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ABSTRACT

There is observational and modeling evidence that low-frequency variability in the North Atlantic has

significant implications for the global climate, particularly for the climate of the Northern Hemisphere. This

study explores the representation of low-frequency variability in the Atlantic region in historical large en-

semble and preindustrial control simulations performed with the Community Earth System Model (CESM).

Compared to available observational estimates, it is found that the simulated variability in Atlantic meridi-

onal overturning circulation (AMOC), NorthAtlantic sea surface temperature (NASST), and Sahel rainfall is

underestimated on multidecadal time scales but comparable on interannual to decadal time scales. The weak

multidecadal North Atlantic variability appears to be closely related to weaker-than-observed multidecadal

variations in the simulated North Atlantic Oscillation (NAO), as the AMOC and consequent NASST vari-

ability is impacted, to a great degree, by the NAO. Possible reasons for this weak multidecadal NAO vari-

ability are explored with reference to solutions from two atmosphere-only simulations with different lower

boundary conditions and vertical resolution. Both simulations consistently reveal weaker-than-observed

multidecadal NAO variability despite more realistic boundary conditions and better resolved dynamics than

coupled simulations. The authors thus conjecture that the weak multidecadal NAO variability in CESM is

likely due to deficiencies in air–sea coupling, resulting from shortcomings in the atmospheric model or

coupling details.

1. Introduction

The Atlantic Ocean plays a unique role in the climate

system. The meridional heat transport in the Atlantic is

cross-equatorial and northward at all latitudes due to the

existence of the basinwide, deep-reaching Atlantic me-

ridional overturning circulation (AMOC). The direct

estimates of its transport at 26.58N since 2004 by the

RAPID array show substantial variability on sub-

seasonal to interannual time scales (Cunningham et al.

2007; Kanzow et al. 2010; McCarthy et al. 2012). While

the observed record is still far too short to reveal low-

frequency (i.e., decadal to multidecadal) variability of

AMOC, numerous coupled climate model simulations

have shown rich low-frequency AMOC variability, with

the dominant time scales varying substantially across

models [see, e.g., Danabasoglu (2008) for a review]. The

simulated low-frequency AMOC variability is shown to

play an important role in modulating surface climate in

broad regions of the Northern Hemisphere due to as-

sociated changes in northward heat transport1 (e.g.,

Knight et al. 2005; Dong and Sutton 2005; Danabasoglu

et al. 2012; Delworth and Zeng 2016).

Corresponding author: W. M. Kim, whokim@ucar.edu

1More precisely, because of changes in the convergence of the

northward heat transport in the North Atlantic (Zhang and

Zhang 2015).
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One prominent feature associated with the low-

frequency AMOC variability in coupled models is

low-frequency, basinwide fluctuations in sea surface

temperature (SST) in the North Atlantic (e.g., Delworth

et al. 1993; Knight et al. 2005; Danabasoglu et al. 2012;

Ba et al. 2014; Tandon and Kushner 2015). Observations

also show basinwide fluctuations in the North Atlantic

SST (NASST) on multidecadal time scales, often re-

ferred to as the Atlantic multidecadal oscillation or

variability (AMV). The AMV has been linked to

many low-frequency climate fluctuations in the Northern

Hemisphere, such as Sahel and Northern Brazilian rain-

fall, Atlantic hurricane activity, North American and

European temperatures, and Arctic sea ice extent (e.g.,

Folland et al. 1986; Goldenberg et al. 2001; Enfield et al.

2001; Sutton and Hodson 2005; Zhang and Delworth

2006; Knight et al. 2006; Day et al. 2012; Zhang 2015).

The AMOC changes during the twentieth century are

often framed as externally forced, represented by mul-

timodel or ensemble means of climate model simula-

tions. Radiative external forcings cause an overall

decline of AMOC strength during the late twentieth

century in most coupled models (Cheng et al. 2013) as a

precursor of the further substantial decrease in the

AMOC in future projections due to anthropogenic

warming (Weaver et al. 2012; Cheng et al. 2013). In

addition to the long-term decline, external forcings give

rise to multidecadal fluctuations in AMOC strength

between preindustrial and present-day time periods in

some models, with this variability attributed to the

combined influence of anthropogenic aerosols and

greenhouse gases (Cheng et al. 2013), volcanic forcing

(Swingedouw et al. 2015), and changes in solar irradi-

ance (Menary and Scaife 2014). However, the radia-

tively forced multidecadal AMOC variability during the

historical period seems to bemodel dependent andweak

compared to the magnitude of internal AMOC vari-

ability (Swingedouw et al. 2015).

The low-frequency AMOC variability associated with

variations in the large-scale atmospheric circulation is

highlighted in studies utilizing ocean–sea ice simulations

forced with historical atmospheric state reanalyses (e.g.,

Robson et al. 2012; Yeager and Danabasoglu 2014;

Danabasoglu et al. 2016). This low-frequency AMOC

variability is consistently characterized by an overall

increase from the 1970s to the mid-1990s and a decrease

thereafter (Eden and Jung 2001; Böning et al. 2006;

Biastoch et al. 2008; Robson et al. 2012; Yeager and

Danabasoglu 2014; Danabasoglu et al. 2016) and has

been attributed to low-frequency variations in the North

Atlantic Oscillation (NAO), the leading mode of at-

mospheric variability over the North Atlantic (Hurrell

1995). The mechanism of the AMOC–NAO relationship

involves deep-water formation in the Labrador Sea,

driven largely by surface heat loss (Yashayaev 2007;

Yashayaev and Loder 2016). Under positive NAO con-

ditions, in general, enhancedwesterlies carry cold air from

North America to the Labrador Sea (Kim et al. 2016),

promoting the formation of Labrador Seawater (LSW)

and leading to an increase in theAMOCwith some delay.

The link between low-frequency variations inNASST,

AMOC, and NAO is also evident in some coupled

models (e.g., Dong and Sutton 2005; Danabasoglu et al.

2012). However, it has recently been claimed that simi-

lar low-frequency NASST variability can be obtained in

coupled simulations that use a slab-oceanmodel, instead

of a fully active, dynamical ocean model (Clement et al.

2015). As such, Clement et al. (2015) argue that the

observed AMV can be driven by stochastic atmospheric

forcing alone. This claim is disputed by recent studies

(Zhang et al. 2016; O’Reilly et al. 2016; Delworth et al.

2017) that show that the simulations with slab-ocean

models cannot possibly reproduce the mechanisms

maintaining the low-frequency NASST variability

identified in fully coupled models. Nevertheless, the

results of Clement et al. (2015) raise an intriguing

question as to why the NASST power spectra in the

coupled simulations are indistinguishable from those of

the slab-ocean simulations. Indeed, it has been reported

in previous studies that low-frequency NASST vari-

ability in many models participating in phase 3 and

phase 5 of the Coupled Model Intercomparison Project

(CMIP3 and CMIP5) is less pronounced, and the de-

correlation time scale is much faster, than in observa-

tions (e.g., Ting et al. 2011; Medhaug and Furevik 2011;

Zhang andWang 2013; Kavvada et al. 2013; Frankcombe

et al. 2015; Peings et al. 2016).

A clue can be found in a recent study byDelworth and

Zeng (2016), who explore the response of the AMOC

and Northern Hemisphere climate to additional NAO-

induced surface heat flux imposed in the ocean compo-

nent of a coupledmodel. Using experiments in which the

imposed periodic NAO-related heat flux anomalies

have frequencies ranging from 2 to 100 years, they find

that the frequency of the AMOC response matches that

of the imposed NAO forcing almost linearly (i.e., a 50-yr

NAO forcing frequency produces a 50-yr cycle in

AMOC). In addition, using an ocean-only simulation

forced with synthetic stochastic NAO forcing, Mecking

et al. (2014) find enhanced low-frequency spectral power

in AMOC and in the subpolar North Atlantic (SPNA)

SSTwhen stochastic forcing exhibits an enhanced power

in a similar low-frequency band during the integration.

Therefore, these studies suggest that there is an almost

linear frequency relationship between the low-frequency

variability of the NAO, AMOC, and NASST.
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Furthermore, recent studies show that the simulated

NAO in CMIP5 models lacks low-frequency variance

compared to observations (Kravtsov 2017; Wang et al.

2017). Therefore, there is reason to believe that weak

(indistinguishable from red noise) low-frequencyNASST

variability in the coupled models utilized by Clement

et al. (2015) may be related to the weak low-frequency

variations in the NAO simulated in these models. How-

ever, none of the aforementioned studies has directly

related the weak low-frequency NASST (or other rele-

vant climate variables) to the weak low-frequency NAO.

In the present study, we investigate the representation

of low-frequency variability in the North Atlantic during

the 1920–2009 historical period primarily in a set of Large

Ensemble (LE) simulations performed with the Com-

munity Earth System Model (CESM; Kay et al. 2015), in

comparison with available observational estimates. With

its large ensemble size, LE samples a wide range of in-

ternal variability and allows for a robust estimation of

externally forced signals. As will be shown below, the LE

simulations exhibit a clear NAO–AMOC–NASST link,

but substantially weaker NASST low-frequency spectral

power than observed. We will show that the CESM is

characterized by weak internal low-frequency variability

in a set of North Atlantic fields closely related toNASST,

including AMOC. We argue that a key aspect of the

model AMV bias is a deficiency in simulating low-

frequency NAO variability, which appears to be more

of a cause than a symptom of anemic NASST variability

on multidecadal time scales.

The paper is organized as follows. In section 2, we

briefly describe the model and observational data used in

our study along with analysis methods. Section 3 com-

pares the low-frequency variability in selected variables

from LE to observational estimates of low-frequency

variability and makes the case that the weaker-than-

observed simulated multidecadal variability in the North

Atlantic is possibly related to weak variations in the

simulated NAO. Possible explanations for the weak

simulated NAO variability are also discussed. Section

4 provides a summary and concluding remarks on

the implications of our findings for understanding low-

frequency climate variability in the North Atlantic.

2. Model simulations, observational data, and

analysis methods

a. Coupled simulations

TheLE simulations use theCESMversion 1with active

biogeochemistry and carbon cycle and with the Com-

munity Atmospheric Model version 5 (CESM1-CAM5;

Kay et al. 2015). These simulations are forced with

historical, observation-based natural, and anthropo-

genic forcings for the 1920–2005 period and with the

representative concentration pathway 8.5 (RCP8.5)

forcings for the 2006–2100 period, following the CMIP5

protocol (Taylor et al. 2012). The ensemble size of the

LE has been increased from 30 to 40 since the publica-

tion of Kay et al. (2015). Here, we utilize the first 35

ensemble members and analyze the historical period

1920–2009 to match the end year of our forced ocean

simulation described below.

The LE members are generated by perturbing the

initial atmospheric temperature by round-off level

changes (Kay et al. 2015) but using the same ocean ini-

tial conditions (OICs). Therefore, the ensemble vari-

ance associated with uncertainties in ocean initial

conditions is possibly undersampled. To partially ad-

dress this issue, we have run an additional 10-member

ensemble with a different ocean initial state. The spread

of this new ensemble is generated identically as in the

original LE. Hereafter, we refer to this new ensemble as

LE-OIC and note that it is used to supplement the

analysis of LE. Further details of the LE-OIC along

with a discussion of how its solutions differ from those of

the original LE simulations are given in appendix A.

We also use the last 1400 years of the 2200-yr CESM

LE preindustrial control simulation (CTRL)—avoiding

the initial transients and drifts—to estimate and com-

pare purely internal low-frequency variability to low-

frequency variability obtained in LE. All time series

from CTRL are linearly detrended prior to analyses.

b. Atmosphere-only simulations

In addition to the coupled model simulations, we

make use of two 10-member ensembles of historical

atmosphere-only simulations to investigate the impacts

of boundary conditions on low-frequency NAO char-

acteristics. The first ensemble, referred to as LT (low

top), uses the sameCAM5 and external forcings as in the

LE and LE-OIC but employs as its surface boundary

conditions the monthly Extended Reconstructed SST

(ERSST) version 4 (Smith et al. 2008) between 288S and

288N and the monthly ERSST climatology poleward of

358 with prescribed climatological sea ice conditions. As

the SSTs are fixed to climatology poleward of 358, the LT

ensemble allows us to isolate the influence of tropical–

subtropical SST on low-frequencyNAOvariability. This

ensemble is available for the 1880–2014 period.

The second atmosphere-only ensemble, referred to as

MT (middle top), also employs CAM5, but with 46

vertical layers and an extended model top at 0.3 hPa

(Richter et al. 2015), in contrast to the 30 levels and

model top at ;2hPa that is used in LE, LE-OIC, and

LT. The lower boundary conditions of MT are the
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monthly SST and sea ice conditions from Hurrell et al.

(2008) and, in contrast to LT, vary interannually ev-

erywhere. In comparison with LT, MT allows us to ex-

amine the influence of extratropical SST and better

resolved stratospheric dynamics on low-frequency NAO

variability. This ensemble spans the 1953–2015 period,

with RCP4.5 forcings used for the 2006–15 period.

c. Forced ocean–sea ice simulation

In the absence of any long, continuous observations of

AMOC to quantify variability on decadal to multi-

decadal time scales, an alternative is to obtain an esti-

mate of historical AMOC variability from a forced

ocean–sea ice simulation (FO). In FO, the ocean and sea

ice models are identical to those of CESM1-CAM5: the

Parallel Ocean Program version 2 (POP2; Smith et al.

2010) and Community Ice Code version 4 (CICE4;

Hunke and Lipscomb 2008). FO is forced with 6-hourly

atmospheric state variables, daily radiative fluxes, and

monthly precipitation from the Coordinated Ocean-Ice

Reference Experiments (CORE) interannually varying

atmospheric datasets (Large and Yeager 2009) and run

for five forcing cycles (1948–2007) to obtain a cyclically

quasi-steady state. Then, the last cycle is extended to

2009 and the 1958–2009 period is used for our analysis.

For further details of the CORE datasets and forcing

protocol, readers are referred to Large and Yeager

(2009), Griffies et al. (2012), and Danabasoglu

et al. (2014).

A key consideration supporting the use of the FO

simulation is that it is able to reproduce important as-

pects of variability in the North Atlantic, compared to

available observations. In particular, the simulated low-

frequency variability in Labrador Sea hydrographic

properties (Yeager and Danabasoglu 2014; Danabasoglu

et al. 2016) andmixed layer depth (Kim et al. 2016) show

good agreement with in situ observations. Such good

agreement between the simulated and observed data in

the particular fields that are known to impact AMOC

variability on decadal and longer time scales (e.g.,

Yeager and Danabasoglu 2014) gives us confidence that

the low-frequency thermohaline variability simulated

in FO represents a reliable estimate of that of the

real ocean.

d. Observational data

We use several observational datasets to evaluate the

simulated variability in the North Atlantic. For the

NASST and SPNA SST, we employ the observed SST

data from the Hadley Centre Global Sea Ice and Sea

Surface Temperature (HadISST; Rayner et al. 2003)

version 1.1. For Sahel rainfall, the precipitation data

from Climate Research Unit, University of East Anglia

(CRU), version 3.23 (Harris et al. 2014) is used. For the

evaluation of the simulated NAO variability, the winter

[December–March (DJFM)] NAO index based on the

sea level pressure difference between Lisbon, Portugal,

and Reykjavik, Iceland (Hurrell et al. 2017), is em-

ployed. For the spatial pattern of the NAO as well as

other leading atmospheric modes, the NOAA Twenti-

eth Century Reanalysis version 2c (20CRv2c; Compo

et al. 2011) is used. The temporal coverage of the above

datasets varies, but all of them cover the entire twentieth

century. Although we show the full length of the data in

the time series plots, we only use the 1920–2009 period

for our analyses in order to match the time period of LE.

In addition, we utilize a recent reconstruction of winter

NAO computed from multiple proxy records that is

available at annual resolution from 1049 to 1969 (Ortega

et al. 2015).

e. Methods

We estimate the low-frequency North Atlantic vari-

ability using two methods. First, we conduct a standard

spectral analysis to obtain the spectral power of se-

lected variables. However, the historical records are

short relative to the low-frequency periods of up to

60 years that we are interested in (i.e., the spectral peak

of the observed AMV) (e.g., Peings et al. 2016). Thus, to

supplement the spectral analysis, we compute moving

trends with window lengths of 5, 15, and 30 years and

examine the distributions of the trends. We chose these

trend lengths somewhat arbitrarily to quantify the am-

plitude of the variability on decadal to multidecadal

time scales. The results from the moving trend analysis

are not very sensitive to the precise choice of window

lengths.

We also perform standard regression and correla-

tion analyses when examining the relationships be-

tween two variables, and empirical orthogonal function

(EOF) analysis to capture the dominant modes of

variability. Because we are interested in low-frequency

variability, we first smooth all time series using a 15-yr

Butterworth low-pass filter before computing regres-

sions or correlations. EOFs are computed using un-

smoothed annual time series and the principal

component (PC) time series are normalized to have unit

variance. Thus, the magnitudes of the EOF spatial pat-

terns correspond to one standard deviation change in

the PC time series. For all ensemble simulations, we

apply all statistical analyses to each ensemble member

separately and then compute the ensemble mean, if

possible, with ensemble spread. When necessary, we test

the statistical significance of the regressions and correla-

tions at the 95% confidence level using a two-sided

Student’s t test with the effective degrees of freedom
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computed based on the method of Bretherton et al.

(1999).

3. Results

a. Low-frequency AMOC variability

We first present the time-mean and the first EOF

(EOF1) of AMOC along with the associated PC time

series (PC1) from LE and FO, as well as PC1 from LE-

OIC, in Fig. 1. The AMOC time-mean and EOF1 are

very similar between LE and FO. In both, the time-

mean AMOC has a maximum overturning strength of

about 25 Sv (1 Sv[ 106m3 s21) centered at around 358N,

but the upper cell penetrates slightly deeper in LE than

in FO. TheEOF1, accounting for about 47%and 52%of

the respective total AMOC variance in LE (ensemble

mean) and FO, reflects a basin-scale fluctuation of

AMOCof order 1 Sv per unit standard deviation of PC1,

in both LE and FO.

The ensemble-mean PC1 from LE exhibits a multi-

decadal variability (Fig. 1c), showing three stages:

a weakening from 1920 until about 1960, a subsequent

increase until the late 1970s, and then a decline until the

end of our analysis period. We note that the magnitude

of the initial weakening trend is considerably smaller in

LE-OIC than in LE, suggesting an influence of ocean

initial conditions as discussed in appendix A. The peak-

to-peak change of the forced AMOC variability in

midlatitudes is about 3 Sv. This forced multidecadal

variability is similar to that found in some CMIP5

models, the cause of which has been attributed to a

combined influence of anthropogenic aerosols and

greenhouse gases (Cheng et al. 2013). The forced signal

FIG. 1. Time-mean (contours) andEOF1 ofAMOC (colors) from (a) LE and (b) FO, with the fraction of the total

variance accounted for byEOF1 given in parentheses, and (c) PC1 time series fromLE (black), LE-OIC (blue), and

FO (red). In (a), the time mean, EOF1, and explained variance of AMOC are the ensemble mean of LE. In (c), the

full ranges of ensemble spread of PC1 from LE and LE-OIC are indicated by light gray and blue shading, re-

spectively, and the black and blue lines indicate the respective ensemblemeans. In (a) and (b), the unit is Sv (1 Sv[

106m3 s21), and the light black contour lines indicate positive (clockwise) circulation with a contour interval of 3 Sv;

the zero contour level is denoted with a thick black line. The EOF analysis is for the 1920–2009 period for LE and

for the 1958–2009 period for FO. The maroon dashed line in (c) indicates the period with the maximum 30-yr trend

in FO.
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seen in LE and LE-OIC during the second half of the

twentieth century stands in stark contrast with the var-

iability diagnosed from FO. In particular, the FO PC1

shows a large upward trend during the 1980s and early

1990s, with a slight decrease only thereafter. This pro-

nounced upward trend is also found in other AMOC

indices based on the maximum overturning circulation

at fixed latitudes (not shown). It is also a common fea-

ture in many other ocean hindcast simulations forced

with atmospheric state reanalyses (e.g., Biastoch et al.

2008; Danabasoglu et al. 2016) and in some ocean re-

analysis products (e.g., Pohlmann et al. 2013).

At first glance, the AMOC variability in FO appears

consistent with the LE and LE-OIC ensemble spread,

with only slight excursions outside of the shaded region

in Fig. 1c. The power spectrum of the FO PC1 is also

within the ensemble envelope of the LE PC1 power

spectra in all frequency bands (Fig. 2a). However, this

interpretation can be misleading as the multidecadal

variability in the individual members of LE appears to

be dominated by the externally forced signal. Figure 3

shows the 30-yr moving trends of the AMOC PC1 from

all ensemble members of LE along with those from the

ensemble mean PC1 (bottom row) and FO (top row).

The 30-yr trends from the individual members of LE are

largely consistent with those of the ensemble mean:

negative trends in the earlier and later periods and

positive trends in between (roughly from the mid-1940s

to the mid-1960s). The dominant influence of external

forcings onmultidecadal AMOC variability in LE is also

suggested in Fig. 2a, as the envelope of the LE spread

becomes narrow toward multidecadal frequency bands.

In sharp contrast, the strong positive trend in FO takes

place when the majority of the LE members show

negative trends in the later period. Low-frequency var-

iability in NAO-induced buoyancy forcing, which ap-

pears to be largely internal (Gillett and Fyfe 2013), is

commonly invoked as the mechanistic explanation for

the upward trend in AMOC during the late twentieth

century (e.g., Latif et al. 2006; Biastoch et al. 2008;

Yeager andDanabasoglu 2014). The dominant influence

of external forcings on multidecadal AMOC variability

in LE during this period therefore casts doubt on the

fidelity of the representation of internal variability

in LE.

Given the strong signature of forced multidecadal

AMOC variability in LE, we recompute the power

spectra of theAMOCPC1 fromLE after subtracting the

ensemble mean PC1 from both LE and FO (Fig. 2b). As

expected, the variance in the low-frequency bands (time

scales longer than;20 yr) is substantially reduced in LE,

while the variance of relatively high-frequency vari-

ability remains largely unaffected. As a result, the mul-

tidecadal variance of FO is now outside the LE range.

Because the forced signal of LE is almost out of phase

with that of the FO PC1 (Fig. 1c), the removal of the

ensemble mean of LE amplifies the multidecadal vari-

ability in FO. In other words, to the extent that the LE

ensemble mean would accurately reflect the forced

AMOC variability of the real world, the internal mul-

tidecadal variability in FO would be even stronger (and

even further outside the LE range).

Figure 4 presents an extended moving trend analysis,

considering 5-, 15-, and 30-yr segments for AMOC PC1

FIG. 2. Power spectra of AMOC PC1 time series from LE (ensemble mean; black) and FO (red) with the en-

semble spread (5th–99th percentile) of LE (gray shading): (a) from the rawAMOCPC1 and (b) after removing the

ensemble mean PC1 of LE. The dashed red line in (b) is the raw PC1 spectrum of FO shown in (a).
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from LE and CTRL without (top) and after (bottom)

subtracting the LE ensemble mean. All trends are nor-

malized to the corresponding maximum (absolute)

trend in the raw FO PC1 (e.g., the 1974–2003 trend

shown in Fig. 1c for the 30-yr trends). In general, while

the upper limit (99th percentile) of the LE distribution is

close to the maximum trend of FO for the 5-yr trends,

regardless of whether the ensemble mean is removed or

not, it tends to become lower as the trend length in-

creases. Without removing the forced signal, there are

still a few instances where the 30-yr moving trends from

LE exceed the maximum trend of FO, and the distri-

bution of LE 30-yr trends is wider than that of CTRL.

However, when the ensemble mean is removed, none of

the 30-yr trends exceeds the maximum trend of FO, and

the distribution of LE becomes comparable to CTRL.

This indicates that the forced signal significantly en-

hances the multidecadal AMOC variability in LE (the

variance of 30-yr moving trends is roughly 40% greater

with the ensemble mean left in). In contrast, if the en-

semble mean of LE is removed from FO, the maximum

30-yr trend increases by about 40%, consistent with the

results from spectral analysis. Therefore, these results

demonstrate that the presumably realistic multidecadal

AMOC trend in FO falls either outside or in the extreme

tail of the LE distribution, suggesting that the internal

multidecadal variability of the AMOC in LE is

too weak.

b. Climate impacts of the simulated multidecadal

AMOC variability

Figures 5a and 5b show the SST spatial pattern asso-

ciated with the AMV for the ensemble mean of LE and

that of the HadISST. These patterns are obtained as the

simultaneous regressions of the annual-mean SST time

series onto the respective AMV indices, defined as the

SST averaged over 08–608N, 758–78Wand 15-yr low-pass

filtered. To isolate internal variability, the ensemblemean

FIG. 3. 30-yr moving trends in theAMOCPC1 time series for each individual member of LE. 30-yr moving trends for

the ensemble-mean AMOC PC1 of LE (EM; bottom row) and for the AMOC PC1 of the forced ocean–sea ice simu-

lation (FO; top row) are also shown.All trends are normalized by themaximum30-yr trend in FO [3.4 std dev (30 yr)21].

The trend values are plotted at the start year of the trend range.
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AMV index is subtracted from each individual AMV

index in LE, and a linear trend is subtracted from the

observedAMV index prior to the regressions.2TheAMV

patterns from observations and LE show broad agree-

ment, although LE has a wider cold anomaly in the

western midlatitude North Atlantic, with a canonical

AMV shape (e.g., Ting et al. 2011): a broad warming in-

the entire North Atlantic with the maximum anomaly in

the SPNA and a limb extending along the eastern part

of the basin into the subtropics and tropics. However, the

magnitude of the AMV anomalies in LE is actually much

weaker than in observations because the standard de-

viation of the AMV index in LE—ranging from 0.048 to

0.098Cwith an ensemblemean of 0.068C—is substantially

weaker than the observed value of 0.148C (note that the

AMV regressions are per unit 8C in both Figs. 5a and 5b).

Recent modeling studies suggest that the SPNA com-

ponent of the AMV results from the AMOC-driven

meridional heat transport convergence in the subpolar

region while the subtropical to tropical extension is

largely due to an atmospheric response to the SPNA SST

(Zhang and Zhang 2015; Brown et al. 2016b). The lead–

lag correlations between theAMOCPC1 and SPNASST

(averaged over the boxed region indicated inFig. 5a) time

series in LE and CTRL support such a relationship be-

tween AMOC and SPNA SST (Fig. 5c). The correlations

are maximized and statistically significant, as indicated in

FIG. 4. Box plots of 5-, 15-, and 30-yr moving trends from LE and CTRL (top) for the raw AMOC PC1 time series and (bottom) after

removing the ensemble mean AMOC PC1 time series from each LE member (CTRL is the same in top and bottom panels). The moving

trends from the individual ensemble members of LE are binned into a single box plot. The sample sizes are 3010 and 1397 (5 yr), 2660 and

1387 (15 yr), 2135 and 1372 (30 yr) for LE and CTRL, respectively. The box plots show the median (red center line), interquartile range

(box height), 1st–99th percentile range (whiskers), and outliers (red crosses). All trends are normalized to the corresponding maximum

trend of the raw AMOC PC1 time series from FO with the normalized maximum FO trend indicated by the dashed black lines in

each panel.

2Removing the forced component from observations remains an

area of ongoing research, and removing a linear trend is likely

suboptimal. However, we note that a similar regression pattern for

observations is obtained with a somewhat weaker amplitude in the

SPNA when the ensemble mean AMV index of LE is removed

from the observed AMV index.
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FIG. 5. SST regressions onto respective AMV indices from (a) LE (ensemble mean) and (b) HadISST for the

1920–2009 period. (c) Lead–lag correlations between the AMOC PC1 and SPNA SST time series from LE (gray

shading for one standard deviation of ensemble spread and black line for the ensemble mean) and CTRL (blue).

(d) Ensemble mean lead–lag correlations between the AMOC PC1 and northward heat transport convergence

(NHTC) time series as a function of latitude from LE. (e) Annual SPNA SST anomaly time series (relative to the

1920–2009 mean) from LE (ensemble mean; black), LE-OIC (ensemble mean; blue), and HadISST (red). The

boxed area in (a) shows the region used to calculate SPNASST. In (e), the shading indicates the ensemble spread of

LE and LE-OIC, as in Fig. 1. In (a), (c), and (d), the ensemble mean is removed for LE prior to the regression and

correlation analyses, while the linear trend is removed from the observations in (b). In (c), statistically significant

correlations in CTRL at the 95% confidence level are indicated by crosses. The maroon dashed line in (e) indicates

the period with the maximum 30-yr trend in the observed SPNA SST. The unit is 8C 8C21 in both (a) and (b).
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CTRL, when the AMOC PC1 leads the SPNA SST by

about 3 years in both LE and CTRL. Consistent with the

results of Brown et al. (2016b), the northward heat

transport associated with the low-frequency AMOC

variability shows convergence in the SPNA, as demon-

strated by the lead–lag correlations between the time

series of theAMOCPC1 and themeridional convergence

of the northward heat transport from LE (Fig. 5d).

Because of its direct connection with AMOC in the

model, SPNA SST may serve as a proxy for AMOC-

related variability both in models and observations. The

SPNA SST from observations shows pronounced multi-

decadal fluctuations (Fig. 5e), similar to that of the tra-

ditional AMV. During the 1920–2009 period that

overlaps with LE, the peak-to-peak amplitude of the

multidecadal variability is .1.58C, although the multi-

decadal variability is relatively weak and interannual to

decadal variability is relatively strong during the earlier

period (1870–1920). The ensemble mean SPNA SST of

LE shows a forced multidecadal signal with a peak-to-

peak amplitude of about 0.58C. The very early warm state

of the ensemble mean in LE is partly related to the ocean

initial conditions, as LE-OIC shows a somewhat colder

state, but the two ensemble means quickly converge

within a few years. The ensemble ranges of LE and LE-

OIC appear to encompass the observed SPNASST range

but, as was the case for AMOC, this interpretation is

misleading when multidecadal variability is considered.

Figure 6a shows the power spectra of the annual-mean

SPNA SST time series from LE and observations. The

LE ensemble encompasses the power spectrum of the

observed SPNA SST in almost all frequency bands, but

the observed variance around the 60-yr period is slightly

above the upper limit of the LE distribution. This

;60-yr peak is also evident when the full record of the

observed SPNA SST is used (i.e., 1870–2015). As in the

case of AMOC, the multidecadal SPNA SST variability

in LE appears to be significantly enhanced by external

forcings. The subtraction of the ensemblemean fromLE

yields much weaker variance in multidecadal frequency

bands (Fig. 6b), increasing the difference between LE

and observations. Removing the ensemble mean of LE

from observations does not affect the observed spec-

trummuch, because the amplitude of the former is much

weaker than that of the latter and they are largely in

quadrature (Fig. 5e).

Figure 7 shows the 30-yr moving trends of the SPNA

SST from the individual ensemble members of LE,

along with those from the ensemble mean (bottom

row) and observations (top row). As was the case for

AMOC, they tend to cluster around the same sign of

the trends in the ensemble mean, supporting the sig-

nificant influence of the forced signal on multidecadal

SPNA SST variability in LE found in the spectral

analysis above. Although there are some ensemble

members where the timing of the 30-yr moving trends

shows some similarity to the observations (e.g., en-

semble members 6, 7, 20, 32, and 35), the amplitudes

are much weaker than observed.

Box plots of the moving trends further support the

weaker internal multidecadal variability of SPNA SST

in LE relative to that of observations (Fig. 8). The top

panels of Fig. 8 show the 5-, 15-, and 30-yr moving trends

of SPNA SST from LE, CTRL, and observations. Here,

the ensemble mean has been removed from both LE

and observations. While the box plots show relatively

FIG. 6. As in Fig. 2, but for the SPNASST. The thin blue line in (a) is the spectrum from observations (HadISST) for

the longer (1870–2015) period.
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similar distributions of LE and CTRL for the 5-yr

trends, relative to observations, they become narrower

when the trend length increases (top row). However,

given the short length of the observations relative to the

30-yr moving trend window, comparing the distribution

from a single observed realization to that from 35 sim-

ulated realizations may give biased results. Therefore,

we also compare the distribution of the observed 30-yr

moving trends to those from all individual ensemble

members of LE (Fig. 8, bottom row). Although the

distributions of the 30-year trends from LE vary quite

substantially across the ensemble members, all distri-

butions from LE are narrower than observed, and none

of themembers simulates a positive trend as large as that

observed between 1979 and 2008.

Both observations (e.g., Ting et al. 2011) and model

simulations (e.g., Zhang and Delworth 2006) suggest

that the low-frequency variability of rainfall in the

Sahel region, particularly during the summer months

[June–September (JJAS)], is associated with the AMV.

In Fig. 9, we show the regression distributions of JJAS

precipitation over land onto the annual AMV index

(15-yr low-pass filtered) from LE and observations. In

both, an increase in rainfall in the Sahel region asso-

ciated with a positive AMV phase is clearly seen, al-

though it is constrained to a relatively small region near

the west coast of Africa between 108 and 208N in LE in

contrast to a continent-wide strip in observations. This

increase in rainfall is due to the northward shift of the

intertropical convergence zone, associated with the

AMV (Folland et al. 1986).

To compare the rainfall variability between obser-

vations and LE, we obtain the area-averaged JJAS

precipitation time series for a region in the western part

of the Sahel (shown in Fig. 9a). The JJAS Sahel pre-

cipitation shows, overall, a gradual decrease in both LE

ensemble mean and observations (Fig. 9c), consistent

with previous studies, suggesting a decreasing trend in

Sahel precipitation in response to global warming (e.g.,

Held et al. 2005). Superimposed on this slow decrease,

the observed Sahel rainfall time series also exhibits

large-amplitude multidecadal variability. In particular,

a downward trend during the 1950s to 1970s and an

upward trend thereafter are consistentwith themultidecadal

FIG. 7. As in Fig. 3, but for the SPNA SST. The top row shows the 30-yr trends from observations (HadISST). All

trends are normalized by the maximum 30-yr trend in observations [1.18C (30 yr)21].
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variability of the observed SPNASST (Fig. 5e) as well as

NASST (not shown), although the strongest trends oc-

cur during different periods.

The observed Sahel rainfall variability is again within

the variability envelope of LE. However, consistent

with the other variables discussed above, the spectral

analysis shows that the simulated Sahel rainfall lacks

the variance in multidecadal frequency bands, whether

the ensemble mean is removed from LE or not and

whether the ensemble mean of LE is removed from

observations or not (Figs. 10a,b). The distributions of

the 30-yr trends from the individual ensemble members

of LE aremuch narrower than those from observations,

further confirming that multidecadal Sahel rainfall

variability in LE is weaker than in observations

(Fig. 10c). Hence, these results further demonstrate

the overall weakness of multidecadal North Atlantic

climate variability in LE, which is likely associated with

the weak multidecadal AMOC variability.

c. Low-frequency NAO

Because the NAO is one of the primary drivers of

variability in the North Atlantic, including that of

AMOC (e.g., Visbeck et al. 2003; Delworth and Zeng

2016), we next investigate the variability characteris-

tics of the simulated NAO in LE in comparison with

that of observations. We start with the spatial struc-

tures of the NAO from LE and observations, obtained

as the EOF1 of the wintertime (DJFM) sea level

pressure (SLP) over the North Atlantic (Figs. 11a,b).

In general, the ensemble mean NAO pattern and its

explained variance in LE are in good agreement with

observations, but with a noticeably weaker southern

lobe in LE. We note that the pattern and explained

FIG. 8. (top) Box plots of 5-, 15-, and 30-yr moving trends of SPNA SST from observations (HadISST), LE, and CTRL after removing

the ensemblemean SPNASST fromboth observations and LE. (bottom) The box plots of the same 30-yrmoving trends, but for individual

ensemble members. All moving trends are normalized to the corresponding maximum trend from the raw observed SPNA SST. The

sample sizes for the observations in the top panels are 86, 76, and 61 for 5-, 15-, and 30-yr trends, respectively; otherwise as in Fig. 4.

Whiskers in the bottom panel indicate the maximum range in contrast to the 1st–99th percentile range in the top panels. The box plot

labeled as O in the bottom panel is from the observations and same as in the top-right panel.
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variance vary considerably across ensemble members

(Deser et al. 2017).

The NAO index time series are presented in Fig. 11c.

For consistency with the station-based NAO index

(Hurrell et al. 2017), we use the difference of normalized

SLP between Lisbon, Portugal, and Reykjavik, Iceland

(denoted as boxed regions in Fig. 11a), to obtain NAO

indices from LE. The LE ensemble-mean NAO index

shows a very weak upward trend, consistent with the re-

sults of a study analyzing CMIP5 simulations suggesting

that there is a weak upward trend in theNAO in response

to increasing greenhouse gases (e.g., Gillett and Fyfe

2013). In addition to strong interannual variability, the

observed NAO index shows discernible low-frequency

variations, and the upward trend during the early 1960s to

the mid-1990s is particularly pronounced. As discussed

earlier, this trend has been linked to the positive AMOC

trend simulated in forced ocean simulations over a com-

parable time span (Fig. 1c).

Figure 12 shows the lead–lag correlations between the

low-pass filtered NAO index and AMOC PC1 from LE

and CTRL. The correlation functions are largely con-

sistent between LE ensemble mean and CTRL with the

maximum correlations (r ;0.4) occurring when the

NAO leads the AMOC by about 4–5 years. As indicated

for CTRL, the correlations are statistically significant

around these lags. Also, the maximum correlation be-

comes greater (r . 0.6) if an AMOC index in the sub-

polar region (e.g., 458N) is used (not shown), suggesting

that the NAO plays an important role in driving low-

frequency AMOC variability, as in FO.

The spectral analysis of the NAO indices shows the

range of the power spectra fromLEmostly encompassing

the power spectrum of the observed NAOon interannual

to decadal time scales (Fig. 13a). However, while the

ensemble mean LE NAO spectrum shows the charac-

teristics of white noise, the observed spectral power on

multidecadal time scales exceeds the upper limit of the

LE range whether or not the ensemble mean is removed

from LE (Fig. 13b). Also, the pronounced multidecadal

power in the observed NAO appears to be robust re-

gardless of whether the overlapping period with LE or

the entire observational record (1864–2015) is used.

The box plots of the moving trends in the NAO are

shown in Fig. 14. Here, all moving trends are computed

without subtracting the ensemble mean of LE. Because

of the weak forced signal (Fig. 11c), the results after re-

moving the ensemble mean are almost identical. For the

5- and 15-yr trends, the binned distributions of the NAO

fromLEandCTRLare slightly narrower but comparable

to those from observations (top row). However, for the

30-yr trends, the distributions from both LE and CTRL

FIG. 9. JJAS land precipitation regression onto the AMV index from (a) LE (ensemble mean) and

(b) observations (CRU) for the same 1920–2009 period. (c) JJAS rainfall anomaly (relative to the 1920–2009mean)

in the Sahel region, averaged over the boxed region indicated in (a), from the ensemble mean of LE (black), with

the maximum ensemble range (gray shading), and CRU (light red). The maximum (negative) 30-yr trend in ob-

servations is indicated by the dashed maroon line.
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are substantially narrower than observed. The distribu-

tions of the 30-yr trends from the individual ensemble

members of LE vary quite substantially across the en-

semble members (bottom panel), as for SPNA SST, but

are all much narrower than the observed distribution.

Thus, these results suggest that the multidecadal vari-

ability of the simulatedNAO inLE is weaker than that of

the relatively short observational record, and are in line

with previous studies reporting weaker-than-observed

low-frequency NAO variability in CMIP5 models (Kravtsov

et al. 2014; Kravtsov 2017; Wang et al. 2017).

d. Some remarks on multidecadal NAO variability

As shown above, the observed NAO exhibits more

pronounced multidecadal variability than that simu-

lated in CESM1-CAM5. Our analysis thus leads us to

the following fundamental questions: what explains

the observed multidecadal variability in NAO and why

is this variability deficient in CESM1-CAM5? On

intraseasonal time scales, the NAO can be primarily

explained by intrinsic atmospheric processes (e.g.,

Feldstein 2000), but its low-frequency variability likely

arises from interactions with other climate compo-

nents (Feldstein 2002; Czaja et al. 2003) or from ex-

ternal forcing (e.g., Gray et al. 2013). Multidecadal

variability, in particular, is likely associated with the

ocean due to its long thermal inertia and adjustment

time scales. SST forcings from both the tropical Indo-

Pacific Ocean (e.g., Hoerling et al. 2001; Bader and

Latif 2003) and NASST (e.g., Peings andMagnusdottir

2014, 2016) have been proposed as a source of the low-

frequency NAO variability. In particular, it has been

shown that a negative NAO phase follows a positive

AMV phase in both observations (Peings and

FIG. 10. (a),(b) As in Fig. 6 and (c) as in the bottom panel of Fig. 8, but for the JJAS Sahel rainfall. The 30-yr moving trends from LE in

(c) are normalized to the maximum (absolute) trend from the raw observed Sahel rainfall (CRU) denoted in Fig. 9c. The sample size for

each box plot in the bottom panel is 61.
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Magnusdottir 2014; Gastineau and Frankignoul 2015)

and model simulations (Gastineau et al. 2013; Omrani

et al. 2014; Peings and Magnusdottir 2016). This sug-

gests that a positive feedback between the AMV and

NAO may be implicated, with positive (negative) SST

anomalies in the North Atlantic leading to a negative

(positive) NAO phase that reinforces the positive

(negative) AMV (e.g., Czaja et al. 2003; Farneti and

Vallis 2011). This feedback, in turn, possibly enhances

the low-frequency NAO variability.

The NAO-like atmospheric response to AMV, how-

ever, seems to be weaker or absent in models, com-

pared to observations (Gastineau et al. 2013; Peings et al.

2016). This appears to be also the case in CESM1-

CAM5. Figure 15 shows the lead–lag correlations be-

tween the low-pass filtered NAO and SPNA SST from

CESM1-CAM5 and observations. The correlations are

substantially enhanced when the NAO leads the SPNA

SST by around 10 years in both CESM1-CAM5 and ob-

servations,3 indicative of the delayed SPNA SST response

to the NAO via ocean dynamics (i.e., the AMOC), dis-

cussed in section 3b. The correlations are also nega-

tively enhanced simultaneously and when the SPNA SST

leads by few years, suggesting both the instantaneous

SPNA SST response to the NAO and a NAO-like re-

sponse to the SPNA SST. However, the negative corre-

lations in CESM1-CAM5 decorrelate much faster than in

FIG. 11. EOF1 of the DJFM sea level pressure over the North Atlantic sector bounded by 208–808N, 908W–408E

from (a) ensemble mean LE and (b) 20CRv2c, with the fraction of the total variance accounted by EOF1 given in

parentheses, and (c)DJFM station-basedNAO index anomaly (relative to the 1921–2009mean) from the ensemble

mean of LE (black) and observations (Hurrell et al. 2017; red). The shading shows the range of the LE ensemble.

The maximum 30-yr trend in the observed NAO index is shown by the dashed maroon line. In (a) and (b), the unit

is hPa and the contour interval is 0.5 hPa. In (a), the boxed areas indicate the locations of the sea level pressure

values used in the station-based NAO index.

3The observed correlations are not statistically significant be-

cause of the small number of effective degrees of freedom esti-

mated by the formula of Bretherton et al. (1999), but become

significant if a less conservative estimate is used, such as one de-

pending on low-pass filtering frequency (e.g., Trenberth 1984).
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observations, suggesting less persistent coupling between

the SPNA SST and NAO in CESM1-CAM5. We note

that correlations aremuch lower with the low-pass filtered

NASST (i.e., AMV) instead of the SPNASST inCESM1-

CAM5 (not shown), indicating that the NAO response to

the tropical AMV (Peings and Magnusdottir 2016) is also

not operating in CESM1-CAM5.

To some extent, the weak atmospheric response in

CESM1-CAM5 appears to be due to the unrealistic

spatial structure and/or amplitude of the simulated

AMV. When the observed AMV pattern is applied as a

forcing in CESM1-CAM5 ensembles (Ruprich-Robert

et al. 2017) or prescribed in forced CAM5 simulations

(Peings andMagnusdottir 2016), a NAO-like response is

more robust. Another factor contributing to the weak

response could be that the low top of CAM5 cannot

represent stratospheric dynamics properly. Recent

studies have suggested that a NAO-like atmospheric

response to AMV requires a high-top atmospheric

model (Omrani et al. 2014, 2016), although the influence

of a high top is not clear in CAM5 (Peings and

Magnusdottir 2016). In any case, the impact of realistic

boundary conditions and better resolved stratospheric

dynamics on low-frequency NAO variability has not

been examined in previous studies.

The forced CAM5 simulations introduced in section 2

can help address this question. Figure 16 shows the

distributions of the 5-, 15-, and 30-yr moving NAO trends

from these two simulations along with those fromLE and

CTRL (as in the top panels of Fig. 14). Also, the same

distributions from a synthetic white noise time series

(WN)4 are displayed in Fig. 16. Despite different sample

sizes due to both different ensemble sizes and time

periods, the distributions are very similar between these

two forced CAM5 simulations and LE across all trend

lengths, which are in turn close to those from WN and

CTRL. Despite the more realistic (SST and sea ice)

boundary conditions and presumably better representa-

tion of stratospheric dynamics in LT and MT, there is no

enhancement of multidecadal NAO variability, and as in

CESM1-CAM5, the simulated NAO is not distinguish-

able from WN. A comparison of the distributions of the

moving trends for the individual ensemble members of

LT and MT with the observed NAO also confirms that

the multidecadal NAO variability in these simulations is

substantially weaker (not shown). These results suggest

that realistic boundary conditions do not necessarily lead

to a better representation of NAO variability on multi-

decadal time scales, and thus the weak multidecadal

NAO variability in the hierarchy of simulations using

CAM5 can probably be attributed to deficiencies in

CAM5 itself, including horizontal and vertical resolution

and parameterized physics, or air–sea coupling details.

With the observed NAO time series spanning only

about 150 years, there are only a couple of independent

cycles of the multidecadal variability of 60 years or so.

Multidecadal NAO variability has also been examined

using various proxy records (e.g., Cook et al. 1998; Olsen

et al. 2012). Box plots of 30-yrmoving trends fromaNAO

reconstruction (Ortega et al. 2015; see section 2d) show

a distribution easily encompassing the observed one

(Fig. 17). The spectral analysis of theNAOreconstruction

also reveals enhanced power on broad multidecadal time

scales (;55–100yr; not shown). These results suggest that

there has been prominent multidecadal variability in

NAO during the last 1000 years and add another piece of

evidence that both the CESM1-CAM5 and the stand-

alone CAM5 simulations underestimate NAO variability

on multidecadal time scales.

4. Summary and discussion

We have examined the low-frequency variability in the

North Atlantic simulated in historical large ensemble and

preindustrial control simulations using CESM1-CAM5,

FIG. 12. Lead–lag correlations between the low-pass filtered

NAO index andAMOCPC1 time series from LE (gray shading for

the ensemble spread and black line for the ensemble mean) and

CTRL (blue). The ensemblemean is removed fromLE prior to the

computation of the correlations. Statistically significant correla-

tions at 95% confidence level are indicated by crosses in CTRL.

4We randomly generate an 89-yr-long (the same length as the

1921–2009 segment of LE) white noise time series with zero mean

and unit standard deviation and repeat this process 5000 times.
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focusing onAMOC, SPNA SST, NAO, and Sahel rainfall,

in comparison with available observations and a forced

ocean–sea ice simulation. A key finding of our study is that

all these variables exhibit substantially weaker multi-

decadal variability in CESM1-CAM5 than in observa-

tional estimates, while relatively high-frequency variability

(i.e., interannual to decadal) is comparable.

We argue that this weak multidecadal North Atlantic

variability in CESM1-CAM5 is mechanistically related

to the underestimated multidecadal variability in the

simulated NAO. The NAO controls deep-water for-

mation in the Labrador Sea through its associated sur-

face buoyancy fluxes and thus plays a major role in

driving low-frequency variability in AMOC (e.g., Eden

and Jung 2001; Yeager and Danabasoglu 2014). AMOC

then conveys these signals to the ocean surface in the

extratropics, and the atmospheric response to these SST

anomalies further impacts climate around the North

Atlantic (Brown et al. 2016b; Drews and Greatbatch

2017). An immediate ramification of the weak multi-

decadal AMOC variability is weak multidecadal vari-

ability in SPNA SST, which is connected to AMOC

through the meridional heat transport convergence. As

the SPNA SST signal contributes substantially to the

basin-scaleAMV, including perhaps as a forcing for low-

frequency tropical signals, the model AMV is also too

weak. Weak multidecadal variability is then also ap-

parent in Sahel rainfall as it is closely linked to theAMV

(e.g., Ting et al. 2011).

This weak multidecadal North Atlantic variability in

LE is consistent with the findings of Frankcombe et al.

(2015), Kravtsov (2017), and Wang et al. (2017), who

analyzed a suite of historical CMIP5 simulations. Such

consistently weak multidecadal North Atlantic vari-

ability found in CMIP5 models may help to explain the

results of Clement et al. (2015), who showed that the

power spectra of NASST from select CMIP5 models

are not distinguishable from those generated by at-

mospheric noise alone. Indeed, the power spectra of

the NASST simulated in CTRL and LE (after re-

moving the ensemble mean) show no significant peaks

in multidecadal bands relative to a red-noise null hy-

pothesis (not shown). As demonstrated in this study,

however, this is likely related to the overly ‘‘white’’

simulated NAO, in contrast to the real-world NAO,

which shows substantial power in multidecadal fre-

quency bands. Delworth and Zeng (2016) and Mecking

et al. (2014) show that the response of the AMOC and

hence the NASST is almost linear in the sense that their

variance is enhanced in the frequency bands where the

variance of the NAO is enhanced. Therefore, if the

multidecadal spectral power of the NAO were more

realistic in LE or in other CMIP5 models, the AMOC

and NASST variability would likely be enhanced on

multidecadal time scales, and hence more consistent

with observations.

The findings of this study seem to be consistent

with the analysis by Wang et al. (2017), who found an

underestimated low-frequency variability of surface

air temperature (SAT) in the Northern Hemisphere

(NHSAT) in CMIP5 models compared to observations,

due to the underestimated low-frequency NAO vari-

ability. NAO-induced surface heat flux forcing and

subsequent AMOC response appear to explain a large

fraction of the NHSAT changes during the twentieth

century (Delworth et al. 2016). A key factor for this link

FIG. 13. As in Fig. 6, but for the DJFM NAO indices with observations from Hurrell’s NAO index.
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seems to be a sustained anomalous heat supply by the

ocean circulation (i.e., AMV) and subsequent Arctic sea

ice melting, which can impact SATs in the northern high

to middle latitudes (Semenov et al. 2010; Delworth et al.

2016). In addition, surface heat flux differences in deep

water formation and sea ice regions in the North At-

lantic are suggested to explain the intermodel spread

in the magnitude of the unforced global SAT changes

in CMIP5 models (Brown et al. 2016a), which further

underscores the importance of low-frequency North

Atlantic variability in regulating low-frequency NHSAT

and global SAT variability.

The NAO–AMOC–NASST coupled mechanism,

however, may not be fully represented by every cli-

mate model. Some models have difficulty capturing the

spatial structure of the NAO (Davini and Cagnazzo

2014). For example, models that exhibit large biases in

the location and strength of the NAO pressure centers

may not show a strong link between NAO and deep-

water formation in the Labrador Sea. Some models

also fail to simulate realistic sea ice extent in the Lab-

rador Sea, which is sometimes entirely covered with

ice. In that case, deep-water formation is completely

shut down in the Labrador Sea, breaking the mecha-

nistic link that we highlight. Additionally, even if the

Labrador Sea is ice free, stratification in the Labrador

Sea can be too weak to allow for much variability in

deep-water formation there (Danabasoglu et al. 2016).

Therefore, it would seem that models must first and

foremost have a credible representation of the North

Atlantic mean climate for the link described above to

be operational.

Low-frequency AMOC variability can also be con-

trolled by mechanisms other than low-frequency NAO-

induced buoyancy flux forcing. In some coupled models,

the east Atlantic and Scandinavian patterns, the next

leading atmospheric modes after the NAO, appear to

be more actively involved in driving low-frequency

AMOC variability (Msadek and Frankignoul 2009;

Medhaug et al. 2012;Ruprich-Robert andCassou 2015). In

FIG. 14. As in Fig. 8, but for the raw annual NAO index. The moving trends from LE are normalized to the corresponding maximum

trend from the station-based NAO index. The sample sizes are 85, 2975, and 1397 (5 yr); 75, 2625, and 1387 (15 yr); and 60, 2100, and

1372 (30 yr) for the observations, LE, and CTRL, respectively, in the top panel. The sample size for all box plots in the bottom panel is 60.
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CESM1-CAM5, a link between the east Atlantic pat-

tern and SPNA SST is also found, but the correlations

are weaker than those with NAO and not statistically

significant. Furthermore, these modes in observations

do not exhibit an enhanced variance on multidecadal

time scales, and their spectral power is well within the

spectral power range of the corresponding mode sim-

ulated in LE in all frequency bands. Therefore, these

findings further support the notion that the NAO is a

dominant player in the observed multidecadal North

Atlantic variability and that the lack of an energetic

multidecadal NAO variability in CESM1-CAM5 is

likely the primary reason for the weak multidecadal

North Atlantic variability.

The strong influence of the forced signal in the mul-

tidecadal SPNA SST variability (Fig. 7) seems to be

consistent with recent studies by Murphy et al. (2017)

and Bellomo et al. (2017), which put forward external

forcings as the primary factor in driving observed low-

frequency NASST changes. The latter study is particu-

larly relevant to the present work because they also use

LE for their analysis and highlight the predominant

forced signal in the SPNA SST. However, as shown in

Fig. 5e, the amplitude of the forced SPNA SST signal in

FIG. 16. As in the top panels of Fig. 14, with the inclusion of the distributions of the moving trends fromWN, LT, and MT, but without

those from observations. The sample sizes for WN, LT, and MT are 425 000, 1300, and 590 (5 yr); 375 000, 1200, and 490 (15 yr); and

300 000, 1050, and 340 (30 yr), respectively. Outliers are omitted for WN.

FIG. 15. As in Fig. 12, but between the low-pass filtered NAO index and SPNA SST time series from (a) CESM1-

CAM5 (i.e., LE and CTRL) and (b) observations (between the station-based NAO index and HadISST). The

considered time period in (b) is 1870–2015 and both time series are linearly detrended before computing the

correlations.
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LE is substantially weaker than that of the observed

multidecadal SPNA SST variability, even though the

forced signal in LE appears to be stronger than in other

CMIP5 models (M. Ting 2017, personal communica-

tion). Furthermore, the phase of the forced signal in

LE is not aligned with the observed phase (in quad-

rature). In addition, CESM1 decadal prediction sim-

ulations show substantially higher skill at predicting

SPNA SST changes at multiyear lead times than un-

initialized historical simulations (Yeager et al. 2015).

Therefore, while there may be some contributions

from the external forcings, it seemsmore reasonable to

view that internal variability plays a larger role in the

observed low-frequency SPNA SST and NASST

variability.

Although we stress in this study the primary role of

low-frequency NAO variability in driving other low-

frequency North Atlantic variability, the low-frequency

NAO variability itself is likely caused by coupling be-

tween the ocean and atmosphere. In particular, the

North Atlantic is suggested as an active region for this

coupling, as discussed in section 3d. However, while

we find conspicuous low-frequency variability inAMOC

(as well as in some other fields in the SPNA; see

Yeager et al. 2015), tightly associated with observed

NAO, in the forced ocean simulation with observational

atmospheric states (i.e., FO) there is no enhancement

of low-frequency NAO variability in CAM5 simulations

forced with observed SST and sea ice. This leads us

to conjecture that the simulated weak low-frequency

NAO variability in CESM1-CAM5 is likely due to

deficiencies in either CAM5 itself or air–sea coupling

details rather than deficiencies in the ocean (or sea ice)

component. Given the underestimated low-frequency

NAO variability in most CMIP5 models (Wang et al.

2017), this problem may not be specific to CESM1-

CAM5 but rather shared with other state-of-the-art

coupled models.

The underestimated low-frequency NAO variability

arising possibly from the lack of the coupled feedbacks

has implications for the decadal prediction of North

Atlantic climate. The NAO in current climate pre-

diction systems is only predictable, at most, one to two

years ahead (Dunstone et al. 2016). If the positive

feedback between NASST and NAO is indeed a

mechanism necessary to enhance low-frequency NAO

variability, an improvement in the modeled represen-

tation of this feedback may lead to skillful prediction of

NAO at longer lead times. This may in turn yield a

more long-lasting prediction skill in NASST, which has

been so far benefited mostly from the initialization of

realistic ocean conditions, but not from air–sea heat

exchanges (Yeager et al. 2012). Therefore, a better

representation of this missing feedback in coupled

systems may yield more skillful predictions of the

North Atlantic climate.

We used the AMOC solutions from FO to compare

with the simulated low-frequency AMOC variability

in CESM1-CAM5. The estimated AMOC from FO

is subject to uncertainties arising from, for example,

the coarse resolution and inadequate representations

of parameterized physics in the ocean model, along

with uncertainties in the forcing fields. However, pre-

vious studies (Delworth and Greatbatch 2000; Zhu and

Jungclaus 2008; Farneti and Vallis 2011) have shown

that, when forced with surface fluxes taken from coupled

simulations, the ocean components largely reproduce

the phase and magnitude of the low-frequency AMOC

variability in the coupled simulation. Therefore, as long

as the forcing data are realistic, using simulated AMOC

from a forced ocean simulation as a proxy for the

observed estimate seems to be reasonable, particularly

when the same ocean model is used for both forced

ocean and coupled simulations as in this study, so that

model biases remain the same.We also note that the FO

simulation was used to initialize CESM1 decadal pre-

diction simulations that exhibit very high skill at pre-

dicting SPNA SST changes at multiyear lead times

(Yeager et al. 2015).

FIG. 17. Box plots of 30-yr moving trends from the NAO re-

construction (1049–1969) and the full record length (1864–2015) of

observed NAO index. The sample sizes are 892 and 123 for the

reconstruction and observations, respectively.
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As is the case for many studies examining simulated

multidecadal climate variability, comparing the simu-

lated North Atlantic multidecadal variability with

observational records is hampered by the limited in-

dependent cycles in relatively short observational re-

cords. It is thus open to question whether the observed

multidecadal variability is statistically robust. How-

ever, as discussed in section 3d for NAO, the existence

of persistent multidecadal variability in the North At-

lantic is underpinned by numerous studies examining

climate proxy records. In particular, evidence of mul-

tidecadal variability in NASST is found in tree-ring

(Gray et al. 2004), coral (Kilbourne et al. 2008), ice-

core, lacustrine, and marine proxy records (Knudsen

et al. 2011, and references therein) around the North

Atlantic.

FIG. A1. (a) Differences in the upper 1000 m-mean potential temperature (T; LE minus

LE-OIC) on 1 Jan 1920. First 31-yr trends (1920–1950) in the ensemble mean surface air

temperature (Ts) from (b) LE and (c) LE-OIC. Units are in 8C.
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An important advantage of using large ensembles

such as LE is that they can help to quantify uncertainties

arising from internal variability of the climate system

(e.g., Swart et al. 2015; Deser et al. 2017). However, as

shown above, multidecadal internal variability is prob-

ably underestimated in such simulations. Thus, care

must be taken when examining uncertainties in climate

change arising from multidecadal internal variability.
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APPENDIX

CESM LE with Different Ocean Initial Conditions

To sample internal variability arising from different

ocean initial conditions, we performed additional his-

torical simulations with 10 ensemble members using the

identical model configuration as in LE (Kay et al. 2015).

Obtaining a new set of ocean initial conditions is a

nontrivial exercise. Specifically, as detailed in Kay et al.

(2015), the starting point of the LE simulations is

an 1850 preindustrial control simulation (CTRL). Al-

though CTRL was eventually integrated for 2200 years,

the first ensemble member started from 1 January 402

from CTRL and was integrated from 1850 to 1920. The

subsequent ensemble members were all started from

1 January 1920 of this first ensemble member. All en-

semble members used the same ocean initial conditions

from the first ensemble member, and the ensemble

spread was obtained by applying random round-off level

perturbations to the air temperature in the atmospheric

restart files. Thus, simply using sufficiently different

ocean initial conditions in 1920 to start a new ensemble

set is not easily achievable because we have only one

ocean state in 1920 from the first ensemble member.

Consequently, we adopted the following approach, us-

ing the state of AMOC as a key metric to subjectively

obtain sufficiently different ocean initial conditions. As

CTRL shows drifts throughout the 2200-yr simulation, a

consideration was to use ocean states that do not deviate

significantly from the mean ocean state of year 402.

Thus, we performed four simulations for the 1850–1920

period, starting at years 374, 384, 466, and 496 of CTRL,

sampling high, low, increasing, and decreasing AMOC,

respectively. In 1920, only one of these simulations (start

year 496) showed an AMOC state that was deemed suf-

ficiently different than that of the original LE (see

Fig. A2a). Thus, the ocean state from this first ensemble

member was used as the ocean initial conditions for the

remaining nine ensemble members in which the same

round-off level perturbations in air temperature were

used to create ensemble spread. This new ensemble set,

referred to as LE-OIC, was integrated for the 1920–99

period.We note that our ensemble generation approach is

essentially the same as discussed in Hawkins et al. (2016).

We present the differences in the upper 1000-m mean

potential temperature distributions on 1 January 1920

between LE and LE-OIC in Fig. A1a, showing sub-

stantially warmer SPNA conditions in LE consistent

with a stronger AMOC state in LE than in LE-OIC.

Also, there are differences in the western and eastern

tropical Pacific temperatures, indicating that a different

ENSO state is sampled. Although the ensemble means

of most of the surface variables from LE and LE-OIC

converge within a decade in much of the globe, climate

transitions appear to be different for a long time due to

the different ocean initial conditions. For example,

Figs. A1b and A1c show the trends in surface air tem-

perature for the first 31 years (1920–50) from LE and

LE-OIC, respectively, and reveal substantially different

trends in high-latitude regions surrounding the SPNA.

Also, rather surprisingly, the sign of the trends is even

opposite in a broad region in the Pacific sector of the

Southern Ocean, which persists for an even longer pe-

riod than depicted in Fig. A1.

In the main text, we show that the forced signal (i.e.,

ensemble mean) of the AMOC and SPNA SST in the

earlier period of the historical simulations is quite dif-

ferent, most notably in the AMOC, between LE and

LE-OIC. However, given the substantially different

ensemble sizes of LE and LE-OIC (35 vs 10), it may be

useful to test if the different ensemble means are sta-

tistically significant. We evaluate this using a Monte

Carlo method: We randomly subsample 10-member

ensembles from LE for 5000 times, and consider them

to be significantly different when the ensemble mean of

LE-OIC falls outside of the first to 99th percentile

range of the subsampled ensemble means of LE. In-

deed, the ensemble mean AMOC from LE-OIC is

found to be below the range of LE for more than 15

years, and it stays near the lower limit for another

25 years (Fig. A2a). Because of this difference, if one

measures the long-term trend in AMOC between 1920

and 1999, it is positive in LE-OIC while negative in LE,

and they are statistically different (not shown). In

contrast, the ensemble mean SPNA SST from LE-OIC

is only significantly different for the first 5 years

(Fig. A2b). However, the subsurface temperatures in

the SPNA reveal a significantly different ensemble

mean for a longer time span comparable to the AMOC

(not shown).
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