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Low-gain Integral Control for Multi-Input, Multi-Output
Linear Systems with Input Nonlinearities

Chris Guiver, Hartmut Logemann and Stuart Townley

Abstract—We consider the inclusion of a static anti-windup componen
in a continuous-time low-gain integral controller in feedback with
a multi-input multi-output stable linear system subject to an input
nonlinearity (from a class of functions that includes compaentwise
diagonal saturation). We demonstrate that the output of theclosed-
loop system asymptotically tracks every constant referere vector which
is “feasible” in a natural sense, provided that the integrabr gain is
sufficiently small. Robustness properties of the proposedontrol scheme
are investigated and three examples are discussed in detail

Index Terms—Anti-windup methods, Constrained control, Robust contrd,
Stability of NL systems

I. INTRODUCTION

Integral control is a classical control engineering teghei for
robustly regulating the measured variables of a stablatisgstem to
a prescribed constant reference. The theoretical developof low-
gain integral control can be traced back to the 1970s andibatdrs
include [1]-[5]. Integral control is one of the three facetselebrated
PID-control which has been described as one of the “sucteses
in control” [6, p. 103].

Low-gain integral control of continuous-time, stable Bnesystems
pertains to the situation whereby the transfer functibaf the system
is connected in series, as depicted in Figure 1, with an lateg
gK /s, where the matrix< and the positive scalar gainare design
parameters.

T/\ gK

— s

Y

Figure 1. Block diagram of a low-gain integral control scleerflereu, y
andr denote the input, output and reference signal, respegtivel

The resulting closed-loop system is known to be globallyosem-
tially stable if: (i) —KG(0) is a Hurwitz matrix, and; (ii) the gain

It is known that input saturation may lead to an undesiraklgrada-
tion of tracking performance of MIMO integral controlledstgms,
or even destabilise them; a phenomenon often caltgdgrator
windup[11]. Integrator windup is a consequence of basing corroll
design on the assumption of linearity, when in reality ingafturation
is an archetypal nonlinear effect. Anti-windup controlemsf to the
study of mechanisms to alleviate or remove integrator windod,
owing to its importance in applications, is a well-studiegit. The
chronological bibliography of the 1995 paper [12] contaatiseady
250 references, for instance. We refer the reader to theiauf{@3],
survey [14] or monograph [15] and the references therein afor
thorough overview of anti-windup control. Briefly, as déked there,
many anti-windup mechanisms are designed under the assumpt
that the unsaturated system has the desired closed-looititgtand
performance properties and an anti-windup compensatouhses
quently included — a static or dynamical system driven byeater
z—¢(z), wherez is the state or output of the controller andienotes
the input nonlinearity.

We present a low-gain integral controller that includesiee@ linear,

in the terminology of [13]) anti-windup component and pravet,

for a large class of input nonlinearities, it achieves glaxonential
tracking for all feasible references provided that thegragor gain

is sufficiently small. The class of nonlinearities is assdrte satisfy

a global Lipschitz type assumption. The anti-windup congedn
contains a matrix parameter that is required to be close senae to
be described, to the matri% G(0), and does not require the solution
of an LMI. We recall that if the steady-state gait{0) is subject to
uncertainty, then estimates 6f(0) can be obtained by step-response
experiments (see, for example, [16] or [17]). Integratonduip is
particularly acute in the low-gain integral control of MIM&stems
as issues arise that are absent from SISO systems, see Réiark
and Example 12. Further, we emphasise that the SISO casdlis we
studied, and [18]-[21] all propose solutions which do natlude
anti-windup components.

The closed-loop feedback system under consideration impéper
can be re-written in form of a Lur'e system, and we invoke &litso

g > 0 is sufficiently small, in which case the output of the Closegtability arguments to derive our results. The reader isrrefl to,

loop system asymptotically tracks every constant referenc

Low-gain integral control has been further developed byptresent
authors in, for example [7]-[10], to address discrete-tsgstems,
sampled-data systems, classes of distributed parametggnsy, to

for example, [22]-25], for more background on Lur'e sysseand
absolute stability theory. We demonstrate that the cldsed-system
has several robustness properties: with respect to uindgria G(0)

and with respect to additive disturbances. To establishldtter,

allow the gain parameterto be determined adaptively and to includeve make use of recent input-to-state-stability (ISS) rssfar Lur'e

input and output nonlinearities. One situation not adaréss date
is low-gain integral control for multi-input, multi-outpuMIMO)
systems in the presence of input nonlinearities (such asatiin).

This work was supported by the UK EPSRC — Engineering and iPalys
Sciences Research Council — (Grant EP/1019456/1)

Chris Guiver and Hartmut Logemann are with the Departmeritiathe-
matical Sciences, University of Bath, Claverton Down, BB&2 7AY, UK,
email: c. gui ver @x. ac. uk, h. | ogemann@at h. ac. uk.

Chris Guiver is the corresponding author.

Stuart Townley is with the Environment & Sustainability fihgte, College
of Engineering, Mathematics and Physical Sciences, Usityeiof Exeter,
Penryn Campus, TR10 9FE, UK, emal: b. t ownl ey@x. ac. uk.

systems [26]. Additional background on ISS may be found if] [2
or [28].

Finally, the results reported here extend, generalise afiderthose
in [29] where, in the context of ecological management, tain
PI control of linear discrete-time positive systems (se®, éxam-
ple, [30], [31]) subject to input saturation is considered.

Notation and terminologyThe space of all rationgh x m-matrices
which are bounded on the half plafe s > 0 is denoted byH >,



endowed with the sup norm given by

1H o :

= sup [[H(s)|[ = sup [|[H(s)]],
Res>0 s€iR
where|| - || is the operator norm induced by the 2-norm. As usual

M has a negative real part. We lét M denote the rank of\/. The

symbol I, denotes the; x ¢ identity matrix, although the subscript sat : R™ — R™, sat(w) :

shall be omitted when the dimension is clear from the contérally,
for a functionf : R — R™ and a setS C R™, f~!(S) denotes the
pre-image ofS under f, that is, f71(S) = {z € RP : f(z) € S}.
If S = {s} is a singleton, then we writ¢ ' (s) := f~'({s}) =
£71(S). Finally, for a vector, v, denotes thé:-th component ob.

Il. LOW-GAIN INTEGRAL CONTROL WITH INPUT NONLINEARITIES
We focus on the linear control system with input nonlingarit

i = Az + Bo(u), x(0)=2°, 1)

whereA € R™"*™ is Hurwitz, B € R"*™, C € R?*"™ and¢ : R™ —
R™ is locally Lipschitz continuous. As usual,andy denote the state
and output variables, respectively, whilsis the control signal. There

y=Cz,

arem, n andp input, state and output variables, respectively. We let vl

G denote the transfer function of the linear system specifiethb

Examplel. For givenv' < v?, setV := {v',v?} and define the
function saty by

saty : R = R, saty(w) := max {vl, min {w,vQ}} ,

)

o . 7 . s iflustrated in Figure 2. The diagonal saturation functian is defined
square complex matrix/ is said to be Hurwitz if every eigenvalue of

as follows:

[satv, (w1), ... ,satv,, (wa)]”, (3)

,m. Clearly, the set

for Vi, := {vp,vi}, k=1,...

R:={GO)w : vy <wp <wvp, k=1,...,m},

(4)
is feasible, and, since
R ={G(0)sat(w) : w e R™},

R is the maximal feasible set. Furthermore, it is straighifnd to
see thakat satisfies (F) withL = 1. |

triple (A, B, C), that is, the matrix-valued function of the complex

variable s given by G(s) := C(sI — A)™'B.
We seek to apply low-gain integral control to (1), with thenathat

Figure 2. Graph of the saturation functieaty defined in (2), here with
vl <0 <02

the outputy(t) converges to a prescribed constant reference VeCBir second example contains a saturation function thasfiesti(F)

r € RP ast — co. We say thatr is feasible, if the set
U™ :={weR™:G0)p(w) =r},

is non-empty. Obviously, ifn = p andG(0) is invertible, therU” =

¢~ (G(0)~'r). If the control signak: in (1) is such thatp(u) has a
limit A, that is,¢(u(t)) — X\ ast — oo, then, asA is Hurwitz, it is
well-known that for any initial state® the outputy of (1) has limit

lim (1) = G(0) Jim é(u(t)) = G(O)A.

t— o0

Trivially, if r is feasible, then there exists a control sigmasuch

that y(¢t) — r (for example,u(t) = w with w € U"). On the other
hand, ifr is not feasible, then there does not exist a boundsdch

that ¢(u(t)) converges and(t) — r ast — oo. Moreover, under
the additional assumption that = p andG(0) is invertible, then, if
r is not feasibley(¢) does not converge to whenever the control
signalu is bounded.

but is not diagonal.

Example2. For fixed# > 0, the functionp : R™ — R™ defined by
v l[oll <6

p(v) =

v
00— || >0,
ol [[ll

satisfies (F) withL € [1,2]. For certainm and choice of norm, the
upper bound 2 fol. is achieved. The set

Ri={G(O)w : weR™, [u] <0},

is the maximal feasible set. O

Given the control system (1) and a feasible BetC R”, letr € R
and consider the control law

u=gK(r—y) — gl (u—o(u) —u" + ¢(u")), ®)

whereg > 0, K € R™*? andT’ € R™*™ are design parameters

We say that a seR C R” of reference vectors is feasible if everyand

r € R is feasible. Given a feasible sé& C R”, we introduce the
following assumption:

(F) there existsl > 0 such that
p(w + @) — p(@)|| < Llw|| YweR™, Vire | JU".
reER
Assumption (F) is certainly satisfied if is globally Lipschitz with
Lipschitz constant’.
A function ¢ : R™ — R™ with componentsp; is called diagonal if,
foralli=1,2,...,m and allv € R™,

(o _7 =1

0 j#i.

The next example illustrates the feasibility property foe familiar
diagonal saturation function.

¢i(v) = ¢pi(Piv), where (Pw)j:= {

u eU". (6)
The assumption thakR C RP” is feasible implies thal" is non-
empty and hence (6) is meaningful. Note thal'if= 0 or ¢ = id,
the identity function, then (5) reduces to “pure” integrahtrol. Of
course, in the case = id the control system (1) is in fact linear.
The termgl’ (w — ¢(w) — u” + ¢(u")) is the so-called anti-windup
component of the controller.

In the following, we will focus on the analysis of the feedkac
interconnection of (1) and (5):

z = Az + Bo(u), y=_Cuz,
u=gK(r—y)—gl(u—¢(u) —u" +o(u")),
z(0) = 2%, u(0) = u’.

Remark3. Finding u" satisfying (6) requires knowledge @¥(0),
in general. However, in numerous applications this knogaets not

@)



required. For instance, whes#n = sat, the saturation nonlinearity
in (3), and R is given by (4), then, for every € R, there exists
u” € U” such thatp(u") = «" and so—u" + ¢(u") = 0 in (5). We
note that in this case (7) may be placed in the anti-winduméssork
as presented in [13] with static anti-windup dynamics. a

The following result is the main contribution of this note.
Theorem 4. Given the closed-loop integral control systé) with
feasible R C R?, assume that

(@) A is Hurwitz,

(b) —TI" is Hurwitz,

(c) (F) holds.

Then, forallg > 0, r € R, u” € U” and (z°,u°) € R™ x R™, there
exists a unique solutiofw, u) of (7) defined orR.. Furthermore, if

SE%H(SIJFF)*H It = KG(0)|| < 1/L, 8)
then there existg® > 0 such that, for allg € (0,¢9%), r € R,
u” € U and (2°,u%) € R™ xR™, the solution(z, u) of (7) satisfies
(C1) u(t) — u”,
(C2) z(t) = —A"'Bo(u"),
(C3) y(t) = Cx(t) — r,
(C4) z(t) — 0,

ast — oo, and the rates of convergence are exponential.

Remark 5. At first glance, the hypotheses of Theorem 4 place

very few constraints omn,p and KG(0). However, assuming that
hypotheses (a)—(c) and inequality (8) are satisfied, ibfedl that, for

nonlinearities¢ with L > 1 (which is the case for the diagonal and

non-diagonal saturation functions in Examples 1 and 2,ecsly)

L <y,

Ir - KGO < £

©)
wherep := 1/sup,c;p [|(sI + ) 7'||. Now p is the (unstructured)
complex stability radius (see [32]) of the Hurwitz matrixI", and
thus, since-KG(0) = —I' + (I' — KG(0)), it follows from (9) that
—KG(0) is Hurwitz. In particular, if (a)—(c) are satisfied afd> 1,
thenrk G(0) = m (implying thatp > m) is a necessary condition
for (8) to hold. The assumptiork G(0) = p, and thus necessarily
m > p, is typically made in output regulation problems so thatia t
unsaturated caseb (= id) every reference vector iR? is feasible;
see, for instance [35]. Our results do not apply wher> 1 and
m > p. O

Proof. The matricesA and —gI" for ¢ > 0 are Hurwitz by
assumption, so thatl in (10) is clearly Hurwitz. Henceg € H*
for all g > 0. An elementary calculation shows that

G(s) = g(sI +gI)~'(T' — KG(s)),

and so,
G=G1+Ga,

whereG, andG. are given by

Gi1(s) == g(sI + gT) 'K (G(0) — G(s)),

Ga(s) := —g(sI + gI') "' (KG(0) - T).
Since —gI' is Hurwitz forg > 0 and G € H, it is clear that
G1,G2 € H®. To prove (11), let= > 0 be given. We proceed to

estimate||Gi1 || and ||Gz2||«. Since —T" is Hurwitz it follows that
there existsM > 0 such that

(12)

[(T+20)7 <M VzeiR. (13)

Next, defineJ € H> by
1
~K(G(s) - G(0))
KG'(0)
where G’ (0) denotes the derivative off at s = 0. Let s € iR. If
s # 0, we use (13) to estimate
I1G1() < g[|(1 + (g/$)D) || - 1T ()] < gM [ oo -
Sincegi (0) = 0, it follows that

[G1lloe < gM||J]lcs,

and thus, setting” :=¢/(M||J||«) > 0, we conclude that

s#0
s=0

J(s) :

[Gillo <& Vg €(0,97). (14)
To estimate||Gz||-., we note that
Ga(s) = —((s/9)I +T) ' (KG(0) - T)
and hence obtain, for every > 0,
G20 gflelﬁu(sur)—lu -|[[KG0) -1 (15)

Combining (12), (14) and (15) yields (11), completing theqsr O

Proof of Theorem 4Note that by hypothesis (F), the nonlinearity
is affinely linearly bounded, and thus, by [33, Propositioh2, it
follows that, for allg > 0, r € R, u” € U" and all (z°,«°), the

unigue maximally defined solutiofi, u) of (7) exists onR.
Letr € Randu” € U" and set

The proof of Theorem 4 is based on Lemma 6, stated and proven

below.

Lemma 6. Given (A, B,C) as in (1) with A Hurwitz, and transfer
function G, let K € R™*P,.T" € R™*™ and assume that-I' is
Hurwitz. For g > 0 define

A
—gKC

fgr]’ = [gBr] c=[0 1, (0

and letG denote the transfer function of the trip(ed, B,C). Then,
G € H*™ for everyg > 0. Moreover, for eache > 0, there exists
g* > 0 such that for allg € (0, g*)

oo

Gl < e+ sup [(sT+T)7" - IT — KG(0)] . (12)

z:=x+A 'Bp(u") and v:i=u—u". (16)
Then
t=i=Az+ Bo(u) = Az + B[p(v+u") — p(u")]
= Az + Bour(v), @17)
whereg,- : R™ — R™ is defined by
Gur (W) = p(w+u") — $(u’), YweR™.  (18)
Furthermore,
v=1=gK(r—Cz)—gl[u—¢(u) —u" + ¢(u")]
=—gKCz— gl [v — ur (v)} , (29)



where we have used that= G(0)¢p(u") =
recast (17) and (19) as

-Lie ][]+ (2o

z z
=ali]rser(ef])
whereA, B andC are as in (10). By (F), the nonlinearity, satisfies
l[¢ur ()|l < Ljwl| 1)

Invoking (8), it is clear that there exists> 0 such that
Y- IT - KG)|| < 1/L.

—CA™'Bg(u"). We

(20)

VweR™.

e+ sup H (sI+T)"
Combining this with Lemma 6, we see that there exigts> 0 such
that, for allg € (0, g%),

||g||oo<5+sup“ (sI+D)7'-IT = KG(0)| < 1/L. (22)

Let g € (0,g"). The claims (C1)—(C3) follow once the zero equilib-

rium of the Lur'e system (20) is shown to be globally exporadiyt

stable which in turn follows from (21) and (22) and an absslut

stability result, such as [32, Corollary 5.6.50] or [34, ©f&m 5
(iii)] (whilst the latter result is for SISO systems, it istrdifficult to
show that it extends to the MIMO case). To establish (C4), o n

sufficiently close in norm ta=(0). In other words, the closed-loop
system (7) is locally robust with respect to uncertaintyhia steady-
state gain, captured by the estimates (23)—(25).

(i) We comment further that it is possible to augment (73hnan
adaptation for the parameter replacing it by a dynamic variable
(in the spirit of [10]) and obviating the requirement thaisithosen
“sufficiently small”. The conclusions of Theorem 4 may stié
shown to hold, although a formal statement and proof of ttasrc
is beyond the scope of the present note. |

Theorem 4 can be applied to the problem of regulating the ubutp
of a stable linear control system to a prescribed constdatarce
vector in the presence of input constraints. To this endsiden the
linear system

i&=Axz+ Bv, z(0)=2° y=Cxz, (26)
where A € R™*™ is Hurwitz, B € R"*™ andC € R™*", together
with the control objective of asymptotic tracking of condteeference
vectors subject to the input constram(t) e V. C R™ for all
t >0, whereV := [v,vi] x ... x [vl,,v%]. This problem has been
studied in [35], where a solution is proposed that determinia (26)
adaptively. We will show that Theorem 4 provides an altéveat

thatd = 2 = Az + Beur(v) and use (C1), (C2), (17) and (21) (osolution.

obtain that, for allt > 0,

@) < ce™ (20| + [[v(0)])

for suitable positive constants> 0 and~, as required. O

We continue with some remarks on Theorem 4, particularly the

existence of a suitable matricds andT.

Remark7. (i) Recall from Remark 5 thap > m andrk G(0) =
m are necessary conditions for (a)—(c) and (8) to hold (in theal
case thatL > 1). The rank condition ot(0) implies thatG(0) has
a left inverse: for examplgG(0)7G(0))*G(0)”. ChoosingK as

any left inverse of G(0) andT" := KG(0) = I, ensures that (b)

holds and (8) is trivially satisfied for everfy > 0. In the special

case thatn = p and G(0) is invertible, then the above choices

simplify to K := G(0)™' andT := 1.

(i) Assume that the systeniA, B,C) is subject to parametric

uncertainty, and that the “true” linear system is given(by B, C)
with A Hurwitz. If the “nominal” steady-state gai6*(0) is such
that there existd< with —K G(0) Hurwitz and

To that end, let- € G(0)V, whereG denotes the transfer function
matrix of (26). Definingsat as in Example 1, it follows from
Theorem 4, that the control objective is achieved by therobteaw

v=sat(u), @=gK(r—y)—gl'(u—sat(u)),

provided that—T" is Hurwitz, the estimate

su;ﬂ;“(sur)*l“ It = KG(0)| < 1, (27)
s€i

holds andg > 0 is sufficiently small. Recall from Remark 7 that if
K is equal to a left inverse off(0) (requiring thatrk G(0) = m)
andT" = I, then (27) holds.

Compared to [35], the controller proposed here is much smghd
easier to implement, particularly in the (high-dimensipridIMO
case. However, more information — namely of the steadyesiain
G(0) and a sufficiently small gaip — is required. We emphasise that
the problems considered here and in [35] are related, butlantical,

sup |(sI + KG(0 1” | K (G(0) — G(0))|| < 1/L, (23) as we permit non-diagonal as well as unbounded input naariiies.

We next show that, under the assumptions of Theorem 4, the
where( is the transfer function ofA, B, C'), then, with the choice equilibrium (—A~*Bp(u"),u") of the system (7) is input-to-state
I' = KG(0), it is guaranteed that the conclusions of Theorem 4able (ISS) with respect to additive disturbances. Wer tagereader
hold in the context of the “true” systerfd, B, C). Assuming that o [27] and [28] for a detailed discussion of ISS.

rkG(0) = m, and in light of part (i), choosind< as any left inverse » .
of G(0) andTI" := I, the condition (23) simplifies to Proposition 8. Consider the closed-loop system
I - KGO) <1/L, (24) i = Az + Bo(w) +d1, y=Cz+da,
which is certainly satisfied if w=gK(r—1vy)—gT(w— ¢(w) —u" + ¢(u")) +ds, p (28)
A 1 z(0) =2°,  u(0) =u’
1G(0) = GO)]| < (25) T -

LK~

We comment that the estimate (25) may equivalently be fautedl wherer € R for feasibleR C R?, u” € U", di € Li5.(R;R™),
as a ball condition (with centreZ(0) and known radius). To do € L{S (R4;RP) andds € LS (R4 ; R™). Assume thatt and —T'
summarise the above discussion, Theorem 4 applies to altsplaare Hurwitz and(F) holds. Then, if(8) is satisfied, there existg' > 0
with (unknown) steady-state gaifi(0) if the design ofl" and K such that for allg € (0, g*), there exist constants, ¢z, > 0 such
is based on are the (nominal) steady-state @&ifl) and G(0) is that for all (z°,u°) € R" xR™, all » € R and alldy, d2, d3 € LS.,



the solution(z,«) of (28) and the outputy satisfy
z(t) + A 'Bo(u")
u(t) —u”
y(t) —r

—t
< cie v
= ’U,O — "

{xo + A*lB¢(uT)} H

3
te2 Y |ldilleoy V>0, (29)

Jj=1

Proof. Let K € R™*?, I' € R™*™ and assume thatI" is Hurwitz
and (8) holds. Defining the variablesandv as in (16) and setting

di

z 1 0 0
¢:= L}] , Be:= {0 K I] and d:= |da2|,
ds
the system (28) may be rewritten as

{ = AC+ Bour (CQ) + Bed, (30)

where (A, B,C) and ¢, are given by (10) and (18), respectively.

Equation (30) is a Lur'e system with additive forcing. Thewasp-
tions of Theorem 4 are satisfied and so there exists 0 such that,

is feasible since it trivially satisfies
Defining

G(O)r G(0)sat(r).

W =201 85 357 136" and z°:=sat(u"), (32€)

we note thatu$ > 356 = v2 andu < 137 = v;. Now

for all g € (0,g%), (22) holds. Now, by (F), (21) is also satisfied, 0

and consequently, the claim follows from [26, Theorem 3.8 an

comment after the proof of Theoem 3.2]. O

Remark 9. In the undisturbed cased{ = 0 for i = 1,2,3),
(A7 Bo(u"), u")
implies that this equilibrium is ISS (with respectdo, di: andds). In

particular, the tracking error is “small” for “small” distiiances. An
important consequence of Proposition 8 is that “small” utaisties

in ¢ andu” (both quantities appear on the right-hand side of the

control law (5)) will cause only a small deterioration of ttnacking
performance. a

IIl. EXAMPLES

In the absence of an input nonlinearity (thatds= id), the control
law (5) reduces to

w=gK(r—uy), u(0)=u’ (31)

and it is well known that ifA and — KG(0) are Hurwitz, then, for

all sufficiently smallg > 0, the integrator (31) in feedback connec-

tion with (1) achieves asymptotic tracking for all initiabreditions

(z°,«%) and allr in the image ofG(0). In Example 10 below we
construct an example which demonstrates that this is inrgenet

true when an input nonlinearity is present.

Examplel0. Consider (1) with
A=—1I4, B=C =14, ¢ = sat, (32a)

wheresat is as in Example 1 with saturation bounds given by

Vi :={0,300}, V2:= {0,300} (32b)
Vs := {0,356}, Vi :={137,300}.
Evidently A is Hurwitz andG(0) = I,. We choose
23 20 18 17
23 26 29 26
KE:=15 56 62 68]° (32c)
-90 -90 -96 —97

which has the property that KG(0) —K is Hurwitz. The

reference vector

re=200[1 1 1 1]"

; (32d)

is an equilibrium of system (28). Proposition 8V€ S€€ thatsat (u(t))

200 291 -91
. sat(uo) _|200| |85| _ [191.5
~ |200 356 —156"’
200 137 63
and a calculation shows that, for eveyy> 0,
0
gK(r— Cz°) = gK(r —sat(u’)) = g 220 (33)
—180
Furthermore, we have that
Az® + Bsat(u’) = —2° + sat(u’) = 0. (34)
Defining (x, u) by
.0 _ 0 _ .0
z(t) =2 =sat(u ), u(t)=u +gt 940 Vt>0,
—180

sat(u®) for all £ > 0 and therefore, it
follows from (33) and (34) tha{z,u) solves the integral control
system given by (1) and (31). Consequently, the feedbactersygs
is unstable for any choice of > 0. In particular,y(t) 4 r as

— oo. We conclude that, in the presence of input nonlinearities,
pure” integral controller (31) does not guarantee asymiptoacking

(actually, may fail to achieve global stability).

We now apply the controller (7) to the model data (32) with=
KG(0) = K. Theorem 4 then guarantees convergenag tfto r for

all sufficiently small integrator gaing Figure 3 contains the resulting
simulation forg = 0.027. We see that, although the performance is
somewhat sluggish (not unexpected becauseifhmatrix has been
chosen rather “badly”), the inputs and states (the latteregual to
the outputs) converge and the states track the reference. O

“

400

300

= 200
Nad)
<

8
100

0

o
@
<}

100

t
(@) (b)

Figure 3. Simulation: low-gain controller (7) applied to deb data (32). (a)

State variables. (b) Saturated inputs in solid lines, imjrutiashed-dotted lines
and saturation bounds in dashed lines. In both panels,déites indicate

the limits.

Remarkll Wheng¢ = sat and A and —KG(0) are Hurwitz, then
the equilibrium(—A~'Be¢(u"),u") of the low-gain integral control
feedback system (1) and (31) is known to be locally asymgabyi
stable for every feasible and all sufficiently smally > 0. Under
the additional assumptions th&tG(0) is symmetric, the equilibrium
is globally asymptotically stable (this can be proved usafigolute
stability arguments and [36, Proposition 3.9]). Howevbee symme-
try assumption is extremely non-robust to parametric uaggy in



G(0) and hence is unrealistic (except in the SISO case, wherédshoFor k& = 1,2, let L, and iz, denote the inductance and current,
trivially). Finally, note that in Example 10, the matriXG(0) is not respectively, of thek-th inductor, and letC, and vc, denote the
symmetric. O capacitance and voltage across the capacitor, respgcthvet Ry,

) ) .denote the resistance of tlieth resistor fork = 1,2. We assume
The next example relates to Remark 11. We provide a S'mulat'?nat the voltage sources are subject to saturation

which illustrates the fact that i G(0) is symmetric, then a “pure” ] ) ) )
integral controller does achieve asymptotic tracking fbswafficiently ~ Nvoking Kirchoff’s Laws with state variables
small g > 0. The example also shows that the rate of convergence
may be worse than that obtained by using the integral/aimtitup
controller (7).

Examplel2. Consider (1) with

x1:= Liir,, ®2:= Loir,, x3=Cavc,,
and input and output variables

Ul = V1, U2 =2, Y1 i=iL,, Y2 i=VC,,

-2 1
A= , B=C=1I, 35a ,
{ 1 72] ? (352) leads to the MIMO control system of the form (1) with
and wherep : R? — R? is the non-diagonal saturation function from ~og L 10
Example 2 with = 2 (and the usual Euclidean two-norm). Note that A=| o _R I , B=-10 1
¢ satisfies (F) withL = 2. It is readily verified thatA is Hurwitz IR - 0 0 (362)
with A = AT and B = C = C7, so that ot
. 12 1 C= {g A 0 }
—-G(0)=CcA'B=A =—§L 2} o
. . . . and ¢ = sat, with saturation boundsV, to be specified. A
is Hurwitz and symmetric. Consider the data routine calculation shows that the matriA is Hurwitz for all
Co,Li,La, R1, R 0.
T:{O.75}7 uo:{5}7 xo:{0]7 (35b) 1, L2, R1,Ra >
0 =9 0 For the following simulation, we assume that the actual patar

and note that is feasible since: = G(0)u” = G(0)é(u"), where values are unknown, but within 10% of the nominal values:
u" = [15 —0.75]". Finally, we choosek = I, g = 1 and Co=3%10°3F. L, — 0.01H. Ly — 0.05H

I' = G(0). Figure 4 shows simulations of the closed-loop dynamics 10 o 0 ’ ’} (36Db)
generated by the integral controller (31) and controlley \ith Ry =18, Ry = 1.50.

anti-windup component. We observe that the rate of conVe®e | ot (¢ denote the transfer function of the triple in (36a) with the

of the saturated inputs and outputs is _faster for the Ia@tight nominal values in (36b). As-G(0) has two eigenvalues both with
of Figure 4 (b), the closed-loop dynamics "spend less timetha o5 part equal to-0.4, it is Hurwitz and so we choos& = I in (5)
saturation bounds than in the “pure” integral control scena [ 41 — KG(0). With saturation bounds

Vi ={0,75} and Vo ={-5,7.5}, (36¢)

(units in volts) it follows from (4) that

5;2 05 R:={G(0)v : v €[0,7.5], va € [-5,7.5]} ,

S0

< 05 N is the maximal set of feasible references for the nominaksysand
- is depicted in Figure 6. The actual set of feasible referemepends

0 20 30 40 50 60 S 1o 20 30 40 50 60 on the uncertain “true” system. For
t t
b _ _
@ (®) ri= {42} ,oul = {41} , z:=0 and g:=2, (36d)

Figure 4. Simulations of the low-gain integral control &t from Exam- ) ] ] o
ple 12. The dotted lines denote reference values and theslshthe saturated Simulations of the dynamics generated by the integrakaimtdup

inputs. In each panel the solid' and dashed-dotted linesespond to the controller (7) are plotted in Figure 7. We see that both the sa
controllers (31) and (7), respectively. (a) Outputs aneneice components. ,rated inputs and outputs converge and that the output& thec
(b) Saturated inputs and saturation limits. . . . .

reference. The simulation shown in Figure 7 was performed by

Examplel3. As a final illustrative example of the theory presentedPseudo)randomly drawing parameter values from within m%'?
consider the electrical circuit depicted in Figure 5 witfotimductors, Nominal values. A calculation shows that the nominal andetr
two resistors, a single capacitor and two external voltageces. ~ Steady-state gains are given by

1 1 -1 ~ 1 1 -1
G 0 = = 5 G 0 = == ~ ~ 5
© Ri+ Rz |:R2 R1:| ) Ri+ R {R2 Rl]
respectively. It is readily verified that the estimate (28)ds with
L =1 K =1andI = G(0), for all R1, R within 10% of the
values in (36b), ensuring that Theorem 4 holds. Note thaadh fio
knowledge ofC,, L1 or Lo is required, and the imposed bounds on

the parameter variation if®; and R is sufficient to implement (7),
meaning that exact knowledge 6f(0) is not required. O

Figure 5. Sample circuit diagram from Example 13.



1

Figure 6. Maximal feasible region (shaded area) of the namétectrical

circuit example (36) and reference (crossin (36d).
5
4 T2
3
2
-1
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4
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/ ug

ug(t), dr(ur(t))

Figure 7. Simulation: circuit example controlled by (7)) @utputs in solid
lines with dotted lines denoting reference componentsS@iyrated inputs in
solid lines, the dash-dotted lines denote the unsaturafad for comparison
purposes, the dashed lines are selected saturation bonddbeadotted lines
are the input limits.
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