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Direct detection of gravitational radiation in the audio band is being pursued with a network of

kilometer-scale interferometers (LIGO, Virgo, KAGRA). Several space missions (LISA, DECIGO, BBO)

have been proposed to search for sub-hertz radiation from massive astrophysical sources. Here we

examine the potential sensitivity of three ground-based detector concepts aimed at radiation in the

0.1–10 Hz band. We describe the plethora of potential astrophysical sources in this band and make

estimates for their event rates and thereby, the sensitivity requirements for these detectors. The scientific

payoff from measuring astrophysical gravitational waves in this frequency band is great. Although we find

no fundamental limits to the detector sensitivity in this band, the remaining technical limits will be

extremely challenging to overcome.

DOI: 10.1103/PhysRevD.88.122003 PACS numbers: 04.80.Nn, 95.75.Wx, 95.55.Ym, 04.30.Tv

I. INTRODUCTION

Gravitational waves (GWs) in the context of general

relativity promise to reveal new information about the

bulk motions of massive compact objects in the Universe.

This new view of the Universe will complement our

existing, electromagnetic understanding. In this decade,

kilometer-scale interferometers (such as LIGO [1], Virgo

[2], GEO600 [3], and KAGRA [4]) are expected to make

the first direct detections of GWs in the 10–10000 Hz band

[5]. These waves would be associated with the coalescence

of neutron-star binaries and low-mass black-hole binaries.

In the proposed underground Einstein Telescope, the ap-

proach is to improve the traditional detector design to

extend the detection band down to 3 Hz [6]. A set of space

interferometer missions (eLISA [7], ALIA [8], DECIGO

[9], and BBO [10]) has been proposed to search for the

gravitational waves from supermassive black holes as well

as the inspiral phase of the low-mass compact objects [11].

The reason for constructing interferometers in space is

chiefly to avoid the seismic disturbances on the Earth due

to natural and anthropogenic sources. Even if we posit a

very sophisticated vibration isolator, a GW detector on the

Earth cannot be shielded from the fluctuations in the

terrestrial gravitational forces [12,13] (aka Newtonian

noise or gravity-gradient noise). In this work we argue

that it is possible, with reasonable extrapolations of

existing technology, to make detections of GWs in the

0.1–10 Hz using terrestrial detectors.

In Sec. II, we describe an atom interferometer

with improved immunity to technical noise sources.

In Sec. III, we explore improvements in a previously

proposed differential torsion bar detector. In Sec. IV,

we propose a version of the standard Michelson interfer-

ometer optimized for low frequency sensitivity. In Sec. V

we explore options for mitigating the effects of the

Newtonian gravitational noise. Finally, in Sec. VI, we

explore what sources of gravitational waves can be probed

using this set of terrestrial, low-frequency detectors. As

will be shown, the sensitivity at 0.1 Hz to GWs should be

around 10�20 Hz�1=2 or better, and the corresponding

instrumental designs will be referred to as MANGO in

this paper.

II. ATOM INTERFEROMETERS

Atom interferometers contain a source of ultracold

atoms that are released into free fall. During the fall,

each atom interacts multiple times with a laser. In its

simplest version, the laser-atom interactions force each

atom to follow the two paths of a Mach-Zehnder type

interferometer as shown in Fig. 1. The first laser-atom

interaction mimics a beam splitter for the atoms, two

subsequent spatially separated interactions with each par-

tial wave packet after time T form the two mirrors of the

Mach-Zehnder interferometer that recombine the two atom

paths after an additional fall time T. A final atom-laser

interaction at the point of recombination acts as another
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atom beam splitter. The atoms can now be counted in

the two output ports of the second beam splitter. In its

standard implementation, two counterpropagating lasers

are required at each point of interaction to induce a

Doppler-sensitive two-photon transition. However, single-

laser interactions have been proposed recently as a

promising way to mitigate some of the dominant noise

contributions [14,15].

Atom interferometers (AIs) have also been considered

as a new type of GW detector. In contrast to the laser-

interferometric designs such as the torsion-bar antenna and

the Michelson interferometer, AIs are generally not pure

gravity strain meters, but are sensitive to a multitude of

field quantities including the homogeneous static gravity

field, static gravity gradients, and fluctuations thereof [16].

Another interferometer topology has been proposed that

combines the benefits of freely falling atoms and long-

baseline laser interferometry [17,18]. In these schemes,

two or more AIs interact with the same lasers. In this

type of configuration, the AI itself no longer serves as a

GW detector, but each AI constitutes a freely falling phase

meter for the lasers. Since the atoms are freely falling,

these detectors are less sensitive to seismic perturbations,

which is one of the major disturbances in conventional

laser-interferometric detectors, requiring sophisticated

vibration isolation engineering [19,20].

As reported previously [21], seismic noise is still rele-

vant in laser-atom interferometers (LAIs), but it is strongly

suppressed compared to seismic noise in standard laser-

interferometric GW detectors. This is because any type of

laser noise measured differentially between two freely

falling phase meters (atom interferometers) is subject to

a common-mode rejection to leading order, but does enter

at order �L=c, where c is the speed of light, L is the

distance between the two atom interferometers, and � is

the signal frequency. Therefore, compared to conventional

laser-interferometric detectors, the advantage of atom

interferometers is that the common-mode rejection of seis-

mic displacement is established optically rather than by

seismic correlations between test masses. However, the

results also show that laser-frequency noise needs to be

further suppressed interferometrically; otherwise laser-

frequency noise would pose a strong limit on the sensitivity

of these detectors. Interestingly, this is ultimately a con-

sequence of the fact that two counterpropagating lasers

have to interact simultaneously with each atom. As dis-

cussed in [14,15], atom GW detectors based on atom

interactions with a single laser could ideally be free of

laser-frequency noise (including the seismic noise) even

without a laser interferometer. In the latter case, the detec-

tor could be built along a single baseline, which would be a

great advantage for underground atom GW detectors since

they could be constructed with a vertical baseline and

vertically falling atoms. In contrast, the phase signal of

each atom interferometer is first-order insensitive to the

initial positions and velocities of the atoms, but constraints

on the distribution of atom trajectories need to be fulfilled

for example to sufficiently suppress noise associated with

wave-front aberrations [22].

The main noise contributions of atom interferometers

that have been described in previous publications are the

atom shot noise, the laser-frequency noise, Newtonian

noise (see Section V), and noise associated with laser

wave-front aberrations [22,23]. In the following, we will

base our noise model on a standard LAI configuration with

two perpendicular horizontal baselines of length 500 m to

suppress laser-frequency noise electronically similar to the

time-delay interferometers envisioned for space-borne GW

detectors such as eLISA [24]. Seismic isolation systems

are required for the main laser optics shown in Fig. 2 and

for auxiliary optics forming the spatial mode filter of the

input beam, but since none of the optics serves as the test

mass, the isolation requirements are less stringent.

With respect to the laser-frequency noise published in

[25], an additional suppression of 105 is assumed for the

noise curve in Fig. 3. Most of this suppression (103) will be

FIG. 2 (color online). Sketch of a possible GW detector that

combines atom and laser interferometry. Each of two pairs of

atom interferometers (AI) measure the differential phase of the

laser at a distance L from each other. These two differential

phase signals are further subtracted from each other to cancel the

laser phase noise.

FIG. 1 (color online). Mach-Zehnder configuration of an atom

interferometer. A first �=2 laser pulse splits the atom path in

two. Subsequent � pulses acting as atom mirrors recombine the

paths that are brought to interference by a second �=2 pulse.
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achieved by performing a differential readout between the

two arms of the Michelson interferometer. However, since

asymmetries between the two arms can impede noise

suppression, it seems likely that MANGO sensitivity can

only be achieved with an additional 100� improvement in

laser frequency stabilization in the 0.1–10 Hz band relative

to the level published in [25]. This should be possible using

the new generation of cryogenic laser reference cavities

with crystalline mirror coatings [26], or building on recent

progress with superradiant lasers [27]. Random displace-

ment of the laser optics can produce excess laser-frequency

noise as well as laser beam jitter that converts into atom

phase noise. With respect to excess frequency noise, the

requirements for seismic noise reduction around 0.1 Hz can

be about 6 orders of magnitude less stringent than they are

for suspended test masses. The isolation chain up to the

suspension-point interferometer (SPI) stage presented in

Sec. IV without the optical-rigid-body (ORB) and final

suspension stage would provide sufficient seismic-noise

suppression in the longitudinal degree of freedom (see

below for additional requirements with respect to rota-

tional degrees of freedom). The residual seismic noise

��=c (� the optics displacement noise, � the signal

frequency) is less than 10�22=
ffiffiffiffiffiffi

Hz
p

at 0.1 Hz. In this

configuration the optics cannot be considered free, and

also the distance between laser optics is controlled over

the entire detection band; consequently, the optical re-

sponse to GWs is suppressed. Hence, sensitivity estimates

can be obtained just by considering the distance change

between pairs of atom interferometers.

Static wave-front aberrations contribute to the instru-

mental noise if the laser beam jitters due to the random
tilt of the optics or the laser [22,23]. To provide the required

alignment stability of the laser beams relative to the atoms,
one first needs a stable reference, which consists of

seismically isolated optics and components of the align-
ment control system. Then the beam jitter can be sup-
pressed relative to Ref. [28]. Also the static wave-front
aberrations can be reduced by mode cleaning [29], ulti-
mately being limited by aberrations of the optics.
Extrapolating current optics polishing and coating quality,
we assume that static wave-front aberrations of 10�4 rad
should be possible. The beam jitter noise curve in Fig. 3 was

plotted with a beam jitter of 10�11 rad=
ffiffiffiffiffiffi

Hz
p

at 0.1 Hz; for
comparison, this is �100� better than the best angular
stabilization achieved with the LIGO interferometers using
differential radio frequency wave-front sensing. Even
though it seems feasible to build a control system that can
suppress beam jitter down to this level, it will be very
challenging to provide the seismic isolation with respect
to tilt/yaw motion. This can only be achieved through
passive seismic isolation or by implementing other inertial
references. A solution would be to implement a multistage
passive isolation further reducing seismic noise in all de-
grees of freedom. Additional suppression of beam jitter
noise can be achieved by implementing adaptive optics to
correct wave-front aberrations.

In addition to static wave-front aberrations that con-

vert into atom-phase noise through beam jitter, dynamic

wave-front aberrations generated by Brownian noise in

the optics coatings cause additional atom phase noise. As

for the beam jitter case, noise from small-scale aberra-

tions is strongly suppressed [23], and we can focus on the

largest scale aberration for the noise estimate, which

corresponds to a spatial wavelength equal to half of the

beam diameter. In this case, assuming a mirror at room

temperature with a coating quality factor Q ¼ 104, the
atom phase noise at 0.1 Hz in units of GW strain is less

than 10�24=
ffiffiffiffiffiffi

Hz
p

.

Besides Newtonian noise, the most significant noise

contribution is the atom shot noise governed by the flux

� of cold atoms interacting with the laser beams, and the

number n of photons transferred to each atom at each point

of interaction with the lasers, which determines the mo-

mentum transfer from light to atoms. Since the standard-

quantum limit enforces a strong limit on the photon

number in low-frequency laser-interferometric detectors,

it seems feasible that atom shot noise can be brought to a

level comparable to photon shot noise. Atom shot noise is

proportional to 1=n and 1=
ffiffiffiffi
�

p
. The parameter values used

for the noise curve in Fig. 3 are � ¼ 1014 atoms=s (about a
factor 106 above current state-of-the-art [30]) for the atom
throughput and n ¼ 1000 for the number of photons (about

a factor of 10 above current state-of-the-art [31]).

Momentum transfers with n ¼ 102 photons have already

been realized but without being able to measure phases

[32]. As outlined in [18], an ambitious but straight-

forward R&D effort could lead to an atom flux as high

as 1014 atoms=s by increasing laser power for a two-

dimensional magneto-optical trap. Another option to mitigate

atom shot noise is to prepare the atoms in phase-squeezed

FIG. 3 (color online). Sensitivity curve of the MANGO con-

cept for a laser-atom interferometer based on the parameter

values given in Table I. The noise peaks are a consequence of

the transfer function between laser and atom phases, and are

characteristic for the Mach-Zehnder configuration of the atom

interferometers.
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states through nonlinear atom interactions, but atom

phase-squeezing has not been demonstrated yet in atom

interferometers.

In summary, major technology advances and better

understanding of noise sources in LAIs are required to

achieve the sensitivity goal. Such insight can only be

obtained through further theoretical studies, and eventually

through prototyping of detectors. An important first step

toward low-frequency GW detection would be to achieve

sensitivities that would allow us to observe terrestrial

gravity perturbations around 0.1 Hz and to demonstrate

Newtonian-noise subtraction at these frequencies. From

Sec. V we know that this can already be achieved with

strain sensitivities around 10�16=
ffiffiffiffiffiffi

Hz
p

(more easily in en-

vironments with elevated seismic and infrasound noise).

This sensitivity could be achieved with a single baseline

LAI using state-of-the-art laser-frequency stabilization

[25]. Moreover, only modest seismic-noise suppression

by about a factor of 1000 to avoid excess laser-frequency

noise (about 10 orders of magnitude are required for

Advanced Virgo and LIGO above 10 Hz) and a modest

increase of momentum transfer to n ¼ 100 are sufficient,

while using already available atom flux. The length of the

baseline would still have to be around 500 m, which can be

made smaller if either � or n are further increased.

III. THE TORSION BAR ANTENNA

A torsion-bar antenna (TOBA) is a new type of gravita-

tional wave detector [33]. The tidal-force fluctuations

caused by GWs are observed as differential rotations be-

tween two orthogonal bars, independently suspended as

torsion pendulums. They share the same suspension point,

have their axis of rotation colinear and center-of-mass

coincident. This is a crucial design feature and will provide

a high level common mode rejection (�1 part in 1000)

from mechanical noise. Shown in Fig. 4, an incoming

gravitational wave, incident into the page, will rotate the

beams differentially. The linear distance between the ends

of the beams, Lx and Ly, will change. The differential

length changes will be measured in the same way as in

the long baseline gravitational wave detector (LIGO,

VIRGO). Any linear pendulum motion between the beams

will be registered as a common mode motion, to which the

Michelson is insensitive.

A. The torsion pendulum

The anticipated design for a large-scale TOBA

detector has a suspended mass of �104 kg (10 m long�
0:6 mdiameter), made from a high quality low-loss mate-

rial compatible with cryogenics like silicon or aluminium

5056. The aspect ratio of the bar is optimized to maximize

the eigenfrequency of the second bending mode, to be

above 10 Hz, which generates a differential displacement

between the two ends. The torsion wires need to be made

from a similar high quality factor material. The fundamen-

tal torsion frequency will be around 30 �Hz. Increasing
the length of the bar will improve the overall sensitivity, yet

it will also increase the thermal noise associated with its

internal modes. Constructing the bar with a dumbbell

shape is another possibility to increase the bar’s inertia

by a factor of 3. The detector will operate at cryogenic

temperatures to mitigate the thermal noise (suspension

thermal noise in particular).

One of the challenges is to mount the two bars such that

there is no cross coupling between the torsional and other

modes. One approach is to drill a hole in the middle of one

bar, while narrowing the center of the other bar. Other

mechanical configurations are under investigation, such

as adjusting the height of the suspension points on the

bar, while maintaining the location of the center of mass.

Figure 5 shows a complete schematics overview of the

TOBA suspension design. Here the two bars are illustrated

as solid beams.

As an alternative to solid bars, the bars can be made

of a light open frame structure with large masses at

the ends. This will be detrimental for the thermal noise

(and low eigenmode frequencies); however, linear cavities

along the length of the structure can monitor the modal

displacements between the end masses. A feedback system

using inertial actuators (e.g., mass on a piezoelectric ac-

tuator) located at the antinodes of the first few structural

modes can be used to damp the eigenmodes. Alternatively,

recorded modal displacement can be used in postprocessing

cancellation schemes.

The torsion bars are suspended from a common suspen-

sion point (TOBA Suspension Point in Fig. 5), improving

the common mode rejection. The two bars have two sus-

pension wires to accommodate the coincidence of their

axis of rotation. The wires will have a small separation at

the suspension point and at the bar. The impact on the

torsion frequency will be modest if the suspension wires

are sufficiently long.
FIG. 4 (color online). Interaction of TOBA’s dual torsion beam

configuration with GW tidal forces.
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B. Isolation chain

The TOBA Suspension Point is suspended from a two

stage isolation chain, inside a vacuum chamber to reduce

seismic and acoustic coupling (see Fig. 5). The base of the

Top Suspension Point is mounted to the ground. The Top

Suspension Point is isolated in 4 degrees of freedom

(no roll or pitch DOF), via an inverted pendulum and a

geometric antispring filter [34]. It has actuators for each

degree of freedomwith respect to the ground. To reduce the

force actuation it is desirable to have the eigenmodes up to

500 mHz.

The Top Mass in Fig. 5 is suspended from the Top

Suspension Point via a single wire and is used as a refer-

ence to stabilize the residual seismic motion. A high-

sensitivity broadband seismometer is mounted inside the

Top Mass and registers any residual motion. The sensor

data are used in a feedback control system to the actuators

at the Top Suspension Point. The seismometer is housed in

a pod to make it vacuum compatible, shielded from mag-

netic field noise and temperature stabilized to improve

noise performance at low frequencies (<1 Hz). The actua-
tors will suppress the motion of the top mass down to the

noise floor of the seismometer (�10�9 m=
ffiffiffiffiffiffi

Hz
p

[35]).

The TOBA Suspension Point is suspended from the Top

Mass via a suspension wire and vertical blades, providing

an additional 6 degrees of isolation. This acts as a reference

for the various sensors and actuators to the individual bars.

To reduce the suspension thermal noise, the TOBA

Suspension Point and below is cooled down to 4 K. The

whole suspension chain will be wrapped in a heat shield to

maintain the cryogenic temperatures.

C. Interferometric readout

The differential rotation between the two bars is

obtained by measuring the distance fluctuation between

the ends of the two bars. With respect to the first bar, the

ends of the second bar will advance and retreat when the

bars rotate (differentially). A Michelson interferometer,

with the beam splitter on the first bar and end mirrors on

the second bar, is used to measure the change in length,

shown in Fig. 4.

To reduce the effect of the mirror coating thermal noise

on the readout, large beam sizes on mirrors is beneficial.

The optical input and output beams for the Michelson

come from underneath the bars, with the injection and

readout optics, such as the recycling cavities, in a separate

chamber. This greatly simplifies the optical configuration

on the bars and will separate the more complex optical

readout from the mechanical system. The final readout will

be done using the direct current (DC) readout technique [36]

with a possible implementation of quantum-nondemolition

techniques for broadband improvement of the shot noise.

Figure 6 shows an anticipated sensitivity of a TOBA

detector, operating at 4 K. The seismic noise is set to the

instrumental noise level of a broadband seismometer, 5�
10�10 m=

ffiffiffiffiffiffi

Hz
p

at 0.1 Hz, followed by a second pendulum
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FIG. 6 (color online). Noise plot of the MANGO concept for a

torsion detector with 10 m long by 0.5 m diameter fused silica

bars (7560 kg each) operated at 4 K. Each bar is suspended by

two 5 m long and 2.6 mm diameter silicon wires. The input

power is set to 10 W with no recycling cavities and a finesse of

the arm cavities 313.

FIG. 5 (color online). Schematic overview of the TOBA

suspension design, with the horizontal bar at the bottom and

the second bar indicated with the darker circle coming out of the

page.
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stage and a 1:1000 coupling from horizontal to rotation.

An estimate of the force sensitivity of the large-scale

TOBA can be approximated with � ¼ I� ¼ �I�!2 ¼
�Ið�x=lÞð2�fÞ2. With a modeled design sensitivity of

10�19 m=
ffiffiffiffiffiffi

Hz
p

at 1 Hz, the torque is then 97�103�
ð10�18=10Þð2�10�10�3Þ2¼4�10�17Nm=

ffiffiffiffiffiffi

Hz
p

. At the

end of the 10 m bar a linear force as small as

�10�17 N=
ffiffiffiffiffiffi

Hz
p

can be measured.

The TOBA concept is less constrained by fundamental

noise sources, but it would certainly require outstanding

engineering achievements to realize this MANGO concept,

such as fabricating a high-Q bar of length 10 m or longer

cooled to a temperature of 4 K. Though such a cryogenic

system is well established in resonant-bar GW detectors

[37], about a factor of 3 enlargement is required for this

TOBA design.

IV. MICHELSON INTERFEROMETER

Another approach to low frequency ground-based

gravitational-wave detection is to modify the existing laser

interferometric detector design. These detectors are limited

at low frequencies by seismic noise, thermal noise, and

radiation pressure noise. Though ground-based detectors

all have extensive seismic isolation systems, seismic

noise is dominant below �5 Hz. As we describe below,

an extension of the suspension point interferometer [38,39]

concept to many degrees of freedom can potentially

provide significant rejection of seismic noise coupling.

To best make an ORB with interferometric sensing, a

triangular configuration is chosen over the L-shape in use

today. This provides high sensitivity to all motions in the

plane of the interferometer, making the horizontal ‘‘stiffness’’

of the ORB as high as possible. This configuration also has

other advantages as a GW detector, as discussed in various

proposals for future detectors (ET, LISA, BBO), including

redundancy and sensitivity to both GW polarizations.

A. Preisolation

The first stages of seismic isolation for the Michelson

interferometer are similar to those currently in use

in ground-based GW detectors (e.g., Advanced LIGO).

An active preisolation stage reduces somewhat the noise

transmitted to lower stages, and provides a wide range

actuator for positioning the suspension chain.

A second layer of isolation is provided by low-frequency

passive mechanical resonators (e.g., Robert’s linkages

for horizontal and Euler buckling springs for vertical

[40,41]). These can be tuned to a few megahertz to provide

modest in-band isolation and significant reduction of the

microseism at 100 mHz.

The target for preisolation is to arrive at 1 nm=
ffiffiffiffiffiffi

Hz
p

at

10 mHz, and 100 pm=
ffiffiffiffiffiffi

Hz
p

above 100 mHz. This motion

is assumed to be present in all translational degrees of

freedom and incoherent between platforms.

B. Suspension point interferometer

The next layer (cf. Fig. 7) of isolation links the three

detector platforms with Fabry-Perot cavities in a configu-

ration known as the SPI. The SPI layer serves to reduce

the relative motion of the three platforms in the plane of

the interferometer and to provide interferometric align-

ment signals for the platforms. In total, the SPI produces

three displacement signals and nine alignment signals,

while the three platforms have a total of 18 rigid-body

degrees of freedom (DOFs). Thus, the available signals

are sufficient to constrain the three platforms to behave as

a single rigid body, by removing 12 internal DOFs and

leaving 6 DOFs uncontrolled (the SPI is clearly insensi-

tive to translation and rotation of the three platforms as a

rigid body).

The alignment signals that provide the majority of the

constraints, when coupled with small lever arms, have a

sensitivity comparable to the displacement signals pro-

duced when the platforms are displaced in the plane.

That is, if we consider an SPI made of low-finesse cavities

with a few 100 mW of stored power, a 1 mm lever arm

makes the 10�13 rad=
ffiffiffiffiffiffi

Hz
p

sensitivity of a wave-front sen-

sor comparable to the 10�16 m=
ffiffiffiffiffiffi

Hz
p

shot noise limited

displacement sensitivity.

The differential vertical motion (DVM) of the platforms,

however, is a different matter. DVM is detected by the SPI

only through angular signals and has an effective lever arm

of the distance between the platforms (e.g., several

hundred meters). Designing the SPI cavities to be nearly

concentric, with the radii of curvature of the mirrors

slightly larger than half the length of the cavity, can in-

crease their sensitivity to DVM by a factor of 10 or even

100. This displacement noise will, however, remain 3 to 4

orders of magnitude larger than the in-plane displacement

noises, and only marginally lower than the noise level

provided by the preisolators.

The net effect is that common motion of the three

platforms, and their differential vertical motion, remain

at or near the noise level given by the preisolators. These

FIG. 7 (color online). Seismic isolation for the Michelson

low-frequency detector is provided by a multi-stage suspension

with interferometric length and angle sensing.
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noises will couple into later stages of the isolation chain

via small asymmetries in the suspensions to produce

motion in the plane of the interferometer. A well tuned

mechanical system can minimize these couplings,

possibly to less than 10�4 with in situ tuning, limited

by thermally driven mechanical drifts in the suspension

system. The existence of these cross couplings is the

reason that a single layer SPI is not sufficient to bridge

the 8 orders of magnitude gap between the preisolator

output noise and the noise level required at the test-mass

suspension stage.

Since greater suppression would most likely be futile,

the SPI stage aims to reduce the relative motion of the

platforms to 10�14 m=
ffiffiffiffiffiffi

Hz
p

at 100 mHz, or 10�4 times the

noise floor presented by the preisolator. If significantly

better decoupling is available, the relative motion can in

principle be further reduced to approach the shot noise

level of the SPI around 10�16 m=
ffiffiffiffiffiffi

Hz
p

.

C. Optical rigid body

The final layer of seismic isolation in the interferometer

suspension chain is the optical rigid body; essentially a

multicavity SPI that is designed to maximize the coupling

of vertical displacement to the readout. The collection

of resonant optical cavities that constitute the ORB are

arranged such that any differential displacement of the

platforms appears as a longitudinal displacement of at least

one cavity. When all of these cavities are held at their

resonance points with active control loops, the three

independently suspended platforms are forced to move as

a rigid body. Furthermore, since the ORB cavities span

mechanically separated layers in the suspension chain, the

bottom layer can be used as a proof mass in an ‘‘interfero-

metric seismometer,’’ thereby allowing for the reduction of

common motion of the ORB.

The aim of the ORB is to reduce the common displace-

ment, and differential vertical motion, to 10�13 m=
ffiffiffiffiffiffi

Hz
p

at

100 mHz at the bottom layer of the suspension chain. The in-

plane differential motion can then be reduced to the shot

noise level of the bottom layer ORB cavities around

10�16 m=
ffiffiffiffiffiffi

Hz
p

. These are the noise levels presented as inputs

to the final suspension stage that holds the interferometer test

masses.

It is worth noting that the ORB is in principle sensitive to

gravitational waves, since it is made of optical cavities

identical to the ones used in the test-mass stage interfer-

ometer. Since the ORB control loops suppress any detected

motion of the suspended platforms, they will also suppress

any GW signal that appears within its control bandwidth.

Thus, below the resonance frequency of the final-test mass

suspension stage, the interferometer that hangs from the

ORB will be insensitive to GWs. Above that frequency,

however, the test masses are free to move relative to the

ORB and the GW signal is not suppressed. Since the

resonance of the test-mass suspension is necessarily below

the GW detection band, suppression of the GW signal by

the ORB is not a problem.

D. Magnetomechanical suspension

The final suspension stage of this low frequency

Michelson interferometer presents several technical chal-

lenges. The most obvious of these is to attain a pendular

resonance frequency below the band of interest for GW

detection; in our case this is 10 mHz.

The second major challenge of the final suspension

stage is to provide low thermal noise. The thermal noise

of a simple pendulum suspension, above the mechanical

resonance, is given by

xthermal ¼
1

m!2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kBTk	

!

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kBT!
2
0

mQ!5

s

; (1)

where kBT is the Boltzman constant times the suspension

temperature, m the suspended mass, k the effective spring

constant, Q ¼ 1=	 the quality factor and 	 the loss angle

of the restoring spring, !0 ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

the resonant fre-

quency, and ! the measurement frequency. To put in

some rough numbers, a 1 mHz suspension with Q ¼ 108

holding a 100 kg test mass would result in �3�
10�17 m=

ffiffiffiffiffiffi

Hz
p

thermal noise at 100 mHz; this is not

enough to reach the MANGO goal.

In a magnetic or magnetically assisted suspension

[42–44], the thermal noise may come not only from the

restoring force of the suspension but also from the defor-

mation of the suspension element that counters the force of

gravity. Magnetic suspensions may also have losses due

to magnetostriction in the support magnets and eddy cur-

rent damping in conductive suspension components. It may

be possible to avoid some of these issues by using an

electrostatic suspension instead [45].

The third major challenge is matching; the common

motion of the ORB can become differential motion of the

test masses if the restoring forces of the test-mass suspen-

sions are not perfectly matched. Numerically speaking, the

suspensions must be matched well enough to reject the

10�13 m=
ffiffiffiffiffiffi

Hz
p

common motion of the ORB at a level of

�105 to prevent it from spoiling the detector sensitivity.

E. Detector sensitivity

To reach a strain noise level of less than 10�20=
ffiffiffiffiffiffi

Hz
p

at

0.1 Hz, major developments in suspension and quantum-

noise technology are required. The parameter values for

the Michelson MANGO configuration are summarized

in Table I. The quantum noise is achieved by apply-

ing quantum-nondemolition (QND) techniques [46] such

as a speed-meter design. However, these can only be

realized by means of extreme low-loss, small-bandwidth

(i.e. �0:1 Hz) optical resonators, or alternatively, phe-

nomena in light-atom interactions such as electromagneti-

cally induced transparency [47,48] could potentially fulfill
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the same purpose. A less ambitious detector design

would not rely on QND techniques. Reducing the mirror

mass to 90 kg, and optimizing the laser power, a strain

sensitivity can be achieved that is about a factor 10 smaller

above 0.1 Hz and is shown in Fig. 8 as ‘‘MANGO w/o

QND.’’

V. NEWTONIAN NOISE

One of the foremost problems of ground-based GW

detectors operating at frequencies below 10 Hz and com-

mon to all detector types is the Newtonian noise (NN).

Newtonian noise is generated by a fluctuating terrestrial

gravity field. In the following, we will discuss some of the

known contributions to NN, and we conclude with a brief

review of coherent NN subtraction.

It should be noted that atom interferometers can have

additional Newtonian noise terms compared to laser-

interferometric GW detectors [16,49] since the phase evo-

lution of matter waves depends on the gravity potential.

These terms add to the NN response from distance changes

between two atom interferometers. However, at least for

the LAI configuration discussed in Sec. II based on Mach-

Zehnder atom interferometers, one finds that the total NN

in units of GW strain is identical to NN in laser-

interferometric GW detectors (if this was not so, then

NN could be coherently subtracted from a LAI using

data from a collocated, equally long laser-interferometric

GW detector, and vice versa).

A. Seismic and atmospheric NN

The two main contributions to NN are produced by the

ambient seismic field [12,13,50] and density fluctuations in

the atmosphere [51]. Even though the main focus of these

publications is to provide NN estimates for the LIGO and

Virgo detectors, it is possible to extend the models to lower

frequencies.
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FIG. 8 (color online). Strain noise of the MANGO concept for

the dual-recycled, Fabry-Perot Michelson interferometer with

300 m arms, and a speed-meter cavity used to suppress the

radiation pressure noise. All fundamental noise contributors are

included. This noise budget is intended to represent the best

sensitivity currently imaginable. For comparison, the sensitivity

is also shown for a less ambitious design with respect to

radiation-pressure noise reduction.

TABLE I. Interferometer parameters used for the MANGO detectors.

Parameter Symbol Value Units Parameter Symbol Value Units

Michelson interferometer

Light wavelength 
 1550 nm Substrate Young’s modulus Ysub 185 GPa

Mirror mass m 600 kg Suspension temperature Tsus 0.2 K

Arm cavity length L 300 m Suspension ribbon � � � Silicon � � �
Arm cavity power Pcav 50 W Substrate loss angle 	sub 3� 10�9 rad

Beam radius ! 1 cm Coating loss angle 	coat 2� 10�5 rad

Detection efficiency � 0.95 � � � Mirror coating � � � GaAs:AlAs � � �
Squeeze factor R 10 dB Mirror temperature T 120 K

Torsion-bar antenna

Power P 10 W Torsion resonance frequency !tor 0.2 mHz

Mirror substrate � � � Silicon � � � Bar length Lbar 10 m

Beam radius ! 2 mm Bar diameter d 0.5 m

Bar substrate � � � Fused silica � � � Suspension temperature Tsus 4 K

Suspension wire � � � Silicon � � � Bar temperature Tbar 4 K

Suspension length Lsus 5 m

Laser-atom interferometer

Arm length L 500 m Coating loss angle 	coat 10�4 rad

Momentum transfer n 1000 � � � Wave-front aberrations �	wf 10�4 rad

Atom throughput � 1014 s�1 Beam jitter �� 10�11 rad=Hz1=2

Beam radius ! 1.5 cm
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To obtain an accurate model of seismic NN, one needs

detailed information about the seismic field. In some sense,

seismic NN estimation below 1 Hz is easier since the

properties of the seismic field do not depend significantly

on detector depth, and also the seismic field can often be

understood by studying data from large-scale seismic net-

works operated by seismologists without the necessity to

carry out additional site studies. Whereas body waves can

dominate the seismic field at higher frequencies especially

at underground or remote sites, the dominant contribution

below a few tens of a hertz is almost always the Rayleigh-

wave field, which is consistent with our understanding of

seismic sources being mostly located at the surface (or at

shallow depths relative to the length of Rayleigh waves)

[52]. Therefore, the NN estimate presented here will be

derived from the Rayleigh-wave field. The equation for the

gravity perturbation of a single test mass at height h above

ground by a plane Rayleigh wave is given by

xð�Þ ¼ �2�i cos ð�ÞG�0�R�zð�Þ=�2 exp ð��h=cRÞ;
(2)

where �zð�Þ is the vertical displacement amplitude

measured at the surface directly beneath the test mass,

�R � 0:83 is a material dependent factor that accounts

for the partial cancellation of NN from surface displace-

ment due to the subsurface compressional wave content of

the Rayleigh-wave field, cR � 3:5 km=s is the speed of

Rayleigh waves, � is the angle between the horizontal

direction x along which the test-mass displacement is

calculated and the direction of propagation of the

Rayleigh wave, �0 is the mean mass density of the ground,

and G is Newton’s gravitational constant. At low frequen-

cies the exponential term is approximately equal to 1, and

the gravity perturbation does not depend explicitly on the

Rayleigh-wave speed anymore. In this case the same

equation can also be used as an approximation for under-

ground gravity perturbations. The exact expression for

underground gravity perturbations from Rayleigh waves

as should be used for underground detectors at a shallow

depth operating at higher frequencies is more complex and

involves details about the geometry of the cavity that hosts

the detector. An expression similar to equation (2)

is obtained for gravity perturbations along the vertical

direction (without the �=2 phase shift). Finally, the factor

�R would have a different value for Rayleigh overtones

[13]. Here we will assume that the dominant waves are

fundamental Rayleigh waves.

In contrast to the advanced detectors that will sense

gravity perturbations as differential displacement noise

that is uncorrelated between the test masses, terrestrial

low-frequency detectors will sense gravity gradients since

the length L of the detector arms is much smaller than the

length of a seismic wave. Therefore, �L=cR � 1, and the

gravity gradient perturbation along the horizontal direction

x is obtained by multiplying Eq. (2) with cos ð�Þi�L=cR.

It follows that the Newtonian strain noise x=L (legitimately

deserving the name gravity-gradient noise at low frequen-

cies) is independent of the arm length.

Creighton [51] describes several types of atmospheric

NN. In this paper we will focus on gravity perturbations

produced by infrasound waves. It is not obvious that infra-

sound NN is the dominant contribution since there are

no accurate models for most atmospheric gravity perturba-

tions at low frequencies. However, extending the Creighton

models naively to lower frequencies and assuming that the

detectors are located sufficiently far underground, other

contributions to the atmospheric NN become insignificant

since their noise spectral densities fall rapidly with increas-

ing distance to the test masses. Infrasound waves are the

analog of compressional seismic body waves propagating

in media with vanishing shear modulus. As for the seismic

NN, we first calculate the gravity perturbation from a

single plane infrasound wave. The density perturbation of

an infrasound wave can be written as

�� ¼ �0

�

�p

p0

; (3)

where � is the adiabatic coefficient of air, and �0 is the

mean air density. The relative pressure fluctuations �p=p0

can be taken from published measurements [53]. The

infrasound wave is incident on the Earth’s surface at an

angle � with respect to the normal of the surface and is

reflected from it without energy loss. Then the horizontal

gravity perturbation at a depth z0 reads

xð�Þ ¼ �4�i sin ð�Þ cos ð	ÞG��cIS
� exp ðsin ð�Þ�z0=cISÞ=�3 (4)

with z0 � 0, cIS is the speed of the infrasound wave, and 	
is the angle between the horizontal component of the propa-

gation direction and the direction of test-mass displacement

x. As for seismic NN, the low-frequency infrasound strain

noise is independent of the arm length of the detector.

The reduction of infrasound NN with depth depends on

the angle of incidence. Similar to the case of Rayleigh

waves, it is the apparent horizontal wavelength that deter-

mines the exponential reduction. Infrasound waves that

propagate nearly horizontally produce gravity perturba-

tions that have a large projection onto the horizontal di-

rection x, but the gravity perturbation falls rapidly with

depth. Gravity perturbations from infrasound waves that

travel almost vertically cannot be efficiently reduced by

going underground, but they also have a very small pro-

jection onto the direction x. This feature needs to be

investigated more carefully in the future since it is well

known that the infrasound field is highly anisotropic at

lower frequencies [54]. However, it should be clear that for

realizable detector depths the exponential reduction will

not be very significant in general. Before we present

the noise curves for the seismic and infrasound NN, we

summarize the underlying simplifications.
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Seismic Newtonian noise

(i) Integration is carried out over the seismic field in a

half space. Newtonian noise at the lowest frequen-

cies may depend on the Earth’s curvature.

(ii) The field is dominated by fundamental Rayleigh

waves. Especially with respect to NN mitigation,

one needs to consider possible contributions from

body waves and Rayleigh overtones.

(iii) Effects of underground cavities on NN are ne-

glected. Underground detectors in cavities may

also be sensitive to gravity perturbations from shear

waves [55]. Seismic NN in underground detectors

depends on the geometry of the cavity, and scat-

tered waves contribute to NN. The latter two effects

should be negligible at low frequencies.

(iv) Rayleigh waves have frequency-independent speed.

In reality, Rayleigh waves can show strong disper-

sion [56] also below 1 Hz. The speed of continental

Rayleigh waves lies within 2–4 km/s between

10 mHz and 1 Hz. However, since seismic NN at

low frequencies does not depend significantly on

the speed of seismic waves, implementing a real-

istic dispersion should not alter the results very

much.

(v) Propagation-direction averaged NN is calculated

assuming an isotropic seismic field. It is well

known that the seismic field can show significant

anisotropies especially at low frequencies [57].

Infrasound Newtonian noise

(i) Integration is carried out over the infrasound field

in a half-space. The thickness of the atmosphere

can be a fraction of the length of infrasound waves.

For this reason it should be expected that infrasound

NN is significantly smaller below 0.1 Hz than

reported in this paper. In addition, infrasound waves

are reflected from layers of the atmosphere (i.e. the

stratosphere or thermosphere) at characteristic an-

gles [54]. Newtonian noise at lowest frequencies

may depend on the Earth’s curvature.

(ii) Mean air density, air pressure, and speed of

infrasound waves do not change with altitude.

(iii) The speed of sound is frequency independent. There

are no studies of the dispersion of atmospheric

infrasound at low frequencies (especially as a func-

tion of altitude). For a given infrasound field,

dispersion has a weak effect on NN below 1 Hz.

(iv) The atmosphere does not move. Winds play an

important role in the propagation of infrasound

leading to characteristic patterns in the field [54].

It is unclear if wind in relation to infrasound waves

has additional consequences for NN apart from the

fact that wind can be a local source of infrasound

when interacting with surface structure.

(v) Propagation-direction averaged NN is calculated for

an isotropic infrasound field. Isotropy is certainly an

unrealistic assumption as mentioned before.

Using the seismic spectrum published in [58] and a fit to

the pressure spectrum published in [53], we obtain the NN

curves presented in Fig. 9. As a final remark we want to

point out that both seismic and infrasound NN have lower

limits since seismic and infrasound spectra both lie above

global low-noise models [59,60]. Therefore, in terms of

site selection, the goal should be to identify a site where

both spectra are close to the respective low-noise models.

B. Gravity transients

The GW community has not paid much attention to

terrestrial gravity transients in the past except for a paper

on anthropogenic noise focusing on surface detectors such

as LIGO or Virgo [61]. The reason for this is that gravity

transients can be eliminated in high-frequency detectors

simply by avoiding abrupt changes in the velocity of mov-

ing objects and humans within a zone of about 10 m radius

around the test masses. The situation is very different for

low-frequency detectors. Even though the terrestrial tran-

sient landscape is completely unknown and difficult to

model in many cases, it is possible to identify potentially

significant contributions.

a. Newtonian noise from uniformly moving objects.—

We consider the case of an object that is moving at constant

speed v along a straight line that has distance rj to a test

mass at the closest approach. Therefore, the vector ~rj
pointing from the test mass to the closest point of approach

is perpendicular to the velocity ~v. The closest approach

occurs at time tj. As before, we express the result in terms

of the Fourier amplitude xjð�Þ of test-mass displacement,

xjð�Þ ¼ 2Gm

v2�
ðK1ðrj�=vÞ cos ð�Þ

þ iK0ðrj�=vÞ cos ð
ÞÞei�tj : (5)

Here, m is the mass of the moving object, � is the angle

between ~rj and the arm, 
 is the angle between ~v and the
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arm, and KnðxÞ is the modified Bessel function of

the second kind. In all relevant cases, the argument

x ¼ rj�=v obeys x � jn2 � 1=4j so that the modified

Bessel functions can be expanded according to

KnðxÞ �
ffiffiffiffiffi
�

2x

r

e�x

�

1þ 4n2 � 1

8x
þ � � �

�

: (6)

The moving object could be a car, a person, or a quasistatic

density fluctuation in the atmosphere localized within a

cell and transported by wind. In this last case, one would

consider a spatial distribution of many cells with typical

quasistatic density perturbation and volume determined by

a spatial correlation function [51].

In fact, one motivation to build low-frequency detectors

underground comes from this type of gravity perturbation.

Evaluating a few examples, one finds that the associated

NN would completely dominate the signal if it was not for

the exponential suppression in Eq. (6), which is effective

especially for underground detectors. The threshold

frequency f0 above which NN from uniformly moving

objects can be neglected is given by f0 � v=ð2�rjÞ. At
the surface, one could imagine constructing an environ-

mental shield around test masses with a radius of about

10 m, so that typical threshold frequencies are close to

0.1 Hz almost independent of the object’s mass m. So even

an animal running at a straight line past the buildings of a

surface detector could potentially generate significant NN

up to the threshold frequency. Therefore, the only feasible

solution to this problem is to build the detector several

hundred meters underground and push f0 below the detec-

tion band for all conceivable speeds v. As NN from an

uncontrolled environment is avoided by increasing the

distance between objects and test masses, NN control can

in principle be achieved by enforcing a strict speed limit of

all objects near test masses.

b. Newtonian noise from oscillating objects.— Isolated

oscillating objects cannot exist as there must always be a

reaction force on another object. For example, a shaking

tree will transfer momentum to the ground generating

seismic waves that are correlated with the motion of the

tree. Therefore, the full problem of gravity perturbations

from oscillating objects is difficult to analyze. The aim of

this section is to provide NN estimates from the oscillating

object itself without including reaction terms.

We will calculate the strain of the perturbation measured

by two test masses at distance L to each other forming an

interferometer arm in the direction of the unit vector ~n. A

point mass m is assumed to oscillate with amplitude ~�
much smaller than its distance to the test masses. So we

will always linearize the equations with respect to �. Then
the displacement of the first test mass has the well known

dipole form

x1 ¼ � Gm

r30�
2
ðð ~� � ~nÞ � 3ð ~er � ~nÞð ~� � ~erÞÞ; (7)

where ~er is the unit vector pointing from the first test mass

to the object, and r0 is the mean distance between them.

The acceleration of the second test mass expressed in terms

of the same unit vector ~er reads

x2 ¼ � Gm

r30�
2

1

ð1� 2
ð ~er � ~nÞ þ 
2Þ5=2

� ðð ~� � ~nÞ � 3ð ~er � ~nÞð ~� � ~erÞ þ 
ð3ð ~� � ~erÞ
þ ð ~er � ~nÞð ~� � ~nÞÞ � 2
2ð ~� � ~nÞÞ (8)

with 
 	 L=r0. We evaluate the strain for the case of an

oscillating object at the surface directly above the first test

mass that is located at a depth r0. In this case ~er � ~n � 0 and
the strain simplifies to

h ¼ ðx2 � x1Þ=L

¼ � Gm

r30�
2L

�ð1� 2
2Þð ~� � ~nÞ þ 3
ð ~� � ~erÞ
ð1þ 
2Þ5=2 � ~� � ~n

�

:

(9)

One can see that for small detectors with 
 � 1, the strain
in Eq. (9) is proportional to 
 for vertical oscillations, or 
2

for horizontal oscillations, which makes the strain distur-

bance independent of the distance L between the test

masses or proportional to L. In the latter case we have

the uncommon situation that strain noise increases with

detector length.

We conclude this section with an estimate of NN from

the sway of a single tree [62–64]. We assume that the tree

crown displacement can be approximated as horizontal

and that the test masses are located 1 km underground

forming an interferometer arm of 20 m length. The natural

frequency of a h ¼ 15 m tall tree is about 0.4 Hz.

We assume the stem diameter at breast height to be

dbh ¼ 0:3 m so that the parabolic estimate of its mass is

about m ¼ ��=2ðdbh=2Þ2h � 450 kg with a density

� ¼ 850 kg=m3. Then the strain disturbance as the

time-domain amplitude is given by

h ¼ 9Gðm=2Þ
2r50�

2
ð ~� � ~nÞL � 10�22; (10)

assuming that effectively only half of the tree mass is

displaced and that the displacement amplitude at the natu-

ral frequency is 0.5 m in the direction of the arm. This

strain value seems sufficiently small, but gravity perturba-

tions from multiple trees could potentially add coherently.

c. Newtonian noise from fault rupture.— Teleseismic

events can cause an immediate gravity perturbation in

low-frequency GW detectors in addition to a delayed

perturbation from seismic waves generated by these events

that pass the detector. Between 10 mHz and 1 Hz,

earthquakes and major explosions such as the eruption of

volcanoes are examples of sources of strong gravity per-

turbations. Here we are interested in fault ruptures since the
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rate of events with a significant magnitude can be very high

in certain regions.

The prompt gravity perturbation from fault rupture can

in principle include several distinct transients associated

with lasting density changes near the fault that are built up

during the fault rupture, compressional waves generated by

the event, and also contributions from strong surface dis-

placement at the epicenter depending on the event depth.

The relative strength of these transients depends signifi-

cantly on the location and orientation of the GW detector

with respect to the fault plane. Details will be presented in

an upcoming publication. Here we will focus on a simple

estimate of the fault-rupture detection horizon of MANGO

based on the well known lasting gravity change produced

by earthquakes [65,66] that has been observed in multiple

occasions [67,68].

The measured gravity strain depends on the location of

the detector with respect to the fault and slip orientation.

For a strike-slip event at 1000 km distance, with fault

length and width equal to 12 km, the center of the fault

at 25 km depth, slip size of 1 m, and ideal detector location,

we obtain a lasting change in radial gravity strain of

4� 10�18. Rupturing a fault of this size would take about

2 s, which corresponds approximately to a magnitude

M ¼ 6 earthquake. As the event corner frequency would

be about 0.5 Hz, this perturbation could easily be seen in

the data. Similar results are obtained for dip-slip events and

arbitrary fault orientations.

C. Newtonian noise subtraction

Since terrestrial gravity perturbations cannot be fully

avoided, alternative noise-mitigation strategies need to be

developed. One idea is to monitor the density fluctuations

around the test masses. Most importantly, this means to

measure seismic waves and atmospheric infrasound by

means of sensor arrays. The sensor data can then be used

to produce a coherent subtraction filter for NN (i.e. a

Wiener or adaptive filter [69,70]). This technique seems

to be very attractive since clearly a high number of sensors

like seismometers and infrasound microphones should

make it possible to subtract a large part of the NN.

However, as we will demonstrate in this section, it is

uncertain whether sufficiently sensitive seismic and

infrasound sensors can be provided.

Even though infrasound waves are the atmospheric

analog of compressional body waves, it is not possible to

achieve high infrasound NN subtraction with a single

microphone as suggested for compressional waves in

[55] using a single seismic strainmeter. The main reason

is that microphones respond to infrasound waves indepen-

dently of the direction of propagation, whereas seismom-

eters measure ground displacement in certain directions. In

addition, it is generally impossible to achieve significant

broadband subtraction of Rayleigh seismic NN with a

single seismic sensor, independent of the type of seismic

sensor that is used [70].

Figure 9 shows that seismic and atmospheric NN would

have to be reduced by large factors to achieve sensitivity

goals with respect to NN. Performance of NN subtraction

over a band of frequencies not only depends on the sensi-

tivity of the auxiliary sensors, but also on the design of the

sensor array. Here we will present results for the atmos-

pheric and Rayleigh seismic NN subtraction using Wiener

filters as outlined in [71]. In Fig. 10, the three curves

represent relative subtraction residuals for three spiral

arrays. The calculation is based on an isotropic field of

Rayleigh waves. The sensors measure vertical ground dis-

placement with SNR ¼ 1000. The detector length is L ¼
200 m. Array density determines the highest frequency up

to which NN can be subtracted. At low frequencies, sub-

traction performance declines, because a larger fraction of

the seismic signal leads to common-mode gravity perturba-

tions that are rejected by the interferometer, and also be-

cause the array cannot provide reliable information about

seismic waves that are much longer than the diameter of the

seismic array (each contributing a 1=f at low frequencies).

Therefore enlarging the array (without decreasing sensor

density in the central part) would increase subtraction

performance at the expense of deploying a much larger

number of sensors. The same calculation is repeated for

the infrasound NN for an infrasound field isotropic over a

half space. The results are shown in Fig. 11. Even though

the microphones are assumed to have the same sensitivity to

pressure fluctuations as the seismic sensors to ground dis-

placement, less subtraction is achieved. The reason is that

NN from sound waves propagating in three dimensions is

subtracted using a two-dimensional microphone array de-

ployed on the Earth’s surface. If it were possible to monitor

atmospheric infrasound at different altitudes, then subtrac-

tion residuals could be similar to the seismic case. In

summary, the results shown in Figs. 10 and 11 demonstrate

FIG. 10 (color online). Residuals of Rayleigh-wave gradient

NN subtraction for double-wound spiral arrays using seismom-

eters with SNR ¼ 1000. Results are presented for different

numbers N of seismometers and different array radii r.
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that it will be very challenging to achieve sufficient NN

subtraction. A suppression of the NN by about 4 or 5 orders

of magnitude at 0.1 Hz would be needed to make it com-

parable to the instrument noise limit. To achieve the goal, a

larger number of more sensitive sensors will be required,

and the arrays should ideally be tailored to the required NN

subtraction factors.

We conclude this part with a brief discussion about the

sensors required to achieve the NN subtraction goals.

Subtraction of NN below instrumental noise requires the

development of new environmental sensors, beyond the

current needs in typical applications of seismometers and

microphones. The sensitivities of various seismometers

were compared in [35]. For example, a factor >10 im-

provement in seismometer sensitivity is required at 0.1 Hz

with respect to the sensitivity of the best commercial

sensors. Also, the best gravimeters (when used as seis-

mometers) barely resolve the global new low-noise model

[59] at frequencies above 10 mHz [72–74], but it is not

completely understood what types of noise or environmen-

tal couplings are causing sensitivity limits in modern in-

struments. There are efforts to improve the low-frequency

sensitivity of seismometers, and if for example the domi-

nant noise is a result of coupling to the environment, like

pressure or temperature changes, then coherent noise sub-

traction using additional thermometers or barometers

could be a solution. Therefore, it is very important to

investigate noise in seismometers and gravimeters; other-

wise the GW band below 0.1 Hz may remain inaccessible

to ground-based detectors. However, as such improve-

ments do not meet fundamental limitations, NN subtrac-

tion is proposed as a potential solution in MANGO

detectors. The situation is similar for infrasound micro-

phones. However, high-sensitivity measurements of sound

require additional techniques to reduce the influence from

local pressure fluctuations produced by wind [75].

It has often been proposed to use additional laser inter-

ferometers to measure and subtract NN, but these schemes

fail since laser interferometers are exclusively sensitive to

gravity strains, and it would be impossible to distinguish

NN from GWs. Instead, a possible solution would be to

sense a degree of freedom of the gravity field that does not

have contributions from GWs, but that shows correlations

with the strain field with respect to terrestrial perturbations.

VI. SOURCES OF GRAVITATIONALWAVES

FROM 0.01 HZ TO 1 HZ

In this section we reevaluate commonly studied low-

frequency sources in the context of MANGO GW detec-

tion. As for most GW detectors, the science case developed

here is strongly supported by the likely contribution of

binary compact objects, but a wider range of less likely

sources is included illustrating that research on low-

frequency signals is ongoing, and significant changes in

detection probabilities are possible. The most likely rate

estimates for compact-binary signals are employed as can

be found for example in [76].

A. Compact binaries

In the following, we discuss the most well-understood

gravitational-wave sources for MANGO, namely compact

binaries of white dwarfs, neutrons stars, and black holes.

We will first briefly review the evolution of these binaries

under gravitational radiation reaction, and then discuss

several scenarios in which gravitational waves from these

binaries might be detected.

1. Evolution of a compact binary under radiation reaction

Let us first briefly review the basics of gravitational

waves from binaries in circular orbits (or circular binaries,

which is probably a good approximation in most cases in

this frequency range). This involves both the strain ampli-

tude at a given frequency and the time spent at that fre-

quency, as these both play a role in detectability. From

Schutz [77], the angle-averaged strain amplitude measured

a distance r from a circular binary of masses m1 and m2

(and hence total mass M 	 m1 þm2 and symmetric mass

ratio � 	 m1m2=M
2) with a binary orbital frequency fbin

(and hence gravitational wave frequency fGW ¼ 2fbin) is

h ¼ 2ð4�Þ1=3
c4

�ðGMÞ5=3
r

f2=3GW

¼ 2:4� 10�22

�
fGW

0:01 Hz

�2
3 �

0:25

�
M

2M


�5
3 10 kpc

r
; (11)

where in the second line we normalize to an equal-mass

binary (� ¼ 0:25). Note that for comparable-mass sources,

� is close to 0.25; for example, m1=m2 ¼ 1:5 gives

� ¼ 0:24 and even m1=m2 ¼ 2 gives � ¼ 2=9, which is

only an 11% change from 0.25.

FIG. 11 (color online). Residuals of infrasound gradient NN

subtraction for double-wound spiral arrays using microphones

with SNR ¼ 1000. Results are presented for different numbers

N of microphones and different array radii r.
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From Peters [78] the semimajor axis a of a circular

binary evolves adiabatically via gravitational radiation as

_a ¼ � 64

5c5
�ðGMÞ3

a3
: (12)

Switching variables to fGW ¼ ðGM=a3Þ1=2=� gives

_fGW ¼ 96�8=3

5c5
�ðGMÞ5=3f11=3GW : (13)

From _fGW, we can estimate a characteristic time for

radiation reaction,

T 	 fGW= _fGW: (14)

If fGW is at least a factor of a few less than the

merger frequency, then the time left before merger, or the

additional lifetime of the inspiral, is

Tinsp ¼
3

8
T ¼ 5

256�8=3

c5

�ðGMÞ5=3 f
�8=3
GW

¼ 5:5� 103 yr

�
0:25

�

��
M

2M


��5
3

�
fGW

0:01 Hz

��8
3

: (15)

Suppose our detector has a noise spectral density of Sh.
Then the signal-to-noise ratio, using the matched-filtering

detection technique, is

�2 ¼ 4
Z þ1

0
df

j~hðfÞj2
ShðfÞ

: (16)

If the detector’s spectral density and the amplitude of the

GW are both roughly constant, then (as can also be seen

using Parseval’s theorem)

�2 � 4h2T

Sh
: (17)

If �� is the threshold for detectability, then for any GW

signal h the detector’s maximum spectral density is given by

S� ¼
4

�2
�
h2 min ðTinsp; TobsÞ: (18)

Here we have taken the minimum of the inspiral time Tinsp

and the observation time Tobs.

2. Individual neutron-star binaries

From Eq. (15), we see that for white dwarf and neutron

star binaries below fGW � 0:1 Hz, the inspiral time is

greater than�107 s, which we use as a fiducial observation
time for MANGO. It is a conservative estimate taking into

account that low-frequency ground-based detectors could

frequently be perturbed by seismic or atmospheric events,

either by direct vibrational disturbance or via gravitational

coupling. Hence for those sources 107 s is the relevant time

in Eq. (18). For more massive sources, such as IMBH-

IMBH binaries, the inspiral time is relevant because it is

shorter than 107 s. As a consequence, the IMBH spectrum

in Fig. 12 falls as f�2=3. Assuming a distance of 10 kpc for

WD binaries, 100 Mpc for NS binaries, and z ¼ 1 for

IMBH binaries, and assuming �2
� ¼ 4, we plot in Fig. 12

the minimum spectrum for the detector at different

frequencies.

To estimate the relevant distance for each type of binary

event, we have to use our knowledge about their rates.

Suppose the rate per Milky-Way equivalent galaxy

(MWEG) is RMWEG. Then for a frequency fGW and a

corresponding lifetime of Tinsp, the probability that there

is at least one such binary in a MWEG is

p ¼ 1� exp ð�RMWEGTinspÞ �RMWEGTinsp; (19)

where in the last expression we assumeRMWEGTinsp � 1.

For two neutron stars of 1:4M
, and assuming a galaxy

rate from 1 to 1000 Myr�1 [76], we have a probability,

ranging from 0.4% to 98%, to have at least one binary

neutron star with a gravitational-wave frequency at or

above 0.01 Hz. For the most likely rate of 100 Myr�1,

that probability becomes 34%. From Fig. 12, it is plausible

for MANGO to reach 10 kpc, and therefore the chance for

MANGO to detect a neutron star binary in our Galaxy is

non-negligible.

One has to reach substantially farther in order to detect

binaries from other galaxies. In the most pessimistic case,

we will have to reach�700MWEG in order to guarantee a

binary with 95% confidence, which implies a horizon

distance of 56 Mpc. If we use the most likely rate, then

to guarantee the same likelihood of detection we need to

reach around 7.2 MWEGs, which is achievable if we can

reach a horizon distance of �5 Mpc. Here we have used

the conversion formula of

0.01 0.1 1

10
−21

10
−20

10
−19

10
−18

10
−17

10
−16

Frequency [Hz]

S
tr

a
in
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e

n
s

it
y

 [
1

/√
 H

z
]

WD−WD at 10kpc

IMBH−IMBH at z=1

NS−NS at 100Mpc

Laser−Atom

TOBA

Michelson

FIG. 12 (color online). Example tracks with residence-

time-weighted spectral density for a double white dwarf merger

at 10 kpc (solid red line; both have a mass of 0:6M
), a double

neutron star merger at 100 Mpc (black dotted line; both have

a mass of 1:5M
), and a double intermediate-mass black hole

merger at z ¼ 1 (blue dashed line; both have a mass of 104M
).
The IMBH-IMBH curve is terminated at the innermost stable

circular orbit frequency as we see it in our frame (0.1 Hz).
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NG ¼ 4

3
�

�
Dhorizon

Mpc

�
3

ð2:26Þ�30:0116; (20)

which is Eq. (4) of Ref. [76] when Dhorizon is larger than

�30 Mpc, and Fig. 1 of the same paper for smaller dis-

tances. Here, 1=2:26 is the correction factor included to

average over all sky locations and orientations, and

0:0116 Mpc�3 is the extrapolated density of MWEGs in

the Universe. Noting that D in Eq. (18) is the distance

reachable by a detector after averaging, instead of the

horizon distance, with a conversion factor of

D ¼ Dhorizon

2:26
: (21)

This means, at the most likely rate, we needD � 2:2 Mpc,
while in the least rate, we needD � 25 Mpc. If we account
for additional integration time, then from Fig. 12, it is

plausible that MANGO can detect a NS binary from nearby

galaxies.

The rate per galaxy of BH-NS and stellar-mass BH-BH

mergers is less than for NS-NS, and the binaries are more

massive and thus spend less time above 0.01 Hz, so it is

highly unlikely that such binaries are in the MANGO band

in the Galaxy at the moment. For example, the expected

detection rate of stellar-mass BH binaries is about

1 yr�1 only for a very optimistic merger rate of

30 Myr�1 MWEG�1. Such high rates have been obtained

in [79], but the rate prediction would be about 2 orders

of magnitude lower using rate estimates currently consid-

ered as likely [76]. Given that even the existence of

intermediate-mass black holes is still under debate,

estimates of their rates are even less certain. However,

if multiple IMBHs can form in a dense stellar cluster

(e.g., Gürkan et al. [80]) or separate clusters with IMBHs

merge (e.g., Amaro-Seoane and Freitag [81], Amaro-

Seoane et al. [82]), then depending on the fraction of

clusters that form IMBHs and their masses and merger

efficiencies there could be tens of mergers per year visible

out to the z� 1 range of MANGO (Fregeau et al. [83],

Mandel et al. [84], and Gair et al. [85]).

3. Individual white-dwarf binaries

Let us estimate the galactic merger rate of WD binaries.

Collisions between two white dwarfs with a combined

mass greater than the �1:4M
 Chandrasekhar mass are

candidates for Type Ia supernovae, and even collisions

between two typical white dwarfs of mass 0:6M
 release

�1050 erg in gravitational binding energy, so we would

expect them to be easily detectable. Thus a rate that implies

such occurrences in our Galaxy more than once every few

years is not plausible; we would have seen them. We note,

however, that for two 0:6M
 white dwarfs the inspiral time

from 0.01 Hz is Tinsp � 2� 104 yr, so if there are currently

a few hundred such binaries in the Galaxy their merger rate

would be only one per a few decades (note that the

expected number of binaries is N ¼RTinsp), which could

have been missed or misidentified. If there are supposed to

be a few thousand, however, the rates get too high to miss.

In other words, such a rough estimate puts

RWD & 10�2=yr; N & 102: (22)

Other considerations lead to more concrete estimates.

For example, from observations of WD binaries, Badenes

and Maoz [86] estimate that in our Galaxy, the merger

rate of super Chandrasekhar WD binaries (i.e. those with

a total mass greater than the Chandrasekhar mass) is

�6:4� 10�4=yr, and the total rate is �8� 10�3=yr. For
a Chandrasekhar WD binary, its inspiral time at 0.01 Hz is

1:5� 104 yr. Noting that the lifetime at a fixed frequency

increases with a decreasing total mass, we can estimate that

NM>1:4M
 � 10; NM<1:4M
 � 100: (23)

This is compatible with the rough estimate above and

suggests that a MANGO-like detector would have tens of

sources in band. The lowest-period knownWD/WD binary

is HM Cnc with a corresponding GW frequency of 6 mHz

[87]. Therefore, all known binaries lie below the MANGO

band.

4. Stochastic background from galactic

and extragalactic binaries

If a large population of binaries with unknown para-

meters is viewed collectively as a source, the gravitational

waves it emits may be viewed as a ‘‘stochastic back-

ground’’ [88,89]. However, in some cases, one can estimate

parameters of some of the (stronger) binaries, and

‘‘resolve’’ part of this ‘‘stochastic background’’ into a

complex but deterministic waveform [90,91].

Our ability to estimate parameters of the binary depends

on two factors: (i) the duration of the observation and the

individual waves and (ii) the sensitivity of our detector. Let

us try to understand this for the simplest case in which all

binary waves are quasimonochromatic but with a finite

lifetime ��. Let us first select a finite subpopulation that

already contributes to most of the spectrum; for example, a

large enough finite cutoff distance. In this case, we first

require (i) the lifetime of each wave �� and the observation
time Tobs must both be long enough, so that within each

frequency bin with a bandwidth of 2=min ð��; TobsÞ, there
is at most one binary of the subpopulation; we then require

that (ii) in those bins with a binary, our detector have high

enough sensitivity to detect the wave emitted by the binary.

As discussed by Farmer and Phinney [92], for a one-year

observation, the galactic population of WD-WD binaries

above 0.01 Hz (in the MANGO band) are all individually

resolvable. On the other hand, the number of all extraga-

lactic binaries is larger by a factor equal to the number of

MWEGs in the Universe, i.e. 1010 or more, and hence

forms a population that is only individually resolvable at

frequencies too high for most white dwarfs to reach, i.e.
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above �0:1 Hz, giving rise to a stochastic background

below 0.1 Hz (see their Fig. 17). Farmer and Phinney

[92] also give their expected extragalactic WD-WD back-

ground strength in their Fig. 16. They express it as�gwðfÞ,
which is the energy density in a frequency band of width f
centered on f, expressed as a fraction of the critical energy
density for the Universe. From Eq. (5) of Phinney [93], the

characteristic strain amplitude is related to �gwðfÞ by

hcðfÞ ¼ ½4G�c�gwðfÞ=f2�1=2

� 1:6� 10�22ð�gw=10
�12Þ1=2ð0:01 Hz=fGWÞ; (24)

where in the second line we have substituted �c ¼
9:5� 10�30 g cm�3 (valid for a Hubble constant H0 ¼
71 kms�1 Mpc�1). On the other hand, using two colocated

detectors with noise spectral density Sh, the characteristic
h one can detect, after a duration of Tobs, is

h�cðfÞ � ð2�fTobsÞ1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fShðfÞ
q

� 2� 10�22

�
S1=2h ðfÞ

10�19 Hz�
1
2

��
f

0:01 Hz

�3
4

�
T

108 s

�1
4

:

(25)

Note that when there are many sources, we can integrate

over the entire observation time of 107–108 s without

regard to how long each individual source takes to spiral in.

Figure 16 of Farmer and Phinney [92] suggests that�gw

may peak at �10�11 around 0.01 Hz. According to

Eqs. (24) and (25), this background could be detectable

with a 108 s MANGO integration but not likely with 107.
Above 0.01 Hz the expected background becomes progres-

sively more uncertain, but possibilities exist up to�0:1 Hz
(after which the number of sources falls rapidly).

In comparison, the stochastic background from other

extragalactic binaries (e.g., NSNS) are much less in

magnitude and will be buried under the background arising

from extragalactic WD binaries.

B. Helioseismic and other pulsation modes

Given that the Sun is extremely close and has strong

helioseismic p modes at around �300 s [94], one might

hope that gravitational radiation from these modes could

be seen with MANGO. Also the solar gmodes, which have

not been definitively detected yet, could potentially be

observed. Their periods are all greater than about 45 min

so that the detector would lie in the near-zone gravitational

field [95].

Cutler and Lindblom [96] address this exact problem for

LISA (which is more sensitive than MANGO at the rele-

vant frequencies) and conclude that unless there are orders

of magnitude more energy in the modes than expected,

they will not be detectable even at 1 AU. This allows us to

conclude that, unless other stars (particularly M dwarfs,

whose general frequencies should be higher than those of

the Sun) have vastly greater energy in the modes than the

Sun does, the cumulative gravitational wave background

from their pulsations is much less than the amplitude

from the Sun. This is for the same reason that the Sun

has a larger optical flux than all other stars combined; the

gravitational wave energy will add incoherently. Thus

stellar pulsations will not be detectable.

C. Supernovae

In a recent paper on the preexplosive properties of

the Type Ia supernovae, a GW emission mechanism was

proposed occurring during the final accretion phase of a

WD in a binary system [97]. The GW frequencies between

0.1 Hz and 0.5 Hz fall into the MANGO band with pre-

dicted strain amplitudes of up to h ¼ 10�19, which could

easily be detected.

In contrast, it is very unlikely that GW emission from

core-collapse supernovae would be detected with

MANGO. However, computational models of supernovae

are not converged yet, and each improvement in numerical

technology (three-dimensional, fully general relativistic,

better neutrino transport, inclusion of rotation, etc.) has

brought surprises [98]. It is expected that most of the

gravitational wave power will be at frequencies >100 Hz
(see, e.g., Fig. 4 of Ott [99]). Thus these are not likely to be

detectable <1 Hz gravitational wave sources even if a

supernova happened in our Galaxy, but we should keep

an open mind; given that simulations cannot be run for

many seconds, perhaps there are unsuspected modes at a

few tenths of a hertz.

D. Primordial stochastic background

It has been argued that the most important gravitational

wave detection would be one from the very early universe

(e.g., from the inflationary era) because this would give us

information from an otherwise highly opaque epoch.

Primordial stochastic backgrounds are predicted among

others by inflationary, pre-big-bang and cosmic string

models [100]. In standard inflationary models, however,

the strength of this signal is tiny. From, e.g., Fig. 3 of

Buonanno [101] one finds that �GW from the inflationary

gravitational wave background is likely to be less than

�10�15, which is not only far below what MANGO could

detect, but as we discussed earlier it will be completely

masked by the unresolvable extragalactic WD-WD fore-

ground up to �0:1 Hz. It has been suggested that the

�0:1 Hz and above region will be ‘‘clean’’ in the sense

that all foreground (i.e. redshifts in the single digits) sources

will be individually resolvable; hence any sufficiently sen-

sitive instrument might detect the inflationary background

[90]. This presupposes, however, that the foreground

sources can be subtracted with extreme fidelity, on the order

of a part per thousand or possibly much better. Thus this

seems unlikely. There is always the possibility of a surprise

source in just the right frequency band, and big bang
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nucleosynthetic constraints are only on the order of�GW <
10�5 so a detectable stochastic background is possible, but

it is not a probable source. The most sensitive searches of

stochastic backgrounds require a network of detectors to

search for correlations between detectors. In general, these

searches are based on the assumption that no other corre-

lated effects occur. However, several possible environmen-

tal influences have been identified that could produce

correlated noise in two detectors separated by a large

distance such as the Schumann resonances [102]. It can

be expected that this problem is more significant at lower

frequencies, and a careful analysis should be carried out.

VII. CONCLUSIONS

We have described three potential detectors in the

0.1–10 Hz band which can be astrophysically interesting

and which would be complementary to the audio frequency

GW detectors (LIGO, GEO, Virgo, KAGRA, and ET) as

well as the space-borne detectors such as eLISA and

DECIGO. With infrastructure sizes ranging from a few

tens of meters for the TOBA concept to a few hundred

meters for the laser and laser-atom interferometer con-

cepts, these detectors are small scale compared to current

and planned ground-based and space-borne interferometric

detectors. Small infrastructure would significantly facili-

tate underground construction, which is necessary for

MANGO detectors.

The key to this possibility is that the strain sensitivity

in this band can be orders of magnitude worse than in

the audio band, due to the fact that (i) the strain ampli-

tudes are larger and (ii) that the sources are much longer

lived.

So far, the best strain sensitivity at 0.1 Hz is 10�8=
ffiffiffiffiffiffi

Hz
p

,

achieved with a prototype TOBA [103]. Significant experi-

mental challenges must be overcome in order to make any

of these types of detectors a reality. However, the added

astrophysics which can be done with these instruments

demands that we take on the challenge.
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