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Abstract—In small-area MOSFETs widely used in analog and
RF circuit design, low-frequency (LF) noise behavior is increas-
ingly dominated by single-electron effects. In this paper, we review
the limitations of current compact noise models which do not model
such single-electron effects. We present measurement results that
illustrate typical LF noise behavior in small-area MOSFETs, and
a model based on Shockley–Read–Hall statistics to explain the be-
havior. Finally, we treat practical examples that illustrate the rel-
evance of these effects to analog circuit design. To the analog cir-
cuit designer, awareness of these single-electron noise phenomena
is crucial if optimal circuits are to be designed, especially since the
effects can aid in low-noise circuit design if used properly, while
they may be detrimental to performance if inadvertently applied.

Index Terms—CMOS, flicker noise, large-signal excitation, low-
frequency noise, low-noise circuit design, MOSFET, noise reduc-
tion, RTS noise, switched biasing, 1 noise.

I. INTRODUCTION

M
OSFETs are notorious for their significant low-fre-
quency (LF) noise. Constant downscaling makes the

speed of the MOSFETs higher, lowers the power consumption
and enables an ever-increasing level of integration. For digital
circuits, this is all good news. Though analog circuits benefit
from the higher speed, the reduced voltage headroom makes
it increasingly difficult to maintain a sufficient signal to noise
ratio, making low-noise design increasingly important [1].
Downscaling does not automatically reduce LF noise [2], and
for speed and functional density reasons it is attractive to use
small-area devices. Unfortunately, small devices have worse
low-frequency noise, which means that LF noise performance
is a dominant issue in ever more circuits. There are several

Manuscript received March 20, 2006; revised November 3, 2006. This work
was supported by the Technology Foundation STW, Applied Science division
of NWO and the Technology Programme of the Ministry of Economic Affairs.

A. P. van der Wel was with the University of Twente. He is now with
the Mixed-Signal Circuits and Systems Group, NXP Research, 5656 AE
Eindhoven, The Netherlands (e-mail: arnoud.van.der.wel@nxp.com).

E. A. M. Klumperink, E. Hoekstra, and B. Nauta are with the IC-Design
Group, Faculty of EEMCS, University of Twente, 7500 AE Enschede, The
Netherlands.

J. S. Kolhatkar was with the University of Twente. He is now with the NXP
Semiconductors/CTO/Process and Library Technology, 6534 AE Nijmegen,
The Netherlands.

M. F. Snoeij is with the Electronic Instrumentation Laboratory, Faculty of
EEMCS, Delft University of Technology, 2628 CD Delft, The Netherlands.

C. Salm is with the Semiconductor Components Group, Faculty of EEMCS,
University of Twente, 7500 AE Enschede, The Netherlands.

H. Wallinga was with the Semiconductor Components Group, Faculty of
EEMCS, University of Twente, 7500 AE Enschede, The Netherlands.

Digital Object Identifier 10.1109/JSSC.2006.891714

Fig. 1. LF noise of a MOSFET with a 0.18-�m gate area. Upper: time domain.
The abrupt jumps are caused by single electrons. Superimposed on this are other
types of noise. Lower: frequency domain. The PSD has a Lorentzian shape: flat
at low frequencies and decaying with �20 dB/dec at high frequencies.

issues that compound the problem, the most important of which
are the following:

1) Due to the ever decreasing gate area, the number of charge
carriers in a MOSFET channel is continually going down,
and single-electron low-frequency noise phenomena quite
different from are becoming visible. This means that
classical noise with a Gaussian amplitude distribution and
a -type power spectrum is replaced by Random Tele-
graph Signals (RTS) with a two-level amplitude distribu-
tion and a Lorentzian power spectrum (Fig. 1) [3].

2) LF noise in small devices shows extreme variability; mea-
sured LF noise can vary by several orders of magnitude
between different nominally identical devices [4].

3) MOSFET LF noise is reduced when the device is subjected
to large signal excitation (LSE) [5]–[7]. In other words,
turning a MOSFET off for some time before turning it on
reduces its noise when it is on. This means that the LF noise

of the device not only depends on the present bias state of

the device but also on the bias history of the device. This
effect is associated with the emptying of traps that cause
RTS noise [6]. Application of this effect was demonstrated
in oscillators [8]–[10], operational amplifiers [11] and var-
ious other circuits [12]–[15].

All these noise phenomena may show up in circuit measure-
ments, while they are currently (2006) not incorporated in any

circuit simulator. As a result, measured upconverted LF noise
in oscillators is often not directly compared to simulations (e.g.,
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[16], [17]), and if comparisons are made at all, correspondence

within a few dB is usually considered quite acceptable (e.g.,

[18]). For better circuit design, awareness of the LF noise phe-

nomena described in this paper is vital.

In this paper, we treat these LF noise phenomena from a

circuit design viewpoint. In Section II, an overview of current

LF noise models along with their capabilities and limitations is

presented. These models do not address single electron effects

and are best applied to large-area devices. Bias dependence and

scaling predictions made by the models are briefly reviewed in

terms familiar to circuit designers. In Section III, we present re-

cent measurement results on small area MOSFETs whose LF

noise is dominated by single-electron effects. These new results

highlight the limitations of existing models, and illustrate the re-

quirement for an alternative, which is subsequently presented.

The model, based on Shockley–Read–Hall statistics, explains

several macroscopically visible noise phenomena such as the

LF noise decrease when a MOSFET is subjected to switched

biasing. In Section IV, we present two examples of new circuit

techniques which use the physical effects described to improve

the LF noise performance of the circuits in question. We also

show how inadvertent degradation of the LF noise performance

of circuits can occur if the phenomena described in this paper

are insufficiently understood, thus highlighting the relevance of

this work to analog circuit design. Finally, we sum up the most

important conclusions of this work.

II. OVERVIEW OF EXISTING LF NOISE MODELS

The physical origin of LF noise in MOSFETs has long been

unclear. One school of thought states that mobility fluctuations

cause LF noise. In 1969, Hooge showed that homoge-

nous semiconductor samples suffer from bulk noise [19],

which was later related to mobility fluctuations. The other view

is that it is the number of free carriers in the device that is fluctu-

ating , an idea first postulated by McWhorter in 1955 [20].

Whereas p-channel MOSFETs are reported to show behavior in

accordance with the model [21], n-channel MOSFETs more

often behave according to the model. In 1990, Hung [22],

[23] proposed a unified model that includes and fluc-

tuations but also fluctuations that are caused by (and corre-

lated to) fluctuations. When provided with suitable param-

eters, Hung’s model yields results in excellent agreement with

measurement results (for large devices), and it has since become

the de-facto standard for modern circuit simulators [24].

A. Large Devices/Current Noise Models

To better understand the different noise models and how they

appear to the circuit designer, it is instructive to provide a brief

review. In literature, many different LF noise measures are en-

countered, for example , , or . This often leads

to confusion as to what dependencies should be expected, espe-

cially since there are three different LF noise mechanisms in a

MOSFET.

If a conducting element exhibits LF noise, what is observed is

that the conductivity is fluctuating and that the spectrum of con-

ductivity fluctuations has a particular shape. We know that the

TABLE I
OVERVIEW OF LF NOISE MODELS FOR LARGE DEVICES

conductivity is given by , in which is the free car-

rier concentration and is the mobility of the carriers. A fluctu-

ation in does not in itself reveal whether the free carrier con-

centration or the mobility is fluctuating. To ascertain

which mechanism is dominant, we look at the dependence of

the relative conductivity fluctuation on the free carrier concen-

tration . This is sensible, since it is easy to vary and hence

the total number of free carriers in a MOSFET by varying the

effective gate overdrive voltage :

(1)

where and are the effective device dimensions, and

is the oxide capacitance per unit area [25]. Assuming a uniform

channel (deep triode), is proportional to . For each of the

three types of LF fluctuations we may encounter in a MOSFET,

we will now derive their dependency on the free carrier concen-

tration and, consequently, their dependence on and .

The results are summarized in Table I; note that all models scale

inversely with device area: and . Use

has been made of the square-law MOSFET model for insight

and to allow comparison with existing noise literature, in which

use of the square law model is still quite common. Clearly, a

more realistic model can be used if more accurate results are

desired.

1) Fluctuations: Hooge observed noise in homoge-

nous semiconductor samples and observed that the PSD of the

noise had an inverse dependence on , the number of free car-

riers in the sample [19]. This led to his formulation of an empir-

ical relation:

(2)

The inverse relation between and yields the in-

sight that whatever the electrons are doing when they are gener-

ating noise, they are doing it independently of one another.

This is because (a) independent noise sources (carriers) will

produce total noise proportional to and (b) the current

is also proportional to , resulting in the observed de-

pendence of (2). Later it was shown by other experiments that

the fluctuations observed by Hooge were mobility fluctuations

.1 The inverse dependence on (and since a constant

1Note that this means that it is not the macroscopic mobility of the semicon-

ductor which is varying, but rather, it must be the individual mobility of indi-

vidual electrons which is varying. See also [26].
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geometry is assumed) leads to a dependence on and as

shown in Table I.

2) Fluctuations: A MOSFET also exhibits number

fluctuations . The number fluctuations in a MOSFET are

caused by trapping–detrapping at the interface. The process is

rate-limited by the number of available traps, not the number of

available electrons, which means that the spectrum of number

fluctuations is independent of and the relative noise current

spectrum is inversely proportional to the square of the carrier

concentration:

(3)

This fluctuation is a variation of the charge trapped in the

oxide, so using for the MOS capacitor, this leads to

a and dependence for the triode region as shown in

Table I.

3) Correlated Fluctuations: Finally, a third type of LF noise

may exist in a MOSFET. Trapping and detrapping of carriers in

traps causes local changes in the electrical field, causing elec-

trons to experience Coulomb scattering, a mobility fluctuation

correlated to the trapping event. This gives rise to a relative cur-

rent fluctuation that is independent of :

(4)

The resulting and dependencies are given in Table I.

Note that contrary to common belief, this correlated type of

noise does not exhibit an (and therefore and ) de-

pendency that is somewhere halfway between and .

B. Spectral Shape

Traditionally, the LF noise spectrum has had a shape over

a very large frequency range. The model does not explain

the shape of the spectrum and only states that the fluctua-

tions must logically have a shape as well.

The model, on the other hand, explains the origin of the

spectrum by assuming that it is a summation of a large

number of uncorrelated Lorentzian spectra, each caused by a

single trap. A trap produces a Lorentzian PSD [27]:

Hz

(5)

where is a symmetry factor for the trap and is the

corner frequency of the Lorentzian. If a device contains a large

number of traps, and their corner frequencies are exponentially

distributed, a spectrum will result (Fig. 2). Mobility fluc-

tuations caused by number fluctuations inherit the PSD of the

number fluctuations they are caused by.

C. Process Downscaling and Noise

To analyze the influence of process scaling on noise,

different approaches may be followed. One possibility is to use

a simple model for CMOS scaling and derive the expected LF

noise scaling rules. Even though the outcome depends on the

boundary conditions chosen, the general trend is clear:

Fig. 2. Addition of Lorentzian spectra resulting in a 1=f spectrum.

noise is becoming a more significant limitation in future analog

CMOS circuit design as device sizes ( and ) go down faster

than goes up, thus reducing the number of carriers in a

device ((1) and [28]). Simulation-based analysis [2], supported

by measurements, predicts a similar trend.

III. RANDOM TELEGRAPH SIGNAL NOISE IN MOSFETS

The models discussed in the previous section work well for

large-area devices. For small devices, they break down because

the number of mobile charge carriers is no longer large and

behavior of individual charge carriers becomes visible and

significant.

Theory [29] predicts that as soon as the number of free

carriers in a device decreases far enough, it will be possible

to observe behavior of individual carriers at the terminals of

the device. This is in line with measurements: as active device

area became smaller and smaller, it became possible to ob-

serve Random Telegraph Signals (RTS) in MOSFETs at room

temperature [3]. Nowadays, RTS noise is the dominant noise

mechanism in small-area MOSFETs, typically with active areas

of less than 1 m [30].

In this section, we will examine the RTS time constants and

how they influence RTS visibility. This will be done for steady-

state bias conditions and also for transient bias conditions.

A. Steady-State Behavior of RTS Noise

An RTS (Fig. 1) is caused by the capture and emission of

a mobile charge carrier in a so-called trap, a localized energy

state somewhere in the bandgap. Physically, traps are caused by

defects at the Si-SiO interface (impurities or dangling bonds).

Electrically, a trap modulates the drain current of a MOSFET

in two ways. First, the charge carrier that is captured no longer

takes part in conduction . Second, the trap that captures

a carrier becomes charged by doing so, and this may modulate

the position of the channel in the vicinity of the trap, thereby

changing the macroscopic mobility of the device (correlated

mobility fluctuations). If the trap is strategically placed [31], it

may cause a relatively large conductivity fluctuation.

It is instructive to briefly review steady-state RTS behavior.

The important parameters of an RTS are its mean high and low



VAN DER WEL et al.: LOW-FREQUENCY NOISE PHENOMENA IN SWITCHED MOSFETs 543

Fig. 3. RTS noise power as function of the asymmetry of the RTS.! = 1,
amplitude = 1. Maximum power for � = 1 (symmetrical RTS).

time and its amplitude. The high current state of the device is

associated with the untrapped state of the carrier, and the low

current state is associated with the trapped state of the carrier

(Fig. 1). The time constants and are named to correspond

to the emission and capture process, respectively, so that is

the mean time before emission occurs, i.e., corresponding to the

trapped state of the carrier. The converse holds for .

The PSD of an RTS has a Lorentzian shape [27], described

by (5). The relation between the trap time constants and

and the RTS parameters and is given by

and rad/s (6)

The PSD of (5) is proportional to . If , the

RTS is symmetrical, and the PSD has maximum power. If the

RTS is asymmetrical, the noise power of the RTS drops. This

is illustrated in Fig. 3. Intuitively, this is clear as a symmetrical

RTS has a maximum transition probability and hence a max-

imum variance.

B. Bias Dependence of RTS Noise

Having determined how RTS behavior depends on the RTS

time constants, the next step is to determine how the RTS time

constants depend on the bias of the device. For an n-channel

MOSFET, according to basic theory [32], is bias dependent

via the bias dependency of . If the trap is situated some dis-

tance in the oxide, may also be bias dependent [33]. Mea-

surements of the bias dependency of and are given in [3]

and [34]–[38]. For n-channel devices, it is found in all cases that

as is decreased, increases and decreases. The change

in is commonly up to two orders of magnitude, though even

more is observed in certain devices [35].

C. Transient Behavior of RTS Noise

The RTS time constants and are instantaneous functions

of the bias of the device. The occupancy, on the other

hand, can only change in response to a change in and and

will therefore necessarily lag behind.

This can be seen by turning a device on at and subse-

quently observing the occupancy of a trap in the device. Mea-

surements for three different devices are given in Fig. 4. An ex-

ponential fit to the data is included. The measurement technique

employed is described in detail in [39] and [40].

Fig. 4. Transient behavior of RTS noise in three different MOSFETs. Expo-
nential occupancy change indicates that � and � are instantaneous functions
of the bias of the device.

Fig. 5. View of an RTS under steady-state and transient conditions. Black cor-
responds to an empty trap, white to a full trap. (a) Steady-state measurement;
(b) transient measurement.

In the measurements, the traps reach their steady-state occu-

pancy in an exponential fashion, indicating that the time con-

stants do indeed change instantaneously with the bias of

the device.2 An alternate view (of a different RTS) is given in

Fig. 5, which shows steady-state and transient behavior of an

RTS. In Fig. 5(b), the device is switched on at time after

having been off for a time much longer than the RTS time con-

stants. Turning the device off has clearly emptied the RTS (the

“black” state), and steady-state behavior is only resumed after

several microseconds.

D. Modelling of Transient RTS Behavior

If a MOSFET is subjected to a rapidly changing bias, its LF

noise can change significantly, as seen for example in Fig. 6.

A state-of-the-art circuit simulator is unable to predict or re-

produce such behavior, instead predicting a simple -type

LF noise PSD (“Model prediction” in the figure), which only

changes by 6 dB when the device is subjected to the biasing

conditions shown. In contrast, this device has LF noise that is

dominated by a single RTS, and when it is turned on and off

much faster than and by making a square wave, the

2Measurements show that it does not matter whether the device is turned off
by pulling the gate down or by pulling the source up [28].
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Fig. 6. Steady-state noise and noise under large signal excitation.

Fig. 7. Occupancy of trap.

RTS disappears because the trap in the device never reaches its

steady-state occupancy and instead adopts some sort of average

occupancy. As will be shown, this means the effective RTS time

constants and will change. The derivation below is

given in more detail in [28] and [41].

The occupancy of a trap at any given moment is [32]

(7)

where depends on the initial condition. We treat the case

where the bias voltage alternates abruptly and periodically be-

tween two states; reference is made to Fig. 7 where is the

duty cycle. From , the device is on; during this

time, RTS behavior is governed by and , and from

, the device is off, and RTS behavior is governed

by and . The occupancy is given by (7) at all times; the

steady-state occupancy is never reached because the switching

frequency is high. Instead, the occupancy varies between

and .

Substituting

and

(8)

and equating and , we may derive an expression for

and [41]. If the switching frequency is made very

high compared to the RTS corner frequency ( much smaller

than and ), and converge to the same value, ,

Fig. 8. Contribution to PSD at ! = 1 rad/s for different RTSs.

and the RTS becomes stationary. This effective stationary RTS

has time constants and which can be found to equal

and

(9)

Experimental verification of this result is given in [40].

In summary, a cyclostationary RTS with a constant amplitude

and two states, an on state from , (time constants

and ), and an off state from (time con-

stants and ), can, if the switching frequency is suffi-

ciently large, be described by an effective stationary RTS with

parameters and , for which the expressions are given

above. If the effective RTS time constants are strongly asym-

metric, the PSD of the RTS will decrease.

E. Generalisation to Trap Distribution

In order to predict noise performance of large devices or large

numbers of small devices, we can now generalise single-trap

behavior to trap distributions. To do so, we identify the dominant

traps both in the steady-state and under transient conditions.

The PSD of an RTS is given by (5); the same holds for the

effective stationary RTS, the time constants of which were are

given by (9).

To illustrate which RTS are the dominant contributors to LF

noise at the output, the PSD of the RTS at a particular frequency

(in this example, rad/s) is plotted in Fig. 8 as a function of

and . Contour lines denote the ’s of RTSs with a rel-

ative noise power contribution of 80% and 60% compared to the

dominant RTS which is at the heart of the contours. The domi-

nant contribution to output noise always comes from traps with

close to 1 and close to the frequency of interest. Traps

with large or small are mostly empty or full respectively and

do not contribute significantly to the noise. If the RTS corner fre-

quency is very low or very high compared to the measurement

frequency, the contribution of this RTS will be insignificant as

well.

To examine RTS behavior when the device is periodically

turned on and off, bias dependence of and is modelled

in a very simple and insightful way: and
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, respectively. Combining this with (9), it fol-

lows for 3 that and

. This changes the effective time constants

of all RTSs in the device in such a way that for

(a) has decreased by a factor 1.8 and (b) has increased by a

factor 5.5 compared to the steady-state situation. The main con-

tribution to the PSD is therefore now from different traps. Traps

that were mostly full in the steady-state case now have an occu-

pancy closer to 50%, and they dominate output noise.

The shape of the noise contribution curve in Fig. 8 does not

change; it has only been shifted along the and axes.

Hence, the noise PSD will not change at all if the distribution

of ’s is uniform in . Such a uniform distribution in

results if two conditions are satisfied. First, the distribution of

trap depth in the oxide, , should be uniform. (This is the basis

of McWhorter’s model [20] and responsible for the emergence

of a spectrum.4) Second, the energy level of traps, , should

be uniformly distributed throughout the bandgap. If these con-

ditions are satisfied, a uniform distribution of traps in and

results.

To explain that turning a device on and off periodically leads

to a decrease in the LF noise PSD [5]–[7], [42], we must con-

clude that the distribution of trap ’s is not uniform in .

This can be the distribution of ’s in a large device with very

many traps, but it can also be the distribution of ’s over an en-

semble of small devices, each with a limited number of traps.5

One likely scenario [43] is that the trap density deeper in the

bandgap is lower.6 Fig. 8 shows that traps deeper in the bandgap

are the ones contributing LF noise when the device is periodi-

cally turned on and off, and if the trap density is lower there as

is often observed [43], this explains why turning the device on

and off lowers the LF noise.

In conclusion, we have shown that when a MOSFET is

periodically and rapidly turned on and off, traps deeper in the

bandgap dominate the LF noise performance of the device.

Since trap densities in MOSFETs are commonly U-shaped in

energy [43], [44], this explains that LF noise in MOSFETs

decreases when the device is periodically turned on and off

[5]–[7], [42]. A circuit designer may expect a large MOSFET

to behave predictably in this way. Small MOSFETs behave in a

slightly more complex fashion: an individual device may show

a noise increase or a decrease depending on the traps the device

happens to contain, but for a group of devices, the average

noise will decrease.

IV. IMPACT ON CIRCUIT DESIGN

The study of RTS noise under large signal excitation (LSE)

has important practical circuit design consequences. In this sec-

tion, existing work is reviewed, and subsequently some exam-

3Other duty cycles can be treated similarly.

4Direct tunnelling is assumed, making the capture cross section a negative
exponential function of x.

5An individual small device will behave according to the traps it happens to
contain, but the ensemble average of the noise performance will be the same as
for a single large device with many traps, assuming that individual traps make
uncorrelated contributions to the output noise.

6The trap depth distribution in the oxide may still be uniform: Nonuniformity
in E does not preclude the emergence of a 1=f spectrum.

Fig. 9. Switched current source. Filtering at the output allows this to be used
as a DC current source.

ples are presented of how LF noise under LSE influences the

design of analog circuits.

A. Existing Work

A number of circuits have been presented by other authors

that make use of or purport to make use of LSE to improve the

LF noise performance [11]–[15]. Unfortunately, there appears

to be a widespread belief that LF noise reduction through LSE is

modelled in current circuit simulators, and consequently, circuit

effects are mistaken for device-physical effects. Furthermore,

considering the wide latitude of results and the very significant

spread in LF noise performance between nominally identical de-

vices [4], it is very important to distinguish between measure-

ment results on a single “golden sample” and measurements on

a statistically significant group of nominally identical devices.

Nevertheless, it is clear that a reduction of LF noise in analog

CMOS circuits by LSE is both desirable and feasible.

B. A Switched Current Source

One example of where classic LF noise modelling clearly

shows its limits is the switched current source of Fig. 9. This is

a current source that alternately activates a transistor with width

and one with width . By changing the duty-cycle from

0 to 100% the current can be varied by a factor 2. A filter is

placed at the output to suppress the obvious HF fluctuations in

current. As an added bonus, the LF noise of the current source

decreases when the duty cycle of the driving square wave is not

0 or 100% as can be seen from the shape of the “Traditional

model” curve in Fig. 10. This is due to the LF noise of both

devices being uncorrelated. The measured LF output noise of

the circuit, however, is much lower than predicted by traditional

models. This is caused by the decrease of the LF noise of the

devices as a result of the large signal square wave they are sub-

jected to. The LF noise model of Section III (“Proposed model”
in Fig. 10), when coupled with a U-shaped distribution of traps,

is seen to provide a fit that is in qualitative agreement with the

measurement results.

C. Correlated Double Sampling

Another example in which the importance of this work is

highlighted is a correlated double sampling circuit. Correlated

double sampling is commonly used to reduce LF noise. It is very

effective, but it does not remove all the LF noise. Subjecting the

device to LSE seems to be a possibility to further reduce the LF

noise, as it would appear to be an orthogonal technique. As we
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Fig. 10. Switched current source: Whereas current circuit simulators cannot
correctly predict LF output noise, the model of Section III, coupled with a coarse
approximation of a U-shaped trap distribution provides a much better fit.

Fig. 11. Correlated double sampling.

will show in this section, this is not necessarily the case, and if

carelessly applied, CDS in conjunction with LSE will make the

LF noise performance of the circuit worse, not better.

A generic CDS system is shown in Fig. 11. We assume a

signal source, followed by a preamp of limited bandwidth that

suffers from additive white and noise. A two-phase clock

allows us, in phase , to make the input “0” and store a sample

of the noise in capacitor C. In phase , the input signal is con-

nected to the preamp, and the noise sample of phase is ef-

fectively subtracted from the output. Intuitively, the principle of

operation is obvious: If the noise is strongly correlated in time,

the noise from phase and will be almost identical and the

noise will be largely cancelled by the CDS operation. If, on the

other hand, the two noise samples are uncorrelated in time, sub-

tracting them is equivalent to adding their powers. Because of

this, the CDS operation will double the output noise power if

the noise is white.

Despite the attenuation of LF noise by CDS, LF input noise

may still be dominant at the output. Conditions for which this

is the case are derived in [28]. In such a case, LF components

of the noise are adequately suppressed, but the HF part of

the noise contributes noise at the output. One example of a

circuit where noise is typically the dominant noise source

despite the use of CDS is an CMOS imager pixel [45], which is

treated in more detail here.

A CMOS imager pixel is shown in Fig. 12. After a certain

integration period during which light is incident on the photo-

diode, transistor M1 is switched on and resets the floating dif-

fusion to a high potential. This reset voltage is read out by as-

serting the Row Select line, which connects transistor M2 to

Fig. 12. CMOS imager pixel.

Fig. 13. Test structure for noise measurement using correlated double sampling
and large signal excitation to reduce LF noise.

the current source that is external to the pixel. After the

read-out of this reset voltage, the photo-charge is transferred

to the floating diffusion via transfer gate M4, and read-out in

the same way. By subtracting both read-out signals a correlated

double sampling operation is performed, allowing removal of

offset of M2 and noise of the floating diffusion. M1 to M4

have to be very small to maximise the photosensitive area in the

pixel. M1, M3 and M4 are switches and do not exhibit much LF

noise, leaving the noise of M2 as the dominant LF noise source

in the front-end, despite the correlated double sampling.

LSE is applied at the source of M2 via the column bus since

LSE at the gate is not possible in this circuit. Measurements [28]

show that this is equivalent in terms of LF noise to applying LSE

at the gate. Performing the LSE at the source has the advantage

that the circuitry to pull up the column bus only needs to be

replicated once per column, not once per pixel.

To investigate this noise reduction method, a test structure

(Fig. 13) was designed and processed in a mature industrial

0.35- m process in which a device is subjected to identical bias

conditions as M2 would be in a real circuit. In the noise mea-

surements, CDS operation of the actual circuit is replicated. This



VAN DER WEL et al.: LOW-FREQUENCY NOISE PHENOMENA IN SWITCHED MOSFETs 547

Fig. 14. Sample positions for CDS in imager.

Fig. 15. Noise measurement when applying CDS.

is illustrated in Fig. 14. The simplest way to apply LSE is to

first keep the device off for a relatively long time, and take a

first sample of the noise 0.5 s after its turn-on transient .

Three s later, a second sample of the noise is taken . The

mean square difference between these two samples is calcu-

lated: . This is the output noise power of the CDS,

and by measuring it directly and comparing it to in

the steady-state, a judgement can be made on whether subjecting

M2 to LSE in this manner is useful.

In Fig. 15, measurement results obtained in this way for 35

devices with areas between 0.175 m and 1.75 m are given.

In the figure, the noise under steady-state bias conditions is

plotted along the -axis, and the noise when the device is turned

off briefly before the sampling instants by pulling the source ter-

minal up to is plotted along the -axis. The diagonal line is

the boundary between those devices showing more (above the

line), and those showing less (below the line) noise when sub-

jected to LSE. The majority of devices in this plot lie above

the diagonal: on average, rises from to

when the devices are subjected to LSE. Spread in the

results is considerable; over two orders of magnitude for both

the steady-state and the LSE measurement.

The increase in LF noise observed when the devices are sub-

jected to LSE+CDS is rather disappointing, especially in view

of the measurement results of Fig. 16, in which the same devices

are subjected to LSE only, and the majority of devices show a

strong noise decrease.

Analysis shows that the problem is caused by the combina-

tion of LSE and correlated double sampling. Though LSE on

average reduces the LF noise of the device, the bias history of

Fig. 16. Large signal excitation decreases LF noise of devices.

both sample moments is not the same, and the LF noise at both

sample moments is not the same either. Because of this, the CDS

operation aggravates the LF noise of the device despite the fact

that the LF noise itself at each sample instant has decreased.

This is a very important observation: if CDS is to be used

to good effect, not only should the bias at the sample instants

be as identical as possible, but the bias history of both sample

instants also needs to be identical. If CDS is carelessly applied,

it is clear that this condition will not always be satisfied, and

CDS may make the LF noise worse rather than improving it.

A detailed quantitative explanation of this effect is given in

[28]. Obviously, an LSE biasing scheme can be devised that

gives an LF noise benefit in combination with CDS. From the re-

sults above, one characteristic of such a biasing scheme is clear,

namely that it should ensure that the bias history of both sample

instants is the same. A square wave sequence with a duty cycle

that is as low as possible would satisfy this requirement, where

the two samples for the CDS are taken in subsequent on periods

of the square wave, long after the start of the sequence.

The transient Shockley–Read–Hall model of Section III-D

explains the measurement results. Applying correlated double

sampling if the bias history of both sample instants is not iden-

tical will make the LF noise worse.

D. RF Circuit Design

RF circuits can suffer from LF noise, much as baseband cir-

cuits do. Whereas in baseband circuits LF noise is in direct com-

petition with the signal, it is upconversion of LF noise that limits

the performance of many RF circuit blocks. Close-to-carrier

phase noise of PLLs and VCOs, for example, is commonly dom-

inated by LF noise. Though measures have successfully been

proposed to limit upconversion of LF noise, a further reduction

in LF noise is always desirable. There are two important fac-

tors that point to application of the LSE noise reduction effect

in RF designs. First, it is not possible in many RF designs to

apply baseband techniques such as correlated double sampling.

Second, devices in many RF-CMOS circuits are operated with

very large voltage swings, i.e., the devices are already being sub-

jected to LSE by the operation of the circuit.
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To ascertain whether LF noise reduction is present in RF cir-

cuits, i.e., when the devices are turned off and on at a very high

frequency, measurements were performed. Results up to 3 GHz

[46] indicate that the frequency of excitation does not influence

the LF noise reduction and that a useful reduction of LF noise

may therefore be expected in RF circuits. This again is in accor-

dance with the theory presented in Section III.

V. CONCLUSION

In this paper, we have tried to give circuit designers some

insight into RTS noise phenomena. The common models used

in circuit simulators have significant limitations when applied

to small-area devices with a low number of free carriers, as the

LF noise performance of these devices is dominated by Random

Telegraph Signals (RTS).

The observation that in large devices, LF noise decreases

when the device is subjected to large signal excitation is ex-

plained by the bias dependency of the RTS time constants cou-

pled to the U-shaped distribution of interface states. In small

devices, though the noise will go down on average, it is not

possible to predict the behavior of each individual device in

advance.

For circuit designers, awareness of non-steady-state LF noise

phenomena is important because in many circuits, the devices

are operated in a switched fashion. Under these conditions, LF

noise of the devices will not be the same as during steady-state

biasing. In a switched current source, this was shown to result in

a significant LF noise reduction. For a correlated double sam-

pling circuit, this means that the bias history for both sample

instants must be identical if the noise reduction is to function as

intended. For RF circuits where devices are rapidly switched on

and off, improved LF noise performance may be expected.

The important overall conclusion is that the LF noise charac-

teristics of a MOSFET depend not only on the present bias state

of the device, but also on the bias history of the device, an effect

not modelled in current (2006) circuit simulators.
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