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Low-gain Integral Control for Multi-Input, Multi-Output
Linear Systems with Input Nonlinearities

Chris Guiver, Hartmut Logemann and Stuart Townley

Abstract—We consider the inclusion of a static anti-windup component
in a continuous-time low-gain integral controller in feedback with
a multi-input multi-output stable linear system subject to an input
nonlinearity (from a class of functions that includes componentwise
diagonal saturation). We demonstrate that the output of the closed-
loop system asymptotically tracks every constant reference vector which
is “feasible” in a natural sense, provided that the integrator gain is
sufficiently small. Robustness properties of the proposed control scheme
are investigated and three examples are discussed in detail.

Index Terms—Anti-windup methods, Constrained control, Robust control,
Stability of NL systems

I. I NTRODUCTION

Integral control is a classical control engineering technique for
robustly regulating the measured variables of a stable linear system to
a prescribed constant reference. The theoretical development of low-
gain integral control can be traced back to the 1970s and contributors
include [1]–[5]. Integral control is one of the three facetsof celebrated
PID-control which has been described as one of the “success stories
in control” [6, p. 103].

Low-gain integral control of continuous-time, stable linear systems
pertains to the situation whereby the transfer functionG of the system
is connected in series, as depicted in Figure 1, with an integrator
gK/s, where the matrixK and the positive scalar gaing are design
parameters.

gK

s G
u

−
y

r

Figure 1. Block diagram of a low-gain integral control scheme. Hereu, y
andr denote the input, output and reference signal, respectively.

The resulting closed-loop system is known to be globally exponen-
tially stable if: (i) −KG(0) is a Hurwitz matrix, and; (ii) the gain
g > 0 is sufficiently small, in which case the output of the closed
loop system asymptotically tracks every constant reference r.

Low-gain integral control has been further developed by thepresent
authors in, for example [7]–[10], to address discrete-timesystems,
sampled-data systems, classes of distributed parameter systems, to
allow the gain parameterg to be determined adaptively and to include
input and output nonlinearities. One situation not addressed to date
is low-gain integral control for multi-input, multi-output (MIMO)
systems in the presence of input nonlinearities (such as saturation).

This work was supported by the UK EPSRC — Engineering and Physical
Sciences Research Council — (Grant EP/I019456/1)

Chris Guiver and Hartmut Logemann are with the Department ofMathe-
matical Sciences, University of Bath, Claverton Down, BathBA2 7AY, UK,
email: c.guiver@ex.ac.uk, h.logemann@bath.ac.uk.

Chris Guiver is the corresponding author.
Stuart Townley is with the Environment & Sustainability Institute, College

of Engineering, Mathematics and Physical Sciences, University of Exeter,
Penryn Campus, TR10 9FE, UK, email:s.b.townley@ex.ac.uk.

It is known that input saturation may lead to an undesirable degrada-
tion of tracking performance of MIMO integral controlled systems,
or even destabilise them; a phenomenon often calledintegrator
windup[11]. Integrator windup is a consequence of basing controller
design on the assumption of linearity, when in reality inputsaturation
is an archetypal nonlinear effect. Anti-windup control refers to the
study of mechanisms to alleviate or remove integrator windup and,
owing to its importance in applications, is a well-studied topic. The
chronological bibliography of the 1995 paper [12] containsalready
250 references, for instance. We refer the reader to the tutorial [13],
survey [14] or monograph [15] and the references therein fora
thorough overview of anti-windup control. Briefly, as described there,
many anti-windup mechanisms are designed under the assumption
that the unsaturated system has the desired closed-loop stability and
performance properties and an anti-windup compensator is subse-
quently included — a static or dynamical system driven by theerror
z−φ(z), wherez is the state or output of the controller andφ denotes
the input nonlinearity.

We present a low-gain integral controller that includes a (direct linear,
in the terminology of [13]) anti-windup component and provethat,
for a large class of input nonlinearities, it achieves global exponential
tracking for all feasible references provided that the integrator gain
is sufficiently small. The class of nonlinearities is assumed to satisfy
a global Lipschitz type assumption. The anti-windup component
contains a matrix parameter that is required to be close, in asense to
be described, to the matrixKG(0), and does not require the solution
of an LMI. We recall that if the steady-state gainG(0) is subject to
uncertainty, then estimates ofG(0) can be obtained by step-response
experiments (see, for example, [16] or [17]). Integrator windup is
particularly acute in the low-gain integral control of MIMOsystems
as issues arise that are absent from SISO systems, see Remark11
and Example 12. Further, we emphasise that the SISO case is well-
studied, and [18]–[21] all propose solutions which do not include
anti-windup components.

The closed-loop feedback system under consideration in thepaper
can be re-written in form of a Lur’e system, and we invoke absolute
stability arguments to derive our results. The reader is referred to,
for example, [22]–[25], for more background on Lur’e systems and
absolute stability theory. We demonstrate that the closed-loop system
has several robustness properties: with respect to uncertainty in G(0)
and with respect to additive disturbances. To establish thelatter,
we make use of recent input-to-state-stability (ISS) results for Lur’e
systems [26]. Additional background on ISS may be found in [27]
or [28].

Finally, the results reported here extend, generalise and refine those
in [29] where, in the context of ecological management, low-gain
PI control of linear discrete-time positive systems (see, for exam-
ple, [30], [31]) subject to input saturation is considered.

Notation and terminology.The space of all rationalp ×m-matrices
which are bounded on the half planeRe s > 0 is denoted byH∞,
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endowed with the sup norm given by

‖H‖∞ := sup
Re s>0

‖H(s)‖ = sup
s∈iR

‖H(s)‖,

where‖ · ‖ is the operator norm induced by the 2-norm. As usual, a
square complex matrixM is said to be Hurwitz if every eigenvalue of
M has a negative real part. We letrkM denote the rank ofM . The
symbol Iq denotes theq × q identity matrix, although the subscript
shall be omitted when the dimension is clear from the context. Finally,
for a functionf : Rp → R

m and a setS ⊆ R
m, f−1(S) denotes the

pre-image ofS underf , that is,f−1(S) = {z ∈ R
p : f(z) ∈ S}.

If S = {s} is a singleton, then we writef−1(s) := f−1({s}) =
f−1(S). Finally, for a vectorv, vk denotes thek-th component ofv.

II. L OW-GAIN INTEGRAL CONTROL WITH INPUT NONLINEARITIES

We focus on the linear control system with input nonlinearity

ẋ = Ax+Bφ(u), x(0) = x0, y = Cx , (1)

whereA ∈ R
n×n is Hurwitz,B ∈ R

n×m, C ∈ R
p×n andφ : Rm →

R
m is locally Lipschitz continuous. As usual,x andy denote the state

and output variables, respectively, whilstu is the control signal. There
arem, n andp input, state and output variables, respectively. We let
G denote the transfer function of the linear system specified by the
triple (A,B,C), that is, the matrix-valued function of the complex
variables given byG(s) := C(sI −A)−1B.

We seek to apply low-gain integral control to (1), with the aim that
the outputy(t) converges to a prescribed constant reference vector
r ∈ R

p as t → ∞. We say thatr is feasible, if the set

Ur := {w ∈ R
m : G(0)φ(w) = r},

is non-empty. Obviously, ifm = p andG(0) is invertible, thenUr =
φ−1(G(0)−1r). If the control signalu in (1) is such thatφ(u) has a
limit λ, that is,φ(u(t)) → λ as t → ∞, then, asA is Hurwitz, it is
well-known that for any initial statex0 the outputy of (1) has limit

lim
t→∞

y(t) = G(0) lim
t→∞

φ(u(t)) = G(0)λ.

Trivially, if r is feasible, then there exists a control signalu such
that y(t) → r (for example,u(t) ≡ w with w ∈ Ur). On the other
hand, ifr is not feasible, then there does not exist a boundedu such
that φ(u(t)) converges andy(t) → r as t → ∞. Moreover, under
the additional assumption thatm = p andG(0) is invertible, then, if
r is not feasible,y(t) does not converge tor whenever the control
signalu is bounded.

We say that a setR ⊆ R
p of reference vectors is feasible if every

r ∈ R is feasible. Given a feasible setR ⊆ R
p, we introduce the

following assumption:

(F) there existsL > 0 such that

‖φ(w + w̃)− φ(w̃)‖ ≤ L‖w‖ ∀w ∈ R
m, ∀ w̃ ∈

⋃

r∈R

Ur.

Assumption (F) is certainly satisfied ifφ is globally Lipschitz with
Lipschitz constantL.

A function φ : Rm → R
m with componentsφi is called diagonal if,

for all i = 1, 2, . . . ,m and allv ∈ R
m,

φi(v) = φi(Piv) , where (Piv)j :=

{

vi j = i

0 j 6= i .

The next example illustrates the feasibility property for the familiar
diagonal saturation function.

Example1. For givenv1 < v2, setV := {v1, v2} and define the
function satV by

satV : R → R, satV (w) := max
{

v1,min
{

w, v2
}}

, (2)

illustrated in Figure 2. The diagonal saturation functionsat is defined
as follows:

sat : Rm → R
m, sat(w) :=

[

satV1
(w1), . . . , satVm

(wm)
]T

, (3)

for Vk := {v1k, v
2
k}, k = 1, . . . ,m. Clearly, the set

R := {G(0)w : v1k ≤ wk ≤ v2k, k = 1, . . . ,m} , (4)

is feasible, and, since

R = {G(0)sat(w) : w ∈ R
m},

R is the maximal feasible set. Furthermore, it is straightforward to
see thatsat satisfies (F) withL = 1. �

v2

v1

v1

v2

Figure 2. Graph of the saturation functionsatV defined in (2), here with
v1 < 0 < v2.

Our second example contains a saturation function that satisfies (F)
but is not diagonal.

Example2. For fixedθ > 0, the functionρ : Rm → R
m defined by

ρ(v) :=







v ‖v‖ ≤ θ

θ
v

‖v‖
‖v‖ > θ ,

satisfies (F) withL ∈ [1, 2]. For certainm and choice of norm, the
upper bound 2 forL is achieved. The set

R := {G(0)w : w ∈ R
m, ‖w‖ ≤ θ} ,

is the maximal feasible set. �

Given the control system (1) and a feasible setR ⊆ R
p, let r ∈ R

and consider the control law

u̇ = gK(r − y)− gΓ
(

u− φ(u)− ur + φ(ur)
)

, (5)

whereg > 0, K ∈ R
m×p and Γ ∈ R

m×m are design parameters
and

ur ∈ Ur. (6)

The assumption thatR ⊆ R
p is feasible implies thatUr is non-

empty and hence (6) is meaningful. Note that ifΓ = 0 or φ = id,
the identity function, then (5) reduces to “pure” integral control. Of
course, in the caseφ = id the control system (1) is in fact linear.
The termgΓ

(

w − φ(w)− ur + φ(ur)
)

is the so-called anti-windup
component of the controller.

In the following, we will focus on the analysis of the feedback
interconnection of (1) and (5):

ẋ = Ax+Bφ(u), y = Cx,

u̇ = gK(r − y)− gΓ
(

u− φ(u)− ur + φ(ur)
)

,

x(0) = x0, u(0) = u0.











(7)

Remark3. Finding ur satisfying (6) requires knowledge ofG(0),
in general. However, in numerous applications this knowledge is not
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required. For instance, whenφ = sat, the saturation nonlinearity
in (3), andR is given by (4), then, for everyr ∈ R, there exists
ur ∈ Ur such thatφ(ur) = ur and so−ur + φ(ur) = 0 in (5). We
note that in this case (7) may be placed in the anti-windup framework
as presented in [13] with static anti-windup dynamics. �

The following result is the main contribution of this note.

Theorem 4. Given the closed-loop integral control system(7) with
feasibleR ⊆ R

p, assume that

(a) A is Hurwitz,

(b) −Γ is Hurwitz,

(c) (F) holds.

Then, for allg > 0, r ∈ R, ur ∈ Ur and (x0, u0) ∈ R
n×R

m, there
exists a unique solution(x, u) of (7) defined onR+. Furthermore, if

sup
s∈iR

∥

∥(sI + Γ)−1
∥

∥ · ‖Γ−KG(0)‖ < 1/L , (8)

then there existsg∗ > 0 such that, for allg ∈ (0, g∗), r ∈ R,
ur ∈ Ur and(x0, u0) ∈ R

n×R
m, the solution(x, u) of (7) satisfies

(C1) u(t) → ur,

(C2) x(t) → −A−1Bφ(ur),

(C3) y(t) = Cx(t) → r,

(C4) ẋ(t) → 0,

as t → ∞, and the rates of convergence are exponential.

Remark 5. At first glance, the hypotheses of Theorem 4 place
very few constraints onm,p andKG(0). However, assuming that
hypotheses (a)–(c) and inequality (8) are satisfied, it follows that, for
nonlinearitiesφ with L ≥ 1 (which is the case for the diagonal and
non-diagonal saturation functions in Examples 1 and 2, respectively)

‖Γ−KG(0)‖ <
ρ

L
≤ ρ, (9)

whereρ := 1/ sups∈iR ‖(sI + Γ)−1‖. Now ρ is the (unstructured)
complex stability radius (see [32]) of the Hurwitz matrix−Γ, and
thus, since−KG(0) = −Γ+(Γ−KG(0)), it follows from (9) that
−KG(0) is Hurwitz. In particular, if (a)–(c) are satisfied andL ≥ 1,
then rkG(0) = m (implying that p ≥ m) is a necessary condition
for (8) to hold. The assumptionrk G(0) = p, and thus necessarily
m ≥ p, is typically made in output regulation problems so that in the
unsaturated case (φ = id) every reference vector inRp is feasible;
see, for instance [35]. Our results do not apply whenL ≥ 1 and
m > p. �

The proof of Theorem 4 is based on Lemma 6, stated and proven
below.

Lemma 6. Given(A,B,C) as in (1) with A Hurwitz, and transfer
function G, let K ∈ R

m×p,Γ ∈ R
m×m and assume that−Γ is

Hurwitz. For g > 0 define

A :=

[

A 0
−gKC −gΓ

]

, B :=

[

B
gΓ

]

, C :=
[

0 I
]

, (10)

and letG denote the transfer function of the triple(A,B, C). Then,
G ∈ H∞ for everyg > 0. Moreover, for eachε > 0, there exists
g∗ > 0 such that for allg ∈ (0, g∗)

‖G‖∞ ≤ ε+ sup
s∈iR

∥

∥(sI + Γ)−1
∥

∥ · ‖Γ−KG(0)‖ . (11)

Proof. The matricesA and −gΓ for g > 0 are Hurwitz by
assumption, so thatA in (10) is clearly Hurwitz. Hence,G ∈ H∞

for all g > 0. An elementary calculation shows that

G(s) = g(sI + gΓ)−1(Γ−KG(s)) ,

and so,
G = G1 + G2 , (12)

whereG1 andG2 are given by

G1(s) := g(sI + gΓ)−1K
(

G(0) −G(s)
)

,

G2(s) := −g(sI + gΓ)−1(KG(0)− Γ
)

.

Since−gΓ is Hurwitz for g > 0 and G ∈ H∞, it is clear that
G1,G2 ∈ H∞. To prove (11), letε > 0 be given. We proceed to
estimate‖G1‖∞ and ‖G2‖∞. Since−Γ is Hurwitz it follows that
there existsM > 0 such that

∥

∥(I + zΓ)−1
∥

∥ ≤ M ∀ z ∈ iR . (13)

Next, defineJ ∈ H∞ by

J(s) :=







1

s
K
(

G(s)−G(0)
)

s 6= 0

KG′(0) s = 0
,

whereG′(0) denotes the derivative ofG at s = 0. Let s ∈ iR. If
s 6= 0, we use (13) to estimate

‖G1(s)‖ ≤ g
∥

∥(I + (g/s)Γ)−1
∥

∥ · ‖J(s)‖ ≤ gM‖J‖∞ .

SinceG1(0) = 0, it follows that

‖G1‖∞ ≤ gM‖J‖∞,

and thus, settingg∗ := ε/(M‖J‖∞) > 0, we conclude that

‖G1‖∞ ≤ ε ∀ g ∈ (0, g∗). (14)

To estimate‖G2‖∞, we note that

G2(s) = −
(

(s/g)I + Γ
)

−1(
KG(0) − Γ

)

,

and hence obtain, for everyg > 0,

‖G2‖∞ ≤ sup
s∈iR

∥

∥(sI + Γ)−1
∥

∥ ·
∥

∥KG(0) − Γ
∥

∥ . (15)

Combining (12), (14) and (15) yields (11), completing the proof.

Proof of Theorem 4.Note that by hypothesis (F), the nonlinearityφ
is affinely linearly bounded, and thus, by [33, Proposition 4.12], it
follows that, for all g > 0, r ∈ R, ur ∈ Ur and all (x0, u0), the
unique maximally defined solution(x, u) of (7) exists onR+.

Let r ∈ R andur ∈ Ur and set

z := x+ A−1Bφ(ur) and v := u− ur . (16)

Then

ż = ẋ = Ax+Bφ(u) = Az +B
[

φ(v + ur)− φ(ur)
]

= Az +Bφur (v) , (17)

whereφur : Rm → R
m is defined by

φur (w) := φ(w + ur)− φ(ur), ∀w ∈ R
m. (18)

Furthermore,

v̇ = u̇ = gK(r − Cx)− gΓ
[

u− φ(u)− ur + φ(ur)
]

= −gKCz − gΓ
[

v − φur (v)
]

, (19)
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where we have used thatr = G(0)φ(ur) = −CA−1Bφ(ur). We
recast (17) and (19) as

[

ż
v̇

]

=

[

A 0
−gKC −gΓ

] [

z
v

]

+

[

B
gΓ

]

φur (v)

= A

[

z
v

]

+ Bφur

(

C

[

z
v

])

, (20)

whereA, B andC are as in (10). By (F), the nonlinearityφur satisfies

‖φur (w)‖ ≤ L‖w‖ ∀ w ∈ R
m . (21)

Invoking (8), it is clear that there existsε > 0 such that

ε+ sup
s∈iR

∥

∥(sI + Γ)−1
∥

∥ · ‖Γ−KG(0)‖ < 1/L .

Combining this with Lemma 6, we see that there existsg∗ > 0 such
that, for all g ∈ (0, g∗),

‖G‖∞ ≤ ε+ sup
s∈iR

∥

∥(sI + Γ)−1
∥

∥ · ‖Γ−KG(0)‖ < 1/L . (22)

Let g ∈ (0, g∗). The claims (C1)–(C3) follow once the zero equilib-
rium of the Lur’e system (20) is shown to be globally exponentially
stable which in turn follows from (21) and (22) and an absolute
stability result, such as [32, Corollary 5.6.50] or [34, Theorem 5
(iii)] (whilst the latter result is for SISO systems, it is not difficult to
show that it extends to the MIMO case). To establish (C4), we note
that ẋ = ż = Az + Bφur (v) and use (C1), (C2), (17) and (21) to
obtain that, for allt ≥ 0,

‖ẋ(t)‖ ≤ ce−γt
(

‖z(0)‖+ ‖v(0)‖
)

for suitable positive constantsc > 0 andγ, as required.

We continue with some remarks on Theorem 4, particularly the
existence of a suitable matricesK andΓ.

Remark7. (i) Recall from Remark 5 thatp ≥ m and rk G(0) =
m are necessary conditions for (a)–(c) and (8) to hold (in the usual
case thatL ≥ 1). The rank condition onG(0) implies thatG(0) has
a left inverse: for example,(G(0)TG(0))−1G(0)T . ChoosingK as
any left inverse ofG(0) and Γ := KG(0) = I , ensures that (b)
holds and (8) is trivially satisfied for everyL > 0. In the special
case thatm = p and G(0) is invertible, then the above choices
simplify to K := G(0)−1 andΓ := I .

(ii) Assume that the system(A,B,C) is subject to parametric
uncertainty, and that the “true” linear system is given by(Ã, B̃, C̃)
with Ã Hurwitz. If the “nominal” steady-state gainG(0) is such
that there existsK with −KG(0) Hurwitz and

sup
s∈iR

∥

∥(sI +KG(0))−1
∥

∥ · ‖K
(

G(0)− G̃(0)
)

‖ < 1/L , (23)

whereG̃ is the transfer function of(Ã, B̃, C̃), then, with the choice
Γ = KG(0), it is guaranteed that the conclusions of Theorem 4
hold in the context of the “true” system(Ã, B̃, C̃). Assuming that
rkG(0) = m, and in light of part (i), choosingK as any left inverse
of G(0) andΓ := I , the condition (23) simplifies to

‖I −KG̃(0)‖ < 1/L , (24)

which is certainly satisfied if

‖G(0) − G̃(0)‖ <
1

L‖K‖
. (25)

We comment that the estimate (25) may equivalently be formulated
as a ball condition (with centrẽG(0) and known radius). To
summarise the above discussion, Theorem 4 applies to all plants
with (unknown) steady-state gaiñG(0) if the design ofΓ and K
is based on are the (nominal) steady-state gainG(0) and G̃(0) is

sufficiently close in norm toG(0). In other words, the closed-loop
system (7) is locally robust with respect to uncertainty in the steady-
state gain, captured by the estimates (23)–(25).

(iii) We comment further that it is possible to augment (7) with an
adaptation for the parameterg, replacing it by a dynamic variable
(in the spirit of [10]) and obviating the requirement that itis chosen
“sufficiently small”. The conclusions of Theorem 4 may stillbe
shown to hold, although a formal statement and proof of this claim
is beyond the scope of the present note. �

Theorem 4 can be applied to the problem of regulating the output
of a stable linear control system to a prescribed constant reference
vector in the presence of input constraints. To this end, consider the
linear system

ẋ = Ax+Bv, x(0) = x0, y = Cx , (26)

whereA ∈ R
n×n is Hurwitz, B ∈ R

n×m andC ∈ R
m×n, together

with the control objective of asymptotic tracking of constant reference
vectors subject to the input constraintv(t) ∈ V ⊂ R

m for all
t ≥ 0, whereV := [v11 , v

2
1 ]× . . .× [v1m, v2m]. This problem has been

studied in [35], where a solution is proposed that determines v in (26)
adaptively. We will show that Theorem 4 provides an alternative
solution.

To that end, letr ∈ G(0)V , whereG denotes the transfer function
matrix of (26). Defining sat as in Example 1, it follows from
Theorem 4, that the control objective is achieved by the control law

v = sat(u), u̇ = gK(r − y)− gΓ
(

u− sat(u)
)

,

provided that−Γ is Hurwitz, the estimate

sup
s∈iR

∥

∥(sI + Γ)−1
∥

∥ · ‖Γ −KG(0)‖ < 1, (27)

holds andg > 0 is sufficiently small. Recall from Remark 7 that if
K is equal to a left inverse ofG(0) (requiring thatrk G(0) = m)
andΓ = I , then (27) holds.

Compared to [35], the controller proposed here is much simpler and
easier to implement, particularly in the (high-dimensional) MIMO
case. However, more information — namely of the steady-state gain
G(0) and a sufficiently small gaing — is required. We emphasise that
the problems considered here and in [35] are related, but notidentical,
as we permit non-diagonal as well as unbounded input nonlinearities.

We next show that, under the assumptions of Theorem 4, the
equilibrium (−A−1Bφ(ur), ur) of the system (7) is input-to-state
stable (ISS) with respect to additive disturbances. We refer the reader
to [27] and [28] for a detailed discussion of ISS.

Proposition 8. Consider the closed-loop system

ẋ = Ax+Bφ(w) + d1, y = Cx+ d2,

ẇ = gK(r − y)− gΓ(w − φ(w)− ur + φ(ur)) + d3,

x(0) = x0, u(0) = u0,











(28)

wherer ∈ R for feasibleR ⊆ R
p, ur ∈ Ur, d1 ∈ L∞

loc(R+;R
n),

d2 ∈ L∞

loc(R+;R
p) andd3 ∈ L∞

loc(R+;R
m). Assume thatA and−Γ

are Hurwitz and(F) holds. Then, if(8) is satisfied, there existsg∗ > 0
such that for allg ∈ (0, g∗), there exist constantsc1, c2, γ > 0 such
that for all (x0, u0) ∈ R

n×R
m, all r ∈ R and all d1, d2, d3 ∈ L∞

loc,
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the solution(x, u) of (28) and the outputy satisfy
∥

∥

∥

∥

∥

∥





x(t) + A−1Bφ(ur)
u(t)− ur

y(t)− r





∥

∥

∥

∥

∥

∥

≤ c1e
−γt

∥

∥

∥

∥

[

x0 + A−1Bφ(ur)
u0 − ur

]∥

∥

∥

∥

+ c2

3
∑

j=1

‖dj‖L∞(0,t) ∀ t ≥ 0 . (29)

Proof. Let K ∈ R
m×p, Γ ∈ R

m×m and assume that−Γ is Hurwitz
and (8) holds. Defining the variablesz andv as in (16) and setting

ζ :=

[

z
v

]

, Be :=

[

I 0 0
0 −gK I

]

and d :=





d1
d2
d3



 ,

the system (28) may be rewritten as

ζ̇ = Aζ + Bφur (Cζ) + Bed , (30)

where (A,B, C) and φur are given by (10) and (18), respectively.
Equation (30) is a Lur’e system with additive forcing. The assump-
tions of Theorem 4 are satisfied and so there existsg∗ > 0 such that,
for all g ∈ (0, g∗), (22) holds. Now, by (F), (21) is also satisfied,
and consequently, the claim follows from [26, Theorem 3.2 and
comment after the proof of Theoem 3.2].

Remark 9. In the undisturbed case (di = 0 for i = 1, 2, 3),
(−A−1Bφ(ur), ur) is an equilibrium of system (28). Proposition 8
implies that this equilibrium is ISS (with respect tod1, d1 andd3). In
particular, the tracking error is “small” for “small” disturbances. An
important consequence of Proposition 8 is that “small” uncertainties
in φ and ur (both quantities appear on the right-hand side of the
control law (5)) will cause only a small deterioration of thetracking
performance. �

III. E XAMPLES

In the absence of an input nonlinearity (that is,φ = id), the control
law (5) reduces to

u̇ = gK(r − y), u(0) = u0 (31)

and it is well known that ifA and−KG(0) are Hurwitz, then, for
all sufficiently smallg > 0, the integrator (31) in feedback connec-
tion with (1) achieves asymptotic tracking for all initial conditions
(x0, u0) and all r in the image ofG(0). In Example 10 below we
construct an example which demonstrates that this is in general not
true when an input nonlinearity is present.

Example10. Consider (1) with

A = −I4, B = C = I4, φ = sat, (32a)

wheresat is as in Example 1 with saturation bounds given by

V1 := {0, 300}, V2 := {0, 300}

V3 := {0, 356}, V4 := {137, 300}.

}

(32b)

EvidentlyA is Hurwitz andG(0) = I4. We choose

K :=









23 20 18 17
23 26 29 26
56 56 62 68
−90 −90 −96 −97









, (32c)

which has the property that−KG(0) = −K is Hurwitz. The
reference vector

r := 200
[

1 1 1 1
]T

, (32d)

is feasible since it trivially satisfiesr = G(0)r = G(0)sat(r).
Defining

u0 :=
[

291 8.5 357 136
]T

and x0 := sat(u0) , (32e)

we note thatu0
3 > 356 = v23 andu0

4 < 137 = v14 . Now

r − sat(u0) =









200
200
200
200









−









291
8.5
356
137









=









−91
191.5
−156
63









,

and a calculation shows that, for everyg > 0,

gK(r − Cx0) = gK(r − sat(u0)) = g









0
0

240
−180









. (33)

Furthermore, we have that

Ax0 +Bsat(u0) = −x0 + sat(u0) = 0 . (34)

Defining (x, u) by

x(t) := x0 = sat(u0), u(t) = u0 + gt









0
0

240
−180









∀ t ≥ 0,

we see thatsat(u(t)) = sat(u0) for all t ≥ 0 and therefore, it
follows from (33) and (34) that(x, u) solves the integral control
system given by (1) and (31). Consequently, the feedback systems
is unstable for any choice ofg > 0. In particular,y(t) 6→ r as
t → ∞. We conclude that, in the presence of input nonlinearities,the
“pure” integral controller (31) does not guarantee asymptotic tracking
(actually, may fail to achieve global stability).

We now apply the controller (7) to the model data (32) withΓ =
KG(0) = K. Theorem 4 then guarantees convergence ofy(t) to r for
all sufficiently small integrator gainsg. Figure 3 contains the resulting
simulation forg = 0.027. We see that, although the performance is
somewhat sluggish (not unexpected because theK matrix has been
chosen rather “badly”), the inputs and states (the latter are equal to
the outputs) converge and the states track the reference. �

0 50 100 150 200 250

0

100

200

300

400

t

x
i
(t
)

(a)

0 50 100 150 200 250
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400

t

u
i
(t
),

f
i
(u

i
(t
))

(b)

Figure 3. Simulation: low-gain controller (7) applied to model data (32). (a)
State variables. (b) Saturated inputs in solid lines, inputs in dashed-dotted lines
and saturation bounds in dashed lines. In both panels, dotted lines indicate
the limits.

Remark11. Whenφ = sat andA and−KG(0) are Hurwitz, then
the equilibrium(−A−1Bφ(ur), ur) of the low-gain integral control
feedback system (1) and (31) is known to be locally asymptotically
stable for every feasibler and all sufficiently smallg > 0. Under
the additional assumptions thatKG(0) is symmetric, the equilibrium
is globally asymptotically stable (this can be proved usingabsolute
stability arguments and [36, Proposition 3.9]). However, the symme-
try assumption is extremely non-robust to parametric uncertainty in
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G(0) and hence is unrealistic (except in the SISO case, where it holds
trivially). Finally, note that in Example 10, the matrixKG(0) is not
symmetric. �

The next example relates to Remark 11. We provide a simulation
which illustrates the fact that ifKG(0) is symmetric, then a “pure”
integral controller does achieve asymptotic tracking for all sufficiently
small g > 0. The example also shows that the rate of convergence
may be worse than that obtained by using the integral/anti-windup
controller (7).

Example12. Consider (1) with

A =

[

−2 1
1 −2

]

, B = C = I2 , (35a)

and whereφ : R2 → R
2 is the non-diagonal saturation function from

Example 2 withθ = 2 (and the usual Euclidean two-norm). Note that
φ satisfies (F) withL = 2. It is readily verified thatA is Hurwitz
with A = AT andB = C = CT , so that

−G(0) = CA−1B = A−1 = −
1

3

[

2 1
1 2

]

is Hurwitz and symmetric. Consider the data

r =

[

0.75
0

]

, u0 =

[

5
−5

]

, x0 =

[

0
0

]

, (35b)

and note thatr is feasible sincer = G(0)ur = G(0)φ(ur), where
ur =

[

1.5 −0.75
]T

. Finally, we chooseK = I , g = 1 and
Γ = G(0). Figure 4 shows simulations of the closed-loop dynamics
generated by the integral controller (31) and controller (7) with
anti-windup component. We observe that the rate of convergence
of the saturated inputs and outputs is faster for the latter:in light
of Figure 4 (b), the closed-loop dynamics “spend less time” at the
saturation bounds than in the “pure” integral control scenario. �
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1
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(t
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(a)
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−1.5
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2

t

φ
i
(u

i
(t
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(b)

Figure 4. Simulations of the low-gain integral control systems from Exam-
ple 12. The dotted lines denote reference values and the limits of the saturated
inputs. In each panel the solid and dashed-dotted lines correspond to the
controllers (31) and (7), respectively. (a) Outputs and reference components.
(b) Saturated inputs and saturation limits.

Example13. As a final illustrative example of the theory presented,
consider the electrical circuit depicted in Figure 5 with two inductors,
two resistors, a single capacitor and two external voltage sources.

+−

v1 +

−

Ca

+

−

L1

+

−

L2

R1 R2

+−

v2

Figure 5. Sample circuit diagram from Example 13.

For k = 1, 2, let Lk and iLk
denote the inductance and current,

respectively, of thek-th inductor, and letCa and vCa
denote the

capacitance and voltage across the capacitor, respectively. Let Rk

denote the resistance of thek-th resistor fork = 1, 2. We assume
that the voltage sources are subject to saturation.

Invoking Kirchoff’s Laws with state variables

x1 := L1iL1
, x2 := L2iL2

, x3 = CavCa
,

and input and output variables

u1 := v1, u2 := v2, y1 := iL2
, y2 := vCa

,

leads to the MIMO control system of the form (1) with

A =







−R1

L1

0 1
Ca

0 −R2

L2

1
Ca

− 1
L1

− 1
L2

0






, B = −





1 0
0 1
0 0





C =

[

0 1
L2

0

0 0 1
Ca

]



























(36a)

and φ = sat, with saturation boundsVk to be specified. A
routine calculation shows that the matrixA is Hurwitz for all
Ca, L1, L2, R1, R2 > 0.

For the following simulation, we assume that the actual parameter
values are unknown, but within 10% of the nominal values:

Ca = 3× 10−3F, L1 = 0.01H, L2 = 0.05H,

R1 = 1Ω, R2 = 1.5Ω .

}

(36b)

Let G denote the transfer function of the triple in (36a) with the
nominal values in (36b). As−G(0) has two eigenvalues both with
real part equal to−0.4, it is Hurwitz and so we chooseK = I in (5)
andΓ = KG(0). With saturation bounds

V1 = {0, 7.5} and V2 = {−5, 7.5} , (36c)

(units in volts) it follows from (4) that

R := {G(0)v : v1 ∈ [0, 7.5], v2 ∈ [−5, 7.5]} ,

is the maximal set of feasible references for the nominal system, and
is depicted in Figure 6. The actual set of feasible references depends
on the uncertain “true” system. For

r :=

[

−2
4

]

, u0 :=

[

−1
4

]

, x0 := 0 and g := 2 , (36d)

simulations of the dynamics generated by the integral/anti-windup
controller (7) are plotted in Figure 7. We see that both the sat-
urated inputs and outputs converge and that the outputs track the
reference. The simulation shown in Figure 7 was performed by
(pseudo)randomly drawing parameter values from within 10%of the
nominal values. A calculation shows that the nominal and “true”
steady-state gains are given by

G(0) =
1

R1 +R2

[

1 −1
R2 R1

]

, G̃(0) =
1

R̃1 + R̃2

[

1 −1

R̃2 R̃1

]

,

respectively. It is readily verified that the estimate (23) holds with
L = 1, K = I and Γ = G(0), for all R̃1, R̃2 within 10% of the
values in (36b), ensuring that Theorem 4 holds. Note that in fact no
knowledge ofCa, L1 or L2 is required, and the imposed bounds on
the parameter variation inR1 andR2 is sufficient to implement (7),
meaning that exact knowledge of̃G(0) is not required. �
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Figure 6. Maximal feasible region (shaded area) of the nominal electrical
circuit example (36) and reference (cross)r in (36d).
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Figure 7. Simulation: circuit example controlled by (7). (a) Outputs in solid
lines with dotted lines denoting reference components. (b)Saturated inputs in
solid lines, the dash-dotted lines denote the unsaturated inputs for comparison
purposes, the dashed lines are selected saturation bounds and the dotted lines
are the input limits.
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