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Abstract

Next generation sequencing based genetic association study (GAS) is a powerful tool to identify 

candidate disease variants and genomic regions. While low coverage sequencing offers low cost 

but inadequacy in calling rare variants, high coverage is able to detect essentially every variant but 

at a high cost. Two-stage sequencing may be an economical way to conduct GAS without losing 

power. In two-stage sequencing, an affordable number of samples are sequenced at high coverage 

as the reference panel, then to impute in a larger sample is sequenced at low coverage. As unit 

sequencing costs continue to decrease, investigators can now conduct GAS with more flexible 

sequencing depths. Here, we systematically evaluate the effect of the read depth and sample size 

on the variant discovery power and association power for study designs using low coverage, high 

coverage and two-stage sequencing. We consider 12 low coverage, 12 high coverage and 50 two-

stage design scenarios with the read depth varying from 0.5x to 80x. With state-of-the-art 

simulation and analysis packages and in-house scripts, we simulate the complete study process 

from DNA sequencing to SNP calling and association testing. Our results show that with 

appropriate allocation of sequencing effort, two-stage sequencing is an effective approach for 

conducting genetic association studies. We provide practical guidelines for investigators to plan 

the optimum sequencing based genetic association study including two-stage sequencing design 

given their specific constraints of sequencing investment.
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Introduction

Genetic association study is used to identify candidate variants, genes or genomic regions 

which contribute to specific diseases by testing the correlations between variant frequency 

and disease status(Lewis and Knight, 2012). DNA sequencing has emerged as a powerful 

technology for disease gene discovery since 2010(Li et al., 2010; Metzker, 2010; Pasaniuc et 
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al., 2012). With the capability to sequence the whole genome, DNA sequencing is expected 

to detect variants across the full minor allele frequency (MAF) spectrum and associations 

which may explain some of the missing heritability(Goldstein et al., 2013; Lee et al., 2014; 

Manolio et al., 2009; Sham and Purcell, 2014). Over the past few years, it has brought great 

success to genetic epidemiology studies of both rare diseases(Bamshad et al., 2011; Gilissen 

et al., 2014; Muona et al., 2015) and common complex diseases(Iossifov et al., 2014; 

O’Roak et al., 2011; Wang et al., 2015).

Next-generation sequencing (NGS) is a reliable and widely used method for DNA 

sequencing (Metzker, 2010). A key consideration in NGS-based study is the sequencing 

coverage or depth, which is commonly defined as the average number of reads representing 

a given nucleotide in the reconstructed sequence(Sims et al., 2014). In a genetic association 

study, a high-coverage (>20x) sequencing is able to find rare variants and further explain 

some of the missing heritability with high confidence(Lee et al., 2014; Manolio et al., 2009). 

However, high-coverage sequencing is much costlier. Despite the decrease in unit 

sequencing costs in recent years(Wetterstrand KA, 2016), the cost of high-coverage 

sequencing of thousands of individuals remains substantial(Sims et al., 2014). It is usually 

used in resequencing, exome-sequencing or targeted sequencing(Beaudoin et al., 2013; 

Kiezun et al., 2012; Rivas et al., 2011) and has achieved great success for the study of rare 

and de novo mutations(Wang et al., 2015). Low-coverage (<10x) sequencing is used more 

often in studies sequencing large samples, such as the 1000 Genomes Project (~7.4x)

(Abecasis et al., 2012; Auton et al., 2015), the UK10K-cohorts arm (~7x)(Walter et al., 

2015) and others. In addition to low and high-coverage sequencing, two-stage sequencing 

has been applied to achieve a tradeoff of study power and cost(Gudbjartsson et al., 2015; 

Pasaniuc et al., 2012; Sham and Purcell, 2014; Steinthorsdottir et al., 2014). Two-stage 

design usually sequences an affordable number of individuals at a high coverage, followed 

by a large sample of low coverage sequencing. The high coverage stage serves as a reference 

panel for the imputation of the low coverage stage in order to identify more rare and low-

frequency variants.

Many discussions can be found in the literature exploring the cost-effective design of 

sequencing based genetic association studies. Shen et al. illustrated theoretical and empirical 

design considerations to maximize the association power under the constraint of study-wide 

cost in sequencing based association studies(Shen et al., 2011). Via a series of simulated and 

real data analyses, Li et al. evaluated the performance of low-coverage sequencing in 

association power, SNP discovery and genotyping accuracy for genetic association 

studies(Li et al., 2011). Comparisons with array and high-coverage designs were also 

discussed, and design tools based on these two studies are available online (Kang et al., 

2013; Shen et al., 2011). Flannick et al. analyzed the efficiency and accuracy of low-

coverage and SNP array and their joint analysis(Flannick et al., 2012). Another study on 

extremely low-coverage (0.1–0.5x) sequencing showed that it might be a viable alternative 

to SNP array(Pasaniuc et al., 2012). With further imputation, it can increase power for 

genome-wide association studies. In another type of two-stage sequencing(Yang and 

Thomas, 2011), the high coverage stage is used as a discovery panel to provide a subset of 

potential causal variants for the low coverage stage sequencing, rather than a reference panel 

for imputation. Some investigations have focused on the performance of these kinds of two-
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stage sequencing studies for association testing by varying the sample size of the two stages, 

testing methods, and disease models(Kang et al., 2012; Yang and Thomas, 2011; Yang and 

Thomas, 2014).

As unit sequencing costs continue to decrease, investigators are more flexible in their choice 

of sequencing depth for genetic association studies. However, how to make full and efficient 

use of low-coverage, high-coverage and/or two-stage sequencing designs remains unclear. In 

this paper, we systematically compare the effects of the read depth and sample size on the 

power of both variant discovery and association testing for low-coverage, high-coverage and 

two-stage sequencing designs. With state of art simulation and analytical packages, we 

simulate the entire study process from DNA sequencing to SNP calling and association 

testing. Our results show that, with appropriate allocation of sequencing effort, two-stage 

sequencing is an effective approach for genetic association studies. Based on extensive 

simulations, we attempt to provide some practical guidelines for the cost-effective design of 

sequencing based genetic association studies. In addition, we intend to publish our 

simulation package pipelines so that individual investigators may explore the optimum study 

design according to their specific technical and sample specifications, and their funding 

situations.

Method

Simulation framework

To evaluate the performance of low-coverage, high-coverage and two-stage sequencing 

studies with respect to SNP discovery and genetic association power, we mimicked a genetic 

association study in its entirety (Figure 1). First, samples of sequences were generated by 

Hapgen2 based on a reference genome. Hapgen2 is a program that simulates case control 

datasets of sequences with SNPs(Su et al., 2011) including the linkage disequilibrium (LD) 

between markers, and simulates multiple independent disease SNPs. For each sample, the 

sequencing data were produced by ART, which is a set of tools to simulate synthetic next-

generation sequencing reads(Huang et al., 2012). Default empirical error models for 

Illumina pair-end sequencing platform and read length of 125 bp were adapted to run ART 

with other parameters set to default, such as the first- and second-read insertion rate of 

0.00009 and 0.00015 respectively. After generating the sequencing reads, a variant calling 

pipeline of GotCloud (v1.13.2)(Jun et al., 2015) was employed to identify SNPs. The default 

and suggested parameters in GotCloud were used, such as the --minMapQuality 30, --

minQual 30. The imputation in the two-stage sequencing study was conducted by 

IMPUTE2(Howie et al., 2012; Howie et al., 2009). Finally, the disease associations for 

single- and two-stage SNP genotypes were tested with the package PLINK (v1.07)(Purcell 

et al., 2007) and PLINK/SEQ (v0.10, https://atgu.mgh.harvard.edu/plinkseq/). The multiple 

testing adjusted significance level of 0.05 was used to claim significant association. The 

simulation was replicated 1000 times for each scenario.

Disease model

We considered the study scenarios with equal sizes of independent case-control samples 

from European populations based on an additive genetic model. The disease prevalence was 
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set to 9.3%, which is the typical prevalence of type 2 diabetes in the US(Centers for Disease 

Control and Prevention, 2014). Limited by the stability of Hapgen2, 15 causal SNPs were 

randomly picked from all the SNPs across the full MAF spectrum in each region. Only 

deleterious effects were considered. It was a typical assumption in previous 

studies(Moutsianas et al., 2015; Navon et al., 2013). In order to make the power comparable 

across a broad range of scenarios with different types of sequencing depth, the effect size of 

each causal variant was determined by controlling the variance it explained to be ~1%, 

which resulted in a negative correlation between variant frequency and effect size. This 

parameter was set to facilitate the comparison of the different designs and should not affect 

the results. In addition, the effect size was bounded (single allele relative risk ≤5.5) for rare 

variants to prevent unrealistically large effect sizes of very rare variants. Correspondingly, 

the variance explained by all the causal variants is ~ 10.9%. The effect size calculation was 

conducted with the program VarExplained (So et al., 2011).

Samples of sequences

The reference genome was taken from the 1000 Genomes haplotypes Phase 3 release 

(https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html). We randomly sampled 1000 

sequences from chromosome 22 of a European population (EUR) for each of the 1000 

simulation replications of each scenario. The sequence length was 100 kb: sufficient to cover 

the LD block, which typically extends 60 kb for EUR (Reich et al., 2001). SNPs with MAF 

≥ 0.05 are defined as common SNPs. SNPs with MAF between 0.01 ≤ MAF < 0.05 are 

defined as low-frequency SNPs. Rare variants are those SNPs with MAF < 0.01.

Model evaluation

The sequencing investment was measured by the sequencing effort, which was the 

sequencing coverage multiplied by the sample size of that study(Li et al., 2011). The unit 

sequencing cost per mega base estimated by National Human Genome Research Institute 

(NHGRI) consists of direct sequencing cost and miscellaneous costs, such as sample 

preparations, utilities, reagents, and consumables(Wetterstrand KA, 2016). Consequently, 

given the same read length, the sequencing investment can be represented by the sequencing 

effort. We used person depth (pd) as the unit of the sequencing effort. A sequencing effort of 

1,000 person depth is denoted by 1 kpd.

The variant discovery power was defined as the proportion of the identified variants among 

the total variants. The association power was defined as the proportion of statistically 

significant variants identified among the total true causal variants. A logistic regression 

model was employed to perform an association test of the variants with Bonferroni 

correction for multiple testing. In addition, the rare variants were examined by the region-

based association test SKAT (Wu et al., 2011) as follows: We divided each of the simulated 

100 kb sequences into 9 regions with a length of 20kb by a sliding step of 10kb. Multiple 

testing was adjusted. Only rare variants were included. The test result for a specific region 

using SKAT was checked against whether the region contained any rare causal variants.
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Results

Simulated data

To compare the performance of low-coverage, high-coverage and two-stage sequencing 

studies on variant discovery and association testing, we simulated 12 scenarios for each 

single-stage low and high sequencing design. The combination of low and high sequencing 

scenarios comprises the two-stage sequencing scenarios, which are compared to single-stage 

sequencing with sequencing effort. We selected 6 levels of sequencing depth to cover the 

typical settings: 0.5x, 2x, 8x for low coverage and 30x, 60x, 80x for high coverage (Table 1). 

The total sample sizes considered for low coverage were 1000, 2000, 4000, and 6000, while 

the sample sizes for high coverage were 100, 200, 400 and 600 (Table 1). The combination 

of the parameter settings results in 24 single-stage and 51 two-stage sequencing scenarios.

Based on the reference data from the 1000 Genomes Project, we generated 1000 sequences 

with a length of 100 kb in chromosome 22. On average, there were 951 SNPs within each 

sequence. Nearly 60% (563/951) were rare variants (MAF<0.01). The details of the 

proportion of simulated SNPs are listed in Table 2. Of the 9 regions divided by the sliding 

window within each sequence, about 8 contain rare causal variants. The average number of 

rare causal variants contained in those regions was ~2.23.

Discovery power

We first assessed the performance of single- and two-stage sequencing in SNP discovery 

using the proposed simulation methods. Figure 2a shows the discovery power of the total 

variants for all scenarios. There is generally a monotonically increasing quadratic 

relationship between discovery power and sequencing investment. The discovery power 

increases rapidly when the sequencing effort is below 10 kpd (kilo person depth), which 

includes most of the single-stage scenarios with depth ≤ 2. We call the corresponding area in 

Figure 2a the discovery power fast growth (DPFG) region. In order to investigate this region 

thoroughly, we added 2 more single stage scenarios within sequencing effort ≤ 6 kpd, which 

are included in Figure 2 and following results. They are 500@8 (sequencing 500 individuals 

at depth 8) and 750@8. Beyond the sequencing effort of 10 kpd, the gain in discovery power 

is limited. For example, when the sequencing effort increases from 12 kpd (6000@2x) to 48 

kpd (6000@8x), the gain in discovery power is less than 10%.

Among those scenarios within the DPFG region, low coverage sequencing outperforms high 

coverage and two-stage sequencing in terms of high discovery power and low sequencing 

effort. The scenarios with depth 2 have a stable and steady increase in discovery power. The 

extremely low coverage of 0.5 has the maximum marginal gain in power. However, there is a 

decrease of power when the sample size increased (inverse trend) from 1000 to 2000 for 

coverage 0.5. The limited reads in the extremely low coverage (≤0.5x) may fail to provide 

sufficient information to call all the variants in the region, which could be compensated by 

increasing the sample size. The trend disappears when the sample size increases to 4000. It 

shows a minimum sample size is necessary to achieve a stable outcome in variant discovery 

using extremely low coverage sequencing.
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Beyond the DPFG region, low coverage sequencing still works better than high coverage. 

For all of these low coverage scenarios, we can find some two-stage scenarios with a higher 

or at least comparable discovery power using the same or less sequencing effort (Table 3). 

For instance, a low coverage scenario of 6000@8x results a power of 88.01%, while a two 

stage scenario of 400@30+4000@8 produces a higher power of 88.54% with less effort (44 

kpd vs 48 kpd). On the other hand, the power performance of some two-stage scenarios is 

not comparable to low coverage sequencing. For example, a two-stage scenario 

400@80+2000@2 produced a detection power of only 77.71%, which is less than scenario 

4000@8x (Table 3). The type I error rate for the scenarios are all well controlled under 

0.05% except the single/two-stage designs involving sequencing @0.5 or 6000@2, which 

range from 0.06% to 1.4% (Supplementary Table 1).

According to our results, to make an efficient two-stage design given certain sequencing 

investment, the stage of low coverage sequencing should utilize relatively high depth and/or 

sequence a large population (Table 3). Then for the high coverage stage, a large sample size 

is preferred rather than a high depth (Figure 3). Figure 3 shows the total variant discovery 

power comparison among 5 two-stage scenarios with the same design of the low-coverage 

stage (4000@8) but different depth and sample size for the high-coverage stage. The larger 

samples in high-coverage stage lead to higher discovery power of the total variants, while 

increasing the depth does not increase the discovery power much with fixed sample sizes.

For the discovery power of rare variants, a similar pattern is observed. Figure 2b shows the 

discovery rate of the rare variants. The same DPFG region can be found for rare variant 

discovery. Although power increases rapidly in the DPFG region, extremely low coverage 

sequencing (0.5x) has very low absolute power (<50%) to discover rare variants, which may 

not be ignorable in practice. Beyond the DPFG region, two-stage sequencing expands the 

advantages in discovering power for rare variants compared with total variants (Table 3). 

Appropriate two-stage design is able to reach a higher discovery power using a lower 

sequencing effort compared with single-stage sequencing. The rules of how to make an 

appropriate two-stage design is the same as that summarized in previous analyses of the 

discovery of total variants.

Single-stage and two-stage sequencing show similar power in discovering common and low 

frequency variants. Figure 2c and 2d show that discovery power reaches a plateau for almost 

all scenarios with a sequencing effort exceeding 3 kpd. The few exceptions are the extremely 

low sequencing of 1000, 2000, and 4000 individuals at depth of 0.5. The inverse trend for 

extremely low coverage sequencing is present again in Figure 2c and 2d. The results suggest 

that extremely low sequencing may require a minimum sample size to get a reliable outcome 

for common and low frequency variants, for example, a sample size of 4000 for 0.5x (2000 

pd).

Association power

We further evaluated the association power of low, high and two stage sequencing design 

conditional on the variants discovered (Supplementary Figure 1, Supplementary Table 1). 

Figure 4 shows the power of testing common, low frequency and rare variants individually 

for all scenarios. There is an association power fast growth (APFG) region to the left of the 
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sequencing effort of ~10 kpd in the plot. Within the APFG region, low coverage sequencing 

outperforms high coverage and two-stage scenarios. For most common variants, the power 

in the APFG is below 50%. Beyond the APFG region, the power gradually increases to 

~75%. Most two-stage and high coverage scenarios are inferior to low coverage scenarios 

given a comparable sequencing effort. Some two-stage scenarios have equal or higher power 

than low-coverage scenarios; however, the sequencing efforts are also higher (Table 4). For 

example, compared with the scenario 4000@8x, a two-stage scenario of 100@30x

+4000@8x reaches a higher power (64.3% vs 62.7%) with more effort (35 kpd vs 32 kpd). 

For low frequency and rare variants, the general conclusion is the same, but the overall 

power is less than common variants. Particularly for rare variants, most of the scenarios have 

a power under 25%. The overall type I error rate for single high-coverage scenarios are well 

controlled below 5%. However, the type I error rate are inflated (<19%) for single/two-stage 

design involving low-coverage sequencing (Supplementary Table 1). The accumulated 

sequencing and/or genotyping error may be the underlying reason. The extremely low-

coverage (0.5x) scenarios can also control the type I error for association, but is due to the 

low power in discovering the candidate variants. Most of the null variants are not identified 

in the extremely low-coverage scenarios.

We then used a region-based test to compare association power for rare variants (Figure 5). 

The power of the pooled test increased dramatically compared with the single rare variant 

test. Low and two-stage sequencing are able to reach a power near 100%, while high 

coverage sequencing could only reach 25% even for very large sequencing efforts. For the 

extremely low designs, the power is only ~25% even for a sample size as large as 4000. The 

deficiency of association power is due to the limited discovery power for rare variants, 

which is only ~10%. However, when the discovery power increases to ~45% (6000@0.5), 

the association power rapidly reaches the saturation point near 100%. Further, the 

association power for the pooled test is likely determined by the sample size used for the low 

coverage stage. For example, scenarios 14–24 in Table 5 are two-stage scenarios having 

4000 individuals for the low coverage stage. Scenarios 25 and 26 are single stage low 

coverage sequencing with 4000 samples. Although the association power for the two-stage is 

higher than for the single stage designs, they all result in power around 80%. Varying the 

sample size and depth of the high coverage stage (scenarios14–24) does not produce great 

differences in power. With respect to the optimum design of high power and little effort, the 

advanced two-stage designs all rely on a larger sample size in the low coverage stage than in 

single stage sequencing; for example, 100@30+6000@2 with 15 kpd effort and 98.20% 

power compared with 4000@8 with 32 kpd effort and 87.88% power.

Discussion

Our study compared low-coverage, high-coverage and two-stage sequencing in the design of 

genetic association studies. In line with previous findings(Li et al., 2011; Pasaniuc et al., 

2012), we found that given a certain sequencing effort, low-coverage sequencing is an 

efficient method to conduct genetic association studies. High-coverage sequencing is not as 

efficient as low-coverage with regard to sequencing investment. The advantage of high-

coverage is the convincing detection of rare and de novo mutations, which may play a 

significant part in the heritability of complex genetic diseases(Veltman and Brunner, 2012). 
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In our results, the false discovery rate (FDR) of rare variant detection was < 1.3% for high-

coverage scenarios. Two-stage design is another way to utilize this advantage of high-

sequencing. Compared with low-coverage only, two-stage sequencing is more powerful in 

discovering rare variants. We have summarized several basic guidelines on how to make an 

efficient two-stage design. Given a certain sequencing investment, the first priority under 

consideration is the sample size of the low-coverage stage. It determines not only the 

discovery power but also the final association power. The next priority is the depth of the 

low-coverage stage. The higher the depth, the higher the discovery power. The third priority 

is the sample size for the high-coverage stage, while the depth of the high-coverage stage is 

less impactful.

To achieve an optimum design in discovery power and association power given a certain 

sequencing investment, single stage using low-coverage sequencing is the best choice if only 

a small amount of investment (<10 kpd) is available. Use caution for extremely low-

coverage sequencing (~0.5x), as a minimum sample size may be necessary for a reliable 

outcome, such as 4000 for 0.5x. If the available investment is sufficient (> 10 kpd), low-

coverage and appropriate two-stage design are both applicable. The optimum design at 

specific sequencing investment can be derived through enumerating all or the major 

representative types of the possible designs using our simulation pipeline. It is noticeable 

that we focus on low (<10x) and high-coverage (20x). The mid-range coverage between 10x 

and 20x is not covered, but should also be considered when search for the optimal design in 

reality. Our conclusions are based on the unit sequencing cost estimate from NHGRI. The 

unit sequencing cost may not accurately predict the sample recruitment cost in past and 

future studies. By simply replacing the estimate of the sequencing investment, optimum 

design can still be found for investigators having specific cost information.

Our study only compared the discovery and association power for single variants. The 

efficiency for low-, high- and two-stage sequencing in detecting other structural variants 

remains unexplored. For instance, the power of detecting insertion, deletion, copy number 

variations (CNVs) are also dependent on sequencing depth(Xi et al., 2011), so our 

conclusions may not apply in those scenarios.

The influence of sequencing effort on discovery and association power shows different 

patterns. Sequencing effort >~3 kpd is sufficient to identify >90% common and low 

frequency variants. On the other hand, the association power of common and low frequency 

variants monotonically increases within the entire range (0–50 kpd) of the sequencing effort. 

For rare variants, the discovery power is highly correlated with the sequencing effort. An 

investment < 10 kpd gives a higher marginal return in discovery power, while an investment 

> 10 kpd still increases the power, albeit more slowly. Owing to the powerful gene/region 

based rare variant testing method, the power growing interval is shortened to <3 kpd (Figure 

5). Beyond 3 kpd, association power reaches a plateau. In short, sequencing effort is more 

influential for the association testing of common and low frequency variants and discovery 

of rare variants, but less influential for the discovery power of common and low frequency 

variants and gene/region based association testing of rare variants.
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Genetic architecture varies for different diseases. The disease model we considered is only 

one of the possible hypotheses. While the optimum design strategy under other complex 

disease models requires further research, our simulation pipeline can be easily extended to 

other models using our in-house scripts, which are available at https://github.com/xu1912/

spS-Gas.git. Moreover, our conclusions here can serve as a baseline reference for other 

disease modeling. For instance, in our study, rare, low frequency and common variants all 

have deleterious effects and the magnitude of their effects is inversely correlated with their 

frequencies. If, for another disease, rare variants only have modest effects, two-stage 

sequencing may provide more advantages in association power by virtue of its ability to 

include more rare variants.

In the pooled rare variant association test, we noticed that given the same sample size 6000, 

although the power for 0.5x, 2x and 8x are similar, the lower depth results in higher power. 

This is because the lower depth identified more false rare variants which inflated the 

association power. The FDR of the rare variants for 0.5x, 2x and 8x with 6000 sample size 

are 73.8%, 47.9% and 3.1% respectively. While the FDR can be controlled by tuning the 

filters in the variant discovery package, it demonstrates that investigators should be careful 

in analyzing data from extremely low (~0.5x) sequencing.

Another aspect to consider is missing heritability. Through simulating the causal variants by 

assuming the variance they explained, we find almost all scenarios with sequencing 

investment over 10 kpd failed to discover ~9.83% heritability, which is impossible to be 

identified by subsequent association testing. Advanced SNP calling methods may be helpful; 

the deficiency in association power leads to extra loss in heritability. The analysis of 

common variants shows that study design plays a role in uncovering heritability. The 

missing heritability in association testing may be partially recovered by improved study 

design and testing methods (Eichler et al., 2010; Zuk et al., 2014). A recent publication 

found negligible missing heritability for human height and body mass index through 

imputation after first stage genotyping(Yang et al., 2015), which shows a better design helps 

in finding missing heritability. The impact of sequencing study design on missing 

heritability in a genetic study merits further investigation.

Conclusion

In conclusion, through a complete simulation pipeline for sequencing based genetic 

association studies, we assessed the performance of low-, high- and two-stage sequencing 

with regard to the discovery power and association power of single variants in randomly 

picked 100 kb regions from human chromosome 22. Based on our results, we provide some 

basic guidelines for formulating a competent two-stage sequencing design and find an 

optimum design given a certain sequencing investment. With the high sequencing of large 

samples becoming more achievable, our study will facilitate the effective and efficient 

application of low-, high- and two-stage sequencing in genetic studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Simulation pipeline
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Fig. 2. 
Low-, high-coverage and two-stage sequencing on discovery power and sequencing effort 

(pd): a) total variants; b) rare variants; c) low frequency variants; d) common variants
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Fig. 3. 
Discovery power (total variants) comparison for 5 two-stage scenarios with same depth and 

sample size for the low-coverage stage
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Fig. 4. 
Low-, high-coverage and two-stage sequencing on association power and sequencing effort 

(pd): a) common variants; b) low frequency variants; c) common and low frequency variants; 

d) rare variants
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Fig. 5. 
Region based association power and sequencing effort for rare variants
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Table 1

Single- and two-stage sequencing scenarios considered

Two stage sequencing

Low coverage sequencing High coverage sequencing

Depth Sample size Depth Sample size

0.5 1000 30 100

2 2000 60 200

8 4000 80 400

6000 600

Genet Epidemiol. Author manuscript; available in PMC 2018 April 01.
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Table 2

Summary of simulated SNPs

Data Number of SNPs Common Low frequency Rare

Reference 941 273 (29.0%) 107 (11.4%) 561 (59.6%)

Simulated 951 279 (29.4%) 108 (11.4%) 563 (59.2%)
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