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The University of Michigan 
Dept. of Electrical Engineering 
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Abstract 

The scattering of a low frequency electromagnetic wave by a metallic cone, 
whose base is part of a spherical surface centered on the apex of the cone, 
is analyzed using a mode matching technique. The dipoIe contributions to 
the scattering are obtained in complete generality, and numerical results are 
presented for a wide range of cone angles. Comparisons of the computed 
data with the predictions of an empirical formula for the scattering reveal 
both the strengths and weaknesses of the latter. 

§ 1. Introduction 

At low frequencies the  field sca t te red  b y  a finite b o d y  when an 

e lec t romagnet ic  wave  is incident  can be expanded  in a series of 
pos i t ive  powers  of the  free space p ropaga t i on  cons tan t  k, which 
series is abso lu te ly  convergen t  for suff icient ly smal l  k. The  leading 

t e r m  is p roduced  b y  the  electric and  magne t i c  dipole contr ibut ions ,  
and  if the  incident  wave leng th  2 = 2~z/k is m u c h  grea ter  t h a n  all 

the  d imensions  of the  body ,  the  sca t t e red  field can be approx i -  
m a t e d  b y  the  leading t e r m  alone. The  result  is Ray le igh  sca t te r ing  
for which the  sca t t e r ing  cross section is a = yk 4. 

Fo r  meta l l ic  bodies Siegel Eli has  reasoned t h a t  y should be  
p ropor t iona l  to V 2, where V is the  vo lume  of the  body ,  and  f rom 
an e x a m i n a t i o n  of the  k n o w n  expression for the  back  sca t te r ing  
cross section of a p ro la te  spheroid  at  axia l  incidence, he was led to 
an empir ical  fo rmula  for the  cons tan t  of p ropor t iona l i ty  in t e rms  

*) This work was supported in part by the National Science Foundation under Grant 
GP 9642. 
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of the shape (length-to-width ratio, r) of the body. Thus (see Eli): 

with 

4 
y = - -  V V ' F  ~ (1)  

1 
F = 1 + -  e -*. (2) 

r~r 

The resulting expression for a is most accurate when the body is 
long and thin (r >~ 1), and though the definition of the elongation 
parameter r was later modified El, 2] to produce cross sections in 
agreement with the known values in such cases as the sphere 
(r = 1) and the disc (r = 0), the formula is still only applicable to 
the back scattering cross section of a body of revolution at axial 
incidence. 

In practice, however, Siegel's formula is widely used as a means 
of cross section estimation for any angle of incidence, and because 
of this, it is desirable to seek some shape of more generality than 
the spheroid for which the exact Rayleigh cross section can be 
found. Such a shape should be one for which the electric and mag- 
netic dipole moments can be determined for all angles of incidence 
and, for preference, be a shape whose low frequency scattering 
behavior is of interest for its own sake. A body which satisfies 
these requirements is a finite cone whose base is part  of a spherical 
surface centered on the apex of the cone. 

The standard method of solution of low frequency scattering 
problems is due to Rayleigh E31, and reduces the determination of 
the scattered field to the solution of certain exterior potential 
problems for the body in question. The general approach is summa- 
rized in section 2 and then particularized to the case of a plane 
wave at arbitrary incidence on a round backed cone. The potential 
problems themselves are solved by  mode matching (see section 3), 
and as such the method is similar to that  used by  Schultz et al 
[4, 5] in treating this same geometry for a plane electromagnetic 
wave at axial incidence. In contrast, however, the boundary value 
problems which are now encountered are static ones, and because 
of the considerable simplification which this provides, it is possible 
to obtain solutions not only for axial incidence on a 30 deg. angle 
cone (as Schultz et al considered), but  for all angles of incidence and 
any cone angle. The numerical results are presented in section 4. 
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§ 2. Formulation 

The general approach to the solution of scattering problems at low 
frequencies, that  is, for k sufficiently small, is to expand the inci- 
dent and scattered field vectors as power series in k, viz. 

c o  o o  

E Z (ik) E  s, H Z (ik)n (3) 
n=O n = 0  

When these are substituted into Maxwell's equations and the 
boundary and radiation conditions, and the coefficients of like 
powers of k equated, it is found (see, for example, Kleinman E6~) 
that  the conditions on the lowest order scattered fields can be met if 

e g =  V¢, / / 8 =  V~, (4) 

where q~ and ~ are exterior potentials satisfying Dirichlet and 
Neumann boundary conditions respectively at the surface of the 
body. In principle at least, q~ and T can therefore be determined. 

To find the corresponding electric and magnetic dipole contri- 
butions to the wave field, we first note that outside some sphere 
entirely enclosing the scatterer, ~0 and T can be expanded in terms 
of spherical harmonics in the form 

= V . ( O ,  ~) 
~, w - -  X (5) 

~=I 7 n+l ' 

where r, 0, ¢ are spherical polar coordinates referred to an origin 
within the body, and for large r the first term in (5) suffices. 
Moreover, this first term for the function ¢ can be identified as 
the field of an electric dipole situated at the origin whereas the 
first term in T is associated with a magnetic dipole. This follows 
from the fact that  the fields due to electric and magnetic dipoles 
of moments*) 4~zeoP and 4rcM respectively are 

E = V^ V^  + i k V ^  ~ - -  , 

H = V A V A  - - i kVA P ~ - j ,  

(6) 

*) where eo is the pe rmi t t iv i ty  of free space. For brevity,  we shall hereafter refer to 
P and M as the dipole moments.  
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(time factor e -lot assumed and suppressed), and for kr sufficiently 
small, 

E ~ - - V \  r ~ ] ,  H ~  \ r 2 ] (7) 

Having thereby determined P and M, the expressions for Eg and 
H~ at all points exterior to the body can be obtained from (6). In 
particular, in the far field, 

eikr 

f, 

ei/C r (8) 

I/ 

from which the scattering cross section can be deduced. 

! ~ - - ~  

i i i  I I  ~" "xx\ 
/ \ 

/ Region 
Region / / ' 0 o ~  / Region 

. . . . .  . . . . . . .  I 
\ \ / 

\ / /  
\ \  / 

Fig. 1. Cone geometry, showing regions for mode m~tching. 

The specific body to be considered is a round backed cone whose 
surface is the intersection of a cone of (interior) half-angle ~ -- 00 
with a sphere of radius d centered at the apex of the cone (see 
Fig. 1). The body is assumed perfectly conducting, and in terms of 
the coordinates r, 0, ~b with origin at the apex, the surfaces are 

0 = 0 0 ,  0 < r < d ,  
all 4. 

r = d ,  ~ - - 0 0 < 0 < ~  

The incident field is a plane wave of arbitrary polarization inci- 
dent in an arbitrary direction, and it is convenient to take this as 

E i : (/1:~ @ m l ~  @ nl~') e ik(zx+mv+~*) 
I t  ~= Y(122 + m213 + n3~) e ik(zx+mv+nz) (9) 
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where (x, y, z) are rectangular  Cartesian coordinates such tha t  

x = r s i n O  cos4 ,  y = r s i n O  sin~b, z = r c o s O ;  

(1, m ,  n) ,  (/1, ml, nl) and (12, m2, n2) are sets of direction cosines 
for which 

(h, ml, nl)  = (12, m2, n2) A (4 m, n), 

(12, m2,  n2) - -  (l, ~ ,  ~¢) A (Zl, 1~¢1, ~¢1) 

and Y is the intrinsic admi t tance  of free space. 
To the first order at  low frequencies, 

E i ~  E~ ----- l l~ -}- ml~ -t-/411~ = 

= V(l lr  sin 0 cos ~ + m l r  sin 0 sin q~ + n i t  cos 0). (10) 

Since this does not involve the direction cosines (1, m, n) or 
(12, m2, n2), ll,  rnl and nl  can be chosen independent ly  of one 
another,  and for the corresponding scat tered electric potent ia l  we 
can therefore write (see (4)) 

co 

= ~, r - n - 1  × 

n = l  

X { / lg~)p l (cos  0) cos ~ @_ f/41g n(2)P~(cOsl 0) sin ¢ + nlg(3)pn(COS 0)}. 

(11) 

val id for r > d. The coefficients a <j) _ ~ ,  j =  i, 2, 3, are independent  
of ll, rnl and n l ,  and in general their determinat ion requires the 
solution of three e lementary  potent ia l  problems. For  a b o d y  of 
revolution, however,  the  s y m m e t r y  about  the z axis dictates tha t  
a(~ 1) = a (2)~ , which reduces the number  of potent ia l  problems to two. 
In terms of the  a (j)~ , the electric dipole moment  is 

(12) 

For the scat tered magnet ic  field, the procedure is similar in all 
respects. Corresponding to (10), we have 

H i ~-~ H i -~ YV(12r  sin 0 cos ~ + m2r sin 0 sin $ -t- n2r cos 0), (13) 
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implying (see (4)) 

c o  

T : Y E r - n - 1  × 
n = l  

X {12b(~l)p~(cos O) cos ¢ + m2b(~2)pl(cos O) sin ¢ + n2b~)Pn(cos 0)} 

(14) 

valid for r > d. In general three e lementary  potent ial  problems 
must  be solved to find the b (j) ,1' = 1, 2, 3, bu t  for a b o d y  of revo- 
lution about  the z axis, b (1) = b(n 2). In terms of the b(~ ), the magnetic 
dipole moment  is 

M = --Y(12b~l)2 4- m2bi2)~ 4- n2b~a)2). (15) 

§ 3. Analysis 

For  the round  backed  cone shown in Fig. I, there are four inde- 
pendent  components  of the dipole moments  to be computed,  and 
it is convenient  to approach the task  b y  considering separate ly  the  
potent ia l  problems generated b y  four e lementary  incident fields. 
If, for example,  an incident field is chosen having ll = 1 with 
ml = nl  = 0, the transverse electric dipole moment  a~ 1) ( =  ai2)) 
can be found;  al ternatively,  if ll = ml = 0 bu t  n l  = 1, the axial 
electric dipole moment  results; and similarly for the magnet ic  
dipole. All of these four potent ia l  problems are comparable  as 
regards the analysis involved, and it is therefore sufficient to detail  
the procedure for a~ 1) alone. 

As indicated b y  (10) and (11) with 11 = 1, ml = nl  = 0, the total  
electric potent ia l  in r > d is 

c o  

~- q~2 = Y~ (r-n-la(n 1) 4- r~ln) P~(cos 0) cos ¢ (16) 
~ , = 1  

where dmn is the Kronecker  delta function, whereas in region i 
(see Fig. 1) we assume 

~ ~bl = E c,rvpl(cos 0) cos ¢, (17) 

with the  coefficients cv, as well as the summat ion  variable v, still 
to be determined.  From the bounda ry  conditions on the electro- 
magnet ic  field at the surface of the cone and the requirement  of 
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cont inui ty  across r = d, we have (for all ¢)" 

o¢ i  o¢~ 

Or 0¢ 

0~)2 O(])I 

o¢ o¢ 
= 0  

0@2 O@ 1 

O0 O0 

= 0  

0~2 O~ 1 

Or Or 

-- 0 for 0 = 0o, 

for r = d, 0 0 < 0 o  

for r = d ,  0 o < 0 < = ;  

for r = d ,  0<_0<0o,  

for r = d ,  0o < 0_<=,  

for r = d ,  0 < 0 < 0 0 .  

(18) 

The first of these conditions can be satisfied by  choosing ~ such 
tha t  

P~(cos 00) = o, (19) 

with the summat ion  in (17) extending over all the zeros f - - ~ ,  
i = 1, 2, 3 . . . . .  of the Legendre function of order uni ty.  By  in- 
voking the or thogonal i ty  of the functions P~a(cos 0) over the range 
0 to re, the second and thi rd  boundary  conditions give 

where 

2m@ 1 
d-m-'a~ ) + 61m -- 2 c~d~-lXm, (20) 

2m(m 4- 1) . 

00 

X m v = - m ( m +  1) s in0  00 00 + ~  dO. (21) 

o 

I t  can be shown [5] tha t  

= (22) Xm, m(m + 1) -- v(v + 1) sin 0oPk(cos 0o) 0=0o 

providing v =# m. Finally,  from the fourth boundary  condition we 
have 

o o  

Z (- + 1)(d-n-.~}:~ - ~61n) P~(cos o) = - Z , , c .d ' - lp l ( cos  0), 
n = l  

0 < 0 < 0 o ,  
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from which a further relation between the a(~ ~) and the c~ can be 
found by using the orthogonality [5j of the functions P~(cos 0) over 
the range 0 < 0 < 00. Hence 

where 

oo 

1 - X (n + 1 ) ( g - - - ~  ) - # i ~ )  xn,, cvd~-i A~ n= 1 

00 

Av = I sin 0 (pl(cos 0)} e dO, (23) 
0 

and by substituting this expression for cvd ~-1 into (20), we obtain 

mA(lm ) @ (~lm = - -  Z (n @ 1) A(lm) ~v XmvXnv  
n= 1 ~,A, 

(24) 

m = 1, 2, 3, . . . ,  with 

A~ 1) - ~ + ~  ( d - ~ - ~  ~ - ½~,~). (25) 
2 m +  1 

The equations (24) constitute an infinite set of simultaneous equa- 
tions for the determination of the coefficients A~ ). The particular 
coefficient of interest to us is A ~1) in terms of which the transverse 
component of the electric dipole moment is 

d 3 
a~ 1) = (3A! 1) -}- 1). (26) 

2 * 

The other three potential problems are of a similar nature, and 
in each case an infinite set of equations is obtained from which to 
compute quantities related to a~ 3), bi 1) and bla). Thus, for the axial 
component of the magnetic dipole moment, the equations corre- 
sponding to (24) are 

co Xm~Xn ,  (27) 
( m +  1)B~)q-01m=--~ ,~=l (n+½)BCa)Y ' (v+  

1) Av ' 

m = 1, 2, 3 . . . . .  where v, Xm~ and A~ have the same definitions as 
above, and 

1 
B~)  - -  2m + 1 (d-m-eb~) + dim), (28) 

implying 
b~a) = - d a ( 3 s [ ~ )  + 1). (29) 
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For  the  t r ansverse  c o m p o n e n t  of the magne t i c  dipole m o m e n t ,  the  
s u m m a t i o n  m u s t  be carr ied out  over  the  zeros of the  first  de r iva t ive  
of the  Legendre  funct ion of order  un i ty ,  so t h a t  here ~ = vi, i = 
= 1 , 2 , 3  . . . .  , w i t h  

P~(cos0) 0=0o = 0, (30) 

and  the  resul t ing set  of equat ions  is 

o o  

rnB~ ) @ Olin = -- Z (n @ ½) B~ 1) Z XmvXnv , (31) 
n= 1 v r A y  

m = 1, 2, 3 . . . . .  where A~ still has  the  fo rm shown in (23), bu t  now 

v/(m q- 1) sinOoP~(cosOo) 0 p l ( c o s  0) 0=0o Xmv m(m + 1) - -  v(v + 1) ~ -  

(32) 
provid ing  v ~ m, and  

B~I ) _ ~ + 1 
. . . .  2 m  -t- 1 (d-m-2b(~l*) + r3xm). (33) 

The t ransverse  c o m p o n e n t  itself is 

d 3 
- -  (3B[  1) + 2). (34) bi~) 2 

Final ty ,  for the  axial  c o m p o n e n t  of the  electric dipole m o m e n t ,  the  
required  zeros are those of the  Legendre  funct ion  of order  zero, 
t h a t  is, v = v,, i = 1, 2, 3 . . . . .  wi th  

P~(cos 0o) = O. 

The equat ions  t h a t  resul t  are 

(33) 

(m + 1) A~2 + ~lm = - 2 (~ + ½) A ~ ) Z  
n = l  v 

Xm,Xn~ 

(v + 1) A ,  ' 
(36) 

m ---- 1, 2, 3 . . . .  , where A~ again  has  the  fo rm shown in (23), bu t  

X m ~  = - -  

(m + 1)(v + 1) ~P, 
sin OoPm(cos 00) ~ - I o - o °  m(m 4;- 1) - -  v(v d- 1) (37) 
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providing v ~ m, and 

implying 

1 
A ~  ) = ( d - m - 2 g ( ~ ) -  l~lm), (38) 

2 m +  1 

d 3 
a~g) = 2 (3A~3)-F I). (39) 

We thus have four infinite sets of simultaneous equations from 
which to compute the dipole moments. All four sets are of rather 
similar form and are to be solved for a variety of 00. Each contains 
a quanti ty Xmv whose simplified expression (22), (32) or (37) is 
valid only if v =# m. Knowledge of the Legendre function zeros 
shows that this condition is certainly fulfilled if 00 > r:/2. 

§ 4. Numerical Results 

For any given value of 00 there are three main computational tasks 
associated with the solution of each equation set: (i) the calculation 
of an adequate number of Legendre function zeros; (ii) the evalu- 
ation of the various factors involved, including the numerical inte- 
gration of the expression for A,;  and (iii) the matrix inversion. 
Only the first of these is other than straightforward, and even here 
we were fortunate in having available a procedure that  had been 
developed [71 in treating the scattering of an electromagnetic wave 
by  a semi infinite cone E81. Taking, for example, the problem of 
the transverse electric dipole moment for which the required zeros 
are those of the Legendre function of order unity, we write 

where 

1 (v + 1)1 S,(Oo) (40) 
P~(cosOo) -- (z@sinOo (v -k 1)! 

c o  

S,(Oo) = Z ( -1 )k  (V)k sin{(v + 2k) 0o}, (41) 
k=0 k! (~ + ~)k 

valid for 0 < 0o < re. The series does converge, albeit slowly, at a 
rate which is independent of 00, and the zeros can be found by  an 
iterative method. Similarly, for the zeros of the Legendre function 
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derivative, we use the recurrence relations: 

c~ v (v-t- i)! 
- - P ~ ( c o s O o )  = - - -  
~00 (r@ sin 2 00 (v -~ ½)! × 

and again resort to an iterative method. For the zeros of the zero 
order function, however, no program was available, but  in order to 
use to the utmost the procedures already developed, the recurrence 
relations for the Legendre function were employed to give 

P,(cos 00) -- v(v + 1) ( ~00 -t- cos OoP~ • (43) 

With the aid of (40), the right hand side can be expressed in terms 
of the same function S~(Oo) previously computed, and the zeros 
again found by  iteration. 

The computations were carried out on an IBM 360 computer, 
and numerical solutions to the sets of equations shown in (24), (27), 
(31) and (36) were obtained for 00 = 95 deg. through 150 deg. (in- 
creased with steps of 5 deg.) and for 00 = 150 deg. through 177½ deg. 
(increased with steps of 2½ deg.). Only the leading coefficients A ~1), 
B[8), B~ 1) and A j3) were printed out from which the dipole moments 
were deduced as indicated in (26), (29), (34) and (39), and in each 
case it was found that a maximum of 20 zeros was adequate to 
give results accurate to three significant figures. The values of aJl), 
b~3), b~ 1) and a~ a) are plotted as functions of 00 in Fig. 2. 

Having determined the dipole moments, the lowest order electric 
and magnetic fields can be obtained at all points exterior to the 
cone by  substituting into (6) the expressions for P and M given in 
(12) and (15) respectively. The far zone back scattered field is of 
particular interest to us. This follows from (8) on putting ~ = 
= --(l, m, n), and the direct and cross polarized components are 

(/,1, mj_, *~1)"E~,l,-=-(1,m,,,- 

(&, m2, ~ 2 ) ' E ~ l . = _ , , ~ , . )  - -  

then 
eikr 
kr SII' 

(44) 
eikr 
kr S~ 
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Fig. 2. Computed dipole moments: 
; - ~ f ~ / d ~ ,  • . . . . . .  ; b l - / a ~ , -  . . . .  ; a ~ d  b i 3 ~ / d ~ , -  . . . . . .  

respectively, where, from (8), 

Sll  = kaE(/1, ml, h i ) "P  -- (/2, m2, n2).M~, 
( 4 s )  

S± = kaE(12, m% n2)"P + (ll, ml ,  hi)"313. 

Subst i tut ing from (12) and (15) and recalling tha t  a~ 2) = a~l), 
b~ 2) = b~l), we now have 

SII = - -ka{a lZ)  - -  b~ 1) - -  n~(a[  1) - -  ai3) ) + n~(b[  1) - -  bi3))}, (46) 

S j_ = k s n l n 2 { a ~  1) - -  a~ a) + b~ 1) - -  b~a)}. (47) 

In  terms of Sii and S j ,  the direct and cross polarized components  
of the back scattering cross section are 

all : 4~k -2 ISll] ~', a_L : 4~k -2 [S.I 2. (48) 

I t  will be observed tha t  only the direction cosines n l  and nz 
appear in (46) and (47). If, therefore, the incident plane wave has 
either E i perpendicular to ~ (so tha t  n l  = 0), or H i perpendicular 
to ~ (so tha t  n2 -- 0), S~. is zero. This is a general result, t rue at  all 
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frequencies. In the part icular  case of axial incidence (nl = n2 = 0), 

SI [  = k 3 ( b ~  1) - -  6~1)) .  (49) 

This is the si tuat ion in which Siegel's empirical formula is relevant,  
and it implies 

V F  
IS~,l = k a - - ,  (50) 

11:: 

where V is the volume of the cone and F is the shape factor  given 
in (2). 

1,4 
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"\ 
\ 
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\ 
, \  

\ 

\ ' , , , , ,  

0 
90 120 150 180 

7r-0 o (degrees) 

Fig. 3. Normalized back scattered amplitude for axial incidence: 
exact, ; approximate (50),- . . . .  . 

In Fig. 3 the exact  values of (kd) -a SEI obta ined from (49) are 
compared  with the values predicted by  (50), with the ' length-to- 
width '  pa ramete r  r in (2) t aken  as T = } cosec 00 (see [2]). I t  is 
observed tha t  the empirical formula is r emarkab ly  accurate for 
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O.OC 
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180 

Fig .  4. N o r m a l i z e d  b a c k  s c a t t e r e d  a m p l i t u d e  fo r  o f f -ax is  i n c i d e n c e  o n  a 
15 deg .  h a l f - a n g l e  c o n e :  

e x a c t  (E-p lane)  - - ,  (H-p lane )  . . . . .  ; a p p r o x i m a t e  (50), - . . . . . .  

O. C . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . .  " ~  . . . . . . . . . . . . . . . . . . . . . . .  

0 .4  

0 .2  

J 

t 
60 e (deg rees )  120 180 

Fig .  5. N o r m a l i z e d  b a c k  s c a t t e r e d  a m p l i t u d e  fo r  o f f -ax i s  i n c i d e n c e  on  a 
60 deg .  h a l f - a n g l e  c o n e :  

e x a c t  (E-p lane)  - - ,  (H-p lane )  . . . . .  ; a p p r o x i m a t e  (50), - . . . . . .  
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narrow angle cones, but  overestimates the scattering by  an in- 
creasing amount as 00 decreases, and is in error by  as much as 
2.7 dB fol 00 = 95 deg. 

As noted in section I, the empirical formula (50) is also widely 
used to estimate the scattering at all angles of incidence in spite 
of its inherent limitation to axial incidence and its consequent 
inability to predict the aspect variation of the back scattering 
pattern. To illustrate the error that  is incurred thereby, we can 
use (46) to compute (kd) -a SII as a function of 0 where 0 is the 
angle from nose-on measured either in the E-plane ( n l -  sin 0, 
n 2 - - 0 )  or the H-plane ( h i = 0 ,  n 2 ~ s i n 0 ) .  The results for a 
narrow angle cone (00 = 165 deg.) are shown in Fig. 4, and those 
for a wide angle cone (00 = 120 deg.) in Fig. 5. For the H-plane 
patterns, the angular variation is relatively small, amounting to 
only about t0 percent for 00 --~ 165 deg. and 16 percent for 00 ---- 
= 120 deg., and in the latter case the estimate obtained from (50) 
is almost as close to the average as it is to the nose-on value. In 
the E-plane, however, the scattering is more aspect dependent, and 
significant errors could result from using (50) without regard to 
the aspect. This is particularly true for the wider angle cones for 
which 0 = 90 deg. is a minimum in the pattern, and the estimate 
obtained from (50) is too large even for 0 -- 0. In contrast, 0 
= 90 deg. is a maximum for the narrow cone, with the situation 
reversed in the H-plane, and from an examination of (46) in con- 
junction with Fig. 2, it can be seen that for a cone having 00 

161 deg. the H-plane pattern is independent of aspect, whereas 
for a cone with 00 - -  151 deg. the scattering in the E-plane is aspect 
independent. 

§ 5. Conclusions 

In spite of the relative simplicity of electromagnetic scattering 
problems at low frequencies, the number of finite bodies for which 
the low frequency scattering behavior is known precisely is still 
very limited, and it is because of this that  the empirical formula 
(50) is so widely used. 

A body of considerable practical interest is the round backed 
cone, and by  means of a mode matching technique, we have de- 
termined the complete dipole moments from which all features of 
the low frequency scattering behavior can be deduced. Numerical 
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results have been presented for a large range of cone angles. When 
the back scattering cross sections are compared with those pre- 
dicted by (50), it is found that  the latter is remarkably accurate 
for small-angle cones regardless of the aspect. For wide-angle cones, 
however, the empirical formula overestimates the nose-on cross 
section, and because of the greater aspect variation now displayed, 
significant errors could be incurred on using (50) to estimate the 
off-axis scattering. 
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