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The aim of the present study was to investigate on the effects of a low-frequency pulsed electromagnetic field (LF-PEMF) in an
experimental cell model of Alzheimer’s disease (AD) to assess new therapies that counteract neurodegeneration. In recent
scientific literature, it is documented that the deep brain stimulation via electromagnetic fields (EMFs) modulates the
neurophysiological activity of the pathological circuits and produces clinical benefits in AD patients. EMFs are applied for tissue
regeneration because of their ability to stimulate cell proliferation and immune functions via the HSP70 protein family.
However, the effects of EMFs are still controversial and further investigations are required. Our results demonstrate the ability
of our LF-PEMF to modulate gene expression in cell functions that are dysregulated in AD (i.e., BACE1) and that these effects
can be modulated with different treatment conditions. Of relevance, we will focus on miRNAs regulating the pathways involved
in brain degenerative disorders.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder
with irreversible progression that primarily affects the hip-
pocampal and neocortical regions of the brain. Since the
incidence of AD increases in the elderly and with the
lengthening of human life, this disease is becoming one
of the major health problems associated with aging [1].
There is currently no effective treatment against AD, and
its pathogenesis remains unclear [2]. A lot of studies on AD
have highlighted the possible involvement of genetic [3],
immunological [4], and environmental causes [5]. Oxida-
tive stress, disruption of calcium homeostasis, hormonal
factors, inflammation, and vascular and cell cycle dysregu-
lations have been associated with the disease [6]. The

major microscopic abnormalities of AD, which form the
basis of the histologic diagnosis, are β-amyloid (Aβ) pla-
ques and neurofibrillary degeneration (tangles). Notably,
the neuritic plaques are mainly composed of Aβ secreted
through an aberrant proteolytic cleavage of the amyloid
precursor protein (APP) [7]. There are progressive and
eventually severe neuronal loss, synaptic loss, and reactive
gliosis in the same regions that bear the burden of the
plaques and tangles. The involvement of the hippocampus
and amygdale in the early phases of AD causes synaptic
dysfunctions, such as the block of long-term potentiation
(LTP), with consequent damage of the processes of learning
and memory [8].

On the other hand, a new study about the brain and the
electromagnetic fields (EMFs) showed, in vivo, that the EMFs
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could protect from the cognitive impairment or improve the
memory in mice [9], whereas other in vitro studies indicated
a possible role of EMFs as copromoters of tumor growth [10].

Besides age, family history, and inheritance, which are
considered important risk factors, emerging evidence sug-
gests that also environmental factors can influence AD
development and progression, especially with regard to
the sporadic disease which represents the most widespread
form. In general, the physiopathological conditions within
cells, tissues, and organs can be influenced by changes in
the electromagnetic context to the extent that even their phe-
notype and functions can be altered by EMF exposure [11,
12]. Some literature data indicate that EMFs seem to play a
role in the etiology of neurodegenerative disorders, including
AD [13, 14]. Interestingly, although the debate on EMFs is
still controversial, a pioneering field of research in AD is
the deep brain stimulation via EMFs, which seems to modu-
late the neurophysiological activity of the pathological cir-
cuits and produce clinical benefits in AD patients [15]. Of
relevance, in recent years, EMF brain stimulation techniques,
such as the transcranial magnetic stimulation (TMS) (which
noninvasively interacts with the brain activity), have been
developed and applied to treat neurological diseases. TMS-
induced cortical changes have resulted in enhanced neural
plasticity. Indeed, an enhancement of the brain cortical excit-
ability might induce a specific potentiation-like phenome-
non, which would enable synaptic plasticity and promote
recovery of a degraded function. Given these premises, there
is currently a growing interest in applying EMFs as a thera-
peutic approach in psichiatric and neurological disorders
[16]. Moreover, EMFs could be clinically used to re-
establish cognitive performance in stroke patients [17, 18]
and in patients suffering from neurodegenerative diseases
[19, 20]. Presently, various clinical trials are ongoing to fur-
ther investigate the possible positive effects of EMFs and
TMS on AD (www.clinicaltrials.gov).

Despite the significant use of brain stimulation in clinical
treatments, as mentioned, the effects of EMFs on the bio-
logical systems are not completely understood. In fact, it
has been observed that, depending on the EMFs’ “dose”
and wavelength, the effects can shift from cytotoxicity to
cytoprotection [21–23]. As recently reported [24], the elec-
tromagnetic waves are able to modulate the cytoskeleton
function and to promote the neuronal differentiation of
the bone marrow mesenchymal stem cells; in particular,
EMFs promote the neuronal differentiation in vitro and
the hippocampal neurogenesis in vivo by upregulating the
Cav-1 channel activity [25–28], β-III-tubulin, MAP2 [29],
and the brain-derived neurotrophic factor [30].

At a molecular level, it has been postulated that EMFs
can affect the redox status within cells, thus evoking a general
stress response [31] and increasing the expression of stress-
related proteins [32]. Moreover, it has been reported that
EMFs can delay cellular senescence [33]. As previously shown
on an AD mice model, a high-frequency EMF treatment
induced an improvement of cognitive functions, ascribed to
an enhanced clearance of the amyloid plaques [9]. Conversely,
in an in vitro cellular AD model overexpressing APP, pro-
longed EMFs caused a significantly increased secretion of

Aβ1–42 [34], one of the most prone-to-aggregation APP
derived fragments [7].

Of interest, it has been widely demonstrated, in vitro,
that both low- and high-frequency EMFs can also modulate
gene expression by acting on both transcriptional and
posttranscriptional regulatory mechanisms [35–37]. Within
this context, in both physiological and pathological condi-
tions, posttranscriptional mechanisms are key determinants
of the gene expression modulation, since they allow a rapid
adaptation of protein levels to changing environmental
conditions and can differently influence the cell fate. These
mechanisms include the implication of a class of small
noncoding RNA molecules, called miRNAs, able to regulate
the gene expression mainly by base pairing to the 3′-UTR of
specific target mRNAs [38]. Considering that miRNAs are
predicted to regulate up to 90% of human genes [39],
their physiological activity is critical for the maintenance of
healthy conditions and their aberrant expression is associated
with the pathological features of many diseases [38, 40].

In particular, mRNA is ~5% of the total cellular RNA and
is poorly correlated with protein levels. It is increasingly clear
that mRNA translation is a key focal point of gene expression
regulation. Noteworthy for this project, miRNAs regulate
the expression of key proteins involved in AD pathogen-
esis and the expression of certain miRNAs is altered in
AD patients [41–45], thus suggesting that a dysfunctional
miRNA-based regulatory system may represent a new eti-
ologic factor forAD.Notably, analterationof severalmiRNAs
has been related to Aβ insult [46]. Many other miRNAs
are emerging as regulators of the expression not only of
APP but also of proteins involved in fundamental cellular
processes such as cellular clearance and quality control
systems which are altered in AD [47]. Recently, it has
been suggested that miRNAs are also able to modulate
cognitive and immune processes through direct or indirect
alterations of the neuron-to-glia and/or the brain-to-body
signaling [48]. In line with this concept, gene expression
studies on AD and control subjects have shown differences
in some miRNAs not only in the affected brain areas and
in the cerebral spinal fluid but also in the peripheral districts,
such as blood [49]. Very recently, the potential contribution
of miRNAs to AD pathophysiology in humans and in various
cellular and animal models has been remarked [50]. Further-
more, a lot of studies have documented the presence of miR-
NAs (and other RNAs) in the extracellular space after their
release from the cells and in the circulating blood. These
miRNAs are contained within a variety of different structures
and protein/lipoprotein complexes [51, 52]. The circulating
miRNAs appear to escape degradation via endogenous
ribonuclease activity by residing in membrane-structured
bodies as well as protein and lipid complexes [53]. miRNAs
previously move through the bloodstream from one district
to the others [54, 55]. Circulating miRNAs have emerged
as candidate biomarkers for a long list of diseases and
medical conditions [56]. Therefore, miRNAs may repre-
sent a fine-tuning of the signaling able to reach different body
districts and able to integratemultiple inputs andoutputs [57].
In this scenario, a deeper understanding of the relation
between AD, EMFs, and miRNAs may help to shed more
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light on the molecular bases of this pathology, also opening
the possibility towards the use of miRNAs as potential clini-
cal biomarkers. For instance, it has been demonstrated that
the transcranial electromagnetic stimulation of the brain
through pulsed electromagnetic fields (PEMFs) can establish
the reactivation of cognitive processes in AD patients and the
reduction of Aβ in transgenic mice models for APP [9].

Considering these preconditions, the relationships between
low-frequency PEMF (LF-PEMF) exposure and miRNAs
regulating the proteins connected with altered functions in
AD might explain the molecular basis of neuropathologies
and show new therapies. miRNAs could be used as drugs
to block the production of harmful proteins in new thera-
peutic strategies, because of their capacity to downregulate
gene expression up to silencing, through the interaction with
their target messengers. It is important to identify miRNAs
that are modulated by exposure to LF-PEMFs in order to
characterize the mechanisms associated with AD. Finally,
since there are conflicting data about the effects of the electro-
magnetic fields and various publications deal toxic actions,
further studies on LF-PEMFs’ effects are necessary to verify
whether the exposure to certain dosages may induce thera-
peutic advantages or, on the contrary, constitute an additional
risk factor.

As a consequence, the aim of our study was to evaluate
the modulation of miRNAs induced by LF-PEMF in the
peripheral blood mononuclear cells (PBMCs) obtained
from AD patients. PBMC exposure was realized using an
electromagnetic bioreactor, with a frequency of 75Hz [58].
Significant miRNAs were selected following a search in
miRBase, TarBase, and miRTarBase databases. hsa-miR-107
regulates the enzyme BACE1, which exerts its action deter-
mining the amyloidogenic pathway of APP protein. Previous
research identified a reduced expression of miRNA 107 in
AD patients; since this miRNA negatively regulates BACE1,
its lower expression promotes the production of toxic pep-
tides Aβ40 and/or Aβ42. Then, we decided to check whether
the treatment with LF-PEMF leads to an increased expres-
sion of miRNA 107 and, so, to a lower production of toxic
peptides of Aβ, achieving a clinical benefit.

Moreover, we considered other significant miRNAs such
as hsa-miR-335-5p that targets the MAPK1 gene, which
encodes for one of the extracellular signal-regulated kinase
(ERK) proteins, a mitogen-activated protein involved in
cell growth and in the long-term potentiation (LTP) and
acting in synapses regeneration. The same miRNA targets
the GRIA1 (glutamate ionotropic receptor AMPA type sub-
unit 1) gene, encoding for the AMPA receptor 1, which is
essential for the first phase of LTP induction. Consequently,
after LF-PEMF stimulation, a low expression of miR-335,
which determines an increase of ERK and AMPA receptor,
may be positive for both the cell regeneration and the
neurological processes that regulate memory and learning.
hsa-miR-26b-5p regulates the expression of the SLC17A6
gene, which encodes for the transporter vGLUT2. This
transporter puts glutamate in presynaptic vesicles, which will
be released to reach the postsynaptic terminal, where they
can interact with AMPA and NMDA receptors. So, we
decided to determine whether the action of the LF-PEMF

can modulate the expression of this miRNA, since a possible
increased vGLUT2 level may cause a higher intake of
glutamate within the presynaptic vesicles. This protects
the nervous system from the excitotoxicity of the gluta-
mate itself and triggers LTP processes, improving memory
and cognition.

1.1. Electromagnetic Fields and ROS in Alzheimer’s Disease.
At the molecular level, PEMFs have been hypothesized
to affect the redox status of the cells, causing protein
stress [32]. Also, antioxidant activity is modulated by
PEMFs. A stimulation of the antioxidant activity, demon-
strated by a decrease of 58.31% of the average in malon-
dialdehyde value and by the balancing of the redox
status, was observed in healthy volunteers [59]. The bal-
ance between the free radicals and antioxidants (redox
equilibrium) is a critical point for the maintenance of
homeostasis in a biological system: reactive oxygen species
(ROS) at high doses are deleterious because they cause
pathophysiological actions, whereas at low doses, they
may be beneficial for normal physiological functions such
as signal transduction, gene expression, and regulation of
the immune response and for the strengthening of antiox-
idant defense mechanisms [60].

During the experiments on PBMCs of AD patients,
electromagnetic waves have been observed to cause a
growth of the total production of ROS; this increase seems
to be linked to the timing of exposure [61]. The stimulus
applied is able to primarily determine a strong increase
of ROS until reaching a plateau and then, a decrease with
the time. An initial increase, linked to the timing applied,
suggests a ROS-mediated amplification of the inflamma-
tory response [62]. The same trend is observed in cultured
neurons treated with Aβ, suggesting the role of EMFs in
the further activation of the cells defending the tissue
damaged by Aβ. A ROS increase could also be responsible
for an increase of autophagy and “phagocytic clearance”
by microglia which can eliminate the Aβ. The increase
of ROS could acquire the role of a “priming agent” as
being responsible for the creation of a preconditioning aimed
at the clearance of potentially hazardous substances [63]. So,
the cognitive improvement and the reduction of Aβ plaques,
after electromagnetic fields stimulation, may depend primar-
ily on the enhancement of ROS-mediated inflammatory
response after exposure.

1.2. Electromagnetic Fields and Synaptic Plasticity. Despite
the effects of PEMFs as still controversial, it has been shown
that deep brain stimulation by PEMFs can modulate the
activity of neurophysiological circuits producing clinical
benefits in AD patients [15]. Recently, brain stimulations
with PEMFs have been developed and applied for the
treatment of neurological disorders: for instance, the stimula-
tion known as TMS which interacts in a noninvasive way
with the nervous system [17]. Cortical changes induced by
electromagnetic waves have shown results in improving the
neuronal plasticity [18]. Indeed, an excitability increase of
the cerebral cortex may affect the phenomenon of LTP,
which in turn would support the synaptic plasticity and
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promote the recovery of degenerated functions [64]. Under
these preconditions, there is a growing interest in the
application of PEMFs as a possible therapeutic approach in
psychiatric and neurological disorders [16]. PEMFs could
be used to restore the cognitive performance, for instance,
in clinical trials on AD. Recently, the electromagnetic waves
have been demonstrated to modulate the functions of the
cytoskeleton and to promote the neuronal differentiation
and the neurogenesis in the hippocampus in vivo through
the upregulation of the Cav-1 channel, β-III-tubulin, MAP2,
and the brain-derived neurotrophic factor (BDNF) [29]. The
latter is widely expressed in the brain and contributes to a
variety of neuronal processes affecting the neurodevelopment,
the survival, and the maintenance of the homeostasis of
the nervous system in elderly [27]. In the adult brain,
BDNF plays a key role in the modulation of the synaptic
plasticity and it is essential for the regulation of memory.
For these reasons, obtained data support the hypothesis
that the electromagnetic waves could improve the brain
neuroplasticity also through the modulation of the expres-
sion of neurotrophic factors [64].

2. Materials and Methods

2.1. PBMC Isolation. Peripheral blood mononuclear cells
(PBMCs) were obtained from peripheral blood of 13 AD
patients by means centrifugation on a 1077-density gradient
(Histopaque® 1077, Sigma-Aldrich, Inc.). The mononuclear
fraction was recovered and resuspended at the concentration
of 2.5× 106 cells/ml in a RPMI 1640 Medium supplemented
with 10% bovine calf serum and 1% penicillin/streptomycin
(Euroclone, Logan, UT). Cell vitality was assessed by trypan
blue dye exclusion method; then, PBMCs were distributed
in a 96-multiwell plate (Corning) with a density of 5× 105

cells/200μl medium/well and incubated at 37°C in a humid-
ified atmosphere with 5% CO2. For each patient, 3 PBMC
cultures were exposed to LF-PEMF for 3 different durations:
15, 30, and 60min. Nonexposed (i.e., sham) control cultures
were set up in parallel.

2.2. Electromagnetic Bioreactor and PBMC Exposure to
LF-PEMF. The experimental setup of our electromagnetic
bioreactor was based on two solenoids (i.e., air-cored coils)
connected in series and powered by a pulse generator
(BIOSTIM SPT Pulse Generator from IGEA, Carpi, Italy)
[58]. The solenoids had a quasi-rectangular shape (length,
17 cm; width, 11.5 cm), and their planes were parallel
with a distance of 10 cm. According to our mathematical
model [65], this distance caused a stimulus characterized by a
magnetic induction module of circa 3mT. In addition, the
magnetic induction field was perpendicular to the surface
where the cells were seeded and grew; the signal frequency
was equal to about 75Hz.

2.3. RNA Extraction. Total RNA was extracted from
untreated and LF-PEMF-treated cells using the RNeasy Mini
kit (Qiagen GmbH, Hilden) according to the manufacturer’s
instructions. Total RNA obtained from the replicate cultures
of each treatment was pooled, and the quality of RNA was

assessed by determining the RNA integrity number (RIN)
(TapeStation, Agilent Technologies). A quantitative RNA
analysis was performed using a fluorimetric methods by
means of the Qubit® platform (Invitrogen, Grand Island,
NY, USA) using the Quant-iT RNA Assay (declared assay
range between 5 and 100ng; sample starting concentra-
tion between 250 pg/μl and 100ng/μl): 2μl of RNA was
added to 198μl of the working solution obtained by mix-
ing 1μl of Qubit™ RNA Reagent to 199μl of Qubit RNA
Buffer. The quantitation was performed following the
calibration of the instrument with the Quant-iT RNA
standards (0 and 10ng/ml).

2.4. Real-Time Reverse Transcription PCR (qRT-PCR).
Quantitative real-time reverse transcription PCR (qRT-
PCR) was performed using cDNA obtained following the
reverse transcription reaction with the miRCURY LNA™
Universal RT microRNA PCR kit: 4μl of total RNA
(5ng/μl) was added to 4μl of 5x reaction buffer, 2μl of
enzyme mix, 1μl of synthetic spike-in, and 9μl of
nuclease-free water; and the reaction was performed using
a thermocycler (Bio-Rad, MJ Mini) for one reaction cycle
at 42°C for 60min and 95°C for 5min, and the reaction
products were immediately cooled at 4°C.

To evaluate the miRNA expression, qRT-PCR reactions
were performed using the Universal cDNA Synthesis and
SYBR® Green Master Mix kits. Amplification was performed
in a 10μl reaction mixture containing 4μl of 1 : 80 diluted
cDNA, 5μl of SYBR Green Master Mix, and 1μl of specific
LNA probe. miR-107 LNA probe (50| AGCAGCAUUGU
ACAGGGCUAUCA |72), miR-335-5p LNA probe (16|
UCAAGAGCAAUAACGAAAAAUGU |38), and miR-26b-
5p LNA probe (12| UUCAAGUAAUUCAGGAUAGGU
|32) are provided by Exiqon using the following reaction
conditions: a first step of 10min at 95°C followed by 45
amplification cycles of 10 sec at 95°C and a final step at
60°C for 1min. Small nuclear RNA U6 (snU6) was used to
normalize the expression data of miRNAs, and every assay
was performed in triplicates using the Eco Real-Time PCR
Instrument (Illumina, San Diego, CA).

To evaluate the expression of mRNA of BACE1, a protein
that is a target of miRNA 107, specific primers were designed
using Primer-BLAST software (http://www.ncbi.nlm.nih.
gov/tools/primer-blast): BACE1: f: 5′-GCAGGGCTACTAC
GTGGAGA-3′; r: 5′-GTATCCACCAGGATGTTGAGC-3′.

GAPDH (glyceraldehyde 3-phosphate dehydrogenase)
was considered as endogenous control, and the following
specific primers were used: f: 5′-CTGAGAATGGGAAGC
TGGTCAT-3′; r: 5′-TGGTGCAGGATGCATTGCT-3′.

qRT-PCR was performed by the Eco Real-Time PCR
Instrument (Illumina, San Diego, CA), and the results were
analyzed by the comparative ct method (ΔΔct method using
the software package of the Eco Real-Time PCR System for
the calculus of the 2−ΔΔct value [66].

Statistical analysis: from ct raw data of triplicate analysis,
means and standard deviations were calculated and the
statistical significance was analyzed by one-way ANOVA
with post hoc LSD test (a P value smaller than 0.05 was
considered as significant).
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3. Results

This paper is intended to investigate the ability of LF-PEMF to
modulate the expression of proteins involved in Alzheimer’s
disease. To this purpose, 3 different miRNAs were selected
following a bioinformatics analysis in the specialized database
miRTarBase. In addition, a PubMed search was performed
for miRNAs and Alzheimer’s disease. Two miRNAs (miR-
335-5p and miR-26b-5p) were selected because of their
involvement in brain signaling, in particular, in the glutamate
uptake and in LTP. miR-335-5p is able to downregulate
MAPK1 (mitogen-activated protein kinase 1) messenger
translation. This gene encodes for a member of the MAP
kinase family, also known as extracellular signal-regulated
kinase (ERK), which acts as an integration point for multiple
biochemical signals and is involved in a wide variety of
cellular processes such as proliferation, differentiation,
transcription, regulation, and development. ERK activity
contributes to the synaptic plasticity; in fact, ERK cascade
signals act with a regulatory role on the AMPA glutamate
receptor (AMPAR), a non-NMDA type ionotropic trans-
membrane receptor for glutamate characterized by four types
of subunits called GRIA (glutamate receptor ionotropic
AMPA, 1–4) [67]. This particular receptor is involved in
the fast synaptic transmission of the central nervous system,
is activated by the artificial glutamate analog AMPA, and
represents the most common receptor in the nervous system.
It has been recently demonstrated [68] that AMPAR
activation promotes the nonamyloidogenic APP processing
and suppresses neuronal Aβ production. In this scenario,
miR-335-5p is able to directly downregulate ERK which, in
turn, regulates AMPAR which is involved in the first phase
of LTP.

hsa-miR-26b-5p regulates the expression of a large
number of genes, among which it is noteworthy, the carrier
vGLUT2 (SLC17A6) involved in the promotion of the LTP.
The same miRNA downregulates the kainate receptors.

In addition, miR-107 was considered because of previ-
ously reported studies [39] that observed a reduced expression
of this miRNA in AD patients. This miRNA targets the
messenger of BACE1 which is involved in the processing of
APP toward the Aβ peptide: an increased expression of
miR-107 would contrast the APP cleavage which results
in a smaller deposition of Aβ plaques in the brain.

The ability of an electromagnetic field to modulate the
expression of the selected miRNAs was tested on PBMC
freshly isolated from the peripheral blood of 13 AD patients.
The cells were exposed to LF-PEMF at 75Hz for different
durations (15, 30, and 60min); subsequently, total RNA
was extracted and cDNA was obtained as described in
Section 2. The quantitative expressions of miR-107, miR-
335-5p, and miR-26b-5p were determined by qRT-PCR
using the small nucleolar RNA U6 as endogenous reference,
and the RQ quantitative values were calculated against the
untreated control cultures applying the ΔΔct method [66].
The results obtained are shown in Figure 1: mean data of
13 different PBMC cultures exposed for different times to
LF-PEMF [3mT; 75Hz] are reported.

We can observe that the exposure to LF-PEMF was
able to modulate the expression of all miRNAs consid-
ered; in particular, a progressive reduction of all miRNAs
with the increasing time of exposure was observed even
if the differences between untreated and treated cells
were not statistically significant (P > 0 05). Similarly, the
expression of BACE1 is affected by LF-PEMF with a pro-
gressive reduction of mRNA at the increasing exposure
time (Figure 2).

In Figure 3, the RQ values of both miR-107 and BACE1
mRNA obtained in one of the PBMC cultures, before and
after LF-PEMF treatment with the different conditions, are
compared. It can be observed that LF-PEMF induces a mod-
ulation of both miR-107 and of BACE1 mRNA expression.
Moreover, a different modulation was observed depending
on the duration of exposure.
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Figure 1: Expression of miR-107, miR-335, and miR-26b in PBMC from AD patients determined by relative quantification RQ
(treated versus control sample). The values obtained after different times of exposure (15, 30, and 60min) are shown (P > 0 05).
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4. Discussion

According to the present data, LF-PEMF (3mT; 75Hz)
demonstrated to be able to modulate both miRNAs and
mRNA involved in AD-related pathways.

miRNAs are molecules acting through direct comple-
mentary interaction with sequences of RNA messengers
(target mRNA) and are able to interact with a broad range
of mRNAs sharing the same sequences; so, each miRNA
can be considered the center of a complex network that
regulates various protein pathways. miR-107 has been seen
to downregulate in addition to BACE1 and other mRNAs
that could be involved in brain degenerative disorders, for
example, GRN, CYP2C8, DAPK1, and PTEN. From litera-
ture data, diseases associated with GRN (granulin) include
frontotemporal lobar degeneration with ubiquitin-positive
inclusions and progressive nonfluent aphasia [69]. CYPP2C8
gene encodes a member of the cytochrome P450 superfamily

of enzymes; these proteins are monooxygenases which
catalyze many reactions involved in drug metabolism
and synthesis of cholesterol, steroids, and other lipids.
DAPK1 (death-associated protein kinase 1) is a gene
responsible for atherosclerotic plaque development and
destabilization. PTEN (phosphatase and tensin homolog)
acts as a tumor suppressor downregulating AKT/PKB signal-
ing pathway; moreover, it regulates intracellular levels of
phosphatidylinositol-3,4,5-trisphosphate in cells. Another
gene, which expression is regulated by miR-107, is SP1
encoding for a zinc finger transcription factor that binds
GC-rich motifs of many promoters and is involved in
many cellular processes, including cell differentiation, cell
growth, apoptosis, immune responses, DNA repair, and
chromatin remodeling.

Among the targets of miR-335-5p we consider particu-
larly interesting tenascin C (TNC), an extracellular matrix
protein implicated in the guidance of migrating neurons as
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Figure 3: Comparison of miR-107 and BACE1 expression in the same PBMC culture exposed to LF-PEMF (15, 30, and 60min durations).
Results were normalized by U6 values for miR-107 and by GAPDH values for BACE1. Relative quantification RQ values were calculated
against the untreated controls and referred to the average of the respective untreated control.
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Figure 2: BACE1 expression in PBMC exposed to LF-PEMF for 3 different durations (15, 30, and 60min). Relative quantification RQ of
BACE1 mRNA using GAPDH mRNA as endogenous control (ΔΔct method [66]).
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well as axons during development, synaptic plasticity as well
as neuronal regeneration; RASA1 (RAS P21 protein activa-
tor) that is an inhibitory regulator of the Ras/cyclic AMP
pathway and stimulates the GTPase of normal but not onco-
genic Ras p21; and IGFR1 (insulin-like growth factor 1 recep-
tor), a transmembrane receptor that is activated by a
hormone called insulin-like growth factor 1 (IGF-1) and by
a IGF-1-related hormone called IGF-2. Another interesting
target of miR-335-5p is APBB2 (Aβ precursor protein bind-
ing family B member 2) that encodes a protein interacting
with the cytoplasmic domains of Aβ (A4) precursor protein
and of Aβ (A4) precursor-like protein 2. The latter protein
contains two phosphotyrosine-binding (PTB) domains,
which are thought to function in signal transduction. In
Table 1, some of the gene whose expression is regulated by
the miRNAs studied are listed (source: miRTarBase,
miRDB).

In conclusion, the results of the present study, using an
ex vivo human PBMC model, demonstrated that LF-PEMF
exposure really modulates the expression of miRNAs that
regulate the brain signaling, so confirming the capacity of
the electromagnetic field to stimulate both tissue regenera-
tion and brain signaling. The analysis of changes in the
expression levels of miRNAs, known as the regulatory pro-
cesses involved in brain signaling and tissue regeneration,
after LF-PEMF exposure, has allowed us to verify both the
quantitative variations of these miRNAs and to identify other
target messengers of the samemiRNA. This has been possible
through the analysis of protein networks in which the
miRNAs are involved. In fact, each miRNA can interact
through sequence complementarity with sequences con-
tained in various target mRNAs and also can act in synergy
with other miRNAs that regulate the same mRNA. The
results of the present study confirmed the capacity of
LF-PEMF to influence various networks of physiological
functions that are dysregulated in AD. Among the effects
observed, a quantitative reduction of β-secretase, following
LF-PEMF exposure, could confirm a protective action of
the electromagnetic field whose action would counteract
the formation of Aβ. Expression values of miR-107 which
is a negative regulator of BACE1 decrease with the increasing
exposure time, and the same trend was observed for the
expression of miR-26b-5p, which is involved in brain signal-
ing and synaptic plasticity.

Differently, the expression of miR-335-5p, which nega-
tively regulates the AMPA receptor, is stimulated by the

electromagnetic field, even if this expression decreases with
the increasing time of exposure. This result indicates a
possible adverse effect depending on the time of exposure.

Overall, the results obtained from the study on our
in vitro model demonstrated that LF-PEMF can stimulate
an epigenetic regulation mediated by miRNAs, which would
lead to a rebalancing of the pathways’ deregulation occurring
in AD (this deregulation starts in locus coeruleus and then
continues in high-order association areas of the neocortex
[70]). However, it is necessary to take account of the complex
network of epigenetic signals, not yet completely known, and
the possibility of some adverse effects. These results suggest
that the electromagnetic fields at low frequencies, if properly
used, may be useful for the treatment of patients with AD, as
suggested by the results of pilot experiments with deep brain
stimulation via EMFs, which were reported to produce
clinical benefits [15]. However, for the complexity of the
epigenetic regulation signals, which are triggered by electro-
magnetic stimulation [71–74], further in vitro and in vivo
studies are needed in order to investigate the effects of LF-
PEMF and in order to develop the conditions useful for
a therapeutic use (e.g., via a dose-dependent epigenetic
regulation mediated by miRNAs [75]), avoiding the possible
adverse effects.
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