 three way (lower panel) Doppler
during the 2007 March 15 antenna mechanical noise test. At about 04:30 UT the subreflector at DSS 14
was deliberately articulated to produce large antenna mechanical noise variation. The effect in the two-
way Doppler is seen immediately and at a two-way light time (T2 = 8341.6 s) later (see Figure 7). The
receive-only three-way station is unaffected at 04:30 UT (it is receiving a signal transmitted a two-way
light time earlier) but observes the effect of the deliberate subreflector motion a two-way light time later
(lower panel). (The three impulsive glitches in the two-way time series are unrelated to this mechanical
noise test.) Figure adapted from [15].

Figure 26 shows a blowup of the time series of the two-way Doppler during the subreflector
motion event (upper panel) and the data combination E(t) formed using the two- and three-way
data. The two-way mechanical variability cancels to the level of other noises.

Suitably stiff antennas (i.e., antennas with mechanical stability at least an order of magnitude
better than that of DSS 25) have been built for radio astronomy applications [103]. These or compa-
rable antennas could be used to reduce the antenna mechanical noise in Doppler gravitational-wave
tracks to ∼ 10−16 or lower for τ = 1000 s. Of course one would not use this technique except in
situations where the antenna mechanical noise dominates. Some considerations for a practical
implementation of this method are discussed in [14].

There is no currently-planned mission that requires Doppler stability at the ≃ 10−16 level.
Indeed unless such stability can be achieved inexpensively that level of Doppler performance might
have to be justified by a mission dedicated to precision radio science. As outlined above, however,
∼ 10−16 burst sensitivity may be possible with extensions of current technologies. To do several
orders of magnitude better than 10−16, however – e.g., to achieve sensitivity adequate to detect the
very weak GWs from known galactic binaries – would almost certainly require a different utilization
of electromagnetic tracking [24], discussed briefly in Section 8.
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Figure 26: Blowup of DSS 14 two-way Doppler time series (upper panel) near the deliberate subreflector
articulation. The lower panel shows the data combination E(t), which cancels the antenna mechanical
noise in the two-way time series leaving the antenna mechanical noise of the three-way station (DSS 25)
and other secondary noises. Figure adapted from [15].

8 The LISA Low-Frequency Detector

Current Doppler tracking observations piggy-back on spacecraft mainly serving the planetary sci-
ence community. Future low-frequency detectors could be dedicated GW missions – fully space-
based – involving separated drag-free test masses [24, 105, 90, 115]. The LISA/eLISA (Laser
Interferometer Space Antenna) mission is currently (2015) in the design and development stage,
with a technology demonstration mission, LISA Pathfinder, launched in December 2015. The three
LISA sciencecraft will form an approximately equilateral triangle with nominal 5 × 109 m arm-
lengths (time-variable by ∼ 1% due to celestial mechanics). Six one-way laser-driven optical links
between spacecraft pairs will monitor Doppler (or phase) fluctuations as the test masses respond
to incident GWs.13 The principal advantages to moving all the apparatus to space are that the
environment is very stable and drag-free technology can be employed. The final noise level can
then in principle be set by (very small) optical-path and proof mass noises [24]. LISA’s anticipated
sensitivity is excellent: ∼ 10−23 for sinusoidal signals in a one year integration.

To reach the levels of the secondary optical-path and proof-mass noises, however, LISA must
first cancel laser phase noise (which is otherwise overwhelming, ≃ 160 dB larger than the secondary
noises). Since LISA’s armlengths cannot be made equal and constant, conventional laser noise
cancelling methods, e.g., Michelson interferometry, will not work. LISA will use a technique based
on the transfer functions of signals and noises to the inter- and intra-spacecraft Doppler data called

13 One-way tracking emphasizes the symmetry of the LISA array and simplifies the analysis of the apparatus; for
technical reasons the actual implementation of LISA may involve some of the links being two-way [101].
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“time-delay interferometry” (TDI; see, e.g., [116]), to cancel the laser phase noises.14 TDI had its
genesis in Doppler tracking where, as with LISA, time-of-flight of GWs and electromagnetic waves
must be treated explicitly in the analysis.

14 TDI developed in increasing sophistication to account for unequal armlengths, differences between the (un-
equal) armlengths on given up- and down-links due to aberration, and time-dependences of the unequal, aberrated
armlengths. For a discussion of this development see [116] and references therein. TDI also allows LISA’s laser noises
to be canceled in many ways [17, 51, 118]. In particular, one laser-noise-free combination is insensitive to GWs,
but responds to the instrumental noises; this combination will be used to discriminate a stochastic GW background
due to galactic binary stars from instrumental noises [114, 45]. Because multiple laser-noise-free combinations can
be simultaneously constructed, the optimum sensitivity of the LISA array can be achieved by appropriately linear
combinations of the TDI data streams [92].
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9 Concluding Comments

This paper discussed the principles of operation and status of spacecraft Doppler tracking, the
current-generation GW detector technology in the ∼ 10−6 to 10−1 Hz band. Doppler tracking dif-
fers from all other currently-operating detectors in that the size of the apparatus (earth-spacecraft
distance) is large compared with the GW wavelength. As a consequence times-of-flight of GWs
and radio waves through the apparatus are important, resulting in a three-pulse signal response
and various two-pulse noise responses. The different signal and noise transfer functions suggest
data analysis approaches for various waveforms; some of these approaches were outlined here. The
sensitivity of current-generation Doppler observations was discussed as well as what would be re-
quired to improve this sensitivity by another order of magnitude (to ∼ 10−17 for sinusoidal waves).
Further large sensitivity improvements in the low-frequency band will require dedicated multi-
spacecraft arrays in space. Until such a dedicated mission flys, spacecraft tracking will provide the
best observational capability in the low-frequency GW band.
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